JP2013185856A - Methods for measuring position and wind speed utilizing doppler effect - Google Patents

Methods for measuring position and wind speed utilizing doppler effect Download PDF

Info

Publication number
JP2013185856A
JP2013185856A JP2012049081A JP2012049081A JP2013185856A JP 2013185856 A JP2013185856 A JP 2013185856A JP 2012049081 A JP2012049081 A JP 2012049081A JP 2012049081 A JP2012049081 A JP 2012049081A JP 2013185856 A JP2013185856 A JP 2013185856A
Authority
JP
Japan
Prior art keywords
sound wave
position measurement
sound
doppler effect
wind speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2012049081A
Other languages
Japanese (ja)
Inventor
Sunao Kondo
直 近藤
Tomoaki Shiiki
友朗 椎木
Kazuya Yamamoto
一哉 山本
Toshinori Tamura
壽規 田村
Widodo Slamet
ウィドド スラメット
Yuichi Ogawa
雄一 小川
Hideo Kikuchi
日出男 菊池
Keigo Yanagida
径吾 柳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
System Watt Co Ltd
Kyoto University NUC
Original Assignee
System Watt Co Ltd
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by System Watt Co Ltd, Kyoto University NUC filed Critical System Watt Co Ltd
Priority to JP2012049081A priority Critical patent/JP2013185856A/en
Publication of JP2013185856A publication Critical patent/JP2013185856A/en
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for measuring a position, compensating for sound velocity change due to wind and having high measurement accuracy.SOLUTION: A method for measuring a position by compensating for sound velocity change on the basis of a measurement result of wind velocity utilizing a Doppler effect, includes: transmitting an acoustic wave having a predetermined frequency from an object 1 to be measured in position to allow an object 2 measuring a position to receive the acoustic wave, and calculating a propagation time of the acoustic wave from the reception time and the transmission time; and compensating for sound velocity change due to wind on the basis of a Doppler effect to calculate a distance from the object 2 measuring a position to the object 1 to be measured in position to measure a position.

Description

本発明は、測定分野における、特に精度よく位置測定できるドップラー効果を利用した位置測定方法および風速測定方法に関するものである。   The present invention relates to a position measuring method and a wind speed measuring method using the Doppler effect capable of measuring a position with high accuracy in the measurement field.

近年、日本の農業において、農業従事者の減少や高齢化に伴い、農業生産、管理作業等の省力化や低コスト化がますます重要な課題となっている。その中で自動化が進んでいない作業の中で、畦畔での除草作業が挙げられる。特に、中山間地の棚田や段畑においては、刈払い機など人力に依存しているのが現状で、この重労働かつ危険な除草作業を自動で行うために小型除草ロボットの開発が進められている。   In recent years, labor reduction and cost reduction of agricultural production, management work, etc. are becoming more and more important issues in agriculture in Japan as the number of agricultural workers decreases and the population ages. Among the tasks that are not being automated, weeding on the shore is one example. In particular, rice terraces and terraced fields in hilly and mountainous areas depend on human power such as brush cutters, and the development of small weeding robots is underway to automatically perform this heavy labor and dangerous weeding work. Yes.

ロボットが自動で草刈作業をするときに、経路生成や位置検出にはGPSを用いることが考えられる。しかし、精度の高いGPSは、高価であり、また中山間地域では必ずしも必要な数のGPS衛星を補足できないこともあり、低価格の実用機を目指すのは困難である。   When the robot automatically performs mowing work, it is conceivable to use GPS for route generation and position detection. However, high-accuracy GPS is expensive, and it may not always be possible to supplement the required number of GPS satellites in hilly and mountainous areas, so it is difficult to aim for a low-priced practical aircraft.

また、屋外等で音波を利用して位置測定する場合、風の吹く環境下では風による音速の変化に伴う測定精度の低下があり、精度よく位置測定できないものであった。   In addition, when performing position measurement using sound waves outdoors or the like, there is a decrease in measurement accuracy due to changes in sound speed due to wind in an environment where wind blows, and position measurement cannot be performed accurately.

特許調査の結果、特表2005−516190号公報のように、各デバイス間で音波を相互に送受信することで、風速の影響を相殺することが提案されている。また、ドップラー効果を利用することにより風速を測定することが知られている。   As a result of patent research, it has been proposed to cancel the influence of wind speed by transmitting and receiving sound waves between devices as in Japanese Patent Application Publication No. 2005-516190. It is also known to measure wind speed by utilizing the Doppler effect.

特表2005−516190号公報JP-T-2005-516190

しかし、前者では、各デバイス間で音波を相互に送受信させているため、デバイスや処理が複雑となり、コストが増大する。また、後者のドップラー効果により風速を測定する方法では、スピーカとマイクを固定して設置したもので、スピーカとマイクを固定する必要があり、移動する物体の位置測定システムに応用することが難しい。   However, in the former, since sound waves are transmitted and received between the devices, the devices and processing become complicated, and the cost increases. In the latter method of measuring the wind speed by the Doppler effect, the speaker and the microphone are fixed, and the speaker and the microphone need to be fixed. Therefore, it is difficult to apply the method to a moving object position measurement system.

そのため、屋外等の風の吹く環境下でも、風による音速の変化に伴う測定精度を低下することなく、移動する物体の位置等を精度よく測定することが課題であった。   Therefore, it has been a problem to accurately measure the position and the like of a moving object without degrading the measurement accuracy associated with the change in sound speed due to the wind even in an environment where the wind blows, such as outdoors.

本発明は、上記のような点に鑑みたもので、上記の課題を解決するために、ドップラー効果を利用した風速の測定結果に基づき音速変化の補償を行う位置測定方法であって、被位置測定体から所定の周波数の音波を送信して位置測定体に受信させ、その受信時刻と送信時刻から上記音波の伝搬時間を算出するとともに、ドップラー効果に基づく風による音速変化の補償を行って位置測定体からの被位置測定体の距離を算出して位置測定することを特徴とするドップラー効果を利用した位置測定方法を提供するにある。   The present invention has been made in view of the above points, and in order to solve the above problems, the present invention is a position measurement method for compensating for a change in sound speed based on a wind speed measurement result using the Doppler effect. A sound wave of a predetermined frequency is transmitted from the measurement body and received by the position measurement body, and the propagation time of the sound wave is calculated from the reception time and the transmission time, and the position of the sound wave is compensated for by the wind based on the Doppler effect. An object of the present invention is to provide a position measuring method using the Doppler effect, characterized in that the position is measured by calculating the distance of the position measuring body from the measuring body.

