JP2014073965A - Novel benzoindolocarbazole compound, organic light-emitting element containing the same, display device, image information processor, lighting device, image forming device - Google Patents

Novel benzoindolocarbazole compound, organic light-emitting element containing the same, display device, image information processor, lighting device, image forming device Download PDF

Info

Publication number
JP2014073965A
JP2014073965A JP2012220405A JP2012220405A JP2014073965A JP 2014073965 A JP2014073965 A JP 2014073965A JP 2012220405 A JP2012220405 A JP 2012220405A JP 2012220405 A JP2012220405 A JP 2012220405A JP 2014073965 A JP2014073965 A JP 2014073965A
Authority
JP
Japan
Prior art keywords
group
unsubstituted
substituted
light emitting
benzoindolocarbazole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012220405A
Other languages
Japanese (ja)
Inventor
Tetsuya Kosuge
哲弥 小菅
Atsushi Kamatani
淳 鎌谷
Kengo Kishino
賢悟 岸野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012220405A priority Critical patent/JP2014073965A/en
Publication of JP2014073965A publication Critical patent/JP2014073965A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel compound having low S1 energy and shallow HOMO level, an organic light-emitting element having high luminous efficiency and capable of being driven at low voltage, and to provide a display device, an image information processor, lighting device and image forming device using the same.SOLUTION: There is provided a benzoindolocarbazole compound. [1] where Rto Rare selected from a hydrogen atom, an alkyl group and a group represented by the formula [2]. [2]

Description

本発明は新規ベンゾインドロカルバゾール化合物、これを有する有機発光素子、表示装置、画像情報処理装置、照明装置、画像形成装置に関する。   The present invention relates to a novel benzoindolocarbazole compound, an organic light emitting device having the compound, a display device, an image information processing device, a lighting device, and an image forming device.

有機発光素子は、一対の電極(陽極および陰極)と、それらの電極間に配置される有機化合物層と、を有する素子である。各電極から注入される正孔(ホール)及び電子が有機化合物層内で再結合することで励起子が生成し、励起子が基底状態に戻る際に光が放出される。   An organic light emitting element is an element having a pair of electrodes (anode and cathode) and an organic compound layer disposed between the electrodes. Holes and electrons injected from each electrode recombine in the organic compound layer to generate excitons, and light is emitted when the excitons return to the ground state.

このような有機発光素子の発光効率を向上させる手法として、燐光発光を用いた有機発光素子の開発が行われている。   As a technique for improving the light emission efficiency of such an organic light emitting element, an organic light emitting element using phosphorescence has been developed.

特許文献1には、このような燐光発光を用いた有機発光素子の発光層に使用される材料として、下記の化合物A1及びA2が記載されている。   Patent Document 1 describes the following compounds A1 and A2 as materials used for the light emitting layer of the organic light emitting device using phosphorescence emission.

特開2010−087496号公報JP 2010-087496 A

しかしながら、特許文献1に記載されている化合物A1及びA2は、いずれもインドロカルバゾールを主骨格とする化合物であるため、HOMO準位が深く(イオン化ポテンシャルが大きく)、S1エネルギーが大きい。したがって、化合物A1及びA2を発光層に有する有機発光素子は、駆動電圧が高い有機発光素子になるという問題が生じる。   However, since the compounds A1 and A2 described in Patent Document 1 are both compounds having indolocarbazole as the main skeleton, the HOMO level is deep (the ionization potential is large) and the S1 energy is large. Therefore, the organic light emitting device having the compounds A1 and A2 in the light emitting layer has a problem that it becomes an organic light emitting device having a high driving voltage.

そこで、本発明は、下記式[1]で示されることを特徴とするベンゾインドロカルバゾール化合物を提供する。   Accordingly, the present invention provides a benzoindolocarbazole compound represented by the following formula [1].

〔式[1]において、R乃至Rは、各々独立して、水素原子、アルキル基、および下記式[2]で示される基から選ばれる。但し、R乃至Rのうち、少なくとも1つは下記式[2]で示される基である。〕 [In the formula [1], R 1 to R 4 are each independently selected from a hydrogen atom, an alkyl group, and a group represented by the following formula [2]. However, at least one of R 1 to R 4 is a group represented by the following formula [2]. ]

〔式[2]において、Arは、置換基を有する2価の炭化水素芳香族基、無置換の2価の炭化水素芳香族基、置換基を有する2価の複素芳香族基、および無置換の2価の複素芳香族基から選ばれ、Arは、置換基を有する1価の炭化水素芳香族基、無置換の1価の炭化水素芳香族基、置換基を有する1価の複素芳香族基、および無置換の1価の複素芳香族基から選ばれる。aは0乃至2の整数である。aが2である場合、2つのArは同一であっても異なっていてもよい。〕 [In the formula [2], Ar 1 represents a divalent hydrocarbon aromatic group having a substituent, an unsubstituted divalent hydrocarbon aromatic group, a divalent heteroaromatic group having a substituent, and Ar 2 is selected from a substituted divalent heteroaromatic group, and Ar 2 is a monovalent hydrocarbon aromatic group having a substituent, an unsubstituted monovalent hydrocarbon aromatic group, or a monovalent complex having a substituent. It is selected from an aromatic group and an unsubstituted monovalent heteroaromatic group. a is an integer of 0 to 2. When a is 2, two Ar 1 may be the same or different. ]

本発明によれば、HOMO準位が浅く、S1エネルギーが低い新規なベンゾインドロカルバゾール化合物を提供することができる。また、発光効率が高く、低電圧駆動が可能な有機発光素子、およびこれを用いた表示装置、画像情報処理装置、照明装置、画像形成装置を提供することができる。   According to the present invention, a novel benzoindolocarbazole compound having a shallow HOMO level and low S1 energy can be provided. In addition, it is possible to provide an organic light-emitting element that has high luminous efficiency and can be driven at a low voltage, and a display device, an image information processing device, a lighting device, and an image forming device using the organic light-emitting device.

本発明の実施形態に係る白色有機発光素子を表す断面模式図である。It is a cross-sectional schematic diagram showing the white organic light emitting element which concerns on embodiment of this invention. 本発明の実施形態に係る表示装置を表す断面模式図である。It is a cross-sectional schematic diagram showing the display apparatus which concerns on embodiment of this invention.

本発明に係るベンゾインドロカルバゾール化合物は、下記式[1]に示される。   The benzoindolocarbazole compound according to the present invention is represented by the following formula [1].

〔式[1]において、R乃至Rは、各々独立して、水素原子、アルキル基、および下記式[2]で示される基から選ばれる。但し、R乃至Rのうち、少なくとも1つは下記式[2]で示される基である。〕 [In the formula [1], R 1 to R 4 are each independently selected from a hydrogen atom, an alkyl group, and a group represented by the following formula [2]. However, at least one of R 1 to R 4 is a group represented by the following formula [2]. ]

〔式[2]において、Arは、置換基を有する2価の炭化水素芳香族基、無置換の2価の炭化水素芳香族基、置換基を有する2価の複素芳香族基、および無置換の2価の複素芳香族基から選ばれ、Arは、置換基を有する1価の炭化水素芳香族基、無置換の1価の炭化水素芳香族基、置換基を有する1価の複素芳香族基、および無置換の1価の複素芳香族基から選ばれる。aは0乃至2の整数である。aが2である場合、2つのArは同一であっても異なっていてもよい。〕 [In the formula [2], Ar 1 represents a divalent hydrocarbon aromatic group having a substituent, an unsubstituted divalent hydrocarbon aromatic group, a divalent heteroaromatic group having a substituent, and Ar 2 is selected from a substituted divalent heteroaromatic group, and Ar 2 is a monovalent hydrocarbon aromatic group having a substituent, an unsubstituted monovalent hydrocarbon aromatic group, or a monovalent complex having a substituent. It is selected from an aromatic group and an unsubstituted monovalent heteroaromatic group. a is an integer of 0 to 2. When a is 2, two Ar 1 may be the same or different. ]

なお、本明細書の以降の記載において、式[2]で示される基をAと表記する場合がある。   In the following description of this specification, the group represented by the formula [2] may be represented as A.

式[1]に示されるベンゾインドロカルバゾール化合物は、主骨格にベンゾ[b]インドロ[3,2,1−jk]カルバゾール環を有する。なお、本発明および本実施形態において、化合物の主骨格とは、化合物が有する構造のうち、化合物の物性値に大きく影響を及ぼす部分構造であって、具体的にはS1エネルギー、T1エネルギー、HOMO準位、及びLUMO準位などの物性値を主として決めている部分構造である。これに対して、副骨格とは、化合物の物性値に大きな影響を与えない部分構造であり、副骨格の選択によって、化合物の、膜性、S1エネルギー、電荷輸送性等の物性を微調整することができる。   The benzoindolocarbazole compound represented by the formula [1] has a benzo [b] indolo [3,2,1-jk] carbazole ring in the main skeleton. In the present invention and the present embodiment, the main skeleton of the compound is a partial structure that greatly affects the physical property value of the compound among the structures of the compound, specifically, S1 energy, T1 energy, HOMO. It is a partial structure that mainly determines physical properties such as levels and LUMO levels. On the other hand, the sub skeleton is a partial structure that does not greatly affect the physical properties of the compound, and the physical properties such as film properties, S1 energy, and charge transport properties of the compound are finely adjusted by selecting the sub skeleton. be able to.

ベンゾ[b]インドロカルバゾール環は、表1のS1エネルギーとHOMO準位の計算値が示すように、インドロカルバゾールやベンゾインドロカルバゾールの他の異性体と比較してS1エネルギーが小さく、HOMO準位が浅い。ここで、HOMO準位が浅いとは、真空準位を0とした時にHOMO準位(負の値)の絶対値が小さいこと、またはイオン化ポテンシャルが小さいことをいう。   The benzo [b] indolocarbazole ring has a lower S1 energy than the other isomers of indolocarbazole and benzoindolocarbazole, as shown in the calculated values of S1 energy and HOMO level in Table 1. The rank is shallow. Here, the shallow HOMO level means that the absolute value of the HOMO level (negative value) is small when the vacuum level is 0, or the ionization potential is small.

なお、式[1]に示されるベンゾインドロカルバゾール化合物のイオン化ポテンシャルの実測値は、例えば、以下の方法により測定することができる。   In addition, the actual value of the ionization potential of the benzoindolocarbazole compound represented by the formula [1] can be measured by the following method, for example.

式[1]に示される化合物をAlNd基板上に加熱蒸着し、膜厚30nmの蒸着薄膜を得る。この蒸着薄膜について、光電子分光装置AC−3(理研計器株式会社製)により下記の測定条件にてイオン化ポテンシャルを測定する。
測定環境:室温、窒素下
測定光量:0.5nW
測定エネルギー範囲:5.0〜7.0eV
ステップ:0.05eV
計測時間:10sec/1 energy point
The compound represented by the formula [1] is heat-deposited on an AlNd substrate to obtain a deposited thin film having a thickness of 30 nm. About this vapor deposition thin film, ionization potential is measured on the following measurement conditions with photoelectron spectrometer AC-3 (made by Riken Keiki Co., Ltd.).
Measurement environment: room temperature, under nitrogen Measurement light intensity: 0.5 nW
Measurement energy range: 5.0 to 7.0 eV
Step: 0.05eV
Measurement time: 10sec / 1 energy point

有機発光素子が有する発光層のホスト材料としては、S1エネルギーが低く、HOMO準位が浅い化合物を用いることが好ましい。理由を以下に述べる。   As a host material of the light emitting layer of the organic light emitting element, it is preferable to use a compound having a low S1 energy and a shallow HOMO level. The reason is described below.

一般的に、有機発光素子において、正孔輸送層と発光層とのHOMOの準位差が小さい方が正孔注入障壁は小さくなり、有機発光素子の駆動電圧が低くなる。正孔輸送層はアリールアミン化合物等のHOMO準位の浅い化合物からなることが多いため、発光層の主成分であるホスト材料にHOMO準位の浅い化合物を用いることで正孔注入障壁を小さくすることができる。   Generally, in an organic light emitting device, the smaller the HOMO level difference between the hole transport layer and the light emitting layer, the smaller the hole injection barrier and the lower the driving voltage of the organic light emitting device. Since the hole transport layer is often composed of a compound having a shallow HOMO level such as an arylamine compound, the hole injection barrier is reduced by using a compound having a shallow HOMO level as the host material that is the main component of the light-emitting layer. be able to.

同様に、電子輸送層と発光層とのLUMOの準位差が小さい方が電子注入障壁は小さくなり、有機発光素子の駆動電圧はさらに低下する。   Similarly, the smaller the LUMO level difference between the electron transport layer and the light emitting layer, the smaller the electron injection barrier, and the driving voltage of the organic light emitting device further decreases.

一般的に、電子輸送層はLUMO準位が深い(電子親和力が大きい)化合物からなることが多いため、発光層のホスト材料のLUMO準位が深い方が、電子注入障壁が小さくなり、低電圧下での良好な電子注入を期待することができる。   In general, since the electron transport layer is often made of a compound having a deep LUMO level (high electron affinity), the deeper the LUMO level of the host material of the light emitting layer, the smaller the electron injection barrier and the lower the voltage. Good electron injection below can be expected.

HOMOとLUMOの準位差はS1エネルギーにほぼ等しいため、発光層のホスト材料として用いるのに好ましい、HOMO準位が浅くLUMO準位が深い化合物は、S1エネルギーが低い化合物であると言える。   Since the level difference between HOMO and LUMO is almost equal to the S1 energy, a compound having a shallow HOMO level and a deep LUMO level, which is preferable for use as a host material of the light-emitting layer, can be said to be a compound having a low S1 energy.

なお、燐光発光材料を発光層のゲスト材料に用いる燐光発光素子においては、キャリアバランスを向上して発光領域(キャリア再結合領域)を拡大する意味でもホスト材料のHOMO準位を浅くすることが好ましい。Ir(ppy)等のイリジウム錯体をはじめとする燐光発光性ゲスト材料は、HOMO準位が浅いものが多い。ゲスト材料のHOMO準位が浅くホスト材料のHOMO準位が深いと、発光層内でゲスト材料のHOMO準位が正孔トラップ準位となって正孔輸送性が大きく低下してしまうことがある。このような場合、正孔輸送層より注入された正孔は、発光層の内部まで十分に輸送されずに正孔輸送層側に偏在することで、正孔と電子のキャリアバランスが悪化し、発光領域が局所化して有機発光素子の発光効率の低下や耐久寿命の悪化を招いてしまうことがある。 Note that in a phosphorescent light-emitting element that uses a phosphorescent light-emitting material as a guest material for the light-emitting layer, it is preferable to reduce the HOMO level of the host material in order to improve the carrier balance and expand the light-emitting region (carrier recombination region). . Many phosphorescent guest materials including iridium complexes such as Ir (ppy) 3 have shallow HOMO levels. When the HOMO level of the guest material is shallow and the HOMO level of the host material is deep, the HOMO level of the guest material becomes a hole trap level in the light emitting layer, and the hole transport property may be greatly reduced. . In such a case, the holes injected from the hole transport layer are not sufficiently transported to the inside of the light emitting layer and are unevenly distributed on the hole transport layer side, so that the carrier balance between holes and electrons deteriorates, The light emitting region may be localized, leading to a decrease in the light emission efficiency of the organic light emitting device and a deterioration in the durability life.

したがって、燐光発光素子においては、ホスト材料のHOMO準位を浅くすることで、ゲスト材料とのHOMO準位差を小さくし、発光層内の発光領域を拡大することができる。そして、これにより、発光素子の高発光効率化かつ長寿命化を実現することが可能となる。   Therefore, in the phosphorescent light-emitting element, by reducing the HOMO level of the host material, the HOMO level difference from the guest material can be reduced and the light-emitting region in the light-emitting layer can be expanded. As a result, it is possible to achieve high luminous efficiency and long life of the light emitting element.

また、ベンゾ[b]インドロカルバゾール環は、化学安定性が高い。   Moreover, the benzo [b] indolocarbazole ring has high chemical stability.

ベンゾ[b]インドロカルバゾール環は、ナフタレン環とカルバゾール環が、炭素−窒素結合(以下、カルバゾール型C−N結合という)と、アリール−アリール結合としての炭素−炭素結合(以下、アリール型C−C結合という)の2つの結合で架橋された化合物とみなすことができる。   The benzo [b] indolocarbazole ring includes a naphthalene ring and a carbazole ring, a carbon-nitrogen bond (hereinafter referred to as a carbazole type CN bond) and a carbon-carbon bond as an aryl-aryl bond (hereinafter referred to as an aryl type C). It can be regarded as a compound crosslinked by two bonds of -C bond).

一般に、カルバゾール型C−N結合はアリール型C−C結合よりも結合エネルギーが小さく化学安定性が低いとされている。ベンゾ[b]インドロカルバゾール環においては、下記式[3−1]に示すように、たとえ励起エネルギーによりカルバゾール型C−N結合がラジカル結合開裂したとしても、アリール型C−C結合によりナフタレン環とカルバゾール環との結合は保持される。   In general, carbazole type C—N bonds are considered to have lower bond energy and lower chemical stability than aryl type C—C bonds. In the benzo [b] indolocarbazole ring, as shown in the following formula [3-1], even if the carbazole type C—N bond is cleaved by a radical bond due to excitation energy, the aryl type C—C bond causes a naphthalene ring. And the carbazole ring is retained.

したがって、ラジカル結合開裂が生じても、2つのラジカルは、同一分子内で互いに近接して存在するため、カルバゾール型C−N結合が再生される確率が高い。   Therefore, even if radical bond cleavage occurs, the two radicals are close to each other in the same molecule, and thus there is a high probability that the carbazole type C—N bond will be regenerated.

すなわち、ベンゾ[b]インドロカルバゾール環は劣化が起こりにくく、式[1]に示されるベンゾインドロ化合物は化学安定性が高いと言える。   That is, it can be said that the benzo [b] indolocarbazole ring hardly deteriorates, and the benzoindolo compound represented by the formula [1] has high chemical stability.

なお、カルバゾール型C−N結合のみ有する9−ナフチルカルバゾールの場合、下記式[3−2]に示すように、一度結合開裂が起こると系中でナフタレン環とカルバゾール環が解離して二分子化し、9−ナフチルカルバゾール構造を保つことが困難になる。   In addition, in the case of 9-naphthylcarbazole having only a carbazole type C—N bond, as shown in the following formula [3-2], once bond cleavage occurs, the naphthalene ring and the carbazole ring are dissociated into a bimolecular form in the system. , 9-naphthylcarbazole structure becomes difficult to maintain.

さらに、解離したラジカル同士が再結合し、カルバゾール型C−N結合が再生される確率は低いので、このようなラジカル状態を経由した化合物の劣化を助長することになる。すなわち、このような弱い結合を有する化合物は、有機発光素子中において素子駆動時に化合物の構造的劣化が起こりやすく、発光素子の耐久寿命に悪影響を及ぼしてしまう。   Furthermore, since the dissociated radicals are recombined and the probability that the carbazole-type C—N bond is regenerated is low, the deterioration of the compound via such a radical state is promoted. That is, the compound having such a weak bond is likely to cause structural deterioration of the compound during driving of the organic light emitting device, and adversely affects the durability life of the light emitting device.

式[1]において、R乃至Rは、各々独立して、水素原子、アルキル基、および式[2]で示される基(すなわちA)から選ばれ、R乃至Rの少なくとも1つはAである。なお、R乃至Rが結合しているベンゾ[b]インドロカルバゾール環の炭素の位置は、ベンゾ[b]インドロカルバゾール環上の置換位置のうち位置選択的な合成が容易な置換位置である。 In the formula [1], R 1 to R 4 are each independently selected from a hydrogen atom, an alkyl group, and a group represented by the formula [2] (that is, A), and at least one of R 1 to R 4 Is A. The carbon position of the benzo [b] indolocarbazole ring to which R 1 to R 4 are bonded is the substitution position on the benzo [b] indolocarbazole ring, which is easily regioselectively synthesized. It is.

式[1]におけるR乃至Rのうちの少なくとも1つがAであることにより、ベンゾ[b]インドロカルバゾール環のπ共役系が拡大され、水素原子もしくはアルキル基である場合と比較して、より小さいS1エネルギーを有し、より浅いHOMO準位を有する化合物となる。 When at least one of R 1 to R 4 in Formula [1] is A, the π-conjugated system of the benzo [b] indolocarbazole ring is expanded, compared with a case where it is a hydrogen atom or an alkyl group. , A compound having a smaller S1 energy and a shallower HOMO level.

乃至Rのうち、少なくとも一つはAであれば良いが、RはAであることが好ましく、より好ましくは、RがAであり、R乃至Rが各々独立に水素原子もしくはアルキル基から選ばれる場合である。さらに好ましくは、RがAであり、R乃至Rが水素である。 At least one of R 1 to R 4 may be A, but R 1 is preferably A, more preferably R 1 is A, and R 2 to R 4 are each independently hydrogen. This is a case selected from an atom or an alkyl group. More preferably, R 1 is A and R 2 to R 4 are hydrogen.

