JP2013185951A - Magnetic flaw detection probe - Google Patents

Magnetic flaw detection probe Download PDF

Info

Publication number
JP2013185951A
JP2013185951A JP2012051214A JP2012051214A JP2013185951A JP 2013185951 A JP2013185951 A JP 2013185951A JP 2012051214 A JP2012051214 A JP 2012051214A JP 2012051214 A JP2012051214 A JP 2012051214A JP 2013185951 A JP2013185951 A JP 2013185951A
Authority
JP
Japan
Prior art keywords
probe
flaw detection
sensor
detection
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012051214A
Other languages
Japanese (ja)
Inventor
Keiichiro Miyamoto
圭一郎 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012051214A priority Critical patent/JP2013185951A/en
Publication of JP2013185951A publication Critical patent/JP2013185951A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus that can reduce the number of possessions of probes and shorten a probe exchange time since a conventional magnetic flaw detection probe has probes with different kinds of sensor attachment angles by defect shape kinds and each time a defect shape changes, the magnetic flaw detection probe is exchanged into a suitable probe kind.SOLUTION: The magnetic flaw probe is a magnetic flaw probe 6 in which a holder 3 holds a plurality of rectangular sensors 2. A sensor attachment angle α of the rectangular sensor with respect to the holder is two or more kinds.

Description

本発明は、電磁気探傷用プローブに関し、特に、長尺材(例えば鋼管又は棒鋼)の外面の円周方向に局所的に存在する欠陥を漏洩磁束探傷法又は渦流探傷法により検出する為に用いられるセンサを複数内蔵した電磁気探傷用プローブに関する。   The present invention relates to a probe for electromagnetic flaw detection, and in particular, is used for detecting defects existing locally in the circumferential direction of the outer surface of a long material (for example, steel pipe or steel bar) by a leakage magnetic flux flaw detection method or a eddy current flaw detection method. The present invention relates to an electromagnetic flaw detection probe incorporating a plurality of sensors.

特許文献1には、管内挿入型の漏洩磁束プローブとして、磁束発生部(棒磁石)を取囲む円環状の検出コイル(ピックアップコイル)を備えたものにおいて、前記検出コイルを周方向に複数個に分割して配置し、該検出コイルに生じる誘導起電力を個別に探傷器に導く構成とした旨記載されている。これにより、検出コイルの全長に対する欠陥の形状割合を相対的に大きくすることができ、従って被検体の円周方向に局所的に存在する欠陥の検出感度を大きく向上させ、信頼度を高める効果を期待するものである。   In Patent Document 1, an inductive leakage type magnetic flux probe provided with an annular detection coil (pickup coil) surrounding a magnetic flux generation part (bar magnet) is provided with a plurality of detection coils in the circumferential direction. It is described that the configuration is such that the induced electromotive force generated in the detection coil is individually guided to the flaw detector. As a result, the shape ratio of the defect relative to the entire length of the detection coil can be relatively increased. Therefore, the detection sensitivity of defects existing locally in the circumferential direction of the subject is greatly improved, and the reliability is increased. It is what you expect.

特許文献2には、管内挿入型の渦電流探傷プローブとして、ホルダ内の周囲に複数個のセンサコイルを配置したものにおいて、前記センサコイルの形状を直線状長方形とし、前記センサコイルを前記ホルダの軸芯方向に対して所定の角度(45°)傾斜させて配置した旨記載されている。これにより、センサコイルと割れ状の傷との相対位置を、割れが周方向又は軸方向の何れの場合も同一に保つ事ができ、割れの方向に関係なく一定の検出性を保つことができる効果を期待するものである。   In Patent Document 2, as a tube insertion type eddy current flaw detection probe, a plurality of sensor coils are arranged around a holder, the shape of the sensor coil is a linear rectangle, and the sensor coil is connected to the holder. It is described that it is arranged at a predetermined angle (45 °) with respect to the axial direction. As a result, the relative position between the sensor coil and the cracked scratch can be kept the same regardless of whether the crack is in the circumferential direction or the axial direction, and a constant detectability can be maintained regardless of the crack direction. Expect an effect.