また、移動する被位置測定体から位置測定用の音波と風速補償用の一定の周波数の音波を交互にスピーカから送信し、位置測定体のマイクで受信して被位置測定体の距離を逐次算出して位置測定するドップラー効果を利用した位置測定方法を提供するにある。   In addition, the sound wave for position measurement and the sound wave of constant frequency for wind speed compensation are alternately transmitted from the speaker from the moving position measurement object and received by the microphone of the position measurement object, and the distance of the position measurement object is calculated sequentially. The present invention provides a position measuring method using the Doppler effect for position measurement.

さらに、被位置測定体から送信される位置測定用の音波がスペクトル拡散音のM系列符号の音波であって、当該音波を受信した位置測定体が行う距離算出方法が当該音波のM系列符号について相関処理を行って同期処理するものであるドップラー効果を利用した位置測定方法を提供するにある。   Further, the position measurement sound wave transmitted from the position measurement object is an M-sequence code sound wave of spread spectrum sound, and the distance calculation method performed by the position measurement body that has received the sound wave is the M-sequence code of the sound wave. An object of the present invention is to provide a position measurement method using the Doppler effect, which performs a correlation process and performs a synchronization process.

さらにまた、位置測定体を1個以上とし、移動する被位置測定体との距離を数十m以上離した状態となる位置に設置したドップラー効果を利用した位置測定方法を提供するにある。   Still another object of the present invention is to provide a position measuring method using the Doppler effect that is installed at a position where the number of position measuring bodies is one or more and the distance from the moving position measuring body is several tens of meters or more.

さらにまた、被位置測定体を含む音波送信体から所定の周波数の音波を送信して位置測定体を含む音波受信体に受信させ、その音波を周波数解析してそのスペクトル成分の帯域幅より音波送信体から音波受信体間の風速を測定することを特徴とするドップラー効果を利用した風速測定方法を提供するにある。   Furthermore, a sound wave having a predetermined frequency is transmitted from a sound wave transmitting body including a position measurement body and received by a sound wave receiving body including a position measurement body, and the sound wave is frequency-analyzed and transmitted from the bandwidth of the spectral component. An object of the present invention is to provide a wind speed measuring method using the Doppler effect, characterized by measuring a wind speed between a body and a sound wave receiver.

本発明のドップラー効果を利用した位置測定方法は、特許請求の範囲の請求項1のように、ドップラー効果を利用した風速の測定結果に基づき音速変化の補償を行う位置測定方法であって、被位置測定体から所定の周波数の音波を送信して位置測定体に受信させ、その受信時刻と送信時刻から上記音波の伝搬時間を算出するとともに、ドップラー効果に基づく風による音速変化の補償を行って位置測定体からの被位置測定体の距離を算出して位置測定することによって、装置を複雑にすることなく、被位置測定体の位置を測定することができるものであり、ドップラー効果に基づく風による音速変化の補償を行って、屋外等の風の吹く環境下でも、風による音速の変化に伴う測定精度を低下することなく、被位置測定体の位置を精度よく測定することができる。   The position measurement method using the Doppler effect according to the present invention is a position measurement method for compensating for the change in sound speed based on the measurement result of the wind speed using the Doppler effect, as in claim 1. A sound wave having a predetermined frequency is transmitted from the position measurement body and received by the position measurement body. The propagation time of the sound wave is calculated from the reception time and the transmission time, and the change in the sound speed due to the wind based on the Doppler effect is compensated. By calculating the position of the position measurement object from the position measurement object and measuring the position, it is possible to measure the position of the position measurement object without complicating the apparatus, and the wind based on the Doppler effect Measures the position of the object to be measured accurately without compromising measurement accuracy due to changes in sound speed due to wind, even in environments where the wind blows outdoors, etc. Rukoto can.

また、請求項2のように、移動する被位置測定体から位置測定用の音波と風速補償用の一定の周波数の音波を交互にスピーカから送信し、位置測定体のマイクで受信して被位置測定体の距離を逐次算出して位置測定することによって、装置を簡単化できて、上記したようにドップラー効果に基づく風による音速変化の補償を行って、屋外等の風の吹く環境下でも、風による音速の変化に伴う測定精度を低下することなく、移動する被位置測定体の位置を精度よく測定することができる。   According to another aspect of the present invention, a sound wave for position measurement and a sound wave having a constant frequency for wind speed compensation are alternately transmitted from a speaker and received by a microphone of the position measurement body. By calculating the distance of the measuring body sequentially and measuring the position, the device can be simplified, and as described above, the compensation of the sound speed change due to the wind based on the Doppler effect is performed, even under the wind blowing environment such as outdoors, The position of the moving position-measuring object can be accurately measured without degrading the measurement accuracy associated with the change in sound velocity due to the wind.

さらに、請求項3のように、被位置測定体から送信される位置測定用の音波がスペクトル拡散音のM系列符号の音波であって、当該音波を受信した位置測定体が行う距離算出方法が当該音波のM系列符号について相関処理を行って同期処理することによって、スペクトル拡散音のM系列符号の優れた自己相関特性と雑音耐性を利用して、屋外等の風の吹く環境の雑音下でも、高精度に上記のように位置測定できるとともに、無線ネットワークなので置測定体の追加や除去が容易で、かつその配置も自由に行なえて位置測定することができる。   Further, according to a third aspect of the present invention, there is provided a distance calculation method performed by the position measurement body that receives the sound wave when the position measurement sound wave transmitted from the position measurement body is an M-sequence code sound wave of spread spectrum sound. By performing correlation processing on the M-sequence code of the sound wave and performing synchronization processing, the excellent autocorrelation characteristics and noise resistance of the M-sequence code of the spread spectrum sound can be used, even under the noise of the wind blowing environment such as outdoors. In addition to being able to measure the position with high accuracy as described above, since it is a wireless network, it is easy to add or remove the measuring object, and the position can be measured freely.