なお、Aが一つである場合に、R乃至RのうちRであることが好ましい理由は、以下である。 Note that when A is one reason why it is preferable that R 1 of R 1 through R 4 is less.

ベンゾインドロカルバゾール環には13箇所の置換位置があり、その置換位置番号を以下に示す。   The benzoindolocarbazole ring has 13 substitution positions, and the substitution position numbers are shown below.

前述したように、ベンゾインドロカルバゾール環の置換位置に関して、位置選択的な合成が容易に可能なのは2位、5位、11位、及び12位の4箇所であり、これらの位置にフェニル基を置換させた化合物について分子軌道計算を行うと、HOMO準位の計算値は表2のようなる。   As described above, with respect to the substitution positions of the benzoindolocarbazole ring, regioselective synthesis can be easily performed at four positions of 2, 5, 11, and 12, and a phenyl group is substituted at these positions. When molecular orbital calculation is performed on the compound thus obtained, the calculated value of the HOMO level is as shown in Table 2.

表2より、置換位置がベンゾインドロカルバゾール環の12位のときに、化合物のHOMO準位が最も浅くなることがわかる。   From Table 2, it can be seen that the HOMO level of the compound is the shallowest when the substitution position is the 12th position of the benzoindolocarbazole ring.

したがって、式[1]に示される化合物が有するAが一つである場合には、R乃至RのうちRがAであることが好ましい。 Thus, if A compound represented by the formula [1] has is one, it is preferred R 1 of R 1 through R 4 is A.

アルキル基は、好ましくは炭素原子数1以上6以下のアルキル基であり、炭素原子数1以上6以下のアルキル基の例としては、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、iso−ペンチル基、tert−ペンチル基、ネオペンチル基、n−ヘキシル基、シクロヘキシル基が挙げられる。   The alkyl group is preferably an alkyl group having 1 to 6 carbon atoms, and examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, Examples thereof include n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, iso-pentyl group, tert-pentyl group, neopentyl group, n-hexyl group and cyclohexyl group.

Aにおける、Arは、置換基を有する2価の炭化水素芳香族基、無置換の2価の炭化水素芳香族基、置換基を有する2価の複素芳香族基、および無置換の2価の炭化水素芳香族基から選ばれる。また、Arは、置換基を有する1価の炭化水素芳香族基、無置換の1価の炭化水素芳香族基、置換基を有する1価の複素芳香族基、および無置換の1価の複素芳香族基である。ArおよびArにおける、炭化水素芳香族基および複素芳香族基は、それらの中でも、炭素原子数6以上22以下の炭化水素芳香族基および炭素原子数4以上22以下の複素芳香族基であることが好ましい。なぜなら、主骨格であるベンゾインドロカルバゾール環の炭素原子数は22であり、ArおよびArにおける、炭化水素芳香族基もしくは複素芳香族基は、ベンゾインドロカルバゾール環と同程度以下の大きさの芳香環のみからなることが好ましいからである。 Ar 1 in A is a divalent hydrocarbon aromatic group having a substituent, an unsubstituted divalent hydrocarbon aromatic group, a divalent heteroaromatic group having a substituent, and an unsubstituted divalent group. Selected from the following hydrocarbon aromatic groups. Ar 2 represents a monovalent hydrocarbon aromatic group having a substituent, an unsubstituted monovalent hydrocarbon aromatic group, a monovalent heteroaromatic group having a substituent, and an unsubstituted monovalent hydrocarbon group. Heteroaromatic group. Among them, the hydrocarbon aromatic group and the heteroaromatic group in Ar 1 and Ar 2 are a hydrocarbon aromatic group having 6 to 22 carbon atoms and a heteroaromatic group having 4 to 22 carbon atoms. Preferably there is. This is because the number of carbon atoms in the main skeleton benzoindolocarbazole ring is 22, and the hydrocarbon aromatic group or heteroaromatic group in Ar 1 and Ar 2 has a size less than or equal to that of the benzoindolocarbazole ring. This is because it preferably comprises only an aromatic ring.

炭素原子数6以上22以下の無置換の1価の炭化水素芳香族基の例としては、フェニル基、ナフチル基、フェナントリル基、アントリル基、ベンゾ[a]アントリル基、フルオレニル基、ベンゾ[a]フルオレニル基、ベンゾ[b]フルオレニル基、ベンゾ[c]フルオレニル基、ジベンゾ[a,c]フルオレニル基、ジベンゾ[b,h]フルオレニル基、ジベンゾ[c,g]フルオレニル基、ビフェニレニル基、アセナフチレニル基、クリセニル基、ベンゾ[b]クリセニル基、ピレニル基、ベンゾ[e]ピレニル基、トリフェニレニル基、ベンゾ[a]トリフェニレニル基、ベンゾ[b]トリフェニレニル基、ピセニル基、フルオランテニル基、ベンゾ[a]フルオランテニル基、ベンゾ[b]フルオランテニル基、ベンゾ[j]フルオランテニル基、ベンゾ[k]フルオランテニル基、ペリレニル基、ナフタセニル基、ビフェニル基、ターフェニル基が挙げられる。   Examples of the unsubstituted monovalent hydrocarbon aromatic group having 6 to 22 carbon atoms include phenyl group, naphthyl group, phenanthryl group, anthryl group, benzo [a] anthryl group, fluorenyl group, benzo [a]. Fluorenyl group, benzo [b] fluorenyl group, benzo [c] fluorenyl group, dibenzo [a, c] fluorenyl group, dibenzo [b, h] fluorenyl group, dibenzo [c, g] fluorenyl group, biphenylenyl group, acenaphthylenyl group, Chrycenyl group, benzo [b] chrycenyl group, pyrenyl group, benzo [e] pyrenyl group, triphenylenyl group, benzo [a] triphenylenyl group, benzo [b] triphenylenyl group, picenyl group, fluoranthenyl group, benzo [a] full Oranthenyl group, benzo [b] fluoranthenyl group, benzo [j] fluor Nteniru group, benzo [k] fluoranthenyl group, perylenyl group, naphthacenyl group, a biphenyl group and a terphenyl group.

これら1価の炭化水素芳香族基の中でも、ナフチル基もしくはフルオレニル基であることが好ましい。   Among these monovalent hydrocarbon aromatic groups, a naphthyl group or a fluorenyl group is preferable.

炭素原子数6以上22以下の無置換の2価の炭化水素芳香族基の例としては、上記の炭素原子数6以上22以下の1価の炭化水素芳香族基の例に対応する2価基(言い換えれば、上記の炭素原子数6以上22以下の1価の炭化水素芳香族基の例に挙げられた炭化水素芳香族基を2価としたもの)である。これら2価の炭化水素芳香族基の中でも、1価の場合と同様に、ナフタレンジイル基もしくはフルオレンジイル基であることが好ましい。   Examples of the unsubstituted divalent hydrocarbon aromatic group having 6 to 22 carbon atoms include divalent groups corresponding to the examples of the monovalent hydrocarbon aromatic group having 6 to 22 carbon atoms. (In other words, the hydrocarbon aromatic group mentioned in the example of the monovalent hydrocarbon aromatic group having 6 to 22 carbon atoms is divalent). Among these divalent hydrocarbon aromatic groups, a naphthalenediyl group or a fluorenediyl group is preferable as in the case of the monovalent group.

また、炭素原子数4以上22以下の無置換の1価の複素芳香族基の例としては、チエニル基、ピロリル基、ピラジニル基、ピリジル基、ビピリジル基、インドリル基、キノリル基、イソキノリル基、ナフチリジニル基、アクリジニル基、フェナントロリニル等、カルバゾリル基、ベンゾ[a]カルバゾリル基、ベンゾ[b]カルバゾリル基、ベンゾ[c]カルバゾリル基、フェナジニル基、フェノキサジニル基、フェノチアジニル基、ベンゾチオフェニル基、ジベンゾチオフェニル基、ベンゾフラニル基、ジベンゾフラニル基、オキサゾリル基、オキサジアゾリル基、インドロ[3,2,1−kl]フェノキサジニル基、インドロ[3,2,1−jk]カルバゾリル基が挙げられる。   Examples of the unsubstituted monovalent heteroaromatic group having 4 to 22 carbon atoms include thienyl group, pyrrolyl group, pyrazinyl group, pyridyl group, bipyridyl group, indolyl group, quinolyl group, isoquinolyl group, naphthyridinyl group. Group, acridinyl group, phenanthrolinyl, etc., carbazolyl group, benzo [a] carbazolyl group, benzo [b] carbazolyl group, benzo [c] carbazolyl group, phenazinyl group, phenoxazinyl group, phenothiazinyl group, benzothiophenyl group, Examples thereof include a dibenzothiophenyl group, a benzofuranyl group, a dibenzofuranyl group, an oxazolyl group, an oxadiazolyl group, an indolo [3,2,1-kl] phenoxazinyl group, and an indolo [3,2,1-jk] carbazolyl group.

炭素原子数4以上22以下の無置換の2価の複素芳香族基の例としては、上記の炭素原子数4以上22以下の1価の複素芳香族基の例に対応する2価基(言い換えれば、上記の炭素原子数4以上22以下の1価の複素芳香族基の例に挙げられた複素芳香族基を2価としたもの)である。   Examples of the unsubstituted divalent heteroaromatic group having 4 to 22 carbon atoms include divalent groups corresponding to the above examples of the monovalent heteroaromatic group having 4 to 22 carbon atoms (in other words, For example, the heteroaromatic group mentioned in the example of the monovalent heteroaromatic group having 4 to 22 carbon atoms is divalent).

ArおよびArにおける、炭化水素芳香族基もしくはおよび複素芳香族基が置換基を有する場合の置換基に制限はないが、アルキル基、アリールアミノ基、アルコキシ基、シアノ基、トリフルオロメチル基、1価の炭化水素芳香族基、および1価の複素芳香族基から選ばれる基であることが好ましい。 In Ar 1 and Ar 2 , the substituent when the hydrocarbon aromatic group or the heteroaromatic group has a substituent is not limited, but an alkyl group, an arylamino group, an alkoxy group, a cyano group, a trifluoromethyl group A group selected from a monovalent hydrocarbon aromatic group and a monovalent heteroaromatic group is preferable.

置換基がアルキル基である場合、炭素原子数1以上6以下のアルキル基であることが好ましい。その具体例としては、式[1]におけるR乃至Rの炭素原子数1以上6以下のアルキル基の例で挙げた基と同様であり、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、iso−ペンチル基、tert−ペンチル基、ネオペンチル基、n−ヘキシル基、シクロヘキシル基が挙げられる。これらのアルキル基の中でも、メチル基もしくはtert−ブチル基であることがより好ましい。 When the substituent is an alkyl group, it is preferably an alkyl group having 1 to 6 carbon atoms. Specific examples thereof are the same as those exemplified in the examples of the alkyl group having 1 to 6 carbon atoms of R 1 to R 4 in the formula [1], and include a methyl group, an ethyl group, an n-propyl group, an iso group. -Propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, iso-pentyl group, tert-pentyl group, neopentyl group, n-hexyl group, cyclohexyl group Can be mentioned. Among these alkyl groups, a methyl group or a tert-butyl group is more preferable.

置換基がアリールアミノ基である場合のアリールアミノ基の例としては、下記に示す基が挙げられる。   Examples of the arylamino group when the substituent is an arylamino group include the groups shown below.

置換基がアルコキシ基である場合のアルコキシ基の例としては、メトキシ基、エトキシ基、イソプロポキシ基、tert−ブトキシ基が挙げられる。これらのアルコキシ基の中でも、メトキシ基であることが好ましい。   Examples of the alkoxy group when the substituent is an alkoxy group include a methoxy group, an ethoxy group, an isopropoxy group, and a tert-butoxy group. Among these alkoxy groups, a methoxy group is preferable.

置換基が1価の炭化水素芳香族基である場合、炭素原子数6以上22以下の無置換の1価の炭化水素芳香族基であることが好ましい。その具体例としては、AにおけるArおよびArの、炭素原子数6以上22以下の無置換の1価の炭化水素芳香族基の例で挙げた基と同様である。 When the substituent is a monovalent hydrocarbon aromatic group, it is preferably an unsubstituted monovalent hydrocarbon aromatic group having 6 to 22 carbon atoms. Specific examples thereof are the same as those exemplified in the examples of the unsubstituted monovalent hydrocarbon aromatic group having 6 to 22 carbon atoms of Ar 1 and Ar 2 in A.

置換基が1価の複素芳香族基である場合、炭素原子数4以上22以下の無置換の1価の複素芳香族基であることが好ましい。その具体例としては、AにおけるArおよびArの、炭素原子数4以上22以下の無置換の1価の複素芳香族基の例で挙げた基と同様である。 When the substituent is a monovalent heteroaromatic group, it is preferably an unsubstituted monovalent heteroaromatic group having 4 to 22 carbon atoms. Specific examples thereof are the same as those exemplified in the examples of the unsubstituted monovalent heteroaromatic group having 4 to 22 carbon atoms of Ar 1 and Ar 2 in A.

置換基が1価の炭化水素芳香族基あるいは1価の複素芳香族基である場合、アルキル基、アリールアミノ基、アルコキシ基、シアノ基、トリフルオロメチル基の何れかの場合と比較して、ベンゾ[b]インドロカルバゾール環のπ共役系が拡大され、より小さいS1エネルギーを有し、より浅いHOMO準位を有する。   When the substituent is a monovalent hydrocarbon aromatic group or a monovalent heteroaromatic group, as compared with any of an alkyl group, an arylamino group, an alkoxy group, a cyano group, and a trifluoromethyl group, The π-conjugated system of the benzo [b] indolocarbazole ring is expanded, has a smaller S1 energy, and has a shallower HOMO level.

また、本発明に係る式[1]に示される化合物は、赤色燐光発光材料をゲスト材料とするホスト材料として用いることが好ましい。これは、ベンゾインドロカルバゾール単環でのT1エネルギーが波長換算値で527nmであるからである。なお、本発明および本実施形態においては、赤色燐光発光材料とは、希薄溶液中での燐光発光スペクトルの最大発光ピーク波長が580nm乃至630nmの範囲にあるものと定義する。   In addition, the compound represented by the formula [1] according to the present invention is preferably used as a host material using a red phosphorescent material as a guest material. This is because the T1 energy in the benzoindolocarbazole monocycle is 527 nm in terms of wavelength. In the present invention and the present embodiment, the red phosphorescent light-emitting material is defined as having a maximum emission peak wavelength of a phosphorescence emission spectrum in a dilute solution in a range of 580 nm to 630 nm.

赤色燐光発光材料をゲスト材料とするホスト材料として、本発明に係る式[1]に示される化合物を用いる場合には、AのT1エネルギーの波長換算値が527nm未満であることが好ましい。すなわち、少なくとも、ArおよびArにおける炭化水素芳香族基あるいは複素芳香族基を構成する芳香環のT1エネルギーが、波長換算値で527nm未満であることが好ましい。これは、発光層内でT1励起子がクエンチされないように、T1エネルギーの大小関係はホスト材料>ゲスト材料であることが好ましいからである。 When the compound represented by the formula [1] according to the present invention is used as a host material using a red phosphorescent material as a guest material, the wavelength converted value of T1 energy of A is preferably less than 527 nm. That is, at least the T1 energy of the aromatic ring constituting the hydrocarbon aromatic group or heteroaromatic group in Ar 1 and Ar 2 is preferably less than 527 nm in terms of wavelength. This is because the T1 energy magnitude relationship is preferably host material> guest material so that T1 excitons are not quenched in the light emitting layer.

表3に代表的な芳香環のT1エネルギー(波長換算値)を示す。表3に示される芳香環のうち、T1エネルギーの波長換算値が527nm未満である芳香環は、ベンゼン乃至クリセンである。すなわち、赤色燐光発光材料をゲスト材料とするホスト材料として、本発明に係る式[1]に示される化合物を用いる場合、ArおよびArにおける炭化水素芳香族基の芳香環および複素芳香族基の複素芳香環は、表3に示される芳香環のうち、ベンゼン、カルバゾール、ジベンゾチオフェン、ジベンゾフラン、フルオレン、トリフェニレン、ビフェニル、フェナントロリン、フェノキサジン、アントラキノン、フェナンスレン、インドロフェノキサジン、キノリン、ナフタレン、ピセン、クリセンから選ばれることが好ましい。 Table 3 shows T1 energy (wavelength conversion value) of typical aromatic rings. Among the aromatic rings shown in Table 3, the aromatic ring whose T1 energy wavelength conversion value is less than 527 nm is benzene or chrysene. That is, when the compound represented by the formula [1] according to the present invention is used as a host material using a red phosphorescent material as a guest material, the aromatic ring and heteroaromatic group of the hydrocarbon aromatic group in Ar 1 and Ar 2 Among the aromatic rings shown in Table 3, benzene, carbazole, dibenzothiophene, dibenzofuran, fluorene, triphenylene, biphenyl, phenanthroline, phenoxazine, anthraquinone, phenanthrene, indolophenoxazine, quinoline, naphthalene, picene , Preferably selected from chrysene.

また、置換基が、1価の炭化水素芳香族基あるいは1価の複素芳香族基である場合には、それらの1価の炭化水素芳香族基の芳香環および1価の複素芳香族基の複素芳香環も、ベンゼン、カルバゾール、ジベンゾチオフェン、ジベンゾフラン、フルオレン、トリフェニレン、ビフェニル、フェナントロリン、フェノキサジン、アントラキノン、フェナンスレン、インドロフェノキサジン、キノリン、ナフタレン、ピセン、クリセンから選ばれることが好ましい。   When the substituent is a monovalent hydrocarbon aromatic group or a monovalent heteroaromatic group, the aromatic ring of the monovalent hydrocarbon aromatic group and the monovalent heteroaromatic group The heteroaromatic ring is also preferably selected from benzene, carbazole, dibenzothiophene, dibenzofuran, fluorene, triphenylene, biphenyl, phenanthroline, phenoxazine, anthraquinone, phenanthrene, indolophenoxazine, quinoline, naphthalene, picene, and chrysene.

本発明に係る式[1]に示される化合物は、蛍光発光材料をゲスト材料とする発光層のホスト材料としても使用することができる。このような場合は、ゲスト材料である蛍光発光材料の発光波長に適したS1エネルギーを有するベンゾインドロカルバゾール化合物を適宜選択することが好ましいが、T1エネルギーについての制限は特にない。そのため、ベンゾインドロカルバゾール単環よりもT1エネルギーの低い芳香環を含むベンゾインドロカルバゾール化合物についても、蛍光発光材料をゲスト材料とする発光層のホスト材料として使用することができる。   The compound represented by the formula [1] according to the present invention can also be used as a host material of a light emitting layer using a fluorescent material as a guest material. In such a case, it is preferable to appropriately select a benzoindolocarbazole compound having S1 energy suitable for the emission wavelength of the fluorescent material that is the guest material, but there is no particular limitation on T1 energy. Therefore, a benzoindolocarbazole compound containing an aromatic ring having a T1 energy lower than that of a benzoindolocarbazole monocycle can also be used as a host material for a light-emitting layer using a fluorescent material as a guest material.

(本発明に係るベンゾインドロカルバゾール化合物の例示)
以下に、本発明に係るベンゾインドロカルバゾール化合物の具体的な構造式を例示する。
(Examples of benzoindolocarbazole compounds according to the present invention)
Specific structural formulas of the benzoindolocarbazole compound according to the present invention are exemplified below.

例示化合物のうち101乃至157に示す化合物は、式[1]に示される化合物のうち、ベンゾインドロカルバゾール環の12位のみにAを有し、且つAを構成するArおよびArが何れも置換基を有していてもよい炭化水素芳香族基であり、なお且つ主骨格であるベンゾインドロカルバゾール環よりもT1エネルギーの低い芳香環を有さない化合物である。これら第1群の化合物は、S1エネルギーが低くHOMO準位が浅い。また、T1エネルギー値が赤色燐光発光材料をゲスト材料とする発光層のホスト材料に適している。 Among the exemplified compounds, the compounds represented by 101 to 157 have A at only the 12-position of the benzoindolocarbazole ring among the compounds represented by the formula [1], and Ar 1 and Ar 2 constituting A are both It is a hydrocarbon aromatic group which may have a substituent, and is a compound which does not have an aromatic ring having a T1 energy lower than that of the main skeleton benzoindolocarbazole ring. These first group compounds have a low S1 energy and a shallow HOMO level. Further, the T1 energy value is suitable for a host material of a light emitting layer using a red phosphorescent light emitting material as a guest material.

