JP2014046332A - Casting mold-manufacturing method, and resin pattern-incorporated casting mold - Google Patents
Casting mold-manufacturing method, and resin pattern-incorporated casting mold Download PDFInfo
- Publication number
- JP2014046332A JP2014046332A JP2012190787A JP2012190787A JP2014046332A JP 2014046332 A JP2014046332 A JP 2014046332A JP 2012190787 A JP2012190787 A JP 2012190787A JP 2012190787 A JP2012190787 A JP 2012190787A JP 2014046332 A JP2014046332 A JP 2014046332A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- resin
- resin model
- refractory material
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011347 resin Substances 0.000 title claims abstract description 220
- 229920005989 resin Polymers 0.000 title claims abstract description 220
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 43
- 238000005266 casting Methods 0.000 title abstract description 26
- 239000011819 refractory material Substances 0.000 claims abstract description 64
- 238000000034 method Methods 0.000 claims abstract description 50
- 238000010438 heat treatment Methods 0.000 claims abstract description 20
- 230000008569 process Effects 0.000 claims abstract description 15
- 238000000465 moulding Methods 0.000 claims abstract description 8
- 239000011248 coating agent Substances 0.000 claims description 19
- 238000000576 coating method Methods 0.000 claims description 19
- 239000006261 foam material Substances 0.000 claims description 7
- 239000003973 paint Substances 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims 2
- 230000008018 melting Effects 0.000 claims 2
- 239000000919 ceramic Substances 0.000 description 44
- 239000010410 layer Substances 0.000 description 32
- 238000005495 investment casting Methods 0.000 description 24
- 239000002002 slurry Substances 0.000 description 20
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 18
- 238000001035 drying Methods 0.000 description 18
- 238000002485 combustion reaction Methods 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- 239000000843 powder Substances 0.000 description 13
- 239000000463 material Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 7
- 238000001723 curing Methods 0.000 description 7
- 238000007654 immersion Methods 0.000 description 6
- 229920005830 Polyurethane Foam Polymers 0.000 description 5
- 239000011496 polyurethane foam Substances 0.000 description 5
- 239000004593 Epoxy Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000008119 colloidal silica Substances 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007888 film coating Substances 0.000 description 2
- 238000009501 film coating Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 238000013007 heat curing Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 239000005056 polyisocyanate Substances 0.000 description 2
- 229920001228 polyisocyanate Polymers 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000007581 slurry coating method Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241001391944 Commicarpus scandens Species 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000011505 plaster Substances 0.000 description 1
- 229920006327 polystyrene foam Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010107 reaction injection moulding Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
Images
Landscapes
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Abstract
Description
本発明は、インベストメント精密鋳造を行うための鋳型製造方法と、この鋳型製造方法により最終的な鋳型を製造するために使用される樹脂模型内蔵鋳型に関するものである。 The present invention relates to a mold manufacturing method for carrying out investment precision casting and a resin model built-in mold used for manufacturing a final mold by this mold manufacturing method.
精密鋳造は、特殊な鋳型を用いて、通常の機械加工では製作困難である複雑・精巧な形状の機械部品を良好な寸法精度で造型する、というものである。 Precise casting is the process of molding complex and elaborately shaped machine parts with good dimensional accuracy, which are difficult to manufacture by ordinary machining, using a special mold.
この精密鋳造の具体例として、例えば(1)インベストメント精密鋳造法、及び、(2)セラミックモールド法が知られている。
(1)のインベストメント精密鋳造法は、ロストワックス精密鋳造法と同義であり、更にセラミックシェルモールド法及びプラスターモールド法がある。
(2)のセラミックモールド法は、更にショープロセス法及びユニキャスト法がある。
As specific examples of this precision casting, for example, (1) investment precision casting method and (2) ceramic molding method are known.
The investment precision casting method (1) is synonymous with the lost wax precision casting method, and further includes a ceramic shell mold method and a plaster mold method.
The ceramic mold method (2) further includes a show process method and a unicast method.
そして、インベストメント精密鋳造法(ロストワックス精密鋳造法)は、現在の精密鋳造法の主流となっており、付加価値が高い鋳造品の製造で広く用いられている。このインベストメント精密鋳造法(ロストワックス精密鋳造法)とは、一般的には、製品模型をロウ(ワックス)で作製し、この製品模型にセラミックを被覆してセラミックシェルを形成し、このセラミックシェルが被覆された製品模型を高温高圧蒸気環境下に置いてロウを溶かし出し(ロストワックス)、その後に焼成してセラミックシェルを硬化させて鋳型を完成させる、というものである。このようなインベストメント精密鋳造法(ロストワックス精密鋳造法)に関する従来技術としては特許文献1,2も知られている。 The investment precision casting method (lost wax precision casting method) has become the mainstream of the current precision casting method, and is widely used in the production of cast products with high added value. This investment precision casting method (lost wax precision casting method) generally means that a product model is made of wax (wax), and this product model is coated with ceramic to form a ceramic shell. The coated product model is placed in a high-temperature and high-pressure steam environment to melt the wax (lost wax), and then fired to cure the ceramic shell and complete the mold. Patent Documents 1 and 2 are also known as conventional techniques relating to such an investment precision casting method (lost wax precision casting method).
特許文献1の記載によれば、従来技術のロストワックス法では、ロウ模型に関して以下のような問題を指摘している。 According to the description in Patent Document 1, the following problems are pointed out regarding the wax model in the lost wax method of the prior art.
(1)エッジが出にくい、細いリブが立ちにくい、細いリブは折れやすく、また、肉薄部位は脱型時に細心の注意を払って脱型しなければならず、1mm以下と極薄部位を持つロウ模型の製造が容易ではないという問題を有する。また、製作したロウ模型は、表面硬度が低いため、傷つきやすい、寸法精度が甘い、持ち運び時に僅かな落下衝撃でも損傷しやすいという問題点を有する。 (1) Edges are difficult to come out, thin ribs are difficult to stand up, thin ribs are easy to break, and thin parts must be removed with great care during demolding and have extremely thin parts of 1 mm or less There is a problem that it is not easy to manufacture a wax model. Further, the produced wax model has problems that it has a low surface hardness, is easily damaged, has poor dimensional accuracy, and is easily damaged even when carried by a slight drop impact.
(2)ロウ成分は比較的低分子の有機物であり、80℃程度で軟化する。ロウ模型は夏場では形状変化を起こしやすいため恒温室にて保存する必要があり、更に、夏場にロウ模型を移動するときは細心の注意を払わなければならず、取り扱いが容易ではないという問題を有する。 (2) The wax component is a relatively low molecular organic substance and softens at about 80 ° C. The wax model is prone to shape change in the summer, so it must be stored in a temperature-controlled room. Furthermore, when moving the wax model in the summer, great care must be taken and handling is not easy. Have.