特開平6−109706号公報JP-A-6-109706 実開平7−34366号公報Japanese Utility Model Publication No. 7-34366

一方、強磁性金属材料例えば鋼管が被検材であってその外面を被検面とした漏洩磁束探傷においては、従来、図2(a)(b)に示す様に、鋼管10の外面に、鋼管10の長さ部分の円弧方向が磁力線の主方向になる静磁場を印加するマグネットヨーク5を近接配置し且つマグネットヨーク5のNS両極間にプローブ1を配置してなる漏洩磁束探傷器を、管周方向に回転11させ或いは更に管長手方向に移動させつつ、被検面内の傷存在箇所からの漏洩磁束をプローブ1で検出し、該検出した箇所を傷存在箇所であると同定する。尚、マグネットヨーク5は、図2の磁石単体型に代えて、磁芯に励磁コイルを巻いた形態(電磁石型)とされる場合もある。   On the other hand, in the leakage magnetic flux flaw detection in which a ferromagnetic metal material, for example, a steel pipe is a test material and the outer surface is the test surface, as shown in FIGS. 2 (a) and 2 (b), on the outer surface of the steel pipe 10, A leakage magnetic flux flaw detector in which a magnet yoke 5 for applying a static magnetic field in which the arc direction of the length portion of the steel pipe 10 is the main direction of the lines of magnetic force is disposed in close proximity and the probe 1 is disposed between the NS poles of the magnet yoke 5 While rotating 11 in the tube circumferential direction or further moving in the longitudinal direction of the tube, the magnetic flux leakage from the scratch existing location in the test surface is detected by the probe 1, and the detected location is identified as the scratch existing location. The magnet yoke 5 may be in a form (electromagnet type) in which an exciting coil is wound around a magnetic core instead of the single magnet type in FIG.

プローブ1は、図2(c)に示す様に、漏洩磁束を検知するセンサとして、コイル径方向断面が矩形状であるコイル(略して矩形状コイル)で形成した矩形状センサ2を用い、これを1個または複数個、ホルダ3にて、矩形状センサ2のコイル中心軸が被検面に略垂直となる様に保持した構成とされる。尚、矩形状センサ2は、前記矩形状コイルに代えて、複数のホール素子を1列に並べて矩形状としてなるホール素子列で形成されてもよい。ホール素子列を用いる場合はホール素子の厚さ方向が被面面に略垂直となる様に保持する。   As shown in FIG. 2 (c), the probe 1 uses a rectangular sensor 2 formed of a coil (abbreviated rectangular coil) having a rectangular cross section in the coil radial direction as a sensor for detecting leakage magnetic flux. One or a plurality of these are held by the holder 3 so that the coil central axis of the rectangular sensor 2 is substantially perpendicular to the surface to be measured. The rectangular sensor 2 may be formed of a Hall element array that is a rectangular shape in which a plurality of Hall elements are arranged in a line instead of the rectangular coil. When the Hall element array is used, the Hall element is held so that the thickness direction thereof is substantially perpendicular to the surface to be covered.

又、金属材料(強磁性体に限らず導電体であればよい)の外面を被検面とした渦流探傷においては、従来、センサとしての検出コイルを被検面に近接配置し、これに交流電流を流し、電磁誘導により被検面に渦電流を発生させながら移動させて、渦電流が変化してそれにより磁界が変化する事による検出コイルの電流値変化を検出し、該検出した被検面箇所を傷存在箇所であると同定する。尚、検出コイルを上述の様に渦電流誘起用と渦電流変化検出用とに兼用する代わりに、検出コイルは検出専用とし、これとは別個に渦電流誘起用のコイルを設けてもよい。   Further, in eddy current flaw detection in which the outer surface of a metal material (not limited to a ferromagnet is sufficient as a conductor) is a test surface, conventionally, a detection coil as a sensor is placed close to the test surface and AC is applied thereto. An electric current is applied and moved while generating an eddy current on the test surface by electromagnetic induction, and a change in the current value of the detection coil due to a change in the eddy current and a change in the magnetic field is detected. The surface location is identified as the location of the flaw. Instead of using the detection coil for eddy current induction and eddy current change detection as described above, the detection coil may be dedicated to detection, and an eddy current induction coil may be provided separately.