さらにまた、請求項4のように、位置測定体を1個以上とし、移動する被位置測定体との距離を数十m以上離した状態となる位置に設置したことによって、測定距離が数十m以上の測定であっても、位置測定体からの算出距離で移動する被位置測定体を位置測定することができるとともに、数cm位の誤差で位置測定することができる。   Furthermore, as described in claim 4, when the number of position measuring bodies is one or more, and the distance from the moving position measuring body is several tens of meters or more, the measuring distance is several tens of meters. Even in the case of measurement of m or more, it is possible to measure the position of the position measuring body that moves at the calculated distance from the position measuring body, and to measure the position with an error of several centimeters.

さらにまた、請求項5のように、被位置測定体を含む音波送信体から所定の周波数の音波を送信して位置測定体を含む音波受信体に受信させ、その音波を周波数解析してそのスペクトル成分の帯域幅より音波送信体から音波受信体間の風速を測定することによって、ドップラー効果を利用して音波送信体から音波受信体間の風速を測定することができる。   Furthermore, as described in claim 5, a sound wave having a predetermined frequency is transmitted from a sound wave transmitting body including a position measuring body and received by a sound wave receiving body including a position measuring body, and the sound wave is subjected to frequency analysis and its spectrum is obtained. By measuring the wind speed between the sound wave transmitter and the sound wave receiver from the bandwidth of the component, the wind speed between the sound wave transmitter and the sound wave receiver can be measured using the Doppler effect.

本発明の位置測定システムの概要説明図、Outline explanatory drawing of the position measuring system of the present invention, 同上の距離算出の概要説明図、Overview of distance calculation same as above, 同上のドップラー効果の風力による音速変化の原理説明図、Illustration of the principle of sound velocity change due to wind force of Doppler effect as above, 同上の風速の違いによる周波数特性説明図(a)、(b)、(c)、Frequency characteristic explanatory diagrams (a), (b), (c), 同上の風による音速変化の周波数特性説明図、Frequency characteristics explanatory diagram of sound speed change due to wind, 同上の周波数とパワースペクトルの関係図、Relationship diagram of frequency and power spectrum 同上の屋内における風速とパワースペクトルの関係図、Relationship diagram between wind speed and power spectrum indoors 同上の屋外における風速とパワースペクトルの関係図、Relationship diagram of wind speed and power spectrum in outdoor 同上の風速とパワースペクトルの関係図、Relationship diagram of wind speed and power spectrum 同上の風速とパワースペクトルの関係図、Relationship diagram of wind speed and power spectrum 参考用の風による音速変化の実験結果図。The experimental result figure of the sound speed change by the wind for a reference.

本発明の位置測定方法は、ドップラー効果を利用した風速の測定結果に基づき音速変化の補償を行う位置測定方法であって、被位置測定体から所定の周波数の音波を送信して位置測定体に受信させ、その受信時刻と送信時刻から上記音波の伝搬時間を算出するとともに、ドップラー効果に基づく風による音速変化の補償を行って位置測定体からの被位置測定体の距離を算出して位置測定することを特徴としている。   The position measurement method of the present invention is a position measurement method that compensates for changes in sound speed based on the measurement result of wind speed using the Doppler effect, and transmits a sound wave of a predetermined frequency from the position measurement object to the position measurement object. Calculate the propagation time of the sound wave from the reception time and transmission time, and compensate for the change in sound velocity due to the wind based on the Doppler effect to calculate the distance of the position measurement object from the position measurement object It is characterized by doing.

ドップラー効果を利用した位置測定方法は、図1のように移動する被位置測定体1のまわりに1個以上(図上4個)の位置測定体2を所定の距離を隔てて配設し、位置測定体2から被位置測定体1の距離を逐次測定して被位置測定体1の位置を測定するようにしている。   In the position measuring method using the Doppler effect, one or more (four in the figure) position measuring bodies 2 are arranged at a predetermined distance around the position measuring body 1 moving as shown in FIG. The position measuring body 1 is measured by sequentially measuring the distance from the position measuring body 2 to the position measuring body 1.

図2のように上記移動する被位置測定体1には、装着したプロセッサ3によって位置測定用のスペクトル拡散音を含む音波と風速補償用の一定の周波数の音波を交互に作成し、D/A変換してオーディオアンプ4により増幅し、スピーカ5から位置測定体2側へ送信される。また、この送信するタイミングで、プロセッサ3より同期信号を無線デバイス6に出力して位置測定体2側へ送信して通知するようにしている。   As shown in FIG. 2, the moving position-measurement body 1 alternately creates a sound wave including a spectrum-spread sound for position measurement and a sound wave having a constant frequency for wind speed compensation by a processor 3 attached thereto. The signal is converted and amplified by the audio amplifier 4 and transmitted from the speaker 5 to the position measuring body 2 side. At this transmission timing, a synchronization signal is output from the processor 3 to the wireless device 6 and transmitted to the position measuring body 2 side for notification.

そして、位置測定体2では、図2のように装着した無線デバイス7で上記同期信号を受信して検出した後、プロセッサ8に同期信号を出力し、同期信号を検出した後、上記マイク9から出力される音波信号をA/D変換する。そして、バッファに音波データが溜まった時点で相関処理して相関ピーク検出等の所要の処理を行い、スペクトル拡散音等の音波によってスピーカ5―マイク9間の距離を上記プロセッサ8で算出し、その結果を無線デバイス7を介して被位置測定体1に送信して通知するようにして、その距離情報を基に音速にその伝播時間を乗算して被位置測定体1の位置を測定するようにしている。   The position measuring body 2 receives and detects the synchronization signal by the wireless device 7 attached as shown in FIG. 2, outputs the synchronization signal to the processor 8, detects the synchronization signal, and then detects the synchronization signal from the microphone 9. The sound wave signal to be output is A / D converted. Then, when the sound wave data accumulates in the buffer, correlation processing is performed and necessary processing such as correlation peak detection is performed, and the distance between the speaker 5 and the microphone 9 is calculated by the processor 8 using sound waves such as spread spectrum sound, The result is transmitted and notified to the position measuring body 1 via the wireless device 7, and the position of the position measuring body 1 is measured by multiplying the sound speed by the propagation time based on the distance information. ing.