そこで、特許文献1では、形状保持性・脱ロウ性(加温溶融流出性)・高温燃焼性の優れた樹脂模型の使用を提案する。この樹脂模型として、具体的には、可塑剤、ロウ・ワックス成分、中空樹脂バルーン、などを含有する2液反応硬化型ウレタン樹脂液を配合し、鋳型に注型して製作される樹脂模型が開示されている。
また、特許文献1では、耐火シェルの形成工程でエポキシシリコンをその表面に塗布して乾燥・強化し、初期脱ロウ工程(60℃〜120℃の低温領域)での鋳型の損傷を防ぎつつ製作するという製作方法が開示されている。
Therefore, Patent Document 1 proposes the use of a resin model that is excellent in shape retention, dewaxing (heated melt outflow), and high temperature combustibility. Specifically, as this resin model, a resin model produced by blending a two-component reaction curing type urethane resin liquid containing a plasticizer, a wax / wax component, a hollow resin balloon, etc., and casting it into a mold is prepared. It is disclosed.
Further, in Patent Document 1, epoxy silicon is applied to the surface in the process of forming a refractory shell, dried and strengthened, and manufactured while preventing damage to the mold in the initial dewaxing process (low temperature range of 60 ° C. to 120 ° C.). A manufacturing method is disclosed.
上記特許文献1では、ロウ模型の代わりに樹脂模型を使用することで、その樹脂模型の脱ロウ性を十分に発揮させると共に、鋳型の割れを無くすようにして、ロストワックス法で用いられるロウ模型の欠点である形状保持性を改善している。 In the above-mentioned Patent Document 1, by using a resin model instead of the wax model, the wax model used in the lost wax method can be obtained by sufficiently exhibiting the dewaxing property of the resin model and eliminating cracks in the mold. The shape retention, which is a drawback of the above, is improved.
また、特許文献2の記載によれば、従来技術のロストワックス法の問題として、ポリスチレンフォームまたはポリウレタンフォームで作製した模型は、模型表面品質と模型強度に難があり、セラミックシェルモールドから模型を除去するときにセラミックシェルモールドにクラッキングが発生することもあり、「ロストワックス」鋳造の大量商業生産において使用されなかったという点を指摘している。 According to the description in Patent Document 2, as a problem of the lost wax method of the prior art, a model made of polystyrene foam or polyurethane foam has difficulty in model surface quality and model strength, and the model is removed from the ceramic shell mold. It is pointed out that cracking may occur in the ceramic shell mold when it is not used in the mass production of “lost wax” casting.
そこで、特許文献1では、この不都合を除去するために、製造する鋳造品と同じ形状を有し、模型の下層微小網状構造に表面連結オープンセルがない円滑な連続成型放し模型表面を有する反応射出形成熱硬化性ポリウレタンフォーム模型を作製し、この模型の周りにシェルモールドを形成し、シェルモールドクラッキングを発生させることなく模型をシェルモールドから選択的に蝋抜きするようにシェルモールド及び模型を加熱することで、溶融金属又は溶融合金を鋳造する製造方法を開示している。 Therefore, in Patent Document 1, in order to eliminate this inconvenience, reaction injection having the same shape as a cast product to be manufactured and having a smooth continuous mold free model surface without surface-connected open cells in the lower layer micro-network structure of the model. Form a thermoset polyurethane foam model, form a shell mold around the model, and heat the shell mold and model to selectively dewax the model from the shell mold without generating shell mold cracking Thus, a manufacturing method for casting a molten metal or a molten alloy is disclosed.
従来技術のインベストメント精密鋳造法は、一般的に、中型・小型の複雑形状の鋳造品の製造に用いられている。この理由としては、ロウ模型は重い上に、もろく壊れやすく、また、温度に敏感で寸法精度の高い模型形状保持のためには室温管理が必要であるなど、大型鋳造品の製造は難があったためである。このような大型鋳造品の製造では、ロウに代わる寸法安定性の優れた模型材料が求められている。 The investment precision casting method of the prior art is generally used for the production of medium-sized and small-sized castings having complicated shapes. The reason for this is that the wax model is heavy, fragile and fragile, and it is difficult to manufacture large castings because it requires temperature control to maintain a model shape that is sensitive to temperature and has high dimensional accuracy. This is because. In the manufacture of such a large cast product, a model material having excellent dimensional stability instead of brazing is required.
また、特許文献1に記載の技術では、可塑剤、ロウ・ワックス成分、中空樹脂バルーンを含有させる必要があるため、複雑な成分配合を行わなければならないという問題があった。また、脱ロウ工程で長時間の熱処理を行い、大量の樹脂模型を流出・焼成させなければならないなど、鋳型造型に手間を要するという問題があった。 In addition, the technique described in Patent Document 1 has a problem in that a complicated component blending must be performed because it is necessary to contain a plasticizer, a wax / wax component, and a hollow resin balloon. In addition, there is a problem that it takes time and labor for mold making, for example, it is necessary to perform heat treatment for a long time in the dewaxing process, and a large amount of resin models have to flow out and be fired.
そして、シェルモールドを補強する方法としてスラリーに樹脂を配合し、スラリー被覆時にエポキシシリコンを塗布し、その後に乾燥・硬化させて厚膜コーティング層を形成する作業を数回繰り返し、複数層に積層された厚膜コーティング層からなるバックアップ層を製作する工程が示されているが、焼成後のシェルの層間にはスラリーに配合された樹脂による燃焼残渣が残り、シェル強度の低下、通気性阻害、更に鋳込み金属表面欠陥の発生などの不具合が懸念されるという問題があった。 And as a method to reinforce the shell mold, the resin is mixed into the slurry, the epoxy silicon is applied at the time of slurry coating, and then the work of drying and curing is repeated several times to form a thick film coating layer, which is laminated to a plurality of layers. The process of manufacturing a backup layer consisting of a thick film coating layer is shown, but the combustion residue due to the resin blended in the slurry remains between the layers of the shell after firing, reducing the shell strength, inhibiting air permeability, There was a problem that there was a concern about defects such as the occurrence of defects in the cast metal surface.
また、特許文献2では、セラミックシェルモールドから反応射出成形熱硬化性ポリウレタンフォームによる樹脂模型を除去するため、樹脂の配合組成を一定の割合に組合せた樹脂模型を採用し、セラミックシェルモールドと樹脂模型を加熱して、軟化・崩壊させた樹脂模型の残骸をセラミックシェルモールドから除去することで、セラミックシェルモールドにクラックを生じさせることなく樹脂模型を無灰で蝋抜きする方法が示されている。 Moreover, in patent document 2, in order to remove the resin model by reaction injection molding thermosetting polyurethane foam from a ceramic shell mold, the resin model which combined the compounding composition of resin with a fixed ratio is employ | adopted, and a ceramic shell mold and a resin model are used. The method is shown in which the resin model is removed ashlessly without causing cracks in the ceramic shell mold by removing the debris of the softened and disintegrated resin model from the ceramic shell mold by heating.
そのため、特許文献2では、樹脂模型を空気中で427℃から870℃の範囲で加熱すると、この樹脂模型は232℃で軟化し始め、更なる加熱により軟化・崩壊する。そして、この樹脂模型は、熱硬化性ポリウレタンフォームが液体に位相変化せずに蝋抜きされ、模型分解でセラミックシェルモールド中に残った灰が実質的に零の状態で蝋抜きできると共に、生シェルモールドにクラッキングが生じないことが記載されている。 For this reason, in Patent Document 2, when the resin model is heated in the range of 427 ° C. to 870 ° C. in the air, the resin model starts to soften at 232 ° C. and is further softened / collapsed by further heating. And this resin model can be dewaxed with the thermosetting polyurethane foam without phase change to liquid, and the ash remaining in the ceramic shell mold by model decomposition can be dewaxed in a substantially zero state, It is described that cracking does not occur in the mold.