例示化合物のうち201乃至226に示す化合物は、式[1]に示される化合物のうち、ベンゾインドロカルバゾール環の12位のみにAを有し、且つAを構成するArおよびArのうち少なくとも一つが置換基を有していてもよい複素芳香族基である化合物である。これら第2群の化合物は分子中に少なくとも1つの複素芳香環を有するので、キャリア移動度やHOMO準位の微調整を容易に行うことができ、第1群同様、赤色燐光発光材料をゲスト材料とする発光層のホスト材料に適している。 Among the exemplified compounds, the compounds represented by 201 to 226 have A at only the 12-position of the benzoindolocarbazole ring and at least of Ar 1 and Ar 2 constituting A among the compounds represented by the formula [1]. One of the compounds is a heteroaromatic group which may have a substituent. Since these second group compounds have at least one heteroaromatic ring in the molecule, the carrier mobility and the HOMO level can be easily fine-tuned. As in the first group, the red phosphorescent light emitting material is used as the guest material. It is suitable as a host material for the light emitting layer.

例示化合物のうち301乃至320に示す化合物は、式[1]に示されるベンゾインドロカルバゾール化合物のうち、ベンゾインドロカルバゾール環の、2位、5位、11位のうちの少なくとも一つにAを有する化合物である。これら第3群の化合物も、第1群の化合物と同様に、S1エネルギーが低くHOMO準位が浅く、かつT1エネルギー値が赤色燐光発光材料をゲスト材料とする発光層のホスト材料に適している。   Among the exemplified compounds, the compounds represented by 301 to 320 have A at least one of the 2-position, 5-position, and 11-position of the benzoindolocarbazole ring among the benzoindolocarbazole compounds represented by the formula [1]. A compound. Similar to the compounds of the first group, these third group compounds are also suitable as a host material for a light emitting layer having a low S1 energy and a low HOMO level and a T1 energy value of which a red phosphorescent material is a guest material. .

例示化合物のうち401乃至411に示す化合物は、式[1]に示される化合物のうち、ベンゾインドロカルバゾール環の12位にAを有する化合物であり、且つ主骨格であるベンゾインドロカルバゾール環よりもT1エネルギーの低い芳香環を含む化合物である。これら第4群の化合物も、第1群の化合物と同様にS1エネルギーが低くHOMO準位が浅いものの、T1エネルギー値が低いので蛍光発光材料をゲスト材料とする発光層のホスト材料として適している。   Among the exemplified compounds, the compounds represented by 401 to 411 are compounds having A at the 12-position of the benzoindolocarbazole ring among the compounds represented by the formula [1], and have a T1 higher than that of the main skeleton benzoindolocarbazole ring. It is a compound containing an aromatic ring with low energy. Although these S4 energies are low and the HOMO levels are shallow, the fourth group compounds are also suitable as the host material of the light emitting layer using the fluorescent light emitting material as the guest material because of the low T1 energy value. .

例示化合物のうち501乃至507に示す化合物は、式[1]に示されるベンゾインドロカルバゾール化合物のうち、Aを構成するArおよびArのうちの少なくとも一つが置換基としてアリールアミノ基を有している化合物である。これら第5群の化合物は、第1群乃至第4群の化合物に比べてさらにHOMO準位が浅いので、正孔注入輸送層の材料に適している。 Among the exemplified compounds, the compounds represented by 501 to 507 include, among the benzoindolocarbazole compounds represented by the formula [1], at least one of Ar 1 and Ar 2 constituting A has an arylamino group as a substituent. It is a compound. These fifth group compounds are suitable for the material of the hole injecting and transporting layer because they have a shallower HOMO level than the first to fourth group compounds.

(本発明に係るベンゾインドロカルバゾール化合物の合成方法)
次に、本発明に係る式[1]に示されるベンゾインドロカルバゾール化合物の合成方法について説明する。
(Method for synthesizing benzoindolocarbazole compound according to the present invention)
Next, a method for synthesizing the benzoindolocarbazole compound represented by the formula [1] according to the present invention will be described.

本発明に係る式[1]に示されるベンゾインドロカルバゾール化合物は、下記式[4]のように、9−ナフチルカルバゾールのクロロ誘導体をHeck反応にて分子内環化してベンゾインドロカルバゾール環を構築し合成される。   As shown in the following formula [4], the benzoindolocarbazole compound represented by the formula [1] according to the present invention constructs a benzoindolocarbazole ring by intramolecular cyclization of a chloro derivative of 9-naphthylcarbazole by Heck reaction. Synthesized.

〔式[4]において、R乃至Rは式[1]中のR乃至Rに等しく、Z乃至Zはそれぞれ、R乃至Rに等しいか、R乃至Rを導入するために必要な反応基を示す。〕 In [Equation [4], R 1 to R 4 are equal to R 1 to R 4 in the formula [1], respectively Z 1 to Z 4 is equal to R 1 to R 4, the R 1 to R 4 Reactive groups necessary for introduction are shown. ]

環化後にベンゾインドロカルバゾール環にR乃至Rが導入される部位、すなわち式[4]におけるZ乃至Zには、所望のR乃至R、または環化反応後にR乃至Rを導入するための反応基を環化反応前にあらかじめ導入させておけばよい。前記Z乃至Zを適宜選択することで、所望の本発明のベンゾインドロカルバゾール化合物を合成することができる。 The site where R 1 to R 4 are introduced into the benzoindolocarbazole ring after cyclization, that is, Z 1 to Z 4 in formula [4], is the desired R 1 to R 4 , or R 1 to R after the cyclization reaction. A reactive group for introducing 4 may be introduced in advance before the cyclization reaction. A desired benzoindolocarbazole compound of the present invention can be synthesized by appropriately selecting Z 1 to Z 4 .

環化反応後にAを導入するための反応基としてはメトキシ基が好ましい。反応基としてメトキシ基を用いた場合、例えば、以下の式[5]のようにして、本発明に係るベンゾインドロカルバゾール化合物の一種を合成することができる。   The reactive group for introducing A after the cyclization reaction is preferably a methoxy group. When a methoxy group is used as a reactive group, for example, one of the benzoindolocarbazole compounds according to the present invention can be synthesized as shown in the following formula [5].

〔式[5]において、Aは式[2]に示される基と等しい。〕 [In Formula [5], A is equal to the group shown in Formula [2]. ]

また本発明に係る化合物が、有機発光素子に用いられる場合には直前の精製として昇華精製が好ましい。これは、有機化合物の高純度化において昇華精製は精製効果が大きいからである。このような昇華精製においては、一般に有機化合物の分子量が大きいほど昇華温度が高くなり、高温による熱分解などを起こしやすい。したがって、本発明に係る式[1]に示される化合物を有機発光素子に用いる場合は、過大な加熱なく昇華精製を行うことができるように、式[1]に示される化合物の分子量を1000以下とすることが好ましい。   Further, when the compound according to the present invention is used in an organic light emitting device, sublimation purification is preferred as the last purification. This is because sublimation purification has a large purification effect in purifying organic compounds. In such sublimation purification, in general, the higher the molecular weight of the organic compound, the higher the sublimation temperature, which tends to cause thermal decomposition at a high temperature. Therefore, when the compound represented by the formula [1] according to the present invention is used in an organic light emitting device, the molecular weight of the compound represented by the formula [1] is 1000 or less so that sublimation purification can be performed without excessive heating. It is preferable that

(本発明に係る有機発光素子について)
次に本発明に係る有機発光素子について説明する。
(About the organic light emitting device according to the present invention)
Next, the organic light emitting device according to the present invention will be described.

本発明に係る有機発光素子は、対向する一対の電極(陽極と陰極)と、一対の電極間に配置される有機化合物層とを有する有機発光素子であり、前記有機化合物層が式[1]に示されるベンゾインドロカルバゾール化合物を有する。   The organic light emitting device according to the present invention is an organic light emitting device having a pair of electrodes (anode and cathode) facing each other and an organic compound layer disposed between the pair of electrodes, wherein the organic compound layer is represented by the formula [1]. It has the benzoindolocarbazole compound shown in the above.

有機化合物層は、単層でも複数の層でもよい。   The organic compound layer may be a single layer or a plurality of layers.

本発明に係る有機発光素子の素子構成としては、基板上に以下に示す層を順次積層した多層型の素子構成が挙げられる。
(1)陽極/発光層/陰極
(2)陽極/正孔輸送層/発光層/電子輸送層/陰極
(3)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(4)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
(5)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(6)陽極/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/陰極
ただしこれらの素子構成例はあくまでごく基本的な素子構成であり、本発明に係る化合物を用いた有機発光素子の構成はこれらに限定されるものではない。
As an element structure of the organic light emitting element according to the present invention, a multilayer element structure in which the following layers are sequentially laminated on a substrate can be given.
(1) Anode / light emitting layer / cathode (2) Anode / hole transport layer / light emitting layer / electron transport layer / cathode (3) Anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode ( 4) Anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode (5) Anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode ( 6) Anode / hole transport layer / electron blocking layer / light emitting layer / hole blocking layer / electron transport layer / cathode However, these device configuration examples are very basic device configurations, and the compounds according to the present invention are used. However, the structure of the organic light emitting device is not limited to these.

例えば、電極と有機化合物層界面に絶縁性層を設ける、接着層あるいは干渉層を設ける、電子輸送層もしくは正孔輸送層がイオン化ポテンシャルの異なる二層から構成される、発光層が発光材料の異なる二層から構成されるなど多様な層構成をとることができる。   For example, an insulating layer is provided at the interface between the electrode and the organic compound layer, an adhesive layer or an interference layer is provided, the electron transport layer or the hole transport layer is composed of two layers having different ionization potentials, and the light emitting layer has a different light emitting material. Various layer configurations such as two layers can be adopted.

その場合の素子形態としては、基板側の電極から光を取り出すいわゆるボトムエミッション方式でも、基板と逆側から光を取り出すいわゆるトップエミッション方式でも良く、両面取り出しの構成でも使用することができる。   In this case, the element form may be a so-called bottom emission method in which light is extracted from an electrode on the substrate side, a so-called top emission method in which light is extracted from the opposite side of the substrate, or a double-sided extraction configuration.

また上記素子構成の中では、電子阻止層及び正孔阻止層を共に有している構成(6)が好ましく用いられる。構成(6)では正孔と電子の両キャリアを発光層内に閉じ込めることができるので、キャリア漏れがなく発光効率が高い発光素子を得ることができる。   Of the above element configurations, the configuration (6) having both an electron blocking layer and a hole blocking layer is preferably used. In the configuration (6), since both the hole and electron carriers can be confined in the light emitting layer, a light emitting element having no light leakage and high light emission efficiency can be obtained.

前記有機化合物層のうち発光材料を有する層が発光層である。発光層は、一種類の化合物で構成されていても良く、複数種類の化合物で構成されていても良い。発光層が、複数種類の化合物で構成されている場合、発光層を構成する全ての化合物の中で重量比が最大の化合物を主成分と呼ぶことができ、主成分以外の成分を副成分と呼ぶことができる。主成分は、ホスト材料と呼んでもよい。副成分としては、ゲスト(ドーパント)材料、発光アシスト材料、電荷注入材料などと呼ばれるものがある。   Among the organic compound layers, a layer having a light emitting material is a light emitting layer. The light emitting layer may be composed of one type of compound or may be composed of a plurality of types of compounds. When the light emitting layer is composed of a plurality of types of compounds, the compound having the largest weight ratio among all the compounds constituting the light emitting layer can be referred to as a main component, and components other than the main component can be referred to as subcomponents. Can be called. The main component may be called a host material. Examples of subcomponents include guest (dopant) materials, light emission assist materials, and charge injection materials.

ここでホスト材料とは、発光層内でゲスト材料の周囲にマトリックスとして存在する化合物であって、ゲスト材料へキャリアを輸送したり、ゲスト材料へ励起エネルギーの供与する役目を担う化合物である。ゲスト材料とは、発光層内で素子としての主たる発光を担う化合物である。発光アシスト材料とは発光層の中で重量比がホスト材料よりも小さく、ゲスト材料の発光を助けるもので化合物であり、第2ホスト材料とも呼ばれる。   Here, the host material is a compound that exists as a matrix around the guest material in the light emitting layer, and is a compound that plays a role of transporting carriers to the guest material or supplying excitation energy to the guest material. The guest material is a compound responsible for main light emission as an element in the light emitting layer. The light emission assist material is a compound having a weight ratio smaller than that of the host material in the light emitting layer and assisting the light emission of the guest material, and is also referred to as a second host material.

ホスト材料に対するゲスト材料の濃度は、発光層を構成する全ての材料の合計の重量に対して、0.01wt%以上50wt%以下であり、好ましくは0.1wt%以上20wt%以下である。さらに好ましくは、濃度消光を防ぐために、0.1wt%以上10wt%以下である。   The concentration of the guest material with respect to the host material is 0.01 wt% or more and 50 wt% or less, preferably 0.1 wt% or more and 20 wt% or less with respect to the total weight of all the materials constituting the light emitting layer. More preferably, it is 0.1 wt% or more and 10 wt% or less in order to prevent concentration quenching.

式[1]に示されるベンゾインドロカルバゾール化合物は、有機発光素子の、発光層、正孔注入層、正孔輸送層、電子阻止層、正孔阻止層、電子輸送層、あるいは電子注入層の何れの層に用いてもよいが、発光層に用いることが好ましい。なお、式[1]に示されるベンゾインドロカルバゾール化合物のうち、正孔注入層あるいは正孔輸送層として使用することが好ましいものは、前述した本発明の例示化合物の第5群で示されるような、アリールアミノ置換基を有しHOMO準位が浅い化合物である。   The benzoindolocarbazole compound represented by the formula [1] is any of a light emitting layer, a hole injection layer, a hole transport layer, an electron blocking layer, a hole blocking layer, an electron transport layer, or an electron injection layer of an organic light emitting device. Although it may be used for this layer, it is preferably used for the light emitting layer. Of the benzoindolocarbazole compounds represented by the formula [1], those preferably used as the hole injection layer or the hole transport layer are as shown in the fifth group of the exemplary compounds of the present invention described above. A compound having an arylamino substituent and a shallow HOMO level.

また、式[1]に示されるベンゾインドロカルバゾール化合物は、発光層のホスト材料として用いることが好ましく、さらに好ましくは、燐光発光材料をゲスト材料として用いる発光層のホスト材料として用いることが好ましい。このような場合、ゲスト材料としては、イリジウム錯体、白金錯体、レニウム錯体、銅錯体、ユーロピウム錯体、ルテニウム錯体等の金属錯体から選ばれることが好ましく、これらの中でも、燐光発光の強度が強いイリジウム錯体が特に好ましい。これらの中でも、580nm以上630nm以下の範囲に発光ピーク波長を有する赤色燐光発光材料であることが好ましい。また、励起子やキャリアの伝達を補助することを目的として、発光層が複数の燐光発光材料を有していてもよい。   Further, the benzoindolocarbazole compound represented by the formula [1] is preferably used as a host material of the light emitting layer, and more preferably used as a host material of the light emitting layer using a phosphorescent light emitting material as a guest material. In such a case, the guest material is preferably selected from metal complexes such as an iridium complex, a platinum complex, a rhenium complex, a copper complex, a europium complex, and a ruthenium complex. Among these, an iridium complex having strong phosphorescence intensity Is particularly preferred. Among these, a red phosphorescent material having an emission peak wavelength in the range of 580 nm to 630 nm is preferable. In addition, the light emitting layer may include a plurality of phosphorescent materials for the purpose of assisting the transmission of excitons and carriers.

以下に、本発明に係る有機発光素子の燐光発光材料として用いることができるイリジウム錯体の具体例を示すが、本発明はこれらに限定されるものではない。   Specific examples of the iridium complex that can be used as the phosphorescent material of the organic light emitting device according to the present invention are shown below, but the present invention is not limited thereto.

また、上記の金属錯体以外のゲスト材料の例としては、縮環化合物(例えばフルオレン誘導体、ナフタレン誘導体、ピレン誘導体、ペリレン誘導体、テトラセン誘導体、アントラセン誘導体、ルブレン等)、キナクリドン誘導体、クマリン誘導体、スチルベン誘導体、トリス(8−キノリノラート)アルミニウム等の有機アルミニウム錯体、有機ベリリウム錯体、及びポリ(フェニレンビニレン)誘導体、ポリ(フルオレン)誘導体、ポリ(フェニレン)誘導体等の高分子誘導体が挙げられる。   Examples of guest materials other than the above metal complexes include condensed ring compounds (eg, fluorene derivatives, naphthalene derivatives, pyrene derivatives, perylene derivatives, tetracene derivatives, anthracene derivatives, rubrene, etc.), quinacridone derivatives, coumarin derivatives, stilbene derivatives. And organic aluminum complexes such as tris (8-quinolinolato) aluminum, organic beryllium complexes, and polymer derivatives such as poly (phenylene vinylene) derivatives, poly (fluorene) derivatives, poly (phenylene) derivatives, and the like.

本実施形態に係る有機発光素子が有する発光層は、ゲスト材料およびホスト材料が発光層全体に均一に存在していても、あるいはゲスト材料およびホスト材料がそれぞれ独立に濃度勾配を有して発光層内に存在していてもよい。   The light emitting layer included in the organic light emitting device according to the present embodiment includes a light emitting layer in which the guest material and the host material are uniformly present throughout the light emitting layer, or the guest material and the host material have a concentration gradient independently of each other. It may exist in the inside.

正孔注入層は、陽極に隣接し、陽極から正孔が注入される層であり、正孔輸送層は正孔を発光層へと輸送するための層である。これら層が有する化合物としては、トリアリールアミン誘導体、フェニレンジアミン誘導体、スチルベン誘導体、フタロシアニン誘導体、ポルフィリン誘導体などの低分子量の化合物や、ポリ(ビニルカルバゾール)やポリ(チオフェン)などの導電性高分子などが挙げられる。   The hole injection layer is a layer adjacent to the anode and into which holes are injected from the anode, and the hole transport layer is a layer for transporting holes to the light emitting layer. The compounds possessed by these layers include low molecular weight compounds such as triarylamine derivatives, phenylenediamine derivatives, stilbene derivatives, phthalocyanine derivatives, porphyrin derivatives, and conductive polymers such as poly (vinylcarbazole) and poly (thiophene). Is mentioned.

電子注入層は、陰極に隣接し、陰極から電子が注入される層であり、電子輸送層は電子を発光層へと輸送するための層である。これらの層が有する化合物としては、オキサジアゾール誘導体、オキサゾール誘導体、ピラジン誘導体、トリアゾール誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、フェナントロリン誘導体、有機アルミニウム錯体等が挙げられる。   The electron injection layer is a layer adjacent to the cathode and into which electrons are injected from the cathode, and the electron transport layer is a layer for transporting electrons to the light emitting layer. Examples of the compound included in these layers include oxadiazole derivatives, oxazole derivatives, pyrazine derivatives, triazole derivatives, triazine derivatives, quinoline derivatives, quinoxaline derivatives, phenanthroline derivatives, and organoaluminum complexes.

陽極は、仕事関数が大きな材料であることが好ましい。例えば、金、白金、銀、銅、ニッケル、パラジウム、コバルト、セレン、バナジウム、タングステン等の金属単体あるいはこれらを組み合わせた合金、酸化錫、酸化亜鉛、酸化インジウム、酸化錫インジウム(ITO)、酸化亜鉛インジウムなどの金属酸化物や、ポリアニリン、ポリピロール、ポリチオフェン等の導電性ポリマーなどが挙げられる。陽極は、一種類の材料からなっていても良く、二種類以上の材料を混合したものからなっていても良い。また、陽極は一層で構成されていてもよく、複数の層で構成されていてもよい。   The anode is preferably a material having a large work function. For example, simple metals such as gold, platinum, silver, copper, nickel, palladium, cobalt, selenium, vanadium, tungsten, etc., or an alloy combining them, tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), zinc oxide Examples thereof include metal oxides such as indium and conductive polymers such as polyaniline, polypyrrole, and polythiophene. The anode may be made of one kind of material, or may be made of a mixture of two or more kinds of materials. Moreover, the anode may be composed of a single layer or a plurality of layers.

陰極は、仕事関数の小さな材料であることが好ましい。例えば、リチウム等のアルカリ金属、カルシウム等のアルカリ土類金属、アルミニウム、チタニウム、マンガン、銀、鉛、クロム等の金属単体、これら金属単体を組み合わせた合金などが挙げられる。合金の例としては、マグネシウム−銀、アルミニウム−リチウム、アルミニウム−マグネシウムなどが挙げられる。また、酸化錫インジウム(ITO)等の金属酸化物を、陰極を構成する材料として使用しても良い。陰極は、一種類の材料からなっていても良く、二種類以上の材料を混合した材料からなっていても良い。また、陰極は一層で構成されていてもよく、複数の層で構成されていてもよい。   The cathode is preferably a material having a small work function. Examples thereof include alkali metals such as lithium, alkaline earth metals such as calcium, simple metals such as aluminum, titanium, manganese, silver, lead, and chromium, and alloys obtained by combining these simple metals. Examples of the alloy include magnesium-silver, aluminum-lithium, aluminum-magnesium and the like. Moreover, you may use metal oxides, such as an indium tin oxide (ITO), as a material which comprises a cathode. The cathode may be made of one kind of material or may be made of a material obtained by mixing two or more kinds of materials. Moreover, the cathode may be composed of a single layer or a plurality of layers.