1次元では1個の位置測定体2で位置測定でき、2次元では2個の位置測定体2でも位置測定できるが、その際2つの円の交点の一の位置を選択して位置測定できる。図1のように3個以上では、これらの円の交点ないし重なり合う近傍点として位置測定される。   In one dimension, the position can be measured with one position measuring body 2, and in two dimensions, the position can be measured with two position measuring bodies 2. In this case, the position can be measured by selecting one position of the intersection of two circles. In the case of three or more as shown in FIG. 1, the positions are measured as intersections of these circles or overlapping neighboring points.

音波は、障害物があっても回り込みやすく、かつ測定手段が安価である利点がある。スペクトル拡散音は雑音耐性を有して精度よく位置測定できるものであり、その音源としてM系列符号を音波として用いることで、M系列符号の優れた自己相関特性と雑音耐性を有していることから測定精度および雑音耐性を向上できる。また、位置測定器2側で相関処理および距離計算を行うことで、相関処理等の演算コストを分散でき、被位置測定体1の負荷が減り、全体のプロセッサを安価に構築できる。さらに、上記のように被位置測定体1と位置測定体2とを無線デバイス6、7を用いて同期制御処理するので、高精度に位置測定ができる。   Sound waves have the advantage that they can easily go around even if there are obstacles, and the measuring means is inexpensive. Spread spectrum sound has noise tolerance and can measure the position with high accuracy. By using the M-sequence code as a sound wave, it has excellent autocorrelation characteristics and noise tolerance of the M-sequence code. Measurement accuracy and noise resistance can be improved. Further, by performing the correlation process and the distance calculation on the position measuring device 2 side, it is possible to distribute the calculation cost of the correlation process and the like, the load on the position measuring body 1 is reduced, and the entire processor can be constructed at low cost. Furthermore, since the position measurement body 1 and the position measurement body 2 are synchronously controlled using the wireless devices 6 and 7 as described above, position measurement can be performed with high accuracy.

しかし、屋外等の風の影響があるところでは、上記のように音波による位置測定をすると測定に誤差が生じる。その主な誤差要因は、風によって音速が変化して測定精度が低下することにある。そのため、風による音速変化の補償を行って補正する必要がある。   However, where there is an influence of wind, such as outdoors, an error occurs in the measurement when the position is measured by the sound wave as described above. The main error factor is that the sound speed changes due to the wind and the measurement accuracy decreases. For this reason, it is necessary to compensate for the change in sound velocity due to the wind.

風が吹く環境下では、音波による距離D(m)は、スピーカ5からマイク9までの音の伝搬時間△T(s)、音速Vs(m/s)、温度t(℃)、風速Vw(m/s)とすると、次式で求められる。
D =Vs×ΔT
Vs=331.5+0.61×t+Vw
ここに、風速Vwはスピーカ5からマイク9に吹く追風のときはプラス、逆風のときはマイナスになる。
In an environment where wind blows, the distance D (m) by sound waves is the sound propagation time ΔT (s) from the speaker 5 to the microphone 9, the sound speed Vs (m / s), the temperature t (° C.), and the wind speed Vw ( m / s), the following equation is obtained.
D = Vs × ΔT
Vs = 331.5 + 0.61 × t + Vw
Here, the wind speed Vw becomes positive when the wind is blown from the speaker 5 to the microphone 9, and becomes negative when the wind is reversed.

上式より距離Dの精度向上には、風速Vwと温度も正確に測定する必要があり、風速と温度の影響を含んだ音速Vs(m/s)に修正できて、音波の風速変化による補償が可能となる。   In order to improve the accuracy of the distance D from the above equation, it is necessary to accurately measure the wind speed Vw and temperature, and it can be corrected to the sound speed Vs (m / s) including the influence of the wind speed and temperature, and compensated by the change in the wind speed of the sound wave Is possible.

本発明では、ドップラー効果を利用した風速による音速変化の補償するもので、図3はその原理を示すものである。図3のようにマイク9とスピーカ5を配置し、スピーカ5から周波数fの音波を放射する。このとき、音速cは速度Vで移動する微粒子に散乱反射し、次式のようにドップラー現象によりマイク9の受音する周波数f''は、次のように求められる。ここに、f’は、微粒子に衝突したときの音の周波数である。

(c − Vcosθ1 ) c
f’=────────────f f''=────────────f’
c (c − Vcosθ2

(c − Vcosθ1
f''=────────────f
(c − Vcosθ2
In the present invention, the change in the sound speed due to the wind speed using the Doppler effect is compensated, and FIG. 3 shows the principle thereof. As shown in FIG. 3, the microphone 9 and the speaker 5 are arranged, and sound waves having a frequency f are emitted from the speaker 5. At this time, the sound velocity c is scattered and reflected by the fine particles moving at the velocity V, and the frequency f ″ received by the microphone 9 by the Doppler phenomenon is obtained as follows. Here, f ′ is the frequency of the sound when colliding with the fine particles.

(C−Vcos θ 1 ) c
f '= ────────────f f''= ──────────── f'
c (c−Vcos θ 2 )

(C−Vcos θ 1 )
f '' = ──────────── f
(C−Vcos θ 2 )

上記の式から、周波数f、f''、c、θ1 、θ2 が既知もしくは測定可能であれば、風速Vを求めることができる。しかし、位置測定する場合、スピーカ5またはマイク9の位置は定まらず、よってθ1 、θ2 も一定値にならない。そこで、一定周波数の音を出力したとき、マイク9は、0°<θ1 <90°、0°<θ2 <90°の範囲内でドップラー効果が起きた音を受信していると考え、風速により周波数がどのように変化するか、上式に代入して計算した。たとえば、ロボットに設置したスピーカ5からの音を利用して距離を計測するとすれば、0°<θ1 <90°、0°<θ2 <90°の範囲内でドップラー効果が起きた音をマイク9で拾っていると考えられる。ここで、音速c=340m/s、送信音波の周波数f=24KHz とした。 From the above formula, if the frequencies f, f ″, c, θ 1 , θ 2 are known or measurable, the wind speed V can be obtained. However, when the position is measured, the position of the speaker 5 or the microphone 9 is not determined, and thus θ 1 and θ 2 are not constant values. Therefore, when a sound having a constant frequency is output, the microphone 9 is assumed to receive a sound in which the Doppler effect occurs within the range of 0 ° <θ 1 <90 ° and 0 ° <θ 2 <90 °. How the frequency changes depending on the wind speed was calculated by substituting into the above equation. For example, if the distance is measured using the sound from the speaker 5 installed in the robot, the sound in which the Doppler effect occurs within the range of 0 ° <θ 1 <90 ° and 0 ° <θ 2 <90 ° is obtained. It is thought that the microphone 9 is picking up. Here, the speed of sound c = 340 m / s and the frequency of the transmitted sound wave f = 24 KHz.