しかしながら、この方法は、限られた樹脂配合組成でのみインベストメント鋳造に用いることができるものであり、インテグラルスキンを有する多くのポリウレタンフォームでは適用できないものであった。
また、この方法は、限られたセラミックシェルモールド形状のみ適用できるものであり、複雑形状のセラミックシェルモールドへの適用は困難であった。
However, this method can be used for investment casting only with a limited resin composition, and cannot be applied to many polyurethane foams having an integral skin.
Further, this method can be applied only to a limited ceramic shell mold shape, and it has been difficult to apply it to a complex shaped ceramic shell mold.
また、樹脂模型の液相変化を伴わないので、樹脂模型を加熱崩壊させても完全な分解消失は困難であり、燃焼によってのみ樹脂模型は消失するが、樹脂燃焼のための酸素供給がセラミックシェルモールドの形状によっては十分に行うことができずに未燃焼炭化物による燃焼残渣が生じてしまう問題がある。また、錫を含む触媒が燃焼せずに酸化物残渣が生じるという問題もある。 In addition, since there is no change in the liquid phase of the resin model, it is difficult to completely decompose and disappear even if the resin model is collapsed by heating. The resin model disappears only by combustion, but the oxygen supply for resin combustion is the ceramic shell. Depending on the shape of the mold, there is a problem in that it cannot be performed sufficiently and combustion residues due to unburned carbides are generated. There is also a problem that an oxide residue is generated without burning the catalyst containing tin.
加えて、特許文献2では、セラミックシェルモールド内のキャビティを占める樹脂模型の全量を消失するように樹脂模型を焼成しなければならず、焼成時の黒煙発生、セラミックシェルモールド内部全域への燃焼用酸素の拡散供給が困難なためにシェル形状によっては完全燃焼に長時間を要し、燃焼残渣が生じやすく、しかも生産性が悪いという問題がある。 In addition, in Patent Document 2, the resin model must be baked so that the entire amount of the resin model occupying the cavity in the ceramic shell mold is lost, black smoke is generated during the burning, and combustion is performed throughout the ceramic shell mold. Since it is difficult to diffusely supply oxygen for use, depending on the shell shape, a long time is required for complete combustion, combustion residues are likely to occur, and productivity is poor.
以上説明したような従来技術のインベストメント精密鋳造用鋳型造型やロストワックス精密鋳造法では、一般的に小型・中型の鋳造品が製造されていたが、昨今では、鋳造品の大型化や形状複雑化のニーズが高まっている。しかしながら、インベストメント精密鋳造法やロストワックス精密鋳造法の分野では、部品が大型化するに連れて模型の重量増加や燃焼残渣の増加などにより上記の諸問題が一層顕在化しているため、技術革新が求められていた。 In the conventional mold casting for investment precision casting and the lost wax precision casting method as described above, generally, small and medium-sized castings were manufactured. Needs are growing. However, in the fields of investment precision casting and lost wax precision casting, the above problems have become more apparent due to the increase in the weight of models and the increase in combustion residues as parts become larger. It was sought after.
そこで、本発明は上記の問題に鑑みてなされたものであり、その目的は、樹脂模型を燃焼させずに溶出させて残渣の発生をなくし、複雑・精巧かつ大型の鋳型を製造可能とした鋳型製造方法、及び、この鋳型製造方法の実施に使用される樹脂模型内蔵鋳型を提供することにある。 Therefore, the present invention has been made in view of the above problems, and its purpose is to eliminate the generation of residues by elution without burning the resin model, and to enable the production of complex, sophisticated and large molds. It is an object of the present invention to provide a manufacturing method and a resin model built-in mold used for carrying out this mold manufacturing method.
上記目的を達成するため、請求項1に係る鋳型製造方法は、溶解性の樹脂により作製され、かつ鋳造される鋳造品と同一形状、構造を有する樹脂模型の外表面に耐火材を被覆して耐火材被覆樹脂模型を造型する耐火材被覆樹脂模型造型工程と、
耐火材被覆樹脂模型を加熱して耐火材の硬化により樹脂模型内蔵鋳型を造型する樹脂模型内蔵鋳型造型工程と、
樹脂模型内蔵鋳型を樹脂溶解液に浸漬して樹脂模型を樹脂模型内蔵鋳型から溶出させ、残った耐火材を加熱、焼成して鋳型を形成する鋳型形成工程と、を有するものである。
In order to achieve the above object, a mold manufacturing method according to claim 1 is made by coating a refractory material on the outer surface of a resin model made of a soluble resin and having the same shape and structure as a cast product to be cast. A refractory material-coated resin model molding process for molding a refractory material-coated resin model;
A resin model built-in mold making process in which a resin model built-in mold is formed by heating the refractory-coated resin model and curing the refractory material,
A mold forming step of immersing the resin model built-in mold in a resin solution to elute the resin model from the resin model built-in mold and heating and baking the remaining refractory material to form a mold.
請求項2に係る鋳型製造方法は、請求項1に記載した鋳型製造方法において、前記樹脂模型内蔵鋳型造型工程では、前記耐火材の表面に塗装樹脂層を形成し、この塗装樹脂層を含む耐火材被覆樹脂模型を加熱して耐火材及び塗装樹脂層の硬化により樹脂模型内蔵鋳型を造型するものである。 A mold manufacturing method according to claim 2 is the mold manufacturing method according to claim 1, wherein in the resin model built-in mold making step, a coating resin layer is formed on a surface of the refractory material, and the refractory including the coating resin layer is included. A resin model built-in mold is formed by heating a material-coated resin model and curing the refractory material and the coating resin layer.
請求項3に係る鋳型製造方法は、請求項1または請求項2に記載した鋳型製造方法において、前記樹脂模型は、インテグラルスキンフォーム材料を主成分として平均密度が0.15〜0.8g/cm3であり、内部に微細な気泡層を有し、かつ、表面に緻密な平滑層を有するものである。 The mold manufacturing method according to claim 3 is the mold manufacturing method according to claim 1 or 2, wherein the resin model has an integral skin foam material as a main component and an average density of 0.15 to 0.8 g / It is cm 3 , has a fine bubble layer inside, and has a dense smooth layer on the surface.
請求項4に係る鋳型製造方法は、請求項1〜3の何れか1項に記載した鋳型製造方法において、前記樹脂模型内蔵鋳型造型工程では、耐火材被覆樹脂模型を120℃〜230℃にて加熱するものである。 The mold manufacturing method according to claim 4 is the mold manufacturing method according to any one of claims 1 to 3, wherein in the resin model built-in mold forming step, the refractory material-coated resin model is set at 120 ° C to 230 ° C. It is for heating.