本実施形態に係る有機発光素子は、赤燐光を発するものであることが好ましいが、本発明に係る有機発光素子は他の色(緑、青など)を発するものでもよく、白色を発するものでもよい。   The organic light emitting device according to the present embodiment preferably emits red phosphorescence, but the organic light emitting device according to the present invention may emit other colors (green, blue, etc.) or emit white light. Good.

本実施形態に係る有機発光素子が白色発光素子である場合、発光層は以下に示すような例の構成とすることができるが、もちろんこれらに限定されるものではない。
(1)単層:青、緑および赤色の発光材料を含む素子
(2)単層:水色および黄色の発光材料を含む素子
(3)2層:青色発光層と緑および赤色の発光材料を含む発光層、または
赤色発光層と青および緑色の発光材料を含む発光層との積層素子
(4)2層:水色発光層と黄色発光層との積層素子
(5)3層:青色発光層と緑色発光層と赤色発光層の積層素子
When the organic light emitting device according to the present embodiment is a white light emitting device, the light emitting layer can be configured as shown in the following examples, but is not limited thereto.
(1) Single layer: element containing blue, green and red light emitting materials (2) Single layer: element containing light blue and yellow light emitting materials (3) Two layers: including blue light emitting layer and green and red light emitting materials Light emitting layer or laminated element of red light emitting layer and light emitting layer containing blue and green light emitting materials (4) 2 layers: laminated element of light emitting layer and yellow light emitting layer (5) 3 layers: blue light emitting layer and green Laminated element of light emitting layer and red light emitting layer

なお、本実施形態に係る白色には、純白色(色温度が4200K)、昼白色(色温度が5000K)などが含まれる。また、本実施形態に係る白色の色温度は、3000K以上9500K以下である。また、本実施形態に係る白色有機発光素子の発光色は、C.I.E.色度座標において、xが0.25以上0.50以下、yが0.30以上0.42以下の範囲にある。   The white color according to the present embodiment includes pure white (color temperature is 4200K), day white (color temperature is 5000K), and the like. Further, the color temperature of white according to the present embodiment is not less than 3000K and not more than 9500K. The emission color of the white organic light emitting device according to this embodiment is C.I. I. E. In the chromaticity coordinates, x is in the range of 0.25 to 0.50, and y is in the range of 0.30 to 0.42.

本発明に係る有機発光素子において、本発明に係る有機化合物を含有する層及びその他の有機化合物からなる層は、真空蒸着法、イオン化蒸着法、スパッタリング、プラズマあるいは、適当な溶媒に溶解させて公知の塗布法(例えば、スピンコーティング、ディッピング、キャスト法、LB法、インクジェット法等)により形成することができる。   In the organic light emitting device according to the present invention, the layer containing the organic compound according to the present invention and the layer made of other organic compounds are known by being dissolved in a vacuum deposition method, ionization deposition method, sputtering, plasma, or an appropriate solvent. The coating method (for example, spin coating, dipping, casting method, LB method, ink jet method, etc.) can be used.

真空蒸着法や溶液塗布法等によって層を形成すると、結晶化等が起こりにくく経時安定性に優れる。また塗布法で成膜する場合は、適当なバインダー樹脂と組み合わせて膜を形成することもできる。   When a layer is formed by a vacuum vapor deposition method, a solution coating method, or the like, crystallization hardly occurs and the temporal stability is excellent. Moreover, when forming into a film by the apply | coating method, a film | membrane can also be formed combining with a suitable binder resin.

上記バインダー樹脂としては、ポリビニルカルバゾール樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ABS樹脂、アクリル樹脂、ポリイミド樹脂、フェノール樹脂、エポキシ樹脂、シリコン樹脂、尿素樹脂等が挙げられるが、これらに限定されるものではない。   Examples of the binder resin include, but are not limited to, polyvinyl carbazole resin, polycarbonate resin, polyester resin, ABS resin, acrylic resin, polyimide resin, phenol resin, epoxy resin, silicon resin, urea resin, and the like. .

また、これらバインダー樹脂は、ホモポリマー又は共重合体として一種単独で使用してもよいし、二種以上を混合して使用してもよい。さらに必要に応じて、公知の可塑剤、酸化防止剤、紫外線吸収剤等の添加剤を併用してもよい。   Moreover, these binder resins may be used alone as a homopolymer or a copolymer, or may be used in combination of two or more. Furthermore, you may use together additives, such as a well-known plasticizer, antioxidant, and an ultraviolet absorber, as needed.

図1は、本実施形態に係る白色有機発光素子の一例であり、発光層同士が積層している構成の有機発光素子の断面模式図である。本図では、3つの発光層がそれぞれ異なる色を発する有機発光素子が図示されている。   FIG. 1 is an example of a white organic light emitting device according to this embodiment, and is a schematic cross-sectional view of an organic light emitting device having a configuration in which light emitting layers are stacked. In the drawing, an organic light emitting device in which three light emitting layers emit different colors is illustrated.

ガラス等の基板に、陽極1、正孔注入層2、正孔輸送層3、青色発光層4、緑色発光層5、赤色発光層6、電子輸送層7、電子注入層8、陰極9がこの順で配置されている。   A substrate such as glass has an anode 1, a hole injection layer 2, a hole transport layer 3, a blue light emitting layer 4, a green light emitting layer 5, a red light emitting layer 6, an electron transport layer 7, an electron injection layer 8, and a cathode 9. Arranged in order.

本実施形態に係る白色発光する有機発光素子は、発光層が陽極側から順に青色発光層、緑色発光層、赤色発光層の順で配置されているが、本発明に係る有機発光素子は発光層の積層順を問わない。   In the organic light emitting device that emits white light according to the present embodiment, the light emitting layer is arranged in order of the blue light emitting layer, the green light emitting layer, and the red light emitting layer from the anode side. The order of stacking is not limited.

本実施形態に係る白色発光する有機発光素子は複数の発光層を積層して配置される構成に限られず、横並びに配置される構成でもよい。複数の発光層を横並びに配置する場合いずれの発光層が共通した正孔輸送層および/又は電子輸送層と接して配置されてもよい。   The organic light emitting element that emits white light according to the present embodiment is not limited to a configuration in which a plurality of light emitting layers are stacked and may be arranged side by side. When a plurality of light emitting layers are arranged side by side, any light emitting layer may be arranged in contact with a common hole transport layer and / or electron transport layer.

(有機発光素子の用途)
本実施形態に係る有機発光素子は、表示装置の表示部や画像情報処理装置、照明装置の光源、電子写真方式の画像形成装置の露光光源、液晶表示装置のバックライト、カラーフィルターを用いた白色光源の発光部などとして用いることができる。
(Applications of organic light emitting devices)
The organic light emitting device according to this embodiment includes a display unit of a display device, an image information processing device, a light source of an illumination device, an exposure light source of an electrophotographic image forming device, a backlight of a liquid crystal display device, and a white color using a color filter. It can be used as a light emitting part of a light source.

本実施形態に係る表示装置は、複数の画素を表示部に有し、複数の画素のうちの少なくとも一つが、本実施形態に係る有機発光素子と、この有機発光素子とに接続されている能動素子と、を有する。   The display device according to the present embodiment includes a plurality of pixels in the display unit, and at least one of the plurality of pixels is connected to the organic light emitting element according to the present embodiment and the organic light emitting element. An element.

能動素子は、表示部の発光輝度を制御するものであり、例としてはTFT素子やMIM素子などのトランジスタなどが挙げられる。能動素子がトランジスタである場合は、有機発光素子の陽極又は陰極と、トランジスタのドレイン電極又はソース電極とが接続されている。   The active element controls the light emission luminance of the display unit, and examples thereof include transistors such as TFT elements and MIM elements. When the active element is a transistor, the anode or cathode of the organic light emitting element and the drain electrode or source electrode of the transistor are connected.

このような表示装置の例としては、PC、ヘッドマウントディスプレイ、携帯電話等の画像表示装置などが挙げられる。表示される画像は、二次元画像、三次元画像を問わない。   Examples of such display devices include image display devices such as PCs, head mounted displays, and mobile phones. The displayed image may be a two-dimensional image or a three-dimensional image.

図2は、本実施形態に係る表示装置の断面模式図である。本図の表示装置は、二つの有機発光素子と、二つのTFT素子(薄膜トランジスタ素子)とを有し、一方の有機発光素子が一方のTFT素子と接続しており、他方の有機発光素子が他方のTFT素子と接続している。   FIG. 2 is a schematic cross-sectional view of the display device according to the present embodiment. The display device of this figure has two organic light emitting elements and two TFT elements (thin film transistor elements), one organic light emitting element is connected to one TFT element, and the other organic light emitting element is the other. Connected to the TFT element.

図2のうち、30は表示装置、31は基板、32は防湿層、33はゲート電極、34はゲート絶縁層、35は半導体層、36はドレイン電極、37はソース電極、38はスイッチング素子であるTFT素子、39は絶縁層、40は有機発光素子を示す。また、310はコンタクトホール、311は陽極、312は有機化合物層、313は陰極、314は第一の保護層、315は第二の保護層である。   2, 30 is a display device, 31 is a substrate, 32 is a moisture-proof layer, 33 is a gate electrode, 34 is a gate insulating layer, 35 is a semiconductor layer, 36 is a drain electrode, 37 is a source electrode, and 38 is a switching element. A TFT element, 39 is an insulating layer, and 40 is an organic light emitting element. Further, 310 is a contact hole, 311 is an anode, 312 is an organic compound layer, 313 is a cathode, 314 is a first protective layer, and 315 is a second protective layer.

表示装置30は、基板31と、基板31の表面に存在する防湿層32と、防湿層32に接触して存在するTFT素子38と、TFT素子38と接続する有機発光素子40と、TFT素子38および有機発光素子40を保護する機能を有する第一の保護層314および第二の保護層315を有している。   The display device 30 includes a substrate 31, a moisture-proof layer 32 present on the surface of the substrate 31, a TFT element 38 present in contact with the moisture-proof layer 32, an organic light-emitting element 40 connected to the TFT element 38, and a TFT element 38. And a first protective layer 314 and a second protective layer 315 having a function of protecting the organic light emitting element 40.

基板31は、表示装置30を支持する部材である。   The substrate 31 is a member that supports the display device 30.

防湿層32は、TFT素子38および有機発光素子40を保護する。防湿層32は、例えば、酸化ケイ素、酸化ケイ素と窒化ケイ素との複合体などが挙げられる。なお、基板31を構成する材料と防湿層32を構成する材料が同じである場合など、基板31が防湿層32としての機能を兼ねる場合には、防湿層32は存在しなくても良い。   The moisture-proof layer 32 protects the TFT element 38 and the organic light emitting element 40. Examples of the moisture-proof layer 32 include silicon oxide and a composite of silicon oxide and silicon nitride. When the substrate 31 also functions as the moisture-proof layer 32, such as when the material constituting the substrate 31 is the same as the material that constitutes the moisture-proof layer 32, the moisture-proof layer 32 may not be present.

TFT素子38は、ゲート電極33と、ゲート絶縁層34と、半導体層35と、ドレイン電極36と、ソース電極37とを有する。   The TFT element 38 includes a gate electrode 33, a gate insulating layer 34, a semiconductor layer 35, a drain electrode 36, and a source electrode 37.

ゲート電極33は、防湿層32の表面に存在する。ゲート電極を構成する材料としては、例えば、Crなどの金属などが挙げられる。ゲート電極33は、スパッタリング法などの方法により形成することができる。   The gate electrode 33 is present on the surface of the moisture-proof layer 32. Examples of the material constituting the gate electrode include metals such as Cr. The gate electrode 33 can be formed by a method such as sputtering.

ゲート絶縁層34は、ゲート電極33を覆うように存在する。ゲート絶縁層34を構成する材料としては、酸化シリコンなどが挙げられる。ゲート絶縁層34は、プラズマCVD法又は触媒化学気相成長法(cat−CVD法)等により形成することができる。   The gate insulating layer 34 is present so as to cover the gate electrode 33. Examples of the material constituting the gate insulating layer 34 include silicon oxide. The gate insulating layer 34 can be formed by a plasma CVD method or a catalytic chemical vapor deposition method (cat-CVD method).

半導体層35は、ゲート絶縁膜34の表面に存在する。半導体層35は、無機半導体材料、有機半導体材料、無機半導体材料と有機半導体材料とのハイブリッド材料のいずれの材料で構成されていても良い。半導体層35が、無機半導体材料であるシリコンで構成される場合には、プラズマCVD法等により(場合によっては例えば290℃以上の温度でアニールして)シリコンを製膜し、回路形状に従ってパターニングすることで得ることもできる。   The semiconductor layer 35 exists on the surface of the gate insulating film 34. The semiconductor layer 35 may be made of any material of an inorganic semiconductor material, an organic semiconductor material, and a hybrid material of an inorganic semiconductor material and an organic semiconductor material. When the semiconductor layer 35 is made of silicon, which is an inorganic semiconductor material, silicon is formed by plasma CVD or the like (in some cases, annealed at a temperature of, for example, 290 ° C. or higher) and patterned according to the circuit shape. It can also be obtained.

ドレイン電極36とソース電極37は、半導体層35に接触して存在する。ドレイン電極36およびソース電極37を構成する材料としては、例えば、Cr、白金、金等である。有機発光素子40は、陽極311と、有機化合物層312と、陰極313とを有する。   The drain electrode 36 and the source electrode 37 are in contact with the semiconductor layer 35. Examples of the material constituting the drain electrode 36 and the source electrode 37 include Cr, platinum, and gold. The organic light emitting device 40 includes an anode 311, an organic compound layer 312, and a cathode 313.

絶縁層39は、TFT素子38と有機発光素子40との間に存在する。絶縁層39を構成する材料としては酸化シリコンなどが挙げられる。コンタクトホール(スルーホール)310は絶縁層39に設けられ、コンタクトホール310が存在することにより、有機発光素子40の陽極311とソース電極37とが接続されている。   The insulating layer 39 exists between the TFT element 38 and the organic light emitting element 40. Examples of the material constituting the insulating layer 39 include silicon oxide. A contact hole (through hole) 310 is provided in the insulating layer 39, and the presence of the contact hole 310 connects the anode 311 of the organic light emitting element 40 and the source electrode 37.

第一の保護層314および第二の保護層315は、有機発光素子40の劣化を防ぐために存在していても良い。第一の保護層314および第二の保護層315の材料は無機材料、有機材料からそれぞれ独立に選ぶことができる。無機材料は例えば酸化シリコン、酸化アルミニウムである。有機材料は例えば高分子材料である。第一の保護層314および第二の保護層315は同じであっても異なってもよい。   The first protective layer 314 and the second protective layer 315 may be present to prevent deterioration of the organic light emitting element 40. The materials of the first protective layer 314 and the second protective layer 315 can be independently selected from inorganic materials and organic materials. The inorganic material is, for example, silicon oxide or aluminum oxide. The organic material is, for example, a polymer material. The first protective layer 314 and the second protective layer 315 may be the same or different.

なお、本実施形態に係る表示装置が有する本実施形態に係る有機発光素子は、赤色発光素子、緑色発光素子、青色発光素子、白色発光素子のうちのいずれかである。これらの中でも、赤色発光素子であることが好ましく、赤燐光発光材料をゲスト材料として有する赤色発光素子であることがより好ましい。また、本実施形態に係る表示装置が有する本実施形態に係る有機発光素子が白色発光素子である場合、白色を構成する赤色成分が、ゲスト材料である赤燐光発光材料に起因するものであることが好ましい。   The organic light emitting element according to this embodiment included in the display device according to this embodiment is any one of a red light emitting element, a green light emitting element, a blue light emitting element, and a white light emitting element. Among these, a red light emitting element is preferable, and a red light emitting element having a red phosphorescent light emitting material as a guest material is more preferable. In addition, when the organic light-emitting element according to this embodiment included in the display device according to this embodiment is a white light-emitting element, the red component constituting white is caused by a red phosphorescent light-emitting material that is a guest material. Is preferred.

本実施形態に係る画像情報処理装置は、入力された画像を表示する表示部として先述した表示装置と、この表示装置にエリアCCD、リニアCCD、メモリーカード等からの画像情報を入力するための入力部とを有する画像情報処理装置である。このような画像情報処理装置としては、デジタルカメラやデジタルビデオカメラなどが挙げられる。これらの場合、撮像するための撮像光学系を有する撮像部を入力部と呼ぶことができる。なお、画像情報処理装置が有する表示部は、タッチパネル機能を有していてもよい。画像情報処理装置がタッチパネル機能を有する場合、タッチパネル機能の駆動方式は特に限定されない。また、画像情報処理装置は、表示部を有するマルチファンクションプリンタであっても良い。   The image information processing apparatus according to this embodiment includes the display device described above as a display unit that displays an input image, and an input for inputting image information from an area CCD, a linear CCD, a memory card, or the like to the display device. An image information processing apparatus having a unit. Examples of such an image information processing apparatus include a digital camera and a digital video camera. In these cases, an imaging unit having an imaging optical system for imaging can be referred to as an input unit. Note that the display unit included in the image information processing apparatus may have a touch panel function. When the image information processing apparatus has a touch panel function, the driving method of the touch panel function is not particularly limited. The image information processing apparatus may be a multi-function printer having a display unit.

本実施形態に係る照明装置は、有機発光素子と、有機発光素子に駆動電圧を供給するためのADコンバーター回路と、を有する。照明装置は、室内を照明するものであっても屋外を照明するものであっても良い。照明装置は、白色、昼白色、その他青から赤のいずれの色を発光するものであってよい。照明装置は、カラーフィルターを有してもよい。ここで、ADコンバーター回路とは、交流電圧を直流電圧に変換する回路である。照明装置が白色を発する場合は、有機発光素子の発光層が複数の層を有し、本発明に係るベンゾインドロカルバゾール化合物が存在する層が赤色を発し、その他の層が赤色以外を発することで、素子として白色を発する。   The lighting device according to the present embodiment includes an organic light emitting element and an AD converter circuit for supplying a driving voltage to the organic light emitting element. The illuminating device may illuminate the room or illuminate the outdoors. The lighting device may emit white, day white, or any other color from blue to red. The lighting device may have a color filter. Here, the AD converter circuit is a circuit that converts an AC voltage into a DC voltage. When the lighting device emits white, the light emitting layer of the organic light emitting element has a plurality of layers, the layer in which the benzoindolocarbazole compound according to the present invention is present emits red, and the other layers emit other than red. , Emits white as an element.

本実施形態に係る画像形成装置は、感光体と感光体の表面を帯電させる帯電部と、感光体を露光する露光部と、感光体の表面に形成された静電潜像を現像する現像器と、を有する画像形成装置であって、露光部が、本実施形態に係る有機発光素子を有する。露光部は、複数の本実施形態に係る有機発光素子が列状に並べられているものであり、各々の有機発光素子は、制御手段により独立に制御されるものである。   An image forming apparatus according to the present embodiment includes a photosensitive member, a charging unit that charges the surface of the photosensitive member, an exposure unit that exposes the photosensitive member, and a developer that develops an electrostatic latent image formed on the surface of the photosensitive member. The exposure unit includes the organic light emitting element according to the present embodiment. The exposure unit includes a plurality of organic light emitting devices according to the present embodiment arranged in a line, and each organic light emitting device is independently controlled by a control unit.

本実施形態に係る有機発光素子はスイッチング素子の一例であるTFT素子により発光輝度が制御される。有機発光素子を面内に複数設けることで、それぞれの有機発光素子の発光輝度により画像を表示することができる。   The light emitting luminance of the organic light emitting device according to this embodiment is controlled by a TFT device which is an example of a switching device. By providing a plurality of organic light emitting elements in the plane, an image can be displayed according to the light emission luminance of each organic light emitting element.

本実施形態に係る有機発光素子が有するスイッチング素子は、TFT素子に限られず、トランジスタやMIM素子、Si基板等の基板上にアクティブマトリクスドライバーを形成し、その上に有機発光素子を設けて制御する形態であってもよい。   The switching element included in the organic light emitting element according to the present embodiment is not limited to the TFT element, and an active matrix driver is formed on a substrate such as a transistor, an MIM element, or a Si substrate, and the organic light emitting element is provided on the active matrix driver. Form may be sufficient.

これは精細度によって選択され、たとえば、1インチでQVGA程度の精細度の場合はSi基板上に有機発光素子を設けることが好ましい。   This is selected depending on the definition. For example, in the case of a definition of 1 inch and QVGA, it is preferable to provide an organic light emitting element on the Si substrate.

本実施形態に係る有機発光素子を用いた表示装置を駆動することにより、良好な画質で、長時間表示にも安定な表示が可能になる。   By driving the display device using the organic light emitting element according to the present embodiment, it is possible to perform stable display even with long-time display with good image quality.