その結果は、図4(a)、(b)、(c)であり、各グラフはx軸がθ1 、y軸がθ2 、z軸が受信周波数を表している。図5は、風速とそのときの受信周波数の最大値と最小値を表したものである。図4、図5のように風速が強くなると、計測周波数の幅が広がっている。 The results are shown in FIGS. 4A, 4B, and 4C. In each graph, the x-axis represents θ 1 , the y-axis represents θ 2 , and the z-axis represents the reception frequency. FIG. 5 shows the maximum and minimum values of the wind speed and the reception frequency at that time. As the wind speed increases as shown in FIGS. 4 and 5, the width of the measurement frequency increases.

このような結果、たとえば図5の関係から、風速Vwは、次式のように求めることができる。
1 1
Vw=────fmax − 342.8 Vw=−────fmin + 342.8
70 70

fmax 、fmin は、受信音波信号をフーリエ変換ときのパワースペクトルがある一定値以上の最大周波数と最小周波数の値である。
As a result, for example, the wind speed Vw can be obtained from the relationship shown in FIG.
1 1
Vw = ------ fmax-342.8 Vw = ------- fmin + 342.8
70 70

fmax and fmin are values of a maximum frequency and a minimum frequency that are equal to or higher than a certain value in the power spectrum when the received sound wave signal is Fourier-transformed.

しかし、θ1 、θ2 の全ての範囲を同音圧レベルでじ受信できないため、一意に最大周波数と最小周波数を決めることが困難となる。そこで、受信音波信号をフーリエ変換等の周波数解析し、中心周波数fc のパワースペクトルFcを基準とした差分値が最大となる周波数fmのパワースペクトルFmを求め、その差分値を特徴量df として用いて、風速Vwを次式のように算出した。

Fm− Fc df −1.69
df =─────── Vw=────────
fm−fc −0.173
However, since it is impossible to receive all the ranges of θ 1 and θ 2 at the same sound pressure level, it is difficult to uniquely determine the maximum frequency and the minimum frequency. Therefore, the received sound wave signal is subjected to frequency analysis such as Fourier transform, the power spectrum Fm of the frequency fm with the maximum difference value with respect to the power spectrum Fc of the center frequency fc is obtained, and the difference value is used as the feature value df. The wind speed Vw was calculated as follows:

Fm- Fc df -1.69
df = ─────── Vw = ─────────
fm-fc -0.173

したがって、本発明は、ドップラー効果を利用して風速測定することができ、上記のような被位置測定体のスピーカ等を含む音波送信体から所定の周波数の音波を送信して位置測定体のマイク等を含む音波受信体に受信させ、その音波を周波数解析してそのスペクトル成分の帯域幅より音波送信体から音波受信体間の広範囲の平均的な風速を測定することができる。スピーカ等の音波送信体とマイク等の音波受信体の安価な装置で上記したように風速測定することが可能で、別途デバイスを付加することなく、プロセッサで受信した音波を周波数解析して風速を知ることができ、安価な風速測定システムを構築することができる。   Therefore, the present invention can measure the wind speed by utilizing the Doppler effect, and transmits a sound wave having a predetermined frequency from the sound wave transmitter including the speaker of the position measurement body as described above to thereby measure the microphone of the position measurement body. The sound wave receiving body including the sound wave is received, the sound wave is subjected to frequency analysis, and the average wind speed in a wide range between the sound wave transmitting body and the sound wave receiving body can be measured from the bandwidth of the spectral component. It is possible to measure the wind speed with an inexpensive device such as a sound wave transmitter such as a speaker and a sound wave receiver such as a microphone as described above, and without adding a separate device, frequency analysis of the sound wave received by the processor An inexpensive wind speed measurement system can be constructed.

そしてまた、上記したようにして位置計測用の音波の出力の直後に風速測定用の音波を出力することで、位置計測用の音波が受けたほぼ同じ風の影響を測定することができ、位置計測用の音波の出力と風速測定用の音波を交互に出力することで、移動する被位置測定体1の位置を逐次測定していくことができる。なお、温度計を設けて音速を補償することもできる。   In addition, by outputting the sound wave for wind speed measurement immediately after the output of the sound wave for position measurement as described above, it is possible to measure the influence of almost the same wind received by the sound wave for position measurement. By alternately outputting the sound wave for measurement and the sound wave for wind speed measurement, the position of the moving position-measurement body 1 can be sequentially measured. A thermometer can be provided to compensate for the speed of sound.

このようなことからドップラー効果を確かめるために、実験を行った。図6に示しているようにスピーカ5とマイク9を1mの距離に設置し、扇風機を用いて、4.46m/s 、2.99m/s 、2.23m/s の風をスピーカ5側からマイク9方向に向かって発生させた。スピーカ5からは、周波数24KHz の音波を送信し、マイク9で受信した音波を周波数解析した。図6に受信した周波数成分を示す。図6より、原理通り風速が大きくなる程、受信音波の周波数幅が増大している。よって、ドップラー効果を利用して、周波数帯域幅から風速を上記した算出式から風速Vwを決定することができる。表1は、このようにして算出した風速Vwと既製品の風速計を用いて計測した風速を比較して示したもので、本発明のドップラー効果を利用して風速測定することが十分可能であることが実証できた。   Experiments were conducted to confirm the Doppler effect. As shown in FIG. 6, the speaker 5 and the microphone 9 are installed at a distance of 1 m, and 4.46 m / s, 2.99 m / s, 2.23 m / s of wind is directed from the speaker 5 side to the microphone 9 using a fan. It was generated toward. A sound wave having a frequency of 24 KHz was transmitted from the speaker 5, and the sound wave received by the microphone 9 was subjected to frequency analysis. FIG. 6 shows the received frequency components. From FIG. 6, the frequency width of the received sound wave increases as the wind speed increases in accordance with the principle. Therefore, by utilizing the Doppler effect, the wind speed Vw can be determined from the calculation formula described above for the wind speed from the frequency bandwidth. Table 1 shows a comparison between the wind speed Vw calculated in this way and the wind speed measured using an off-the-shelf anemometer, and it is sufficiently possible to measure the wind speed using the Doppler effect of the present invention. It was proved that there was.