請求項5に係る樹脂模型内蔵鋳型は、溶解性の樹脂により作製され、かつ鋳造される鋳造品と同一形状、構造を有する樹脂模型の外表面に被覆された耐火材を加熱硬化させて造型される樹脂模型内蔵鋳型であって、樹脂溶解液に浸漬して樹脂模型を溶出させる前に120℃〜230℃にて加熱されるものである。 The resin model built-in mold according to claim 5 is formed by heat-curing a refractory material made of a soluble resin and coated on the outer surface of a resin model having the same shape and structure as a cast product to be cast. A resin model built-in mold, which is heated at 120 ° C. to 230 ° C. before being immersed in a resin solution and eluting the resin model.
請求項6に係る樹脂模型内蔵鋳型は、溶解性の樹脂により作製され、かつ鋳造される鋳造品と同一形状、構造を有する樹脂模型の外表面に被覆された耐火材とその表面の塗装樹脂層とを加熱硬化させて造型される樹脂模型内蔵鋳型であって、樹脂溶解液に浸漬して樹脂模型を溶出させる前に120℃〜230℃にて加熱されるものである。 A resin model built-in mold according to claim 6 is made of a soluble resin, and a refractory material coated on the outer surface of a resin model having the same shape and structure as a cast product to be cast, and a coating resin layer on the surface Is a mold with a built-in resin model that is heated and cured at 120 ° C. to 230 ° C. before it is immersed in a resin solution and the resin model is eluted.
本発明によれば、樹脂模型内蔵鋳型を樹脂溶解液に浸漬して内部の樹脂模型を溶出させるため、燃焼残渣をほぼゼロにすることができる。これにより、複雑・精巧かつ大型の部品を鋳造するのに最適な鋳型を製造することができる。
また、樹脂模型を溶出させる前に樹脂模型内蔵鋳型を予め加熱することにより、耐火材の損傷が防止される。更には、耐火材の表面に塗装樹脂層を形成することで、加熱硬化後の耐火材ひいては鋳型の強度を高めると共に、耐火材の厚みを薄く形成可能としてスラリー乾燥に要する時間の短縮が可能である、等の効果を有する。
According to the present invention, since the resin model built-in mold is immersed in the resin solution to elute the resin model inside, the combustion residue can be made almost zero. As a result, it is possible to manufacture a mold that is optimal for casting complex, elaborate and large parts.
Moreover, damage to the refractory material is prevented by preheating the resin model built-in mold before the resin model is eluted. Furthermore, by forming a coating resin layer on the surface of the refractory material, it is possible to increase the strength of the refractory material after heat curing and thus the mold, and to reduce the time required for drying the slurry by reducing the thickness of the refractory material. There are effects such as.
以下、本発明の実施形態に係る鋳型製造方法及び樹脂模型内蔵鋳型について、図1,2を参照しつつ説明する。 Hereinafter, a mold manufacturing method and a resin model built-in mold according to an embodiment of the present invention will be described with reference to FIGS.
(1)樹脂模型の作製
まず、樹脂模型を作製する。この樹脂模型は、鋳造される鋳造品と同一の形状、構造を有し、溶解性の樹脂であるインテグラルスキンフォーム材料を注型して製作される模型である。図1(a)に示すように、ポリウレタン高圧RIM注入を行う注型装置200により、ポリイソシアネート材とポリオール(多価アルコール)材とを重量比(114:100)にて配合してインテグラルスキンフォーム材料を形成し、このインテグラルスキンフォーム材料を金型100に注入して樹脂模型1を形成する。
(1) Production of resin model First, a resin model is produced. This resin model has the same shape and structure as a cast product to be cast, and is manufactured by casting an integral skin foam material that is a soluble resin. As shown in FIG. 1A, an integral skin is prepared by blending a polyisocyanate material and a polyol (polyhydric alcohol) material at a weight ratio (114: 100) by a casting apparatus 200 for injecting polyurethane high-pressure RIM. A foam material is formed, and this integral skin foam material is injected into the mold 100 to form the resin model 1.
この樹脂模型1は、平均密度が0.15〜0.8g/cm3であり、内部に微細な気泡層を有し、かつ表面に緻密な平滑層が形成されている。図1(b)に示すように、樹脂模型1には、枝2も併せて形成される。
この樹脂模型1を所定数作製し、図2(a)に示すように、個々の樹脂模型1の枝2を幹3に刺してツリー状の樹脂模型10を形成する。なお、幹3及び枝2が一体化された樹脂模型10は、樹脂溶解液に浸漬するとその全体が溶解するようになされている。幹3の材料はインテグラルスキンフォーム材料でなくとも、樹脂溶解液に溶ける材料により形成されていれば良い。
This resin model 1 has an average density of 0.15 to 0.8 g / cm 3 , has a fine bubble layer inside, and has a dense smooth layer formed on the surface. As shown in FIG. 1 (b), the resin model 1 is also formed with branches 2.
A predetermined number of the resin models 1 are produced, and as shown in FIG. 2A, the branches 2 of the individual resin models 1 are pierced into the trunk 3 to form a tree-shaped resin model 10. The resin model 10 in which the trunk 3 and the branch 2 are integrated is dissolved in the resin model 10 when immersed in a resin solution. The material of the trunk 3 is not limited to the integral skin foam material, but may be formed of a material that is soluble in the resin solution.
樹脂模型10は軽量であるため、大型化しても取り扱いが容易である。また、樹脂模型10はロウのように環境の温度変化程度では溶融しないため、夏場でも恒温室等で保存する必要がなく、やはり取り扱いが容易である。また、個々の樹脂模型1は表面が平滑面になっているので、鋳型の内表面の仕上がりが良好になる。また、樹脂溶解液に溶出した樹脂の再利用が可能であり、コスト低減にも寄与する。 Since the resin model 10 is lightweight, it is easy to handle even if it is enlarged. Further, since the resin model 10 does not melt at a temperature change of the environment like wax, it does not need to be stored in a thermostatic chamber or the like even in summer, and is easy to handle. Moreover, since the surface of each resin model 1 is a smooth surface, the finish of the inner surface of the mold is improved. In addition, the resin eluted in the resin solution can be reused, which contributes to cost reduction.
(2)耐火材被覆樹脂模型の作製
続いて、耐火材被覆樹脂模型を作製する。上記の樹脂模型10を耐火材配合の初層用スラリーに浸漬して、樹脂模型10の表面を初層用スラリーにより被覆し、その後に所定期間にわたり乾燥させる。この作業は一回だけ行われる。
続いて、初層用スラリーが被覆された樹脂模型10を、更に耐火材配合のバックアップスラリーに浸漬して表面をバックアップスラリーにより被覆し、その後に所定期間にわたり乾燥させる。そして、上述したようなバックアップスラリーの浸漬・乾燥を繰り返して所定層厚の耐火材を被覆した耐火材被覆樹脂模型を作製する。耐火材の層厚は、乾燥時には鋳型として十分な強度を有するものである。
(2) Preparation of refractory material-coated resin model Subsequently, a refractory material-coated resin model is prepared. The resin model 10 is immersed in a slurry for an initial layer containing a refractory material, and the surface of the resin model 10 is covered with the slurry for an initial layer, and then dried for a predetermined period. This is done only once.