前記検出コイルは、前記矩形状センサ2と同様の形態のコイルとされ、その1個又は複数個を漏洩磁束検出の場合と同様にホルダで保持してなるプローブが使用される。
前記従来のプローブ1では、図2(c)に例示される様に、ホルダ3への矩形状センサ2の取付角度であるセンサ取付角度は1つの角度に固定されている。このセンサ取付角度とは、ホルダ長手方向101に対する矩形状センサ2の長辺方向の角度αの事である。プローブ1のホルダ3は通常ホルダ長手方向101が、被検材長手方向102に平行となるように配置される。
The detection coil is a coil having the same form as the rectangular sensor 2, and a probe is used in which one or a plurality of the detection coils are held by a holder in the same manner as in the case of detecting leakage magnetic flux.
In the conventional probe 1, as illustrated in FIG. 2C, the sensor mounting angle that is the mounting angle of the rectangular sensor 2 to the holder 3 is fixed to one angle. The sensor mounting angle is an angle α in the long side direction of the rectangular sensor 2 with respect to the holder longitudinal direction 101. The holder 3 of the probe 1 is usually arranged so that the holder longitudinal direction 101 is parallel to the specimen longitudinal direction 102.

前記矩形状センサを用いる電磁気探傷では、漏洩磁束探傷であるか渦流探傷であるかによらず、傷(欠陥)の長手方向に対する矩形状センサの長辺方向の傾き角度が0°の場合に最も検出力(検出信号強度)が大きく、前記傾き角度が90°に近づくにつれて検出力が低下する。因みに図3は、従来のプローブを用いて漏洩磁束の検出力に及ぼす人工欠陥の傾きとセンサ取付角度との関係の影響を調査した結果を示す線図である。図3に示されるとおり、人工欠陥の延在方向が鋼管長手方向(被検材長手方向102)となす角度θ=0°の場合、検出力はプローブのセンサ取付角度α=0°のときに最大であり、角度αの増加につれて低下する。θ=10°の場合、検出力はα=10°のときにピークを示す。   The electromagnetic flaw detection using the rectangular sensor is most effective when the inclination angle of the long side direction of the rectangular sensor with respect to the longitudinal direction of the flaw (defect) is 0 ° regardless of whether it is a leakage magnetic flux flaw detection or an eddy current flaw detection. The detection power (detection signal intensity) is large, and the detection power decreases as the inclination angle approaches 90 °. FIG. 3 is a diagram showing the results of investigating the influence of the relationship between the inclination of the artificial defect and the sensor mounting angle on the leakage flux detection force using a conventional probe. As shown in FIG. 3, when the angle θ = 0 ° between the extending direction of the artificial defect and the longitudinal direction of the steel pipe (test material longitudinal direction 102), the detection force is when the sensor mounting angle α = 0 ° of the probe. Maximum and decreases with increasing angle α. When θ = 10 °, the power shows a peak when α = 10 °.

つまり、従来の電磁気探傷用プローブでは、センサ取付角度が1種に固定であるが故に、欠陥の形状(延在方向)によっては検出力が大きく低下する。そのため、発生し易い欠陥形状に適合するセンサ取付角度とされたプローブを使用する必要がある。現実には製品に発生し易い欠陥形状は1種ではなく複数種存在する。従って、それに対応する為にはセンサ取付角度の相異なる複数種のプローブを保有せざるを得ず、プローブ保有コストがかかるという課題があった。然も、製品形状によって発生し易い欠陥形状種が変わるので、その都度プローブを欠陥形状種に適合したプローブ種のものと交換する必要があり、プローブ交換所要時間(検査ライン停止時間)が発生して生産性が低下するという課題もあった。   That is, in the conventional electromagnetic flaw detection probe, since the sensor mounting angle is fixed to one type, the detection power is greatly reduced depending on the defect shape (extending direction). Therefore, it is necessary to use a probe having a sensor mounting angle that matches a defect shape that is likely to occur. In reality, there are not one type of defect shape that is likely to occur in a product, but a plurality of types. Therefore, in order to cope with this, a plurality of types of probes having different sensor mounting angles must be held, and there is a problem that the cost of holding the probe is increased. However, since the type of defect shape that is likely to change depending on the product shape, it is necessary to replace the probe with a probe type that matches the defect shape type each time, and probe replacement time (inspection line stop time) occurs. As a result, there was a problem that productivity decreased.

前記課題を解決する為の本発明は、複数の矩形状センサを1つのホルダで保持してなる電磁気探傷用プローブであって、前記矩形状センサの前記ホルダへのセンサ取付角度を2種以上としたことを特徴とする電磁気探傷用プローブである。   The present invention for solving the above-mentioned problems is an electromagnetic flaw detection probe in which a plurality of rectangular sensors are held by a single holder, wherein two or more types of sensor mounting angles of the rectangular sensors to the holder are used. This is a probe for electromagnetic flaw detection.

本発明によれば、プローブ保有数の削減ができてプローブ保有コストを低減できると共に、ライン停止時間の大幅な短縮ができて生産性が向上する。   According to the present invention, the number of probes can be reduced, the cost of possessing probes can be reduced, and the line stop time can be greatly shortened to improve productivity.

本発明のプローブの例を示す概略図である。It is the schematic which shows the example of the probe of this invention. 従来のプローブの例を示す概略図である。It is the schematic which shows the example of the conventional probe. 従来のプローブを用いて漏洩磁束検出力に及ぼす人工欠陥の傾きとセンサ取付角度との関係の影響を調査した結果を示すグラフである。従来It is a graph which shows the result of having investigated the influence of the inclination of the artificial defect and the sensor attachment angle which have on the leakage magnetic flux detection force using the conventional probe. Conventional 従来例のプローブB,C及び本発明例のプローブAのセンサ出力チャート例を示す概略図である。It is the schematic which shows the sensor output chart example of the probes B and C of a prior art example, and the probe A of the example of this invention.

図1は、本発明のプローブの例を示す概略図である。図1において、6は本発明の プローブであり、図2と同一又は相当部材には同じ符号を付し説明を省略する。
プローブ6において、4個の矩形状センサ2のうち2個がセンサ取付角度α=0度とされ、残りの2個がα=10度とされている。
このように、1つのプローブ中のセンサ取付角度を2種以上としたことで、複数種の欠陥形状(欠陥延在方向)に対し1つのプローブで探傷することができる。従って、プローブ保有数が削減できる。又、欠陥形状種が変わってもプローブ交換の必要が無く、生産性が向上する。
FIG. 1 is a schematic view showing an example of the probe of the present invention. In FIG. 1, 6 is a probe of the present invention, and the same or corresponding members as in FIG.
In the probe 6, two of the four rectangular sensors 2 have a sensor mounting angle α = 0 degrees, and the remaining two have α = 10 degrees.
As described above, since two or more types of sensor mounting angles in one probe are used, flaw detection can be performed with one probe for a plurality of types of defect shapes (defect extending directions). Accordingly, the number of possessed probes can be reduced. Further, even if the defect shape type changes, there is no need to replace the probe, and the productivity is improved.