表1 ドップラー効果を利用した風速測定と既製品の風速計による風速結果表

Figure 2013185856
Table 1 Wind speed measurement using the Doppler effect and wind speed results from an anemometer of a ready-made product
Figure 2013185856

また、スペクトル拡散音と周波数を24KHz に固定した一定周波数の音を交互にスピーカ5から放射し、屋内と屋外とで実験した。その結果、屋内における風速を変えたそれぞれのパターンのマイク9が受信した音の周波数とそのパワースペクトルの関係は、それぞれ図7、図8のものであった。これにより、風速は強くなるほど周波数の幅が広がっていることが分かる。図9は、ピークとなる24KHz からのパワースペクトルの差分が一番大きくなる点に注目した結果を示すもので、風速と差分の間に相関が見られる。   In addition, a spectrum spread sound and a constant frequency sound with a fixed frequency of 24 KHz were alternately emitted from the speaker 5 and experimented indoors and outdoors. As a result, the relationship between the frequency of the sound received by the microphone 9 of each pattern with different wind speeds in the room and the power spectrum thereof is that shown in FIGS. 7 and 8, respectively. Thereby, it turns out that the width of a frequency has spread, so that the wind speed becomes strong. FIG. 9 shows the result of paying attention to the point that the difference of the power spectrum from the peak of 24 KHz becomes the largest, and there is a correlation between the wind speed and the difference.

図10は、屋外実験における結果を示す。風向は、マイク9からスピーカ5に向かって吹いていた。上記のように屋内において相関関係が見られ、屋外でも風速と差分の間に相関関係が見られる。屋外では、風速計を同期のためにスピーカとマイクの上に置いて計測したため、実際の風速とずれが生じていたことが考えられるが、風速による音速変化が生じることが分かり、その補償を行うことは有効であると判断できる。   FIG. 10 shows the results of an outdoor experiment. The wind direction was blowing from the microphone 9 toward the speaker 5. As described above, a correlation is seen indoors, and a correlation is seen between wind speed and difference even outdoors. In the outdoors, the anemometer was placed on the speaker and microphone for synchronization, so it was considered that there was a deviation from the actual wind speed, but it was found that there was a change in sound speed due to the wind speed, and compensation is performed. It can be judged that this is effective.

なお、参考用に、暗騒音40dB(F)、出力音圧レベル80dB(F)、測定距離0.5、5、10、20,、0、40、50mとして実験を行った。パソコンによりスペクトル拡散音のM系列符号の音波、周波数24KHz の音波、同期信号を作成し、メディアプロセッサにより出力した。図1、図2で説明したように、スペクトル拡散音は、移動する被位置測定体1のオーディオアンプを通してスピーカにより出力される。同期信号は、無線デバイスに入力され、位置測定体2側へ送信して通知する。   For reference, the experiment was performed with a background noise of 40 dB (F), an output sound pressure level of 80 dB (F), and a measurement distance of 0.5, 5, 10, 20, 0, 40, and 50 m. The sound wave of the M series code of the spread spectrum sound, the sound wave of frequency 24KHz, and the synchronization signal were created by a personal computer and outputted by the media processor. As described in FIGS. 1 and 2, the spread spectrum sound is output from the speaker through the audio amplifier of the moving position-measurement body 1. The synchronization signal is input to the wireless device and transmitted to the position measurement body 2 side for notification.

位置測定体2では、無線デバイスで上記同期信号を受信して検出した後、プロセッサに同期信号を出力し、同期信号を認識するとマイク9から出力される音波信号をA/D変換する。そして、録音バッファに音波データが溜まると相関処理し、スピーカ5―マイク9間の距離を算出し、その結果を無線デバイスを介して被位置測定体1のパソコンに送信して表示する。距離取得間隔は350msである。   In the position measurement body 2, after receiving and detecting the synchronization signal by the wireless device, the synchronization signal is output to the processor, and when the synchronization signal is recognized, the sound wave signal output from the microphone 9 is A / D converted. When sound wave data accumulates in the recording buffer, correlation processing is performed, the distance between the speaker 5 and the microphone 9 is calculated, and the result is transmitted to the personal computer of the position measuring body 1 via the wireless device and displayed. The distance acquisition interval is 350 ms.

その結果を図11に示す。□は実測測定誤差、◇は風速のデータを用いて補償したときの測定誤差である。□は20m以降の誤差は線形に悪くなる。これは、20〜50mの間で風が0.3m/s程度マイクからスピーカ方向に吹いていたためである。この風速を音速に足し合せて再計算した結果は◇のプロットである。風の影響を考慮すれば、50m以内でも誤差20mm以内であり、風による音速変化の補償によって、かなりの精度で位置測定することが可能である。   The result is shown in FIG. □ is an actual measurement error, and ◇ is a measurement error when compensated by using wind speed data. For □, the error after 20m becomes linearly worse. This is because the wind was blowing about 0.3 m / s from the microphone toward the speaker between 20 and 50 m. The result of recalculation by adding this wind speed to the sound speed is a plot of ◇. If the influence of wind is taken into consideration, the error is within 20 mm even within 50 m, and the position can be measured with considerable accuracy by compensating for the change in sound velocity due to the wind.