Subsequently, the resin model 10 coated with the slurry for the initial layer is further immersed in a backup slurry containing a refractory material to cover the surface with the backup slurry, and then dried for a predetermined period. And the refractory material covering resin model which coat | covered the refractory material of predetermined layer thickness by repeating immersion and drying of backup slurry as mentioned above is produced. The layer thickness of the refractory material has sufficient strength as a mold during drying.
ここでスラリーとは、例えば、セラミックフラワー等の耐火物粉末とコロイダルシリカ等のバインダーとを混練させたものから成っている。そして、初層用スラリーとは、特に粒径が小さく微細な形状の耐火材粉末を配合したスラリーである。これにより、樹脂模型10の表面を精密に転写させることができる。その後の複数層のスラリーには、比較的粒径の大きい耐火物粉末を配合したバックアップスラリーを用いる。これにより、耐火材としての強度及び通気性を確保することができる。
このようにして、図2(b)に示す耐火材4が樹脂模型10の表面に被覆され、耐火材被覆樹脂模型20が作製される。
Here, the slurry is made of, for example, a mixture of a refractory powder such as ceramic flour and a binder such as colloidal silica. The initial layer slurry is a slurry in which a refractory material powder having a particularly small particle size and a fine shape is blended. Thereby, the surface of the resin model 10 can be accurately transferred. A backup slurry containing a refractory powder having a relatively large particle size is used for the subsequent multiple layers of slurry. Thereby, the intensity | strength and air permeability as a refractory material are securable.
In this way, the refractory material 4 shown in FIG. 2B is coated on the surface of the resin model 10, and the refractory material-coated resin model 20 is produced.
(3)樹脂模型内蔵鋳型の作製
耐火材被覆樹脂模型20が加熱されて耐火材4の硬化により樹脂模型10の外表面にセラミックシェルモールド5が形成され、図2(c)に示す樹脂模型内蔵鋳型30が造型される。樹脂模型内蔵鋳型30は、外観上は、耐火材被覆樹脂模型20と同一である。
詳しくは、耐火材被覆樹脂模型20を120℃から230℃までの所定温度に加熱して十分に乾燥させる。120℃以下では乾燥を十分に行うことはできない。また、230℃以上では樹脂模型10の炭化が進行して硬化・変形するなど変質が顕著になり、後続の樹脂溶解液浸漬工程による樹脂模型10の溶解反応を阻害する。なお、120℃から230℃までの所定温度で乾燥を行わない場合は、後述する樹脂溶解液浸漬工程でセラミックシェルモールド5に割れが発生する不具合がしばしば生じる。
従って、製品歩留まりを高めるために、120℃から230℃までの所定温度による加熱処理が必要である。加熱時に耐火材4のバップアップ層は形状を確実に保持し、また、熱を保って乾燥を促進する。
(3) Production of Resin Model Built-in Mold Ceramic model 5 is formed on the outer surface of the resin model 10 by heating the refractory material-coated resin model 20 and curing the refractory material 4, and the resin model built-in shown in FIG. A mold 30 is formed. The resin model built-in mold 30 is the same as the refractory material-coated resin model 20 in appearance.
Specifically, the refractory material-coated resin model 20 is heated to a predetermined temperature from 120 ° C. to 230 ° C. and sufficiently dried. Drying cannot be performed sufficiently at 120 ° C. or lower. Further, at 230 ° C. or higher, the carbon model of the resin model 10 progresses and changes in quality, such as hardening and deformation, and the dissolution reaction of the resin model 10 in the subsequent resin solution immersion process is hindered. In the case where drying is not performed at a predetermined temperature of 120 ° C. to 230 ° C., there is often a problem that the ceramic shell mold 5 is cracked in the resin solution immersion step described later.
Therefore, heat treatment at a predetermined temperature from 120 ° C. to 230 ° C. is necessary to increase the product yield. When heated, the refractory material 4 backup layer securely retains its shape, and keeps heat to promote drying.
この加熱処理を行っている間に耐火材被覆樹脂模型20の表面に樹脂を塗装し、塗装樹脂層を形成する。
耐火材4の表面に塗装樹脂層を形成することで、硬化後のセラミックシェルモールド5の強度を更に高めることができる。換言すれば、塗装樹脂層を形成する場合には、硬化後のセラミックシェルモールド5の厚みが薄くてもよくなり、スラリー乾燥に要する乾燥時間を大幅に短縮することができる。
During this heat treatment, resin is applied to the surface of the refractory material-coated resin model 20 to form a coating resin layer.
By forming a coating resin layer on the surface of the refractory material 4, the strength of the cured ceramic shell mold 5 can be further increased. In other words, when forming the coating resin layer, the thickness of the cured ceramic shell mold 5 may be thin, and the drying time required for slurry drying can be greatly shortened.
塗装樹脂層を形成する方法としては、粉体塗装が好ましい。粉体塗装では、塗装する粉体樹脂をあらかじめ120℃から230℃までの所定温度で加熱溶融させて粉体塗料とし、これを静電ガンあるいは流動層等で塗布し、更に加熱して粉体塗料を溶融させ、塗膜である塗装樹脂層を形成する。この場合、耐火材被覆樹脂模型20の耐火材4を加熱乾燥させる工程で塗装できるので、特別な前処理工程を追加する必要はなく、好都合である。 As a method for forming the coating resin layer, powder coating is preferable. In powder coating, the powder resin to be coated is heated and melted at a predetermined temperature of 120 ° C. to 230 ° C. in advance to form a powder coating, which is applied with an electrostatic gun or a fluidized bed, and further heated to form a powder. The paint is melted to form a paint resin layer that is a coating film. In this case, since the refractory material 4 of the refractory material-coated resin model 20 can be painted in the step of heating and drying, it is not necessary to add a special pretreatment step, which is convenient.
なお、本発明では最表面のみの塗装補強であることから、先に塗装により形成された塗装樹脂層は加熱が進むにつれて完全燃焼して消失し、硬化後のセラミックシェルモールド5の表面には最終的には何の影響も及ぼさない利点がある。そして、乾燥後には樹脂模型内蔵鋳型30が形成される。この樹脂模型内蔵鋳型30の表面は、セラミックシェルモールド5のみによる層となる。 In the present invention, since only the outermost surface of the coating is reinforced, the coating resin layer previously formed by coating is completely burned and disappears as the heating proceeds, and the surface of the cured ceramic shell mold 5 is finally The advantage is that it has no effect. After drying, a resin model built-in mold 30 is formed. The surface of the resin model built-in mold 30 is a layer made only of the ceramic shell mold 5.