<実施例1>(例示化合物No.117の合成)
(1)中間体BICz−OTfの合成
<Example 1> (Synthesis of Exemplified Compound No. 117)
(1) Synthesis of intermediate BICz-OTf

以下に示す試薬、溶媒を300mLナスフラスコに投入した。
1−クロロカルバゾール:6.00g(29.8mmol)
2−ブロモ−6−メトキシナフタレン:7.76g(32.7mmol)
トリス(ジベンジリデンアセトン)ジパラジウム:1.37g(1.49mmol)
トリtert−ブチルホスフィン:0.602g(2.98mmol)
tert−ブトキシナトリウム:4.29g(44.6mmol)
トルエン:180mL
この反応溶液を、窒素下、撹拌しながら100℃で5時間加熱した。反応終了後、反応溶液を飽和塩化ナトリウム水溶液で洗浄し、硫酸ナトリウム上で乾燥させた後に濃縮し粗生成物を得た。次にこの粗生成物をトルエン溶媒に加熱溶解させ、少量のシリカゲルを用いてゲルろ過してPd触媒を除去した後、トルエン/ヘプタン=1/1の混合溶媒で再結晶により精製し、1−クロロ−9(6−メトキシナフタレン−2−イル)カルバゾールを8.22g得た(収率77%)。
The following reagents and solvents were put into a 300 mL eggplant flask.
1-chlorocarbazole: 6.00 g (29.8 mmol)
2-Bromo-6-methoxynaphthalene: 7.76 g (32.7 mmol)
Tris (dibenzylideneacetone) dipalladium: 1.37 g (1.49 mmol)
Tri-tert-butylphosphine: 0.602 g (2.98 mmol)
tert-Butoxy sodium: 4.29 g (44.6 mmol)
Toluene: 180 mL
The reaction solution was heated at 100 ° C. for 5 hours with stirring under nitrogen. After completion of the reaction, the reaction solution was washed with a saturated aqueous sodium chloride solution, dried over sodium sulfate and then concentrated to obtain a crude product. Next, this crude product was dissolved by heating in a toluene solvent, gel-filtered with a small amount of silica gel to remove the Pd catalyst, and then purified by recrystallization with a mixed solvent of toluene / heptane = 1/1. 8.22 g of chloro-9 (6-methoxynaphthalen-2-yl) carbazole was obtained (yield 77%).

続いて、以下に示す試薬300mLナスフラスコに投入し、窒素でナスフラスコ内を置換した。
1−クロロ−9(6−メトキシナフタレン−2−イル)カルバゾール:7.70g(21.5mmol)
酢酸パラジウム:194mg(0.863mmol)
トリシクロヘキシルホスホニウムテトラフルオロほう酸塩:636mg(1.73mmol)
炭酸カリウム:5.97g(43.2mmol)
Subsequently, the reagent shown below was put into a 300 mL eggplant flask and the inside of the eggplant flask was replaced with nitrogen.
1-chloro-9 (6-methoxynaphthalen-2-yl) carbazole: 7.70 g (21.5 mmol)
Palladium acetate: 194 mg (0.863 mmol)
Tricyclohexylphosphonium tetrafluoroborate: 636 mg (1.73 mmol)
Potassium carbonate: 5.97 g (43.2 mmol)

次に、窒素でバブリング済のN,N−ジメチルアセトアミド120mLを加えて、この反応溶液を、窒素下、撹拌しながら130℃で5時間加熱した。反応液を冷却後、水を加えて撹拌し、析出した結晶をろ取して粗生成物を得た。次にこの粗生成物をトルエン溶媒に加熱溶解させ、少量のシリカゲルを用いてゲルろ過してPd触媒を除去した後、トルエン/ヘプタン混合溶媒にて再結晶を行って精製し、中間体BICz−OMeを5.72g得た(収率82%)。   Next, 120 mL of N, N-dimethylacetamide that had been bubbled with nitrogen was added, and the reaction solution was heated at 130 ° C. for 5 hours with stirring under nitrogen. After cooling the reaction solution, water was added and stirred, and the precipitated crystals were collected by filtration to obtain a crude product. Next, this crude product was dissolved by heating in a toluene solvent, gel-filtered with a small amount of silica gel to remove the Pd catalyst, purified by recrystallization from a toluene / heptane mixed solvent, and the intermediate BICz- Obtained 5.72 g of OMe (82% yield).

続いて以下に示す試薬、溶媒を500mLナスフラスコに投入した。
BICz−OMe:5.08g(15.8mmol)
脱水ジクロロメタン:300mL
この反応溶液に、窒素下で撹拌しながら、BBr(1Mジクロロメタン溶液)19.0mL(19.0mmol)を滴下ロートから2分間かけて滴下して加え、室温にて一晩攪拌を続けた後、メタノールを加えて反応を停止させた。次に反応溶液からジクロロメタンを溜去して濃縮した後、生じた析出物をろ取し、ろ過器上でメタノール洗浄を行い中間体BICz−OHを3.73g得た(収率77%)。
Subsequently, the following reagents and solvent were charged into a 500 mL eggplant flask.
BICz-OMe: 5.08 g (15.8 mmol)
Dehydrated dichloromethane: 300 mL
To this reaction solution, 19.0 mL (19.0 mmol) of BBr 3 (1M dichloromethane solution) was added dropwise over 2 minutes while stirring under nitrogen, and stirring was continued overnight at room temperature. Then, methanol was added to stop the reaction. Next, dichloromethane was distilled off from the reaction solution and concentrated, and the resulting precipitate was collected by filtration and washed with methanol on a filter to obtain 3.73 g of intermediate BICz-OH (yield 77%).

続いて、以下に示す試薬、溶媒を500mLナスフラスコに投入した。
BICz−OH:3.47g(11.3mmol)
ピリジン:1.79g(22.6mmol)
脱水ジクロロメタン:210mL
この反応溶液を、窒素下、撹拌しながら0℃に冷却し、トリフルオロメタンスルホン酸無水物2.47mL(14.7mmol)を30mLのジクロロメタンで希釈した溶液を、滴下ロートから10分間かけて滴下して反応溶液に加えた。滴下終了後、さらに0℃にて1時間攪拌を続けた後、水を加えて反応を停止させた。続いて反応溶液を飽和塩化ナトリウム水溶液で洗浄し、硫酸ナトリウム上で乾燥させた後に濃縮して粗生成物を得た。次にこの粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘプタン/トルエン=1/1)で精製し、中間体BICz−OTfを4.67g得た(収率94%)。
Subsequently, the following reagents and solvent were charged into a 500 mL eggplant flask.
BICz-OH: 3.47 g (11.3 mmol)
Pyridine: 1.79 g (22.6 mmol)
Dehydrated dichloromethane: 210 mL
The reaction solution was cooled to 0 ° C. with stirring under nitrogen, and a solution obtained by diluting 2.47 mL (14.7 mmol) of trifluoromethanesulfonic anhydride with 30 mL of dichloromethane was added dropwise from a dropping funnel over 10 minutes. Added to the reaction solution. After completion of the dropwise addition, stirring was further continued at 0 ° C. for 1 hour, and then water was added to stop the reaction. Subsequently, the reaction solution was washed with a saturated aqueous sodium chloride solution, dried over sodium sulfate, and then concentrated to obtain a crude product. Next, this crude product was purified by silica gel column chromatography (developing solvent: heptane / toluene = 1/1) to obtain 4.67 g of intermediate BICz-OTf (yield 94%).

また、BICz−OTfの同定をH−NMR測定により行った。
H−NMR(400MHz、CDCl)]
δ 8.97(s,1H),8.90(s,1H),8.41(d,1H),8.37−8.23(m,5H),7.72(d,1H),7.71−7.65(m,2H),7.46(t,1H).
Further, BICz-OTf was identified by 1 H-NMR measurement.
[ 1 H-NMR (400 MHz, CDCl 3 )]
δ 8.97 (s, 1H), 8.90 (s, 1H), 8.41 (d, 1H), 8.37-8.23 (m, 5H), 7.72 (d, 1H), 7.71-7.65 (m, 2H), 7.46 (t, 1H).

(2)例示化合物No.117の合成   (2) Exemplified Compound No. Synthesis of 117

以下に示す試薬、溶媒を100mLナスフラスコに投入した。
BICz−OTf:500mg(1.14mmol)
Bpin−1:433mg(1.14mmol)
テトラキス(トリフェニルホスフィン)パラジウム(0):39mg(34μmol)
トルエン:16mL
エタノール:8mL
10wt%炭酸ナトリウム水溶液:8mL
この反応溶液を、窒素下、撹拌しながら3時間加熱還流させた。反応終了後、反応溶液に水を加えて撹拌し、析出した結晶をろ別し、水、メタノール、アセトンで洗浄して粗生成物を得た。次にこの粗生成物をキシレンに加熱溶解後、少量のシリカゲルを用いて熱時ゲルろ過し、ろ液を濃縮後にキシレン溶媒で再結晶を行い、得られた結晶を150℃で真空乾燥して383mgの例示化合物No.117を得た(合成収率62%)。続いて10−4Pa、380℃の条件下で昇華精製を行い、高純度の例示化合物No.117を338mg得た。
The following reagents and solvents were put into a 100 mL eggplant flask.
BICz-OTf: 500 mg (1.14 mmol)
Bpin-1: 433 mg (1.14 mmol)
Tetrakis (triphenylphosphine) palladium (0): 39 mg (34 μmol)
Toluene: 16 mL
Ethanol: 8mL
10wt% sodium carbonate aqueous solution: 8mL
The reaction solution was heated to reflux for 3 hours with stirring under nitrogen. After completion of the reaction, water was added to the reaction solution and stirred, and the precipitated crystals were collected by filtration and washed with water, methanol and acetone to obtain a crude product. Next, the crude product is dissolved in xylene with heating, and gel-filtered with a small amount of silica gel while hot. The filtrate is concentrated and recrystallized with a xylene solvent, and the obtained crystals are vacuum-dried at 150 ° C. 383 mg of Exemplified Compound No. 117 was obtained (synthesis yield 62%). Subsequently, sublimation purification was performed under conditions of 10 −4 Pa and 380 ° C., and high-purity Example Compound No. 338 mg of 117 was obtained.

得られた化合物の同定は質量分析により行った。
[MALDI−TOF−MS(マトリックス支援イオン化−飛行時間型質量分析)]
実測値:m/z=543.19 計算値:C4225N=543.20
The obtained compound was identified by mass spectrometry.
[MALDI-TOF-MS (Matrix Assisted Ionization-Time of Flight Mass Spectrometry)]
Actual value: m / z = 543.19 Calculated value: C 42 H 25 N = 543.20

次に例示化合物No.117について、以下の方法でS1エネルギーの測定を行った。
例示化合物No.117をガラス基板上に加熱蒸着し、膜厚30nmの蒸着薄膜を得た。この蒸着薄膜について、紫外可視分光光度計(日本分光株式会社製V−560)を用いて吸光スペクトルを測定した。得られた吸光スペクトルの吸収端を求めると443nmであり、例示化合物No.117のS1エネルギーは2.80eVであった。
Next, Exemplified Compound No. About 117, S1 energy was measured with the following method.
Exemplified Compound No. 117 was heated and deposited on a glass substrate to obtain a deposited thin film having a thickness of 30 nm. About this vapor deposition thin film, the absorption spectrum was measured using the ultraviolet visible spectrophotometer (JASCO Corporation V-560). The absorption edge of the obtained absorption spectrum was determined to be 443 nm. The S1 energy of 117 was 2.80 eV.

さらに例示化合物No.117について、以下の方法でイオン化ポテンシャルの測定を行った。   Furthermore, Exemplified Compound No. For 117, the ionization potential was measured by the following method.

次に例示化合物No.117について、以下の方法でイオン化ポテンシャルを測定した。例示化合物No.117をAlNd基板上に加熱蒸着し、膜厚30nmの蒸着薄膜を得た。この蒸着薄膜について、光電子分光装置AC−3(理研計器株式会社製)により下記の測定条件にてイオン化ポテンシャルを測定した。
測定環境:室温、窒素下
測定光量:0.5nW
測定エネルギー範囲:5.0〜7.0eV
ステップ:0.05eV
計測時間:10sec/1 energy point
測定の結果、例示化合物No.117のイオン化ポテンシャルは5.80eVであった。
Next, Exemplified Compound No. For 117, the ionization potential was measured by the following method. Exemplified Compound No. 117 was heated and deposited on an AlNd substrate to obtain a deposited thin film having a thickness of 30 nm. About this vapor deposition thin film, ionization potential was measured on the following measurement conditions with photoelectron spectrometer AC-3 (made by Riken Keiki Co., Ltd.).
Measurement environment: room temperature, under nitrogen Measurement light intensity: 0.5 nW
Measurement energy range: 5.0 to 7.0 eV
Step: 0.05eV
Measurement time: 10sec / 1 energy point
As a result of the measurement, Exemplified Compound No. The ionization potential of 117 was 5.80 eV.

<実施例2>(例示化合物No.131の合成)   <Example 2> (Synthesis of Exemplified Compound No. 131)

以下に示す試薬、溶媒を100mLナスフラスコに投入した。
BICz−OTf:700mg(1.59mmol)
Bpin−2:841mg(1.64mmol)
テトラキス(トリフェニルホスフィン)パラジウム(0):55mg(48μmol)
トルエン:20mL
エタノール:10mL
10wt%炭酸ナトリウム水溶液:10mL
この反応溶液を、窒素下、撹拌しながら2時間半加熱還流させた。反応終了後、反応溶液に水を加えて撹拌し、析出した結晶をろ別し、水、エタノール、ヘキサンで洗浄して粗生成物を得た。次にこの粗生成物を200mLのトルエンに加熱溶解後、少量のシリカゲルを用いて熱時ゲルろ過し、ろ液を濃縮後にキシレン溶媒で再結晶を行い、得られた結晶を150℃で真空乾燥して826mgの例示化合物No.131を得た(合成収率77%)。そのうちの一部を10−4Pa、380℃の条件下で昇華精製を行い、高純度の例示化合物No.131を290mg得た。
The following reagents and solvents were put into a 100 mL eggplant flask.
BICz-OTf: 700 mg (1.59 mmol)
Bpin-2: 841 mg (1.64 mmol)
Tetrakis (triphenylphosphine) palladium (0): 55 mg (48 μmol)
Toluene: 20 mL
Ethanol: 10mL
10 wt% sodium carbonate aqueous solution: 10 mL
The reaction solution was heated to reflux for 2 hours and half with stirring under nitrogen. After completion of the reaction, water was added to the reaction solution and stirred, and the precipitated crystals were collected by filtration and washed with water, ethanol and hexane to obtain a crude product. Next, this crude product was dissolved in 200 mL of toluene by heating, and then gel-filtered with a small amount of silica gel while hot. The filtrate was concentrated and recrystallized with a xylene solvent, and the resulting crystals were vacuum-dried at 150 ° C. 826 mg of Exemplified Compound No. 131 was obtained (synthesis yield 77%). Some of them were purified by sublimation under conditions of 10 −4 Pa and 380 ° C. 290 mg of 131 was obtained.

得られた化合物の同定は質量分析により行った。
[MALDI−TOF−MS]
実測値:m/z=675.36 計算値:C5237N=675.29
The obtained compound was identified by mass spectrometry.
[MALDI-TOF-MS]
Actual value: m / z = 675.36 Calculated value: C 52 H 37 N = 675.29

また例示化合物No.131について、実施例1と同様の方法でS1エネルギーの測定を行ったところ、吸光スペクトルの吸収端は432nmであり、例示化合物No.131のエネルギーギャップは2.87eVであった。   In addition, Exemplified Compound No. 131 was measured for S1 energy in the same manner as in Example 1. As a result, the absorption edge of the absorption spectrum was 432 nm. The energy gap of 131 was 2.87 eV.

さらに例示化合物No.131について実施例1と同様の方法でイオン化ポテンシャルの測定を行ったところ、例示化合物No.131のイオン化ポテンシャルは5.74eVであった。   Furthermore, Exemplified Compound No. When the ionization potential of No. 131 was measured in the same manner as in Example 1, Exemplified Compound No. 131 was used. The ionization potential of 131 was 5.74 eV.

<実施例3>(例示化合物No.202の合成)   <Example 3> (Synthesis of Exemplified Compound No. 202)

以下に示す試薬、溶媒を50mLナスフラスコに投入した。
BICz−OTf:300mg(0.683mmol)
4−ジベンゾチオフェンボロン酸:163mg(0.717mmol)
テトラキス(トリフェニルホスフィン)パラジウム(0):24mg(20μmol)
トルエン:10mL
エタノール:5mL
10wt%炭酸ナトリウム水溶液:5mL
この反応溶液を、窒素下、撹拌しながら4時間加熱還流させた。反応終了後、反応溶液に水およびエタノールを加えて撹拌し、析出した結晶をろ別し、水、エタノール、ヘキサンで洗浄して粗生成物を得た。次にこの粗生成物をトルエンに加熱溶解後、少量のシリカゲルを用いて熱時ゲルろ過し、ろ液を濃縮後にトルエン溶媒で再結晶を行い、得られた結晶を120℃で真空乾燥して233mgの例示化合物No.202を得た(合成収率72%)。続いて10−4Pa、330℃の条件下で昇華精製を行い、高純度の例示化合物No.202を150mg得た。
The following reagents and solvents were put into a 50 mL eggplant flask.
BICz-OTf: 300 mg (0.683 mmol)
4-Dibenzothiopheneboronic acid: 163 mg (0.717 mmol)
Tetrakis (triphenylphosphine) palladium (0): 24 mg (20 μmol)
Toluene: 10 mL
Ethanol: 5mL
10wt% sodium carbonate aqueous solution: 5mL
The reaction solution was heated to reflux for 4 hours with stirring under nitrogen. After completion of the reaction, water and ethanol were added to the reaction solution and stirred, and the precipitated crystals were collected by filtration and washed with water, ethanol and hexane to obtain a crude product. Next, this crude product is heated and dissolved in toluene, gel-filtered while hot using a small amount of silica gel, the filtrate is concentrated, recrystallized with a toluene solvent, and the obtained crystals are vacuum-dried at 120 ° C. 233 mg of Exemplified Compound No. 202 was obtained (synthesis yield 72%). Subsequently, sublimation purification was performed under conditions of 10 −4 Pa and 330 ° C., and high-purity Example Compound No. 150 mg of 202 was obtained.

得られた化合物の同定は質量分析により行った。
[MALDI−TOF−MS]
実測値:m/z=475.30 計算値:C3421NS=475.14
The obtained compound was identified by mass spectrometry.
[MALDI-TOF-MS]
Actual value: m / z = 475.30 Calculated value: C 34 H 21 NS = 475.14

また例示化合物No.202について、実施例1と同様の方法でS1エネルギーの測定を行ったところ、吸光スペクトルの吸収端は427nmであり、例示化合物No.202のエネルギーギャップは2.90eVであった。
さらに例示化合物No.202について実施例1と同様の方法でイオン化ポテンシャルの測定を行ったところ、例示化合物No.202のイオン化ポテンシャルは5.88eVであった。
In addition, Exemplified Compound No. For S202, S1 energy was measured in the same manner as in Example 1. As a result, the absorption edge of the absorption spectrum was 427 nm. The energy gap of 202 was 2.90 eV.
Furthermore, Exemplified Compound No. When the ionization potential was measured in the same manner as in Example 1 for 202, Exemplified Compound No. The ionization potential of 202 was 5.88 eV.

<実施例4>(例示化合物No.220の合成)   <Example 4> (Synthesis of Exemplified Compound No. 220)

以下に示す試薬、溶媒を100mLナスフラスコに投入した。
BICz−OTf:613mg(1.39mmol)
Bpin−3:660mg(1.44mmol)
テトラキス(トリフェニルホスフィン)パラジウム(0):48mg(42μmol)
トルエン:20mL
エタノール:10mL
10wt%炭酸ナトリウム水溶液:10mL
この反応溶液を、窒素下、撹拌しながら4時間加熱還流させた。反応終了後、反応溶液に水を加えて撹拌し、析出した結晶をろ別し、水、メタノール、アセトンで洗浄して粗生成物を得た。次にこの粗生成物を500mLのDMAに加熱溶解させて熱時ろ過を行い、ろ液を冷却後に析出した結晶をろ取し、得られた結晶をクロロベンゼン溶媒による再結晶で精製した。得られた結晶を150℃で真空乾燥して354mgの例示化合物No.220を得た(合成収率41%)。続いて10−4Pa、400℃の条件下で昇華精製を行い、高純度の例示化合物No.220を158mg得た。
The following reagents and solvents were put into a 100 mL eggplant flask.
BICz-OTf: 613 mg (1.39 mmol)
Bpin-3: 660 mg (1.44 mmol)
Tetrakis (triphenylphosphine) palladium (0): 48 mg (42 μmol)
Toluene: 20 mL
Ethanol: 10mL
10 wt% sodium carbonate aqueous solution: 10 mL
The reaction solution was heated to reflux for 4 hours with stirring under nitrogen. After completion of the reaction, water was added to the reaction solution and stirred, and the precipitated crystals were collected by filtration and washed with water, methanol and acetone to obtain a crude product. Next, this crude product was dissolved by heating in 500 mL of DMA and filtered while hot. After cooling the filtrate, the precipitated crystals were collected by filtration, and the obtained crystals were purified by recrystallization using a chlorobenzene solvent. The obtained crystals were vacuum dried at 150 ° C. to give 354 mg of Exemplified Compound No. 220 was obtained (synthesis yield 41%). Subsequently, sublimation purification was performed under conditions of 10 −4 Pa and 400 ° C., and high-purity Example Compound No. 158 mg of 220 was obtained.