このことは、上記したドップラー効果を利用した風速の測定結果に基づき音速変化の補償を行う位置測定方法に適用できるものであり、特に被位置測定体から送信される位置測定用の音波がスペクトル拡散音のM系列符号の音波であって、当該音波を受信した位置測定体が行う距離算出方法が当該音波のM系列符号について相関処理を行って同期処理することによって、スペクトル拡散音としてM系列符号を介して優れた自己相関特性と雑音耐性を利用して高精度に位置測定できるものである。   This can be applied to a position measurement method that compensates for a change in sound speed based on the measurement result of wind speed using the Doppler effect described above, and in particular, a sound wave for position measurement transmitted from a position measurement object is spread spectrum. A sound wave of an M-sequence code of a sound, and a distance calculation method performed by a position measurement body that has received the sound wave performs a correlation process on the M-sequence code of the sound wave and performs a synchronization process, thereby obtaining an M-sequence code as a spread spectrum sound. The position can be measured with high accuracy by utilizing the excellent autocorrelation characteristics and noise resistance.

そして、上記のように無線ネットワークの構築によって、位置測定体の追加や除去が容易で、かつその配置も自由に行なうことができ、さらに障害物にも位置測定体を所定位置に適宜数設置して対処することができる。   As described above, the construction of the wireless network makes it easy to add and remove position measuring bodies, and can freely place them. In addition, an appropriate number of position measuring bodies are installed at predetermined positions on obstacles. Can be dealt with.

なお、上記したように位置測定体は1次元では1個の位置測定体でよく、2次元では2個の位置測定体でも測定可能である。また、異なるM系列符号の音波を利用することによって、同時に2以上の移動する被位置測定体の位置測定を行うことができる。そして、上記のようにして被位置測定体を数十m以上離れて移動しても、数cm位の誤差で精度よく位置測定することができる。   As described above, the position measuring body may be one position measuring body in one dimension, and two position measuring bodies can be measured in two dimensions. In addition, by using sound waves of different M-sequence codes, it is possible to perform position measurement of two or more moving position measurement objects at the same time. And even if the position-measuring object is moved several tens of meters or more as described above, the position can be accurately measured with an error of several centimeters.

本発明は、精度よく位置測定や風速測定できて、農業分野での畦畔や中山間地の棚田や段畑でのロボット等による除草処理、ドーム、工場や屋外での物流、搬送の自走台車走行や清掃ロボット、空港等での自走台車配送や清掃ロボット、除草ロボット、その他の航法システム、屋内、屋外での風循環のモニタリング、気象データ観測、道路通行風速情報システムなどに広く利用することができる。   The present invention enables accurate position measurement and wind speed measurement, weeding treatment by robots, etc. on terraced rice fields and terraced fields and terraced fields in agricultural fields, dome, logistics in the factory and outdoors, transportation self-propelled Widely used for bogie running and cleaning robots, self-running cart delivery and cleaning robots at airports, weeding robots, other navigation systems, indoor and outdoor wind circulation monitoring, meteorological data observation, road traffic wind speed information system, etc. be able to.

1…被位置測定体 2…位置測定体 3…プロセッサ 5…スピーカ 6,7…無線デバイス 8…プロセッサ 9…マイク       DESCRIPTION OF SYMBOLS 1 ... Position measuring body 2 ... Position measuring body 3 ... Processor 5 ... Speaker 6, 7 ... Wireless device 8 ... Processor 9 ... Microphone

Claims (5)

ドップラー効果を利用した風速の測定結果に基づき音速変化の補償を行う位置測定方法であって、被位置測定体から所定の周波数の音波を送信して位置測定体に受信させ、その受信時刻と送信時刻から上記音波の伝搬時間を算出するとともに、ドップラー効果に基づく風による音速変化の補償を行って位置測定体からの被位置測定体の距離を算出して位置測定することを特徴とするドップラー効果を利用した位置測定方法。   A position measurement method that compensates for changes in sound speed based on wind speed measurement results using the Doppler effect, and transmits a sound wave of a predetermined frequency from a position measurement body to be received by the position measurement body, and its reception time and transmission The Doppler effect is characterized in that the propagation time of the sound wave is calculated from the time, and the distance from the position measurement body is calculated and the position is measured by compensating for the change in sound velocity due to the wind based on the Doppler effect. Position measurement method using 移動する被位置測定体から位置測定用の音波と風速補償用の一定の周波数の音波を交互にスピーカから送信し、位置測定体のマイクで受信して被位置測定体の距離を逐次算出して位置測定する請求項1に記載のドップラー効果を利用した位置測定方法。   A sound wave for position measurement and a sound wave with a constant frequency for wind speed compensation are alternately transmitted from a speaker from a moving position measurement object, received by a microphone of the position measurement object, and the distance of the position measurement object is sequentially calculated. The position measuring method using the Doppler effect according to claim 1, wherein the position is measured. 被位置測定体から送信される位置測定用の音波がスペクトル拡散音のM系列符号の音波であって、当該音波を受信した位置測定体が行う距離算出方法が当該音波のM系列符号について相関処理を行って同期処理するものである請求項1または2に記載のドップラー効果を利用した位置測定方法。   The position measurement sound wave transmitted from the position measurement object is an M-sequence code sound wave of spread spectrum sound, and the distance calculation method performed by the position measurement body that has received the sound wave correlates the M-sequence code of the sound wave. The position measurement method using the Doppler effect according to claim 1 or 2, wherein the synchronization processing is performed by performing the steps. 位置測定体を1個以上とし、移動する被位置測定体との距離を数十m以上離した状態となる位置に設置した請求項1ないし3のいずれかに記載のドップラー効果を利用した位置測定方法。   The position measurement using the Doppler effect according to any one of claims 1 to 3, wherein at least one position measurement body is provided, and the position measurement body is installed at a position where the distance from the moving position measurement body is several tens of meters or more. Method. 被位置測定体を含む音波送信体から所定の周波数の音波を送信して位置測定体を含む音波受信体に受信させ、その音波を周波数解析してそのスペクトル成分の帯域幅より音波送信体から音波受信体間の風速を測定することを特徴とするドップラー効果を利用した風速測定方法。   A sound wave having a predetermined frequency is transmitted from a sound wave transmitting body including a position measuring body and received by a sound wave receiving body including a position measuring body, and the sound wave is subjected to frequency analysis, and the sound wave is transmitted from the sound wave transmitting body based on the bandwidth of the spectral component. A wind speed measuring method using the Doppler effect, characterized by measuring the wind speed between receivers.
JP2012049081A 2012-03-06 2012-03-06 Methods for measuring position and wind speed utilizing doppler effect Ceased JP2013185856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012049081A JP2013185856A (en) 2012-03-06 2012-03-06 Methods for measuring position and wind speed utilizing doppler effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012049081A JP2013185856A (en) 2012-03-06 2012-03-06 Methods for measuring position and wind speed utilizing doppler effect