(4)鋳型の作製
樹脂模型内蔵鋳型30を樹脂溶解液に浸漬すると、図2(d)に示すように樹脂模型内蔵鋳型30から内部の樹脂模型10が完全に溶出し、セラミックシェルモールド5のみが残る。その後、加熱によりセラミックシェルモールド5を乾燥させることにより、図2(e)に示す鋳型40が作製される。
樹脂溶解方法としては、軽量ポリウレタン模型の溶解に用いられる公知のグリコール分解法、アミン分解法、加水分解法など、樹脂を溶解するものであればいずれの方法も使用できるが、樹脂溶解方法はこれらに限定されるものではなく、セラミックシェルモールド5を損傷させるものを除いて使用可能である。
(4) Production of mold When the resin model built-in mold 30 is immersed in a resin solution, the resin model 10 inside is completely eluted from the resin model built-in mold 30 as shown in FIG. Remains. Thereafter, the ceramic shell mold 5 is dried by heating, whereby the mold 40 shown in FIG.
As a resin dissolving method, any method can be used as long as it dissolves a resin, such as a known glycol decomposition method, amine decomposition method, hydrolysis method and the like used for dissolving a lightweight polyurethane model. However, the present invention can be used except those that damage the ceramic shell mold 5.
この鋳型40では、樹脂模型10を樹脂溶解液に浸漬することで確実に溶出させ、残渣が発生しないようにしている。また、樹脂溶解液に樹脂模型10を浸漬すれば直ちに溶解し始めるので、鋳型40の製造時間を大幅に短縮することができる。また、鋳型40の内表面は緻密な表面を有しているため、鋳造品の仕上がりが良好であると共に、鋳型40の厚みも充分確保されているため、強度が高いという利点がある。
更に、鋳型40の外側は粒径が大きいため通気性に優れており、複雑な形状の鋳型40でも鋳型内のガスを確実に通気させ、不良品が発生しないように配慮している。
In the mold 40, the resin model 10 is immersed in a resin solution so as to be surely eluted, so that no residue is generated. Further, since the resin model 10 starts to be dissolved immediately after being immersed in the resin solution, the manufacturing time of the mold 40 can be greatly shortened. Further, since the inner surface of the mold 40 has a dense surface, the finish of the cast product is good and the thickness of the mold 40 is sufficiently secured, so that there is an advantage that the strength is high.
Furthermore, since the outside of the mold 40 has a large particle size, it has excellent air permeability. Even in the mold 40 having a complicated shape, the gas in the mold is surely vented so that no defective product is generated.
次に、具体的な実施例1について説明する。
まず、インテグラルスキンフォーム材料として、住化バイエルウレタン株式会社製のポリイソシアネート(商品名「SBUイソシアネート0418」)とポリオール(商品名「Baydur(登録商標)420BD005」)とを重量比(114:100)にて混合して金型に注入する。これらの材料は、株式会社メット・ジャパン製のポリウレタン高圧RIM注入機により注型される。
Next, a specific example 1 will be described.
First, as an integral skin foam material, a polyisocyanate (trade name “SBU Isocyanate 0418”) manufactured by Sumika Bayer Urethane Co., Ltd. and a polyol (trade name “Baydur (registered trademark) 420BD005”) are used in a weight ratio (114: 100). ) And inject into the mold. These materials are cast by a polyurethane high pressure RIM injector manufactured by Met Japan.
硬化した樹脂模型を金型から取り出したところ、硬化反応の過程で発砲して微細な気泡構造を有し、かつ軽量緻密な表面層を有する軽量の樹脂模型が得られた。この樹脂模型の平均密度は0.25g/cm3であった。 When the cured resin model was taken out of the mold, it was fired in the course of the curing reaction to obtain a lightweight resin model having a fine cell structure and a light and dense surface layer. The average density of this resin model was 0.25 g / cm 3 .
この樹脂模型の形状を転写する耐火材を被覆させるために、樹脂模型を、コロイダルシリカをバインダーとして微細な耐火材粉末を混合した初層用スラリーに浸漬し、室温で8時間乾燥させた。その後に、バックアップシェル層を形成させるためにコロイダルシリカをバインダーとして耐火材粉末を混合したバックアップ用スラリーに浸漬し、室温で4時間乾燥させた。 In order to coat the refractory material that transfers the shape of the resin model, the resin model was immersed in a slurry for an initial layer in which fine refractory material powder was mixed using colloidal silica as a binder and dried at room temperature for 8 hours. Then, in order to form a backup shell layer, it was immersed in the slurry for backup which mixed the refractory material powder by using colloidal silica as a binder, and was dried at room temperature for 4 hours.
耐火材(硬化後ではセラミックシェルモールド)の強度を高めるにはバックアップ層を厚くする必要があるため、樹脂模型のバックアップスラリーへの浸漬、乾燥を7回繰り返した。この処理により、約5mm厚みの耐火材を被覆させた樹脂模型内蔵鋳型を作製した。 In order to increase the strength of the refractory material (ceramic shell mold after curing), it is necessary to increase the thickness of the backup layer. Therefore, immersion and drying of the resin model in the backup slurry were repeated seven times. By this treatment, a resin model built-in mold coated with a refractory material having a thickness of about 5 mm was produced.
この樹脂模型内蔵鋳型を、更に180℃に保持した乾燥炉で3時間乾燥した。これを室温に保持したジエチレングリコールに浸漬して昇温し、240℃に達した時点から2時間保持し、溶解した樹脂模型材料を耐火材内からジエチレングリコールと共に除去した。この耐火材を950℃、1時間の焼成により硬化させてセラミックシェルモールドを形成し、精密鋳造用の鋳型を作製した。
この鋳型には割れやひびなどの欠陥がなく、また、鋳型内では樹脂模型材料が完全に溶出して除去されており、鋳型内部の残渣が実質的に零であった。
The resin model built-in mold was further dried for 3 hours in a drying furnace maintained at 180 ° C. This was immersed in diethylene glycol kept at room temperature, heated up, and kept at 240 ° C. for 2 hours, and the dissolved resin model material was removed together with diethylene glycol from the refractory material. This refractory material was cured by firing at 950 ° C. for 1 hour to form a ceramic shell mold, and a mold for precision casting was produced.
This mold had no defects such as cracks and cracks, and the resin model material was completely eluted and removed in the mold, and the residue inside the mold was substantially zero.
[比較例1]
実施例1と比較を行うための比較例1を製造した。この比較例1では、実施例1と同様に、約5mm厚みの耐火材を形成した樹脂模型内蔵鋳型を作製したが、特に乾燥時の加熱温度を230℃よりも高くなるように設定した。詳しくは、この樹脂模型内蔵鋳型を950℃で1時間焼成し、耐火材内部の樹脂模型が燃焼するようにした。
[Comparative Example 1]
Comparative Example 1 for comparison with Example 1 was produced. In Comparative Example 1, as in Example 1, a resin model built-in mold in which a refractory material having a thickness of about 5 mm was formed was prepared, but the heating temperature during drying was set to be higher than 230 ° C. Specifically, the resin model built-in mold was fired at 950 ° C. for 1 hour so that the resin model inside the refractory material burned.
この比較例1では、セラミックシェルモールド内部に黒色状の燃焼残渣が生成した。この燃焼残渣を完全燃焼させる目的で更に950℃、3時間燃焼させた。セラミックシェルモールドの内部には赤灰色の燃焼残渣が残った。すなわち、セラミックシェルモールド内部の残渣を零にできないことが明らかとなった。 In Comparative Example 1, a black combustion residue was generated inside the ceramic shell mold. In order to completely burn this combustion residue, it was further burned at 950 ° C. for 3 hours. A red-gray combustion residue remained inside the ceramic shell mold. That is, it became clear that the residue inside the ceramic shell mold cannot be made zero.