得られた化合物の同定は質量分析により行った。
[MALDI−TOF−MS]
実測値:m/z=622.36 計算値:C4626O=622.20
The obtained compound was identified by mass spectrometry.
[MALDI-TOF-MS]
Actual value: m / z = 622.36 Calculated value: C 46 H 26 N 2 O = 622.20

また例示化合物No.220について、実施例1と同様の方法でS1エネルギーの測定を行ったところ、吸光スペクトルの吸収端は444nmであり、例示化合物No.220のエネルギーギャップは2.79eVであった。   In addition, Exemplified Compound No. When S1 energy was measured for 220 in the same manner as in Example 1, the absorption edge of the absorption spectrum was 444 nm. The energy gap of 220 was 2.79 eV.

さらに例示化合物No.220について実施例1と同様の方法でイオン化ポテンシャルの測定を行ったところ、例示化合物No.220のイオン化ポテンシャルは5.73eVであった。   Furthermore, Exemplified Compound No. When the ionization potential of No. 220 was measured in the same manner as in Example 1, Exemplified Compound No. The ionization potential of 220 was 5.73 eV.

<実施例5>(例示化合物No.405の合成)   <Example 5> (Synthesis of Exemplified Compound No. 405)

以下に示す試薬、溶媒を50mLナスフラスコに投入した。
BICz−OTf:300mg(0.683mmol)
Bpin−4:271mg(0.717mmol)
テトラキス(トリフェニルホスフィン)パラジウム(0):24mg(20μmol)
トルエン:10mL
エタノール:5mL
10wt%炭酸ナトリウム水溶液:5mL
この反応溶液を、窒素下、撹拌しながら3時間加熱還流させた。反応終了後、実施例3の例示化合物No.202の合成と同様の後処理及び精製を行い、245mgの例示化合物No.405の結晶を得た(合成収率66%)。続いて10−4Pa、350℃の条件下で昇華精製を行い、高純度の例示化合物No.405を161mg得た。
The following reagents and solvents were put into a 50 mL eggplant flask.
BICz-OTf: 300 mg (0.683 mmol)
Bpin-4: 271 mg (0.717 mmol)
Tetrakis (triphenylphosphine) palladium (0): 24 mg (20 μmol)
Toluene: 10 mL
Ethanol: 5mL
10wt% sodium carbonate aqueous solution: 5mL
The reaction solution was heated to reflux for 3 hours with stirring under nitrogen. After completion of the reaction, Exemplified Compound Nos. Post-treatment and purification similar to the synthesis of 202 were performed, and 245 mg of Exemplified Compound No. 405 crystals were obtained (synthesis yield 66%). Subsequently, sublimation purification was performed under conditions of 10 −4 Pa and 350 ° C., and high-purity Example Compound No. 161 mg of 405 was obtained.

得られた化合物の同定は質量分析により行った。
[MALDI−TOF−MS]
実測値:m/z=543.34 計算値:C4225N=543.20
The obtained compound was identified by mass spectrometry.
[MALDI-TOF-MS]
Actual value: m / z = 543.34 Calculated value: C 42 H 25 N = 543.20

また例示化合物No.405について、実施例1と同様の方法でS1エネルギーの測定を行ったところ、吸光スペクトルの吸収端は524nmであり、例示化合物No.405のエネルギーギャップは2.36eVであった。   In addition, Exemplified Compound No. When S1 energy was measured for 405 in the same manner as in Example 1, the absorption edge of the absorption spectrum was 524 nm. The energy gap of 405 was 2.36 eV.

さらに例示化合物No.405について実施例1と同様の方法でイオン化ポテンシャルの測定を行ったところ、例示化合物No.405のイオン化ポテンシャルは5.59eVであった。   Furthermore, Exemplified Compound No. When the ionization potential of 405 was measured by the same method as in Example 1, Exemplified Compound No. 405 was obtained. The ionization potential of 405 was 5.59 eV.

<実施例6>(例示化合物No.502の合成)
(1)中間体BICz−Bpinの合成
<Example 6> (Synthesis of Exemplified Compound No. 502)
(1) Synthesis of intermediate BICz-Bpin

以下に示す試薬、溶媒を100mLナスフラスコに投入した。
BICz−OTf:1.00g(2.28mmol)
ビス(ピナコラト)ジボロン:868mg(3.42mmol)
ビス(ジベンジリデンアセトン)ジパラジウム(0):66mg(0.114mmol)
トリシクロヘキシルホスフィン:96mg(0.342mmol)
酢酸カリウム:0.67g(6.84mmol)
1,4−ジオキサン:40mL
この反応溶液を、窒素下、92℃で5時間撹拌を行った。反応終了後、反応液にトルエンを加え、ろ過により塩を除去してからろ液を水で洗浄し、硫酸ナトリウム上で乾燥させた後に濃縮し粗生成物を得た。次にこの粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:トルエン/ヘプタン=2/1)で精製し、中間体BICz−Bpinを810mg得た(収率85%)。
The following reagents and solvents were put into a 100 mL eggplant flask.
BICz-OTf: 1.00 g (2.28 mmol)
Bis (pinacolato) diboron: 868 mg (3.42 mmol)
Bis (dibenzylideneacetone) dipalladium (0): 66 mg (0.114 mmol)
Tricyclohexylphosphine: 96 mg (0.342 mmol)
Potassium acetate: 0.67 g (6.84 mmol)
1,4-dioxane: 40 mL
The reaction solution was stirred at 92 ° C. for 5 hours under nitrogen. After completion of the reaction, toluene was added to the reaction solution, the salt was removed by filtration, the filtrate was washed with water, dried over sodium sulfate and concentrated to obtain a crude product. Next, this crude product was purified by silica gel column chromatography (developing solvent: toluene / heptane = 2/1) to obtain 810 mg of intermediate BICz-Bpin (yield 85%).

(2)例示化合物No.502の合成   (2) Exemplified Compound No. Synthesis of 502

以下に示す試薬、溶媒を50mLナスフラスコに投入した。
BICz−Bpin:400mg(0.959mmol)
DPFLAm−Br:402mg(0.913mmol)
テトラキス(トリフェニルホスフィン)パラジウム(0):32mg(27μmol)
トルエン:12mL
エタノール:6mL
10wt%炭酸ナトリウム水溶液:6mL
この反応溶液を、窒素下、撹拌しながら5時間加熱還流させた。反応終了後、実施例3の例示化合物No.202の合成と同様の後処理及び精製を行い、430mgの例示化合物No.502の結晶を得た(合成収率69%)。続いて10−4Pa、360℃の条件下で昇華精製を行い、高純度の例示化合物No.502を311mg得た。
The following reagents and solvents were put into a 50 mL eggplant flask.
BICz-Bpin: 400 mg (0.959 mmol)
DPFLAm-Br: 402 mg (0.913 mmol)
Tetrakis (triphenylphosphine) palladium (0): 32 mg (27 μmol)
Toluene: 12 mL
Ethanol: 6mL
10wt% sodium carbonate aqueous solution: 6mL
The reaction solution was heated to reflux for 5 hours with stirring under nitrogen. After completion of the reaction, Exemplified Compound Nos. Post-treatment and purification similar to the synthesis of 202 were performed, and 430 mg of Exemplified Compound No. 502 crystals were obtained (synthesis yield 69%). Subsequently, sublimation purification was performed under conditions of 10 −4 Pa and 360 ° C., and high-purity Example Compound No. 311 mg of 502 was obtained.

得られた化合物の同定は質量分析により行った。
[MALDI−TOF−MS]
実測値:m/z=650.38 計算値:C4934=650.27
また例示化合物No.502について、実施例1と同様の方法でS1エネルギーの測定を行ったところ、吸光スペクトルの吸収端は444nmであり、例示化合物No.502のエネルギーギャップは2.79eVであった。
さらに例示化合物No.502について実施例1と同様の方法でイオン化ポテンシャルの測定を行ったところ、例示化合物No.502のイオン化ポテンシャルは5.59eVであった。
The obtained compound was identified by mass spectrometry.
[MALDI-TOF-MS]
Actual measurement value: m / z = 650.38 Calculation value: C 49 H 34 N 2 = 650.27
In addition, Exemplified Compound No. For 502, S1 energy was measured in the same manner as in Example 1. As a result, the absorption edge of the absorption spectrum was 444 nm. The energy gap of 502 was 2.79 eV.
Furthermore, Exemplified Compound No. When the ionization potential was measured in the same manner as in Example 1 for 502, Exemplified Compound No. The ionization potential of 502 was 5.59 eV.

<実施例7>(例示化合物No.148の合成)   <Example 7> (Synthesis of Exemplified Compound No. 148)

(1)DtBuBICz−OTfの合成
実施例1(1)において、1−クロロカルバゾールの代わりに3,6−ジ−tert−ブチル−1−クロロカルバゾールを用い、これ以外は実施例1(1)と同様の方法によって、中間体DtBuBICz−OTfを合成した。
(1) Synthesis of DtBuBICz-OTf In Example 1 (1), 3,6-di-tert-butyl-1-chlorocarbazole was used instead of 1-chlorocarbazole, and other than this, Example 1 (1) and The intermediate DtBuBICz-OTf was synthesized by the same method.

(2)例示化合物No.148の合成
以下に示す試薬、溶媒を100mLナスフラスコに投入した。
DtBuBICz−OTf:300mg(0.544mmol)
Bpin−2:293mg(0.571mmol)
テトラキス(トリフェニルホスフィン)パラジウム(0):19mg(16μmol)
トルエン:10mL
エタノール:5mL
10wt%炭酸ナトリウム水溶液:5mL
この反応溶液を、窒素下、撹拌しながら3時間加熱還流させた。反応終了後、実施例2の例示化合物No.131の合成と同様の後処理及び精製を行い、347mgの例示化合物No.148の結晶を得た(合成収率81%)。続いて10−4Pa、365℃の条件下で昇華精製を行い、高純度の例示化合物No.148を270mg得た。
(2) Exemplified Compound No. Synthesis of 148 The following reagents and solvent were charged into a 100 mL eggplant flask.
DtBuBICz-OTf: 300 mg (0.544 mmol)
Bpin-2: 293 mg (0.571 mmol)
Tetrakis (triphenylphosphine) palladium (0): 19 mg (16 μmol)
Toluene: 10 mL
Ethanol: 5mL
10wt% sodium carbonate aqueous solution: 5mL
The reaction solution was heated to reflux for 3 hours with stirring under nitrogen. After completion of the reaction, Exemplified Compound Nos. Post-treatment and purification similar to the synthesis of 131 were performed, and 347 mg of Exemplified Compound No. 148 crystals were obtained (81% synthesis yield). Subsequently, sublimation purification was performed under conditions of 10 −4 Pa and 365 ° C., and high-purity Example Compound No. 270 mg of 148 was obtained.

得られた化合物の同定は質量分析により行った。
[MALDI−TOF−MS]
実測値:m/z=787.52 計算値:C6053N=787.42
また例示化合物No.148について、実施例1と同様の方法でS1エネルギーの測定を行ったところ、吸光スペクトルの吸収端は436nmであり、例示化合物No.148のエネルギーギャップは2.84eVであった。
さらに例示化合物No.148について実施例1と同様の方法でイオン化ポテンシャルの測定を行ったところ、例示化合物No.148のイオン化ポテンシャルは5.64eVであった。
The obtained compound was identified by mass spectrometry.
[MALDI-TOF-MS]
Actual value: m / z = 787.52 Calculated value: C 60 H 53 N = 787.42
In addition, Exemplified Compound No. 148 was measured for S1 energy in the same manner as in Example 1. As a result, the absorption edge of the absorption spectrum was 436 nm. The energy gap of 148 was 2.84 eV.
Furthermore, Exemplified Compound No. When the ionization potential was measured for 148 in the same manner as in Example 1, Exemplified Compound No. 148 was measured. The ionization potential of 148 was 5.64 eV.

<実施例8>(例示化合物No.305の合成)   <Example 8> (Synthesis of Exemplified Compound No. 305)

(1)中間体IM−305−1の合成
以下に示す試薬、溶媒を100mLナスフラスコに投入した。
3,6−ジブロモカルバゾール:500mg(1.54mmol)
Bpin−5:1.03g(3.23mmol)
テトラキス(トリフェニルホスフィン)パラジウム(0):89mg(77μmol)
トルエン:30mL
エタノール:15mL
10wt%炭酸ナトリウム水溶液:15mL
この反応溶液を、窒素下、撹拌しながら4時間加熱還流させた。反応終了後、反応溶液に水およびエタノールを加えて撹拌し、析出した結晶をろ別し、水、エタノール、ヘキサンで洗浄して粗生成物を得た。次にこの粗生成物をトルエンに加熱溶解後、少量のシリカゲルを用いて熱時ゲルろ過し、ろ液を濃縮後にトルエン溶媒で再結晶を行い、721mgのIM−305−1を得た(合成収率85%)。
(1) Synthesis of Intermediate IM-305-1 The following reagents and solvent were charged into a 100 mL eggplant flask.
3,6-dibromocarbazole: 500 mg (1.54 mmol)
Bpin-5: 1.03 g (3.23 mmol)
Tetrakis (triphenylphosphine) palladium (0): 89 mg (77 μmol)
Toluene: 30 mL
Ethanol: 15mL
10 wt% sodium carbonate aqueous solution: 15 mL
The reaction solution was heated to reflux for 4 hours with stirring under nitrogen. After completion of the reaction, water and ethanol were added to the reaction solution and stirred, and the precipitated crystals were separated by filtration and washed with water, ethanol and hexane to obtain a crude product. Next, this crude product was heated and dissolved in toluene, and then subjected to gel filtration while hot using a small amount of silica gel. The filtrate was concentrated and then recrystallized with a toluene solvent to obtain 721 mg of IM-305-1 (synthesis). Yield 85%).

(2)中間体IM−305−2の合成
以下に示す試薬、溶媒を100mLナスフラスコに投入した。
IM−305−1:500mg(0.906mmol)
2,3−ジブロモナフタレン:285mg(0.997mmol)
トリス(ジベンジリデンアセトン)ジパラジウム:41mg(45μmol)
トリtert−ブチルホスフィン:18mg(91μmol)
tert−ブトキシナトリウム:131mg(1.36mmol)
トルエン:20mL
この反応溶液を、窒素下、撹拌しながら100℃で3時間加熱した。反応終了後、反応溶液を飽和塩化ナトリウム水溶液で洗浄し、硫酸ナトリウム上で乾燥させた後に濃縮し粗生成物を得た。次にこの粗生成物をトルエン溶媒に加熱溶解させ、少量のシリカゲルを用いてゲルろ過してPd触媒を除去した後、トルエンでの再結晶により精製し、IM−305−2を424mg得た(収率62%)。
(2) Synthesis of Intermediate IM-305-2 The following reagents and solvent were charged into a 100 mL eggplant flask.
IM-305-1: 500 mg (0.906 mmol)
2,3-Dibromonaphthalene: 285 mg (0.997 mmol)
Tris (dibenzylideneacetone) dipalladium: 41 mg (45 μmol)
Tri-tert-butylphosphine: 18 mg (91 μmol)
tert-Butoxy sodium: 131 mg (1.36 mmol)
Toluene: 20 mL
The reaction solution was heated at 100 ° C. for 3 hours with stirring under nitrogen. After completion of the reaction, the reaction solution was washed with a saturated aqueous sodium chloride solution, dried over sodium sulfate and then concentrated to obtain a crude product. Next, this crude product was dissolved by heating in a toluene solvent, gel-filtered with a small amount of silica gel to remove the Pd catalyst, and then purified by recrystallization with toluene to obtain 424 mg of IM-305-2 ( Yield 62%).

(3)例示化合物No.305の合成
以下に示す試薬50mLナスフラスコに投入し、窒素でナスフラスコ内を置換した。
IM−305−2:424mg(0.560mmol)
酢酸パラジウム:3.8mg(17μmol)
トリシクロヘキシルホスホニウムテトラフルオロほう酸塩:12.4mg(34μmol)
炭酸カリウム:155mg(1.12mmol)
(3) Exemplified Compound No. Synthesis of 305 The reagent shown below was put into a 50 mL eggplant flask and the inside of the eggplant flask was replaced with nitrogen.
IM-305-2: 424 mg (0.560 mmol)
Palladium acetate: 3.8 mg (17 μmol)
Tricyclohexylphosphonium tetrafluoroborate: 12.4 mg (34 μmol)
Potassium carbonate: 155 mg (1.12 mmol)

次に、窒素でバブリング済のN,N−ジメチルアセトアミド8mLを加えて、この反応溶液を、窒素下、撹拌しながら130℃で4時間加熱した。反応液を冷却後、水を加えて撹拌し、析出した結晶をろ取して粗生成物を得た。次にこの粗生成物をトルエン溶媒に加熱溶解させ、少量のシリカゲルを用いてゲルろ過してPd触媒を除去した後、トルエン溶媒にて再結晶を行って精製し、299mgの例示化合物No.305の結晶を得た(合成収率80%)。続いて10−4Pa、380℃の条件下で昇華精製を行い、高純度の例示化合物No.305を210mg得た。 Next, 8 mL of N, N-dimethylacetamide that had been bubbled with nitrogen was added, and the reaction solution was heated at 130 ° C. for 4 hours with stirring under nitrogen. After cooling the reaction solution, water was added and stirred, and the precipitated crystals were collected by filtration to obtain a crude product. Next, this crude product was dissolved by heating in a toluene solvent, gel-filtered using a small amount of silica gel to remove the Pd catalyst, and then purified by recrystallization from a toluene solvent. 305 crystals were obtained (synthesis yield 80%). Subsequently, sublimation purification was performed under conditions of 10 −4 Pa and 380 ° C., and high-purity Example Compound No. 210 mg of 305 was obtained.

得られた化合物の同定は質量分析により行った。
[MALDI−TOF−MS]
実測値:m/z=675.44 計算値:C5237N=675.29
The obtained compound was identified by mass spectrometry.
[MALDI-TOF-MS]
Actual value: m / z = 675.44 Calculated value: C 52 H 37 N = 675.29

また例示化合物No.305について、実施例1と同様の方法でS1エネルギーの測定を行ったところ、吸光スペクトルの吸収端は440nmであり、例示化合物No.305のエネルギーギャップは2.82eVであった。   In addition, Exemplified Compound No. When S1 energy was measured for 305 in the same manner as in Example 1, the absorption edge of the absorption spectrum was 440 nm. The energy gap of 305 was 2.82 eV.

さらに例示化合物No.305について実施例1と同様の方法でイオン化ポテンシャルの測定を行ったところ、例示化合物No.305のイオン化ポテンシャルは5.72eVであった。   Furthermore, Exemplified Compound No. When the ionization potential was measured in the same manner as in Example 1 for 305, Exemplified Compound No. 305 was measured. The ionization potential of 305 was 5.72 eV.

<比較例1>(T1エネルギー、イオン化ポテンシャルの比較)
下記に示す比較化合物CBP及びA2について、実施例1と同様の方法でS1エネルギーおよびイオン化ポテンシャルの測定を行った。実施例1乃至8の結果と合わせて、結果を表4に示す。
<Comparative Example 1> (Comparison of T1 energy and ionization potential)
For the comparative compounds CBP and A2 shown below, S1 energy and ionization potential were measured in the same manner as in Example 1. The results are shown in Table 4 together with the results of Examples 1 to 8.

表4より本発明の例示化合物はS1エネルギーが低く、且つイオン化ポテンシャルが小さい(HOMO準位が浅い)。そして本発明の例示化合物は、比較化合物CBP及びA2よりもS1エネルギーが小さく、且つイオン化ポテンシャルも小さい。この差は分子の主骨格の差であり、本発明化合物の主骨格であるベンゾインドロカルバゾールが、カルバゾール主骨格(CBP)やインドロカルバゾール(A2)よりもS1エネルギーが低く、且つHOMO準位が浅い主骨格であることに起因している。   From Table 4, the exemplary compounds of the present invention have low S1 energy and low ionization potential (shallow HOMO level). And the exemplary compound of this invention has S1 energy smaller than the comparison compounds CBP and A2, and its ionization potential is also small. This difference is the difference in the main skeleton of the molecule. The benzoindolocarbazole, which is the main skeleton of the compound of the present invention, has an S1 energy lower than that of the carbazole main skeleton (CBP) or indolocarbazole (A2), and has a HOMO level. This is due to the shallow main skeleton.