発生しやすい外面欠陥の鋼管長手方向に対する延在角度θが、0度、10度の2種ある継目無鋼管の漏洩磁束探傷において、図1に示した形態の、センサ取付角度α=0度、10度の2種を複合保有した本発明例のプローブA、及び図2に示した形態において1つはα=0度、もう1つはα=10度とされた2つの従来例のプローブB,Cを、夫々用いて探傷を行った。それらのセンサ出力チャート例を図4に示す。従来例において、α=0度のプローブBはθ=0度の欠陥に対しては十分なピーク高さを示すがθ=10度の欠陥に対してはピーク高さが不十分であり、一方、α=10度のプローブCはθ=10度の欠陥に対しては十分なピーク高さを示すがθ=0度の欠陥に対してはピーク高さが不十分である。従って、プローブB,Cの何れか一方で探傷した後、他方に交換して再度探傷せねばならなかった。これに対し、本発明例において、プローブAはθ=0度、10度の何れの欠陥に対しても十分なピーク高さを示し、従って一回の探傷で済んだ。   In the leakage magnetic flux flaw detection of two kinds of seamless steel pipes having an extension angle θ with respect to the longitudinal direction of the steel pipe, which is likely to occur, 0 degrees and 10 degrees, the sensor mounting angle α = 0 degrees in the form shown in FIG. The probe A of the present invention having two kinds of 10 degrees in combination, and two conventional probes B in the form shown in FIG. 2 in which one is α = 0 degrees and the other is α = 10 degrees. , C were used for flaw detection. FIG. 4 shows an example of the sensor output chart. In the conventional example, the probe B with α = 0 degrees shows a sufficient peak height for the defect with θ = 0 degrees, but the peak height is insufficient with respect to the defect with θ = 10 degrees. The probe C with α = 10 degrees shows a sufficient peak height for the defect with θ = 10 degrees, but the peak height is insufficient with respect to the defect with θ = 0 degrees. Therefore, after flaw detection was performed on one of the probes B and C, the probe had to be replaced with the other and flaw detected again. On the other hand, in the example of the present invention, the probe A showed a sufficient peak height for any defect of θ = 0 degrees and 10 degrees, and therefore, only one flaw detection was required.

この様に、本発明によれば、プローブ保有数が従来に比して削減でき、且つ、プローブ交換のためのライン停止をする必要がなくて生産性が向上する。   As described above, according to the present invention, the number of probes can be reduced as compared with the prior art, and it is not necessary to stop the line for probe replacement, thereby improving productivity.

1 プローブ(従来)
2 矩形状センサ
3 ホルダ
5 マグネットヨーク
6 プローブ(本発明)
10 鋼管(被検材)
11 回転
101 ホルダ長手方向
102 被検材長手方向
1 Probe (conventional)
2 Rectangular sensor 3 Holder 5 Magnet yoke 6 Probe (present invention)
10 Steel pipe (test material)
11 Rotation 101 Holder longitudinal direction 102 Test material longitudinal direction

Claims (1)

複数の矩形状センサを1つのホルダで保持してなる電磁気探傷用プローブであって、前記矩形状センサの前記ホルダへのセンサ取付角度を2種以上としたことを特徴とする電磁気探傷用プローブ。   An electromagnetic flaw detection probe comprising a plurality of rectangular sensors held by a single holder, wherein two or more types of sensor mounting angles of the rectangular sensors to the holder are used.
JP2012051214A 2012-03-08 2012-03-08 Magnetic flaw detection probe Pending JP2013185951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012051214A JP2013185951A (en) 2012-03-08 2012-03-08 Magnetic flaw detection probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012051214A JP2013185951A (en) 2012-03-08 2012-03-08 Magnetic flaw detection probe

Publications (1)

Publication Number Publication Date
JP2013185951A true JP2013185951A (en) 2013-09-19

Family

ID=49387503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012051214A Pending JP2013185951A (en) 2012-03-08 2012-03-08 Magnetic flaw detection probe

Country Status (1)

Country Link
JP (1) JP2013185951A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006589A1 (en) * 2015-07-09 2017-01-12 株式会社日立ハイテクノロジーズ Rail inspection device and rail inspection system
CN108941357A (en) * 2018-06-12 2018-12-07 四川大学 A kind of steel pipe seam recognition positioning method based on magnetic flux leakage
CN111337567A (en) * 2020-03-27 2020-06-26 南京航空航天大学 Defect type evaluation method based on eddy current and magnetic flux leakage detection signal fusion

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292783A (en) * 1976-01-30 1977-08-04 Shimadzu Corp Detecting end of flaw detector
JPH01154457U (en) * 1988-04-18 1989-10-24
JPH08304346A (en) * 1995-05-10 1996-11-22 Sumitomo Metal Ind Ltd Magnetizer for leak magnetic flux flaw detection of circular sectional material
JPH1164294A (en) * 1997-08-26 1999-03-05 Ishikawajima Harima Heavy Ind Co Ltd Eddy current testing sensor and method for detecting flaw using it
JP2001066293A (en) * 1999-08-26 2001-03-16 Tokyo Gas Co Ltd Eddy-current flaw detecting probe
JP2002162388A (en) * 2000-11-24 2002-06-07 Hitachi Cable Ltd Eddy current detector for welded pipe