[比較例2]
実施例1と比較を行うための比較例2を製造した、この比較例2では、実施例1と同様に、約5mm厚みのセラミックシェルモールドを形成した樹脂模型内蔵鋳型を作製した。
この樹脂模型内蔵鋳型から樹脂模型を溶解させる目的で、樹脂模型内蔵鋳型を室温に保持したジエチレングリコールに浸漬し、昇温した。ジエチレングリコールの温度が100℃に達した段階で、セラミックシェルモールドに割れが発生した。
[Comparative Example 2]
In Comparative Example 2, where Comparative Example 2 for comparison with Example 1 was manufactured, a resin model built-in mold in which a ceramic shell mold having a thickness of about 5 mm was formed was produced as in Example 1.
In order to dissolve the resin model from the resin model built-in mold, the resin model built-in mold was immersed in diethylene glycol kept at room temperature and heated. When the temperature of diethylene glycol reached 100 ° C., cracks occurred in the ceramic shell mold.
バックアップスラリー浸漬・乾燥を5回繰り返し、セラミックシェルモールドの厚みを4mmとした以外は、実施例1と同様の処理で耐火材被覆樹脂模型を作製した。この耐火材被覆樹脂模型を180℃に保持した乾燥炉により1時間乾燥した。この温度に保持した耐火材被覆樹脂模型を、日本ペイント株式会社製のエポキシ粉体塗料を流動させた流動層に10秒浸漬し、セラミックシェルモールドの外面に粉体塗装によるエポキシ粉体樹脂を付着させた。これを180℃の熱風炉に15分間保持して樹脂膜を形成させ、熱風炉から取り出して樹脂模型内蔵鋳型を作製した。 A refractory material-coated resin model was prepared in the same manner as in Example 1 except that the backup slurry immersion and drying were repeated 5 times and the thickness of the ceramic shell mold was changed to 4 mm. This fireproof material-coated resin model was dried for 1 hour in a drying furnace maintained at 180 ° C. The refractory material-coated resin model maintained at this temperature is immersed for 10 seconds in a fluidized bed in which an epoxy powder paint made by Nippon Paint Co., Ltd. is flowed, and the epoxy powder resin is attached to the outer surface of the ceramic shell mold by powder coating. I let you. This was held in a hot air oven at 180 ° C. for 15 minutes to form a resin film, and then taken out from the hot air oven to produce a resin model built-in mold.
この樹脂模型内蔵鋳型を室温に保持したジエチレングリコールに浸漬した状態で更に昇温し、240℃に達した時点から3時間保持した。溶出した樹脂模型材料はセラミックシェルモールドからジエチレングリコールと共に除去した。このセラミックシェルモールドを950℃にて1時間焼成し、鋳型を作製した。
この鋳型は厚みを薄くしたにもかかわらず、割れやひびなどの欠陥を生じることなく、鋳型内部には燃焼残渣が実質的に零であった。また、バックアップスラリーの浸漬・乾燥回数を減少できることで、浸漬・乾燥時間を大幅に低減でき、生産性向上を図ることができた。
The resin model built-in mold was further heated in a state of being immersed in diethylene glycol held at room temperature, and held for 3 hours after reaching 240 ° C. The eluted resin model material was removed from the ceramic shell mold together with diethylene glycol. This ceramic shell mold was fired at 950 ° C. for 1 hour to produce a mold.
In spite of the reduced thickness of the mold, there was substantially no combustion residue inside the mold without causing defects such as cracks and cracks. In addition, by reducing the number of times the backup slurry was immersed / dried, the immersion / drying time could be greatly reduced, and productivity could be improved.
上記のように本発明によれば、形状保持性の優れたインテグラルスキンフォームによる平滑性に優れた表面を有し、平均密度0.15〜0.8g/cm3の樹脂模型を得ることができる。この樹脂模型は、軽量で取り扱い易く、また、夏場などでも溶解、変形等の問題を生じるおそれがない。 As described above, according to the present invention, it is possible to obtain a resin model having a smooth surface with an integral skin foam having excellent shape retention and an average density of 0.15 to 0.8 g / cm 3. it can. This resin model is lightweight and easy to handle, and there is no risk of problems such as dissolution and deformation even in summer.
また、樹脂模型にセラミックシェルモールドを被覆した樹脂模型内蔵鋳型を、樹脂溶解液に浸漬して樹脂模型を溶出除去することにより、焼成後のセラミックシェルモールド内には燃焼残渣が実質的に残らない。
更に、樹脂模型内蔵鋳型は120℃から230℃までの所定温度により加熱して硬化させており、この樹脂模型内蔵鋳型を樹脂溶解液に浸漬してもセラミックシェルモールドの損傷を防ぐことができる。
また、樹脂模型内蔵鋳型を加熱と同時に樹脂塗装することにより、セラミックシェルモールドの強度が高まり、セラミックシェルモールドの厚みを低減してスラリー被覆による乾燥時間の低減を図ることができる。
In addition, a resin model built-in mold in which a resin model is coated with a ceramic shell mold is immersed in a resin solution to elute and remove the resin model, thereby substantially leaving no combustion residue in the fired ceramic shell mold. .
Further, the resin model built-in mold is heated and cured at a predetermined temperature from 120 ° C. to 230 ° C., and even if this resin model built-in mold is immersed in a resin solution, damage to the ceramic shell mold can be prevented.
Also, by applying the resin model built-in mold simultaneously with heating, the strength of the ceramic shell mold is increased, and the thickness of the ceramic shell mold can be reduced to reduce the drying time by slurry coating.
本発明によれば、特に複雑・精巧かつ大型の鋳型を製造することが可能となり、従来のインベストメント精密鋳造法(ロストワックス精密鋳造法)に代えて、各種の鋳型の製造、及び、これらの鋳型を使用する精密鋳造に利用することができる。 According to the present invention, it is possible to manufacture particularly complex, elaborate and large-sized molds. Instead of the conventional investment precision casting method (lost wax precision casting method), various molds are manufactured, and these molds are used. Can be used for precision casting.