Publications (1)

Publication Number Publication Date
JP2013185856A true JP2013185856A (en) 2013-09-19

Family

ID=49387421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012049081A Ceased JP2013185856A (en) 2012-03-06 2012-03-06 Methods for measuring position and wind speed utilizing doppler effect

Country Status (1)

Country Link
JP (1) JP2013185856A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014145654A (en) * 2013-01-29 2014-08-14 Honda Motor Co Ltd Position determination method and position determination device
CN106908765A (en) * 2017-02-27 2017-06-30 广东小天才科技有限公司 Spatial positioning method and system based on ultrasonic signal and VR (virtual reality) equipment
CN112074758A (en) * 2018-05-02 2020-12-11 罗伯特·博世有限公司 Method and device for identifying road conditions

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189562A (en) * 1982-04-29 1983-11-05 Mitsubishi Electric Corp Method and apparatus for detecting moving speed of fluid in accordance with extraction of doppler frequency
JPS59224582A (en) * 1983-06-02 1984-12-17 Mitsubishi Electric Corp Distance measuring method
JPH02102477A (en) * 1988-10-08 1990-04-16 Honda Motor Co Ltd Ultrasonic distance measuring instrument
JPH05186189A (en) * 1992-01-08 1993-07-27 Hitachi Cable Ltd Device for detecting approach of long-size body to obstacle
JPH0759774A (en) * 1993-08-09 1995-03-07 Hewlett Packard Co <Hp> Fluid flow detecting method
JPH11326513A (en) * 1998-05-18 1999-11-26 Furuno Electric Co Ltd Distance measuring apparatus
JP2011038799A (en) * 2009-08-06 2011-02-24 Honda Motor Co Ltd Position detection device, position detection method and program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189562A (en) * 1982-04-29 1983-11-05 Mitsubishi Electric Corp Method and apparatus for detecting moving speed of fluid in accordance with extraction of doppler frequency
JPS59224582A (en) * 1983-06-02 1984-12-17 Mitsubishi Electric Corp Distance measuring method
JPH02102477A (en) * 1988-10-08 1990-04-16 Honda Motor Co Ltd Ultrasonic distance measuring instrument
JPH05186189A (en) * 1992-01-08 1993-07-27 Hitachi Cable Ltd Device for detecting approach of long-size body to obstacle
JPH0759774A (en) * 1993-08-09 1995-03-07 Hewlett Packard Co <Hp> Fluid flow detecting method
JPH11326513A (en) * 1998-05-18 1999-11-26 Furuno Electric Co Ltd Distance measuring apparatus
JP2011038799A (en) * 2009-08-06 2011-02-24 Honda Motor Co Ltd Position detection device, position detection method and program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014145654A (en) * 2013-01-29 2014-08-14 Honda Motor Co Ltd Position determination method and position determination device
CN106908765A (en) * 2017-02-27 2017-06-30 广东小天才科技有限公司 Spatial positioning method and system based on ultrasonic signal and VR (virtual reality) equipment
CN106908765B (en) * 2017-02-27 2019-07-09 广东小天才科技有限公司 Spatial positioning method and system based on ultrasonic signal and VR (virtual reality) equipment
CN112074758A (en) * 2018-05-02 2020-12-11 罗伯特·博世有限公司 Method and device for identifying road conditions

Similar Documents

Publication Publication Date Title
RU112446U1 (en) PASSIVE RADIOELECTRONIC COMPLEX FOR ONE-POINT DETERMINATION OF HORIZONTAL COORDINATES AND OBJECTS OF MOTION OF THE OBJECT BY THE LINE-FILTRATION CALMAN-BUSSI METHOD
CN105044676A (en) Energy-based sound source localization method
CN101907678A (en) Cable fault test system and determining method of fault point
Mukhopadhyay et al. Novel RSSI evaluation models for accurate indoor localization with sensor networks
CN102508204A (en) Indoor noise source locating method based on beam forming and transfer path analysis
KR101374589B1 (en) Method of tracking position and apparatus performing the same
Huang et al. A sound-based positioning system with centimeter accuracy for mobile robots in a greenhouse using frequency shift compensation
WO2017124678A1 (en) Indoor positioning method based on propagation of sound wave in solid body
RU2557808C1 (en) Method of determining inclined range to moving target using passive monostatic direction-finder
JP2013185856A (en) Methods for measuring position and wind speed utilizing doppler effect
Huang et al. Position and orientation measurement system using spread spectrum sound for greenhouse robots
Hammer et al. An acoustic position estimation prototype system for underground mining safety
RU2649073C1 (en) Method for determining coordinates of the underwater object by the hydroacoustic system of underwater navigation with an alignment beacon
JP2017142180A (en) Method and system for estimating position
Chen et al. TDOA/FDOA mobile target localization and tracking with adaptive extended Kalman filter
KR20150028106A (en) Indoor positioning based on inaudible sound&#39;s droppler effects
RU2631906C1 (en) Device for determining location of signal source
RU2545068C1 (en) Measurement method of changes of heading angle of movement of source of sounding signals
KR20160050119A (en) Appratus and method for measuring velocity and direction of wind using ultrasonic
Finn et al. The feasibility of unmanned aerial vehicle-based acoustic atmospheric tomography
Shiigi et al. Temperature compensation method using base-station for spread spectrum sound-based positioning system in green house
Ardakani et al. A hybrid adaptive approach to improve position tracking measurements
JP5593062B2 (en) Measuring device, measuring system, and measuring method
CN108332749A (en) A kind of interior dynamic tracing localization method
Gao et al. Underwater acoustic positioning system based on propagation loss and sensor network

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160419

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20160830