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292783A (en) * 1976-01-30 1977-08-04 Shimadzu Corp Detecting end of flaw detector
JPH01154457U (en) * 1988-04-18 1989-10-24
JPH08304346A (en) * 1995-05-10 1996-11-22 Sumitomo Metal Ind Ltd Magnetizer for leak magnetic flux flaw detection of circular sectional material
JPH1164294A (en) * 1997-08-26 1999-03-05 Ishikawajima Harima Heavy Ind Co Ltd Eddy current testing sensor and method for detecting flaw using it
JP2001066293A (en) * 1999-08-26 2001-03-16 Tokyo Gas Co Ltd Eddy-current flaw detecting probe
JP2002162388A (en) * 2000-11-24 2002-06-07 Hitachi Cable Ltd Eddy current detector for welded pipe

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006589A1 (en) * 2015-07-09 2017-01-12 株式会社日立ハイテクノロジーズ Rail inspection device and rail inspection system
JP2017020862A (en) * 2015-07-09 2017-01-26 株式会社日立ハイテクノロジーズ Rail inspection system, and rail inspection system
US10591442B2 (en) 2015-07-09 2020-03-17 Hitachi High-Technologies Corporation Rail check device and rail check system
CN108941357A (en) * 2018-06-12 2018-12-07 四川大学 A kind of steel pipe seam recognition positioning method based on magnetic flux leakage
CN111337567A (en) * 2020-03-27 2020-06-26 南京航空航天大学 Defect type evaluation method based on eddy current and magnetic flux leakage detection signal fusion
CN111337567B (en) * 2020-03-27 2023-10-03 南京航空航天大学 Defect type assessment method based on eddy current and magnetic flux leakage detection signal fusion

Similar Documents

Publication Publication Date Title
Jomdecha et al. Design of modified electromagnetic main-flux for steel wire rope inspection
JP5201495B2 (en) Magnetic flaw detection method and magnetic flaw detection apparatus
JP6060278B2 (en) Apparatus and method for detecting internal defects in steel sheet
WO2018138850A1 (en) Magnetic body inspection device and magnetic body inspection method
CN103868986A (en) Eddy detection probe for detecting internal surface defects in metal pipelines and detection method thereof
JP2011002409A (en) Leak flux flaw detecting device
CN103487503A (en) Rotating magnetic field eddy current detection probe
KR20150048141A (en) Eddy current flaw detection probe and eddy current flaw inspection apparatus
JP2008032575A (en) Eddy current measuring probe and flaw detection device using it
JP2013185951A (en) Magnetic flaw detection probe
KR101339117B1 (en) Apparatus and method for detecting the defects of reverse side using pulsed eddy current
CN209102667U (en) A kind of portable pipe detection device based on far-field eddy
CN103439405A (en) Multifunctional electromagnetic detection sensor synchronized by iron core and ferrite core and detection method thereof
CA2953295C (en) Apparatus and method for detection of imperfections by detecting changes in flux of a magnetized body
JP5978661B2 (en) Electromagnetic flaw detection probe
JP2016114533A (en) Pipe with magnetic sensor, and nondestructive inspection device
US11169116B2 (en) Probe for nondestructive testing device using crossed gradient induced current and method for manufacturing induction coil for nondestructive testing device
JP6170081B2 (en) Magnetizer for steel pipe, magnetic particle flaw detector
JP2014066688A (en) Eddy current flaw detection probe, and eddy current flaw detection device
JP2010266277A (en) Eddy-current flaw detection system
RU132894U1 (en) DEVICE FOR QUALITY CONTROL OF ELECTRO-WELDED PIPES OF THE WIRES BY THE PYROELECTROMAGNETIC METHOD
JP5981706B2 (en) Electromagnetic induction type inspection method and electromagnetic induction type inspection device
JP5579471B2 (en) Barkhausen noise inspection system
CN103776898B (en) Symmetrical balance type eddy current sensor
JP5984123B2 (en) Nondestructive flaw detector for pressure vessels by measuring leakage magnetic flux

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130716

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140402

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170124