<実施例9>
本実施例では、基板上に順次陽極/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/陰極が設けられた構成の有機発光素子を以下に示す方法で作製した。
<Example 9>
In this example, an organic light emitting device having a structure in which an anode / hole transport layer / electron blocking layer / light emitting layer / hole blocking layer / electron transport layer / cathode were sequentially provided on a substrate was produced by the following method. .

ガラス基板上に、陽極としてIZOをスパッタ法にて膜厚100nmで製膜したものを透明導電性支持基板(IZO基板)として使用した。このIZO基板上に、以下に示す有機化合物層及び電極層を、10−5Paの真空チャンバー内で抵抗加熱による真空蒸着によって連続的に製膜した。このとき対向する電極面積は3mmになるように作製した。
正孔輸送層(50nm) HTL−1
電子阻止層(10nm) EBL−1
発光層(30nm) ホスト材料:例示化合物No.117、ゲスト材料:Ir−1(4vol%)
正孔阻止層(10nm) HBL−1
電子輸送層(50nm) ETL−1
金属電極層1(0.5nm) LiF
金属電極層2(100nm) Al
A transparent conductive support substrate (IZO substrate) obtained by depositing IZO as a positive electrode with a film thickness of 100 nm on a glass substrate was used. On this IZO substrate, the following organic compound layer and electrode layer were continuously formed by vacuum evaporation by resistance heating in a vacuum chamber of 10 −5 Pa. At this time, the opposing electrode area was 3 mm 2 .
Hole transport layer (50 nm) HTL-1
Electron blocking layer (10 nm) EBL-1
Light emitting layer (30 nm) Host material: Exemplified Compound No. 117, Guest material: Ir-1 (4 vol%)
Hole blocking layer (10 nm) HBL-1
Electron transport layer (50 nm) ETL-1
Metal electrode layer 1 (0.5 nm) LiF
Metal electrode layer 2 (100 nm) Al

次に、有機発光素子が水分の吸着によって素子劣化が起こらないように、乾燥空気雰囲気中で保護用ガラス板をかぶせアクリル樹脂系接着材で封止した。以上のようにして有機発光素子を得た。   Next, the organic light emitting device was covered with a protective glass plate in a dry air atmosphere and sealed with an acrylic resin adhesive so that the device did not deteriorate due to moisture adsorption. An organic light emitting device was obtained as described above.

得られた有機発光素子について、IZO電極を正極、Al電極を負極にして、5.6Vの印加電圧をかけたところ、発光効率が10.4cd/Aの輝度2000cd/mの赤色発光が観測された。またこの素子においてCIE色度座標は、(x,y)=(0.68,0.32)であった。さらにこの発光素子において、100mA/cmの定電流密度における輝度半減寿命は320時間であった。 About the obtained organic light emitting device, when an applied voltage of 5.6 V was applied with the IZO electrode as the positive electrode and the Al electrode as the negative electrode, red light emission with a luminance of 2000 cd / m 2 with a luminous efficiency of 10.4 cd / A was observed. It was done. In this device, the CIE chromaticity coordinates were (x, y) = (0.68, 0.32). Furthermore, in this light-emitting element, the luminance half life at a constant current density of 100 mA / cm 2 was 320 hours.

<実施例10乃至14、比較例2、3>
正孔輸送層、電子阻止層、および発光層に用いた化合物を、表5に記載の化合物に変更した以外は実施例9と同様に素子を作製し、同様の評価を行った。得られた結果を表5に示す。
<Examples 10 to 14, Comparative Examples 2 and 3>
A device was prepared and evaluated in the same manner as in Example 9 except that the compounds used in the hole transport layer, the electron blocking layer, and the light emitting layer were changed to the compounds shown in Table 5. The results obtained are shown in Table 5.

以上のように本発明に係るベンゾインドロカルバゾール化合物は、化学的安定性が高く、S1エネルギーが低くてHOMO準位が浅いので、有機燐光発光素子の発光層ホストに用いると低駆動電圧で高発光効率の発光素子が得られる。さらに実施例9乃至11では、本発明に係るベンゾインドロカルバゾール化合物はカルバゾール型C−N結合がなくて化学安定性が高いので、比較例2のCBPを発光層ホストとする場合に比べて長寿命な発光素子が得られる。   As described above, the benzoindolocarbazole compound according to the present invention has high chemical stability, low S1 energy, and a shallow HOMO level. Therefore, when it is used for a light emitting layer host of an organic phosphorescent light emitting device, it emits high light with a low driving voltage. An efficient light emitting device is obtained. Furthermore, in Examples 9 to 11, the benzoindolocarbazole compound according to the present invention has no carbazole-type C—N bond and high chemical stability, so that it has a longer lifetime than the case where the CBP of Comparative Example 2 is used as the light emitting layer host. A light-emitting element can be obtained.

<実施例15>
本実施例では、基板上に順次陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極が設けられた構成の有機発光素子を以下に示す方法で作製した。
<Example 15>
In this example, an organic light emitting device having a structure in which an anode / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode were sequentially provided on a substrate was produced by the method described below.

実施例9と同様の方法で作製したIZO基板上に、以下に示す有機化合物層及び電極層を、10−5Paの真空チャンバー内で抵抗加熱による真空蒸着によって連続的に製膜した。このとき対向する電極面積は3mmになるように作製した。
正孔輸送層(50nm) HTL−2
発光層(30nm) ホスト材料:例示化合物No.117、
ゲスト材料:Ir−8(4vol%)、
アシスト材料:Ir(ppy)(16vol%)
正孔阻止層(10nm) HBL−2
電子輸送層(50nm) ETL−1
金属電極層1(0.5nm) LiF
金属電極層2(100nm) Al
On the IZO substrate produced by the same method as in Example 9, the following organic compound layer and electrode layer were continuously formed by vacuum evaporation by resistance heating in a 10 −5 Pa vacuum chamber. At this time, the opposing electrode area was 3 mm 2 .
Hole transport layer (50 nm) HTL-2
Light emitting layer (30 nm) Host material: Exemplified Compound No. 117,
Guest material: Ir-8 (4 vol%),
Assist material: Ir (ppy) 3 (16 vol%)
Hole blocking layer (10 nm) HBL-2
Electron transport layer (50 nm) ETL-1
Metal electrode layer 1 (0.5 nm) LiF
Metal electrode layer 2 (100 nm) Al

次に、有機発光素子が水分の吸着によって素子劣化が起こらないように、乾燥空気雰囲気中で保護用ガラス板をかぶせアクリル樹脂系接着材で封止した。以上のようにして有機発光素子を得た。   Next, the organic light emitting device was covered with a protective glass plate in a dry air atmosphere and sealed with an acrylic resin adhesive so that the device did not deteriorate due to moisture adsorption. An organic light emitting device was obtained as described above.

得られた有機発光素子について、IZO電極を正極、Al電極を負極にして、4.8Vの印加電圧をかけたところ、発光効率が12.8cd/Aで、輝度1000cd/mの赤色発光が観測された。またこの素子においてCIE色度座標は、(x,y)=(0.68,0.31)であった。さらにこの発光素子において、100mA/cmの定電流密度における輝度半減寿命は470時間であった。 With respect to the obtained organic light emitting device, when an applied voltage of 4.8 V was applied with the IZO electrode as the positive electrode and the Al electrode as the negative electrode, red light emission with a luminous efficiency of 12.8 cd / A and a luminance of 1000 cd / m 2 was obtained. Observed. In this device, the CIE chromaticity coordinates were (x, y) = (0.68, 0.31). Further, in this light-emitting element, the luminance half life at a constant current density of 100 mA / cm 2 was 470 hours.

<実施例16、17、比較例4、5>
発光層に用いた化合物を、表6に記載の化合物に変更した以外は実施例15と同様に素子を作製し、同様の評価を行った。得られた結果を表6に示す。
<Examples 16 and 17, Comparative Examples 4 and 5>
A device was prepared in the same manner as in Example 15 except that the compounds used in the light emitting layer were changed to the compounds shown in Table 6, and the same evaluation was performed. The results obtained are shown in Table 6.

以上のように本発明に係るベンゾインドロカルバゾール化合物は、化学的安定性が高く、S1エネルギーが低くてHOMO準位が浅いので、発光層に発光アシスト材料を有する燐光発光素子においても同様に、駆動電圧が低く、発光効率が高く、長寿命な素子が得られる。   As described above, the benzoindolocarbazole compound according to the present invention has high chemical stability, low S1 energy, and a shallow HOMO level. Therefore, the phosphorescent light emitting device having the light emitting assist material in the light emitting layer is similarly driven. An element with low voltage, high luminous efficiency, and long life can be obtained.

<実施例18>
本実施例では、基板上に順次陽極/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/陰極が設けられた構成の有機発光素子を以下に示す方法で作製した。
<Example 18>
In this example, an organic light emitting device having a structure in which an anode / hole transport layer / electron blocking layer / light emitting layer / hole blocking layer / electron transport layer / cathode were sequentially provided on a substrate was produced by the following method. .

実施例9と同様の方法で作製したIZO基板上に、以下に示す有機化合物層及び電極層を、10−5Paの真空チャンバー内で抵抗加熱による真空蒸着によって連続的に製膜した。このとき対向する電極面積は3mmになるように作製した。
正孔輸送層(40nm) HTL−2
電子阻止層(10nm) EBL−1
発光層(30nm) ホスト材料:例示化合物No.131、
ゲスト材料:GD−1(1vol%)、
アシスト材料:GA−1(40vol%)
正孔阻止層(10nm) HBL−3
電子輸送層(30nm) ETL−1
金属電極層1(0.5nm) LiF
金属電極層2(100nm) Al
On the IZO substrate produced by the same method as in Example 9, the following organic compound layer and electrode layer were continuously formed by vacuum evaporation by resistance heating in a 10 −5 Pa vacuum chamber. At this time, the opposing electrode area was 3 mm 2 .
Hole transport layer (40 nm) HTL-2
Electron blocking layer (10 nm) EBL-1
Light emitting layer (30 nm) Host material: Exemplified Compound No. 131,
Guest material: GD-1 (1 vol%),
Assist material: GA-1 (40 vol%)
Hole blocking layer (10 nm) HBL-3
Electron transport layer (30 nm) ETL-1
Metal electrode layer 1 (0.5 nm) LiF
Metal electrode layer 2 (100 nm) Al

次に、有機発光素子が水分の吸着によって素子劣化が起こらないように、乾燥空気雰囲気中で保護用ガラス板をかぶせアクリル樹脂系接着材で封止した。以上のようにして有機発光素子を得た。   Next, the organic light emitting device was covered with a protective glass plate in a dry air atmosphere and sealed with an acrylic resin adhesive so that the device did not deteriorate due to moisture adsorption. An organic light emitting device was obtained as described above.

得られた有機発光素子について、IZO電極を正極、Al電極を負極にして、4.1Vの印加電圧をかけたところ、発光効率が22.4cd/Aで、輝度2000cd/mの緑色発光が観測された。またこの素子においてCIE色度座標は、(x,y)=(0.20,0.69)であった。さらにこの発光素子において、100mA/cmの定電流密度における輝度半減寿命は2450時間であった。 With respect to the obtained organic light emitting device, when an applied voltage of 4.1 V was applied with the IZO electrode as the positive electrode and the Al electrode as the negative electrode, the emission efficiency was 22.4 cd / A, and green light emission with a luminance of 2000 cd / m 2 was emitted. Observed. In this device, the CIE chromaticity coordinates were (x, y) = (0.20, 0.69). Further, in this light-emitting element, the luminance half life at a constant current density of 100 mA / cm 2 was 2450 hours.

<実施例19、比較例6、7>
発光層に用いた化合物を、表7に記載の化合物に変更した以外は実施例18と同様に素子を作製し、同様の評価を行った。得られた結果を表7に示す。
<Example 19, Comparative Examples 6 and 7>
A device was produced in the same manner as in Example 18 except that the compounds used in the light emitting layer were changed to the compounds shown in Table 7, and the same evaluation was performed. The results obtained are shown in Table 7.

以上のように本発明に係るベンゾインドロカルバゾール化合物は、発光層ゲストに蛍光発光材料を用いる場合の発光層ホストとして使用しても、駆動電圧が低く、発光効率が高く、長寿命な素子が得られることがわかる。   As described above, the benzoindolocarbazole compound according to the present invention can be used as a light emitting layer host in the case where a fluorescent light emitting material is used for the light emitting layer guest. I understand that

<実施例20、比較例8>
正孔輸送層、電子阻止層、および発光層に用いた化合物を、表8に記載の化合物に変更した以外は実施例9と同様に素子を作製し、同様の評価を行った。得られた結果を表8に示す。
<Example 20, comparative example 8>
A device was produced in the same manner as in Example 9 except that the compounds used in the hole transport layer, the electron blocking layer, and the light emitting layer were changed to the compounds shown in Table 8, and the same evaluation was performed. Table 8 shows the obtained results.

以上のように本発明に係るベンゾインドロカルバゾール化合物は、正孔輸送層として使用しても、駆動電圧が低く、発光効率が高く、長寿命な有機発光素子が得られることがわかる。   As described above, it can be seen that the benzoindolocarbazole compound according to the present invention can provide an organic light-emitting device having a low driving voltage, a high light emission efficiency, and a long life even when used as a hole transport layer.

以上説明したように、本発明に係るベンゾインドロカルバゾール化合物は、S1エネルギーが低く、HOMO準位が浅く、化学的安定性が高いという特徴を有する化合物である。そのため、発光層のホスト材料、特に赤燐光発光素子の発光層のホスト材料に、本発明に係るベンゾインドロカルバゾール化合物を有する有機発光素子は、駆動電圧が低く、発光効率が高く、長寿命である。さらに、本発明に係るベンゾインドロカルバゾール化合物のうち、アリールアミノ置換基を有するHOMO準位が特に浅い化合物は、有機発光素子の正孔輸送層にも好適に使用することができる。   As described above, the benzoindolocarbazole compound according to the present invention is a compound having the characteristics that the S1 energy is low, the HOMO level is shallow, and the chemical stability is high. Therefore, the organic light-emitting device having the benzoindolocarbazole compound according to the present invention as the host material of the light-emitting layer, in particular, the host material of the light-emitting layer of the red phosphorescent light-emitting device has a low driving voltage, high light emission efficiency, and long life. . Furthermore, among the benzoindolocarbazole compounds according to the present invention, a compound having an arylamino substituent and a particularly shallow HOMO level can be suitably used for a hole transport layer of an organic light emitting device.

1 陽極
2 正孔注入層
3 正孔輸送層
4 青色発光層
5 緑色発光層
6 赤色発光層
7 電子輸送層
8 電子注入層
9 陰極
30 表示装置
31 基板
38 TFT素子
40 有機発光素子
DESCRIPTION OF SYMBOLS 1 Anode 2 Hole injection layer 3 Hole transport layer 4 Blue light emitting layer 5 Green light emitting layer 6 Red light emitting layer 7 Electron transport layer 8 Electron injection layer 9 Cathode 30 Display device 31 Substrate 38 TFT element 40 Organic light emitting element

Claims (21)

下記式[1]で示されることを特徴とするベンゾインドロカルバゾール化合物。

〔式[1]において、R乃至Rは、各々独立して、水素原子、アルキル基、および下記式[2]で示される基から選ばれる。但し、R乃至Rのうち、少なくとも1つは下記式[2]で示される基である。〕

〔式[2]において、Arは、置換基を有する2価の炭化水素芳香族基、無置換の2価の炭化水素芳香族基、置換基を有する2価の複素芳香族基、および無置換の2価の複素芳香族基から選ばれ、Arは、置換基を有する1価の炭化水素芳香族基、無置換の1価の炭化水素芳香族基、置換基を有する1価の複素芳香族基、および無置換の1価の複素芳香族基から選ばれる。aは0乃至2の整数である。aが2である場合、2つのArは同一であっても異なっていてもよい。〕
A benzoindolocarbazole compound represented by the following formula [1].

[In the formula [1], R 1 to R 4 are each independently selected from a hydrogen atom, an alkyl group, and a group represented by the following formula [2]. However, at least one of R 1 to R 4 is a group represented by the following formula [2]. ]

[In the formula [2], Ar 1 represents a divalent hydrocarbon aromatic group having a substituent, an unsubstituted divalent hydrocarbon aromatic group, a divalent heteroaromatic group having a substituent, and Ar 2 is selected from a substituted divalent heteroaromatic group, and Ar 2 is a monovalent hydrocarbon aromatic group having a substituent, an unsubstituted monovalent hydrocarbon aromatic group, or a monovalent complex having a substituent. It is selected from an aromatic group and an unsubstituted monovalent heteroaromatic group. a is an integer of 0 to 2. When a is 2, two Ar 1 may be the same or different. ]
前記Rが前記式[2]で示される基であることを特徴とする請求項1に記載のベンゾインドロカルバゾール化合物。 The benzoindolocarbazole compound according to claim 1, wherein R 1 is a group represented by the formula [2]. 前記式[2]における、前記2価の炭化水素芳香族基および前記1価の炭化水素芳香族基の各々に含まれる炭素原子数が6以上22以下であり、且つ前記2価の複素芳香族基および前記1価の複素芳香族基の各々に含まれる炭素原子数が4以上22以下であることを特徴とする請求項1または2に記載のベンゾインドロカルバゾール化合物。   In the formula [2], the divalent hydrocarbon aromatic group and the monovalent hydrocarbon aromatic group each have 6 to 22 carbon atoms, and the divalent heteroaromatic group. The benzoindolocarbazole compound according to claim 1 or 2, wherein the number of carbon atoms contained in each of the group and the monovalent heteroaromatic group is 4 or more and 22 or less. 前記R乃至Rが、各々独立に、前記水素原子および前記アルキル基から選ばれることを特徴とする請求項1乃至3のいずれか一項に記載のベンゾインドロカルバゾール化合物。 The benzoindolocarbazole compound according to any one of claims 1 to 3, wherein R 2 to R 4 are each independently selected from the hydrogen atom and the alkyl group. 前記R乃至Rが、いずれも、前記水素原子であることを特徴とする請求項4に記載のベンゾインドロカルバゾール化合物。 The benzoindolocarbazole compound according to claim 4, wherein each of R 2 to R 4 is the hydrogen atom. 前記aが0または1であり、前記Arが前記置換基を有する2価の炭化水素芳香族基もしくは前記無置換の2価の炭化水素芳香族基であり、前記式Arが前記置換基を有する1価の炭化水素芳香族基もしくは前記無置換の1価の炭化水素芳香族基であることを特徴とする、請求項1乃至5のいずれか一項に記載のベンゾインドロカルバゾール化合物。 The a is 0 or 1, the Ar 1 is a divalent hydrocarbon aromatic group having the substituent or the unsubstituted divalent hydrocarbon aromatic group, and the formula Ar 2 is the substituent 6. The benzoindolocarbazole compound according to claim 1, wherein the benzoindolocarbazole compound is a monovalent hydrocarbon aromatic group having the above or the unsubstituted monovalent hydrocarbon aromatic group. 前記Arが、置換基を有するもしくは無置換のフェニレン基、置換基を有するもしくは無置換のナフタレンジイル基、置換基を有するもしくは無置換のフルオレンジイル基、置換基を有するもしくは無置換のフェナンスレンジイル基、置換基を有するもしくは無置換のクリセンジイル基、置換基を有するもしくは無置換のトリフェニレンジイル基、置換基を有するもしくは無置換のビフェニレン基、置換基を有するもしくは無置換のターフェニレン基から選ばれ、前記Arが、置換基を有するもしくは無置換のフェニル基、置換基を有するもしくは無置換のナフチル基、置換基を有するもしくは無置換のフルオレニル基、置換基を有するもしくは無置換のフェナンスリル基、置換基を有するもしくは無置換のクリセニル基、置換基を有するもしくは無置換のトリフェニレニル基、置換基を有するもしくは無置換のビフェニレニル基、置換基を有するもしくは無置換のビフェニル基、置換基を有するもしくは無置換のターフェニル基から選ばれることを特徴とする、請求項6に記載のベンゾインドロカルバゾール化合物。 Ar 1 is a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthalenediyl group, a substituted or unsubstituted fluorenediyl group, a substituted or unsubstituted phene group. Nancelendiyl group, substituted or unsubstituted chrysenediyl group, substituted or unsubstituted triphenylenediyl group, substituted or unsubstituted biphenylene group, substituted or unsubstituted terphenylene group Ar 2 is substituted or unsubstituted phenyl group, substituted or unsubstituted naphthyl group, substituted or unsubstituted fluorenyl group, substituted or unsubstituted Phenanthryl group, substituted or unsubstituted chrysenyl group, substituted Or a substituted triphenylenyl group, a substituted or unsubstituted biphenylenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted terphenyl group, The benzoindolocarbazole compound according to claim 6. 前記Arが、置換基を有するもしくは無置換のピレニル基、置換基を有するもしくは無置換のアントラセニル基、置換基を有するもしくは無置換のペリレニル基、置換基を有するもしくは無置換のフルオランテニル基、置換基を有するもしくは無置換のベンゾフルオランテニル基から選ばれることを特徴とする請求項6に記載のベンゾインドロカルバゾール化合物。 Ar 2 is a substituted or unsubstituted pyrenyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted perylenyl group, a substituted or unsubstituted fluoranthenyl group The benzoindolocarbazole compound according to claim 6, which is selected from a substituted or unsubstituted benzofluoranthenyl group. 前記aが0または1であり、前記Arが前記置換基を有するもしくは無置換の1価の複素芳香族基であることを特徴とする、請求項1乃至5のいずれか一項に記載のベンゾインドロカルバゾール化合物。 The a is 0 or 1, and the Ar 2 is the substituted or unsubstituted monovalent heteroaromatic group according to any one of claims 1 to 5, Benzindolocarbazole compounds. 前記Arが、置換基を有するもしくは無置換のジベンゾフラニル基、置換基を有するもしくは無置換のジベンゾチオフェニル基、置換基を有するもしくは無置換のキノリル基、置換基を有するもしくは無置換のイソキノリル基、置換基を有するもしくは無置換のフェナントロリニル基、置換基を有するもしくは無置換のビピリジル基、置換基を有するもしくは無置換のカルバゾリル基、置換基を有するもしくは無置換のインドロ[3,2,1−kl]フェノキサジニル基、置換基を有するもしくは無置換のアントラキノリル基、置換基を有するもしくは無置換のキサントン−イル基、置換基を有するもしくは無置換のアントロニル基から選ばれることを特徴とする請求項9に記載のベンゾインドロカルバゾール化合物。 Ar 2 has a substituted or unsubstituted dibenzofuranyl group, a substituted or unsubstituted dibenzothiophenyl group, a substituted or unsubstituted quinolyl group, a substituted or unsubstituted group Isoquinolyl group, substituted or unsubstituted phenanthrolinyl group, substituted or unsubstituted bipyridyl group, substituted or unsubstituted carbazolyl group, substituted or unsubstituted indolo [3 , 2,1-kl] phenoxazinyl group, substituted or unsubstituted anthraquinolyl group, substituted or unsubstituted xanthone-yl group, substituted or unsubstituted anthronyl group, The benzoindolocarbazole compound according to claim 9. 前記Arが置換基としてアリールアミノ基を有することを特徴とする請求項1乃至10に記載のベンゾインドロカルバゾール化合物。 The benzoindolocarbazole compound according to claim 1, wherein Ar 2 has an arylamino group as a substituent. 一対の電極と、前記一対の電極間に存在する有機化合物層とを有する有機発光素子において、前記有機化合物層が、請求項1乃至11のいずれか一項に記載のベンゾインドロカルバゾール化合物を有することを特徴とする有機発光素子。   12. The organic light-emitting device having a pair of electrodes and an organic compound layer present between the pair of electrodes, wherein the organic compound layer has the benzoindolocarbazole compound according to claim 1. An organic light emitting device characterized by the above. 前記有機化合物層が、ホスト材料とゲスト材料とを有する発光層であり、前記ホスト材料が前記請求項1乃至11のいずれか一項に記載のベンゾインドロカルバゾール化合物であることを特徴とする請求項12に記載の有機発光素子。   The organic compound layer is a light emitting layer having a host material and a guest material, and the host material is the benzoindolocarbazole compound according to any one of claims 1 to 11. 12. The organic light-emitting device according to 12. 前記ゲスト材料が、燐光発光材料であることを特徴とする請求項13に記載の有機発光素子。   The organic light-emitting element according to claim 13, wherein the guest material is a phosphorescent material. 前記燐光発光材料が、イリジウム錯体であることを特徴とする請求項14に記載の有機発光素子。   The organic light-emitting device according to claim 14, wherein the phosphorescent material is an iridium complex. 赤色発光することを特徴とする請求項12乃至15のいずれか一項に記載の有機発光素子。   16. The organic light emitting device according to claim 12, which emits red light. 白色発光することを特徴とする請求項12乃至15のいずれか一項に記載の有機発光素子。   16. The organic light emitting device according to claim 12, which emits white light. 複数の画素を有し、前記複数の画素のうちの少なくとも一つが、請求項12乃至17のいずれか一項に記載の有機発光素子と前記有機発光素子とに接続されている能動素子とを有することを特徴とする表示装置。   It has a some pixel, At least 1 of these pixels has the organic light emitting element as described in any one of Claims 12 thru | or 17, and the active element connected to the said organic light emitting element. A display device characterized by that. 画像情報を入力するための入力部と、画像を表示するための表示部と、を有し、
前記表示部が請求項18に記載の表示装置であることを特徴とする画像情報処理装置。
An input unit for inputting image information and a display unit for displaying an image;
An image information processing apparatus, wherein the display unit is the display apparatus according to claim 18.
請求項12乃至17のいずれか一項に記載の有機発光素子と、前記有機発光素子に駆動電圧を供給するためのADコンバーター回路と、を有することを特徴とする照明装置。   18. An illuminating device comprising: the organic light-emitting element according to claim 12; and an AD converter circuit for supplying a driving voltage to the organic light-emitting element. 感光体と前記感光体の表面を帯電させる帯電部と、前記感光体を露光する露光部と、前記感光体の表面に形成された静電潜像を現像する現像器と、を有する画像形成装置であって、前記露光部が、請求項12乃至17のいずれか一項に記載の有機発光素子を有することを特徴とする画像形成装置。   An image forming apparatus comprising: a photosensitive member; a charging unit that charges the surface of the photosensitive member; an exposure unit that exposes the photosensitive member; and a developing unit that develops an electrostatic latent image formed on the surface of the photosensitive member. An image forming apparatus, wherein the exposure unit includes the organic light emitting element according to any one of claims 12 to 17.
JP2012220405A 2012-10-02 2012-10-02 Novel benzoindolocarbazole compound, organic light-emitting element containing the same, display device, image information processor, lighting device, image forming device Pending JP2014073965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012220405A JP2014073965A (en) 2012-10-02 2012-10-02 Novel benzoindolocarbazole compound, organic light-emitting element containing the same, display device, image information processor, lighting device, image forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012220405A JP2014073965A (en) 2012-10-02 2012-10-02 Novel benzoindolocarbazole compound, organic light-emitting element containing the same, display device, image information processor, lighting device, image forming device

Publications (1)

Publication Number Publication Date
JP2014073965A true JP2014073965A (en) 2014-04-24

Family

ID=50748423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012220405A Pending JP2014073965A (en) 2012-10-02 2012-10-02 Novel benzoindolocarbazole compound, organic light-emitting element containing the same, display device, image information processor, lighting device, image forming device

Country Status (1)

Country Link
JP (1) JP2014073965A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015167300A1 (en) * 2014-05-02 2015-11-05 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound and organic electroluminescent device comprising the same
KR20150126283A (en) * 2014-05-02 2015-11-11 롬엔드하스전자재료코리아유한회사 Organic Electroluminescent Compounds and Organic Electroluminescent Device Comprising the Same
WO2015199493A1 (en) * 2014-06-27 2015-12-30 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device comprising the same
WO2016006925A1 (en) * 2014-07-09 2016-01-14 Rohm And Haas Electronic Materials Korea Ltd. An organic electroluminescent compound and an organic electroluminescent device comprising the same
KR20160006617A (en) * 2014-07-09 2016-01-19 롬엔드하스전자재료코리아유한회사 An Organic Electroluminescent Compound and An Organic Electroluminescent Device Comprising the Same
JP2016021380A (en) * 2014-06-17 2016-02-04 キヤノン株式会社 Organic light emitting device and manufacturing method of the same
WO2016036171A1 (en) * 2014-09-04 2016-03-10 Rohm And Haas Electronic Materials Korea Ltd. A plurality of host materials and organic electroluminescent devices comprising the same
KR20160028979A (en) * 2014-09-04 2016-03-14 롬엔드하스전자재료코리아유한회사 A plurality of host materials and organic electroluminescence devices comprising the same
WO2017022983A1 (en) * 2015-08-03 2017-02-09 덕산네오룩스 주식회사 Compound for organic electrical element, organic electrical element using compound, and electronic device therefor
CN106459082A (en) * 2014-06-27 2017-02-22 罗门哈斯电子材料韩国有限公司 Novel organic electroluminescent compounds and organic electroluminescent device comprising the same
JP2017079181A (en) * 2015-10-21 2017-04-27 コニカミノルタ株式会社 Light conversion material, light conversion film, and light emitting element
WO2017175690A1 (en) 2016-04-08 2017-10-12 出光興産株式会社 Novel compound, organic electroluminescent element, and electronic appliance
KR20180028010A (en) * 2016-09-07 2018-03-15 주식회사 엘지화학 Compound and organic electronic device comprising the same
US9954187B2 (en) 2016-04-08 2018-04-24 Idemitsu Kosan Co., Ltd. Compound, organic electroluminescence device and electronic device
WO2018151065A1 (en) 2017-02-14 2018-08-23 出光興産株式会社 Organic electroluminescence element and electronic device
US10249832B1 (en) 2017-12-06 2019-04-02 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and novel compound
KR20190086895A (en) * 2018-01-15 2019-07-24 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element comprising the same, and electronic device thereof
WO2019194617A1 (en) * 2018-04-05 2019-10-10 주식회사 엘지화학 Amine compound and organic light emitting diode comprising same
KR20190132646A (en) 2017-04-03 2019-11-28 이데미쓰 고산 가부시키가이샤 Organic electroluminescent device and electronic device
KR20190132644A (en) 2017-04-03 2019-11-28 이데미쓰 고산 가부시키가이샤 Organic electroluminescent device and electronic device
KR20190132645A (en) 2017-04-03 2019-11-28 이데미쓰 고산 가부시키가이샤 Organic electroluminescent device and electronic device
JP2020021946A (en) * 2015-08-28 2020-02-06 株式会社半導体エネルギー研究所 Light-emitting element material and light-emitting element
US10593889B1 (en) 2018-09-26 2020-03-17 Idemitsu Kosan Co., Ltd. Compound and organic electroluminescence device
JP2021158367A (en) * 2013-05-03 2021-10-07 株式会社半導体エネルギー研究所 Light-emitting element

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021158367A (en) * 2013-05-03 2021-10-07 株式会社半導体エネルギー研究所 Light-emitting element
JP2017515809A (en) * 2014-05-02 2017-06-15 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド Organic electroluminescent compound and organic electroluminescent device comprising the same
CN106232601A (en) * 2014-05-02 2016-12-14 罗门哈斯电子材料韩国有限公司 Organic electroluminescent compounds and the Organnic electroluminescent device comprising described compound
US9859507B2 (en) 2014-05-02 2018-01-02 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound and organic electroluminescent device comprising the same
WO2015167300A1 (en) * 2014-05-02 2015-11-05 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound and organic electroluminescent device comprising the same
TWI551601B (en) * 2014-05-02 2016-10-01 羅門哈斯電子材料韓國公司 Organic electroluminescent compound and organic electroluminescent device comprising the same
KR102372950B1 (en) * 2014-05-02 2022-03-14 롬엔드하스전자재료코리아유한회사 Organic Electroluminescent Compounds and Organic Electroluminescent Device Comprising the Same
KR20150126283A (en) * 2014-05-02 2015-11-11 롬엔드하스전자재료코리아유한회사 Organic Electroluminescent Compounds and Organic Electroluminescent Device Comprising the Same
JP2016021380A (en) * 2014-06-17 2016-02-04 キヤノン株式会社 Organic light emitting device and manufacturing method of the same
CN106459082A (en) * 2014-06-27 2017-02-22 罗门哈斯电子材料韩国有限公司 Novel organic electroluminescent compounds and organic electroluminescent device comprising the same
US20170125692A1 (en) * 2014-06-27 2017-05-04 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device comprising the same
US9698355B2 (en) 2014-06-27 2017-07-04 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compounds and organic electroluminescent device comprising the same
WO2015199493A1 (en) * 2014-06-27 2015-12-30 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device comprising the same
JP2017521525A (en) * 2014-07-09 2017-08-03 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド Organic electroluminescent compound and organic electroluminescent device comprising the same
US9935274B2 (en) 2014-07-09 2018-04-03 Rohm And Haas Electronic Materials Korea Ltd. Substituted 12H-indolo[2,3-b]quinoxalino[2′,3′:4,5]pyrrolo[3,2,1-jk]carbazoles as organic electroluminescent materials
CN106536526A (en) * 2014-07-09 2017-03-22 罗门哈斯电子材料韩国有限公司 An organic electroluminescent compound and an organic electroluminescent device comprising the same
KR102419711B1 (en) * 2014-07-09 2022-07-13 롬엔드하스전자재료코리아유한회사 An Organic Electroluminescent Compound and An Organic Electroluminescent Device Comprising the Same
KR20160006617A (en) * 2014-07-09 2016-01-19 롬엔드하스전자재료코리아유한회사 An Organic Electroluminescent Compound and An Organic Electroluminescent Device Comprising the Same
WO2016006925A1 (en) * 2014-07-09 2016-01-14 Rohm And Haas Electronic Materials Korea Ltd. An organic electroluminescent compound and an organic electroluminescent device comprising the same
KR20160028979A (en) * 2014-09-04 2016-03-14 롬엔드하스전자재료코리아유한회사 A plurality of host materials and organic electroluminescence devices comprising the same
KR102409002B1 (en) 2014-09-04 2022-06-16 롬엔드하스전자재료코리아유한회사 A plurality of host materials and organic electroluminescence devices comprising the same
WO2016036171A1 (en) * 2014-09-04 2016-03-10 Rohm And Haas Electronic Materials Korea Ltd. A plurality of host materials and organic electroluminescent devices comprising the same
US11512086B2 (en) 2015-08-03 2022-11-29 Duk San Neolux Co., Ltd. Compound for organic electrical element, organic electrical element using compound, and electronic device therefor
CN107922421A (en) * 2015-08-03 2018-04-17 德山新勒克斯有限公司 Organic electroluminescence device compound, organic electroluminescence device and its electronic device using the compound
WO2017022983A1 (en) * 2015-08-03 2017-02-09 덕산네오룩스 주식회사 Compound for organic electrical element, organic electrical element using compound, and electronic device therefor
KR102395818B1 (en) 2015-08-03 2022-05-09 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
KR20170016137A (en) * 2015-08-03 2017-02-13 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
JP2020021946A (en) * 2015-08-28 2020-02-06 株式会社半導体エネルギー研究所 Light-emitting element material and light-emitting element
JP2017079181A (en) * 2015-10-21 2017-04-27 コニカミノルタ株式会社 Light conversion material, light conversion film, and light emitting element
US9954187B2 (en) 2016-04-08 2018-04-24 Idemitsu Kosan Co., Ltd. Compound, organic electroluminescence device and electronic device
CN108026106A (en) * 2016-04-08 2018-05-11 出光兴产株式会社 Novel compound, organic electroluminescent element, and electronic device
US12029119B2 (en) 2016-04-08 2024-07-02 Idemitsu Kosan Co., Ltd. Organic electroluminescence element and electronic device
US10230058B2 (en) 2016-04-08 2019-03-12 Idemitsu Kosan Co., Ltd. Compound, organic electroluminescence device and electronic device
US11489123B2 (en) 2016-04-08 2022-11-01 Idemitsu Kosan Co., Ltd. Compound, organic electroluminescence device and electronic device
WO2017175690A1 (en) 2016-04-08 2017-10-12 出光興産株式会社 Novel compound, organic electroluminescent element, and electronic appliance
KR101899728B1 (en) * 2016-09-07 2018-09-17 주식회사 엘지화학 Compound and organic electronic device comprising the same
KR20180028010A (en) * 2016-09-07 2018-03-15 주식회사 엘지화학 Compound and organic electronic device comprising the same
CN110291654A (en) * 2017-02-14 2019-09-27 出光兴产株式会社 Organic electroluminescent element and electronic device
KR102547448B1 (en) * 2017-02-14 2023-06-23 이데미쓰 고산 가부시키가이샤 Organic electroluminescent devices and electronic devices
WO2018151065A1 (en) 2017-02-14 2018-08-23 出光興産株式会社 Organic electroluminescence element and electronic device
CN110291654B (en) * 2017-02-14 2022-07-01 出光兴产株式会社 Organic electroluminescent element and electronic device
JPWO2018151065A1 (en) * 2017-02-14 2019-11-21 出光興産株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT AND ELECTRONIC DEVICE
KR20190117524A (en) 2017-02-14 2019-10-16 이데미쓰 고산 가부시키가이샤 Organic electroluminescent device and electronic device
KR20190132645A (en) 2017-04-03 2019-11-28 이데미쓰 고산 가부시키가이샤 Organic electroluminescent device and electronic device
KR20190132646A (en) 2017-04-03 2019-11-28 이데미쓰 고산 가부시키가이샤 Organic electroluminescent device and electronic device
KR20190132644A (en) 2017-04-03 2019-11-28 이데미쓰 고산 가부시키가이샤 Organic electroluminescent device and electronic device
US10672989B2 (en) 2017-12-06 2020-06-02 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and novel compound
US10249832B1 (en) 2017-12-06 2019-04-02 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and novel compound
US10680181B2 (en) 2017-12-06 2020-06-09 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and novel compound
US11557730B2 (en) 2017-12-06 2023-01-17 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and novel compound
US11569449B2 (en) 2017-12-06 2023-01-31 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and novel compound
US10658594B2 (en) 2017-12-06 2020-05-19 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and novel compound
KR20190086895A (en) * 2018-01-15 2019-07-24 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element comprising the same, and electronic device thereof
KR102488854B1 (en) * 2018-01-15 2023-01-17 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element comprising the same, and electronic device thereof
WO2019194617A1 (en) * 2018-04-05 2019-10-10 주식회사 엘지화학 Amine compound and organic light emitting diode comprising same
CN111868028A (en) * 2018-04-05 2020-10-30 株式会社Lg化学 Amine compound and organic light emitting device including the same
CN111868028B (en) * 2018-04-05 2023-12-08 株式会社Lg化学 Amine compound and organic light emitting device comprising the same
US10593889B1 (en) 2018-09-26 2020-03-17 Idemitsu Kosan Co., Ltd. Compound and organic electroluminescence device
US12108666B2 (en) 2018-09-26 2024-10-01 Idemitsu Kosan Co., Ltd. Compound and organic electroluminescence device

Similar Documents

Publication Publication Date Title
JP2014073965A (en) Novel benzoindolocarbazole compound, organic light-emitting element containing the same, display device, image information processor, lighting device, image forming device
JP5618753B2 (en) Organic light emitting device
CN108026106B (en) Compound for organic electroluminescent element, and electronic device
JP5802854B2 (en) Condensed fluoranthene compound, material for organic electroluminescence device using the same, and organic electroluminescence device and electronic equipment using the same
JP5911418B2 (en) Organic light emitting device
CN110291654B (en) Organic electroluminescent element and electronic device
JP6222931B2 (en) Organic light emitting device
JP5669550B2 (en) Indolophenoxazine compound and organic light-emitting device using the same
KR20200099107A (en) Polycyclic aromatic compounds and multimers of the same
JP6270735B2 (en) Aromatic amine derivative and organic electroluminescence device
JP5677035B2 (en) Xanthone compound and organic light emitting device having the same
JP6156389B2 (en) Benzofluorene compound, light emitting layer material and organic electroluminescent device using the compound
WO2014192950A1 (en) Condensed fluoranthene compound, organic electroluminescence element material including same, organic electroluminescence element using same, and electronic device
JP5523016B2 (en) Heterocyclic compound and organic light emitting device using the same
JP2021091644A (en) Multimer compound
JP5699581B2 (en) Fused pyrrole polycyclic compound, material for light emitting layer, and organic electroluminescent device using the same
JP6071398B2 (en) Indeno [1,2-b] phenanthrene compound and organic light-emitting device having the same
JP2020026426A (en) Polycyclic aromatic compound and multimer thereof
JP2011225501A (en) Novel m-terphenyl compound and organic light-emitting element including the same
JP4795463B2 (en) Novel benzo [c] phenanthrene compound and organic light-emitting device having the same
JP5751984B2 (en) Fused polycyclic compound and organic light emitting device having the same
JP2012092047A (en) Pyrazoloindole compound, and organic light emitting element employing the same
JP5656493B2 (en) Novel condensed polycyclic compound and organic light emitting device having the same
JP5920432B2 (en) Fused pyrrole polycyclic compound, material for light emitting layer, and organic electroluminescent device using the same
JP2023101374A (en) Azabenzofluoranthene compound, material for organic electroluminescent devices, electron transport material for organic electroluminescent devices and organic electroluminescent device