1:樹脂模型
2:枝
3:幹
4:耐火材
5:セラミックシェルモールド
10:樹脂模型
20:耐火材被覆樹脂模型
30:樹脂模型内蔵鋳型
40:鋳型
100:金型
200:注型装置
1: resin model 2: branch 3: trunk 4: refractory material 5: ceramic shell mold 10: resin model 20: refractory material coated resin model 30: resin model built-in mold 40: mold 100: mold 200: casting apparatus
Claims (6)
耐火材被覆樹脂模型を加熱して耐火材の硬化により樹脂模型内蔵鋳型を造型する樹脂模型内蔵鋳型造型工程と、
樹脂模型内蔵鋳型を樹脂溶解液に浸漬して樹脂模型を樹脂模型内蔵鋳型から溶出させ、残った耐火材を加熱、焼成して鋳型を形成する鋳型形成工程と、
を有することを特徴とする鋳型製造方法。 A refractory material-coated resin model molding process for forming a refractory material-coated resin model by coating a refractory material on the outer surface of a resin model having the same shape and structure as a cast product that is produced and cast from a soluble resin;
A resin model built-in mold making process in which a resin model built-in mold is formed by heating the refractory-coated resin model and curing the refractory material,
A mold forming step of immersing the resin model built-in mold in a resin solution to elute the resin model from the resin model built-in mold, and heating and baking the remaining refractory material to form a mold,
A method for producing a mold, comprising:
前記樹脂模型内蔵鋳型造型工程では、前記耐火材の表面に塗装樹脂層を形成し、この塗装樹脂層を含む耐火材被覆樹脂模型を加熱して耐火材及び塗装樹脂層の硬化により樹脂模型内蔵鋳型を造型することを特徴とする鋳型製造方法。 In the mold manufacturing method according to claim 1,
In the resin model built-in mold making process, a paint resin layer is formed on the surface of the refractory material, the refractory material-coated resin model including the paint resin layer is heated, and the refractory material and the paint resin layer are cured to cure the resin model built-in mold. A mold manufacturing method characterized by forming a mold.
前記樹脂模型は、インテグラルスキンフォーム材料を主成分として平均密度が0.15〜0.8g/cm3であり、内部に微細な気泡層を有し、かつ、表面に緻密な平滑層を有することを特徴とする鋳型製造方法。 In the mold manufacturing method according to claim 1 or 2,
The resin model has an integral skin foam material as a main component and an average density of 0.15 to 0.8 g / cm 3 , has a fine bubble layer inside, and has a dense smooth layer on the surface. The mold manufacturing method characterized by the above-mentioned.
前記樹脂模型内蔵鋳型造型工程では、耐火材被覆樹脂模型を120℃〜230℃にて加熱することを特徴とする鋳型製造方法。 In the mold manufacturing method according to any one of claims 1 to 3,
In the resin model built-in mold making step, the refractory material-coated resin model is heated at 120 ° C to 230 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012190787A JP6055963B2 (en) | 2012-08-31 | 2012-08-31 | Mold production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012190787A JP6055963B2 (en) | 2012-08-31 | 2012-08-31 | Mold production method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014046332A true JP2014046332A (en) | 2014-03-17 |
JP6055963B2 JP6055963B2 (en) | 2017-01-11 |
Family
ID=50606554
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012190787A Active JP6055963B2 (en) | 2012-08-31 | 2012-08-31 | Mold production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6055963B2 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5161432A (en) * | 1974-11-26 | 1976-05-28 | Okuma Chuzo Kk | MOKEISHOSHITSUIGATANO SEIZOHO |
JPH02112848A (en) * | 1988-06-13 | 1990-04-25 | Howmet Corp | Ceramic shell mold for investment casting and manufacture thereof |
JPH02200347A (en) * | 1989-01-30 | 1990-08-08 | Mitsui Eng & Shipbuild Co Ltd | Shell mold |
JPH1177236A (en) * | 1997-09-05 | 1999-03-23 | Mitsubishi Heavy Ind Ltd | Lost wax casting mold and casting method using the same |
JP2000210755A (en) * | 1999-01-26 | 2000-08-02 | Howmet Res Corp | Investment casting pattern and manufacture thereof |
JP2004261817A (en) * | 2003-02-21 | 2004-09-24 | Shonan Design Kk | Manufacturing method for mold for lost wax precision casting |
US20080173421A1 (en) * | 2004-02-05 | 2008-07-24 | Samantha Jones | Investment Casting Process |
-
2012
- 2012-08-31 JP JP2012190787A patent/JP6055963B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5161432A (en) * | 1974-11-26 | 1976-05-28 | Okuma Chuzo Kk | MOKEISHOSHITSUIGATANO SEIZOHO |
JPH02112848A (en) * | 1988-06-13 | 1990-04-25 | Howmet Corp | Ceramic shell mold for investment casting and manufacture thereof |
JPH02200347A (en) * | 1989-01-30 | 1990-08-08 | Mitsui Eng & Shipbuild Co Ltd | Shell mold |
JPH1177236A (en) * | 1997-09-05 | 1999-03-23 | Mitsubishi Heavy Ind Ltd | Lost wax casting mold and casting method using the same |
JP2000210755A (en) * | 1999-01-26 | 2000-08-02 | Howmet Res Corp | Investment casting pattern and manufacture thereof |
JP2004261817A (en) * | 2003-02-21 | 2004-09-24 | Shonan Design Kk | Manufacturing method for mold for lost wax precision casting |
US20080173421A1 (en) * | 2004-02-05 | 2008-07-24 | Samantha Jones | Investment Casting Process |
Also Published As
Publication number | Publication date |
---|---|
JP6055963B2 (en) | 2017-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2986760B1 (en) | Regenerating an additively manufactured component to cure defects and alter microstructure | |
CN104907492A (en) | Making method of surface double-walled hollow turbine blade | |
CN109759543B (en) | Cast copper sculpture casting production method | |
CN107199311A (en) | A kind of combination is towards turbo blade rapid shaping and the molten mistake fusible pattern method of model casting | |
JP2008006502A (en) | Method for forming casting mold | |
US20200276634A1 (en) | Method for producing a ceramic core for the production of a casting having hollow structures and a ceramic core | |
US20200338630A1 (en) | Method for producing a ceramic core for the production of a casting having hollow structures and ceramic core | |
CN108162139B (en) | Ceramic double-color injection molding method and double-color ceramic product | |
US10639705B2 (en) | Combined technology investment casting process | |
US7958932B2 (en) | Casting materials | |
CN104039476B (en) | For the manufacture method of ceramic core of blade and ceramic core and blade | |
CN111112552A (en) | Precision casting forming method based on 3D printing technology | |
JP6055963B2 (en) | Mold production method | |
JP2005324253A (en) | Lost-wax casting method | |
JP4034119B2 (en) | Low carbon steel casting production method and mold | |
CN102069145B (en) | Lost foam complex solvent formula for electric power storage (EPS) white mold shell mould casting process and method for manufacturing EPS white mold shell mould | |
US10279388B2 (en) | Methods for forming components using a jacketed mold pattern | |
CN114311656A (en) | Method for preparing composite solid propellant based on 3D printing special-shaped high-burning-speed forming die | |
US8591787B2 (en) | Foam patterns | |
CN108297242A (en) | Ceramic batch injection-molded item and its sintering method, ceramic batch injection mold | |
US3018528A (en) | Method of form removal from precision casting shells | |
JP6872398B2 (en) | Resin-integrated core manufacturing method, mold manufacturing method, and resin-integrated core | |
JP2002066689A (en) | Mold manufacturing method | |
CN117505779A (en) | Manufacturing method and application of shell for investment casting of 3D printing hollow photosensitive resin mold | |
CN108543912A (en) | A kind of preparation method of the steel part of surface compact |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150817 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160520 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160530 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160727 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160818 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20160829 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160829 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20160829 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20161003 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161107 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20161107 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6055963 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |