JP2013151742A - High toughness and high tensile strength steel and method for producing the same - Google Patents
High toughness and high tensile strength steel and method for producing the same Download PDFInfo
- Publication number
- JP2013151742A JP2013151742A JP2012273142A JP2012273142A JP2013151742A JP 2013151742 A JP2013151742 A JP 2013151742A JP 2012273142 A JP2012273142 A JP 2012273142A JP 2012273142 A JP2012273142 A JP 2012273142A JP 2013151742 A JP2013151742 A JP 2013151742A
- Authority
- JP
- Japan
- Prior art keywords
- toughness
- less
- strength
- affected zone
- base material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 70
- 239000010959 steel Substances 0.000 title claims abstract description 70
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 239000000463 material Substances 0.000 claims abstract description 47
- 238000003466 welding Methods 0.000 claims abstract description 31
- 239000000126 substance Substances 0.000 claims abstract description 20
- 238000010791 quenching Methods 0.000 claims abstract description 14
- 230000000171 quenching effect Effects 0.000 claims abstract description 13
- 238000005496 tempering Methods 0.000 claims abstract description 8
- 230000001186 cumulative effect Effects 0.000 claims abstract description 6
- 239000012535 impurity Substances 0.000 claims abstract description 3
- 229910000734 martensite Inorganic materials 0.000 claims description 24
- 238000010438 heat treatment Methods 0.000 claims description 18
- 238000001816 cooling Methods 0.000 claims description 11
- 239000010953 base metal Substances 0.000 claims description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 229910052720 vanadium Inorganic materials 0.000 claims description 7
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 238000005096 rolling process Methods 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 238000005098 hot rolling Methods 0.000 abstract description 9
- 229910052742 iron Inorganic materials 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 14
- 229910001566 austenite Inorganic materials 0.000 description 13
- 230000001965 increasing effect Effects 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 229910052761 rare earth metal Inorganic materials 0.000 description 6
- 229910052804 chromium Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 229910000859 α-Fe Inorganic materials 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 238000003303 reheating Methods 0.000 description 4
- 229910001563 bainite Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910000746 Structural steel Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
本発明は、船舶や海洋構造物、圧力容器、ペンストックなど鋼製構造物に用いられる高張力鋼板およびその製造方法に関し、特に降伏強度が630MPa以上で、母材の強度、靱性に優れるだけでなく、多層溶接時の溶接熱影響部の靱性に優れる高靭性高張力鋼板およびその製造方法に関わる。 The present invention relates to a high-strength steel plate used for steel structures such as ships, marine structures, pressure vessels, and penstocks, and a method for producing the same. In particular, the present invention relates to a high-toughness, high-tensile steel sheet excellent in the toughness of the weld heat-affected zone during multi-layer welding and a method for producing the same.
船舶や海洋構造物、圧力容器に用いられる鋼材は、溶接により所望の形状の構造物に仕上げられる。これらの鋼では、構造物の安全性を確保するために、母材靭性だけでなく、溶接熱影響部の靭性にも優れることが要求される。
上記鋼について、板厚が厚い鋼板の溶接は多層溶接により施工されるが、溶接熱影響部では、複雑な熱履歴を受けるために局所脆化域が発生しやすく、特に、ボンド部およびフェライトとオーステナイトの2相域加熱部において靭性の著しい低下が問題となる。このような領域では、島状マルテンサイトの生成を伴う上部ベイナイト組織を形成し、靭性が低下するためである。
Steel materials used in ships, offshore structures, and pressure vessels are finished into structures of a desired shape by welding. These steels are required to be excellent not only in the base material toughness but also in the toughness of the weld heat affected zone in order to ensure the safety of the structure.
For the above steel, welding of thick steel plates is performed by multi-layer welding, but in the heat affected zone, it is easy to generate a local embrittlement region because it receives a complex heat history. A significant decrease in toughness is a problem in the two-phase region heating section of austenite. This is because, in such a region, an upper bainite structure accompanied with the generation of island martensite is formed, and the toughness is lowered.
上記問題への対策として、特許文献1にはTi等の酸化物を鋼中に微細分散させボンド部のオーステナイト粒の粗大化を防止することでフェライト粒を微細化し、溶接熱影響部の靭性を向上させる技術が開示されている。しかし、この技術は、フェライトを母相とする比較的低強度の鋼材を対象にしており、より高強度材の溶接熱影響部はフェライトを含まない組織となるために、フェライトの微細化による溶接熱影響部の靭性の向上効果は得られにくい。 As a countermeasure to the above problem, Patent Document 1 discloses that the oxides such as Ti are finely dispersed in the steel to prevent coarsening of the austenite grains in the bond portion, thereby finely magnifying the ferrite grains and improving the toughness of the weld heat affected zone. Techniques for improving are disclosed. However, this technology is intended for relatively low-strength steel materials with ferrite as the parent phase, and the weld heat-affected zone of higher-strength materials has a structure that does not contain ferrite. The effect of improving the toughness of the heat affected zone is difficult to obtain.
また、2相域加熱部、つまり最初の溶接時に溶融点近傍まで加熱された領域が、後続の溶接による再加熱によりフェライトとオーステナイトの2相域になる領域が最も脆化する。これは、後続の再加熱により変態したオーステナイト領域に炭素が濃化し、この部分が冷却時に島状マルテンサイト生成を伴う上部ベイナイト組織を形成し、靭性を著しく劣化させるためである。2相域加熱部などに代表される溶接熱影響部の対策として、特許文献2には、低C化および低Si化することで島状マルテンサイトの生成を抑制し、さらにCuを添加することで母材強度を確保する技術が開示されている。 Further, the two-phase region heating part, that is, the region where the region heated to the vicinity of the melting point at the first welding becomes the two-phase region of ferrite and austenite by reheating by the subsequent welding is most brittle. This is because carbon concentrates in the austenite region transformed by the subsequent reheating, and this portion forms an upper bainite structure accompanied by island-like martensite formation during cooling, and remarkably deteriorates toughness. As a countermeasure against a welding heat affected zone represented by a two-phase zone heating zone, Patent Document 2 describes that island martensite generation is suppressed by lowering C and lowering Si, and Cu is added. Discloses a technique for ensuring the strength of a base material.
また、特許文献3では、低C化して溶接熱影響部靭性を向上しCuにより強度を高める技術が開示されている。この先行技術は時効処理によるCuの析出を利用して強度を高めるものであるが、多量のCuを添加するために熱間延性が低下し、生産性を著しく阻害する。特許文献4には実施例で板厚45mm以下の鋼板についてPcm≦0.23の条件を満たし、降伏強度が690MPa以上の鋼板について記載されているが、本発明の様にCを低減し厚肉化を行うためには、Pcm≦0.23と成分が低く強度の確保が難しい。特許文献5に開示されている技術は熱間圧延前に長時間の熱処理を行う必要があり、製造性が低下する。 Patent Document 3 discloses a technique for reducing the C and improving the weld heat affected zone toughness and increasing the strength with Cu. This prior art uses Cu precipitation due to aging treatment to increase the strength, but since a large amount of Cu is added, hot ductility is lowered and productivity is remarkably hindered. Patent Document 4 describes a steel sheet having a thickness of 690 MPa or more that satisfies the condition of Pcm ≦ 0.23 with respect to a steel sheet having a thickness of 45 mm or less in the examples. In order to achieve this, it is difficult to ensure the strength because the component is low as Pcm ≦ 0.23. The technique disclosed in Patent Document 5 requires heat treatment for a long time before hot rolling, resulting in a decrease in manufacturability.
さらに、従来技術では次に挙げる、いくつかの解決すべき問題点が残されている。例えば、Ti酸化物を利用する技術では、鋼中への酸化物の均一な微細分散が難しいという問題点がある。さらに、構造物の大型化に伴い、使用される鋼材の更なる高強度化、厚肉化が求められている。高強度化、厚肉化のためには特許文献2および3の技術とは異なり、合金元素の多量添加が有効である。しかし合金元素の添加は、溶接熱影響部の靭性を低下させる問題がある。特許文献4の技術では、厚板分野では比較的板厚の薄いものを使用する鋼管に適用可能な技術であり、溶接時に生成した島状マルテンサイトを微細化するために最高1000℃までの再加熱が必要となるなど、厚肉かつ生産性の高い鋼材が必要とされる海洋構造物などの用途には適用できない。 Furthermore, in the prior art, the following problems to be solved remain. For example, in the technique using Ti oxide, there is a problem that uniform fine dispersion of oxide in steel is difficult. Furthermore, with the increase in the size of the structure, the steel material used is required to have higher strength and thickness. Unlike the techniques of Patent Documents 2 and 3, it is effective to add a large amount of alloy elements to increase the strength and thickness. However, the addition of alloy elements has a problem of lowering the toughness of the weld heat affected zone. The technology of Patent Document 4 is a technology applicable to steel pipes that use a relatively thin plate in the thick plate field, and it is possible to re-use up to 1000 ° C in order to refine island martensite generated during welding. It cannot be applied to applications such as offshore structures that require thick and highly productive steel materials such as heating.
そこで、本発明の目的は、従来未解決の上記の問題点を解決し、合金元素の添加量を増やさざるを得ない厚肉の高強度鋼板においても、母材の強度、靱性に優れるとともに、溶接熱影響部の靭性にも優れる、板厚が75mm以上の厚肉の高張力鋼板とその有利な製造方法を提供することにある。 Therefore, the object of the present invention is to solve the above-mentioned problems that have not been solved so far, even in a thick high-strength steel plate that has to increase the amount of addition of alloy elements, and excellent in the strength and toughness of the base material, An object of the present invention is to provide a high-strength high-strength steel plate having a thickness of 75 mm or more, which is excellent in the toughness of the weld heat affected zone, and an advantageous production method thereof.
発明者らは、合金元素を添加して強度を確保した厚肉高張力鋼板(母材)の靱性を向上するとともに、該厚肉高張力鋼板を多層溶接したときに形成される溶接熱影響部(HAZ)の靭性を改善する方法について、種々の比較検討を行った。
その結果、
1)降伏強度が630MPa以上の母材の靱性には鋼中の酸化物量の影響が大きい
こと
2)多層溶接時の溶接熱影響部の靱性劣化は、2相域加熱部に形成される脆化組織
の生成に起因すること
を見いだした。
The inventors have improved the toughness of a thick high-strength steel sheet (base material) to which strength is ensured by adding an alloy element, and a weld heat-affected zone formed when the thick high-strength steel sheet is multilayer-welded. Various comparative studies were conducted on methods for improving the toughness of (HAZ).
as a result,
1) The toughness of the base metal with a yield strength of 630 MPa or more is greatly affected by the amount of oxide in the steel. 2) The toughness deterioration of the weld heat affected zone during multi-layer welding is caused by embrittlement formed in the two-phase zone heating zone. We found that this was due to the generation of the organization.
上記1)の鋼中の酸化物量を低減するためには、鋼中酸素量を低減することが有効であり、鋼中酸素量を0.0030質量%以下にすると母材の靱性が大幅に向上することが明らかになった。 In order to reduce the amount of oxide in the steel of 1), it is effective to reduce the amount of oxygen in the steel. When the amount of oxygen in the steel is 0.0030% by mass or less, the toughness of the base material is greatly improved. It became clear to do.
また、上記2)の多層溶接時の溶接熱影響部における脆化組織の靱性を改善する方法について鋭意検討した結果、従来技術のように単にCを低減しただけでは不十分であり、さらに、2相域加熱部に生成する個々の島状マルテンサイトの大きさ(面積)を小さくしてやる必要があること、そして、その達成手段としては、Mn、Ni、Cr、Mo、Vを適正量添加し、Cを低減してやることが有効であることを見いだした。 In addition, as a result of intensive studies on the method of improving the toughness of the brittle structure in the weld heat affected zone during multi-layer welding in 2) above, it is not sufficient to simply reduce C as in the prior art. It is necessary to reduce the size (area) of each island-like martensite generated in the phase zone heating section, and as an achievement means, Mn, Ni, Cr, Mo, V are added in appropriate amounts, We found that reducing C is effective.
本発明者らは、上記の知見に基づき本発明を完成させた。
すなわち、本発明の要旨は以下の[1]〜[5]のとおりである。
[1]質量%で、C:0.005〜0.05%、Si:0.05〜0.3%、Mn:0.5〜5%、P:0.015%以下、S:0.005%以下、Cr:3%以下、Ni:5%以下、Ti:0.005〜0.02%、Al:0.02〜0.04%、N:0.007%以下、B:0.0003〜0.003%、O:0.0005〜0.0030%を下記の(1)式および(2)式で定義されるそれぞれについてCeqIIW≧0.65%、Pc≧5.5の関係を満足するように含有し、残部がFeおよび不可避的不純物からなる化学成分を有し、多層溶接時の溶接熱影響部に形成される個々の島状マルテンサイトの平均面積が3μm2以下であることを特徴とする、母材の強度、靱性および多層溶接時の溶接熱影響部の靱性に優れる厚肉高張力鋼板。
記
CeqIIW=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15(%)・・・(1)
Pc=2Mn+3Ni+Cr+Mo+V−12.5×C(%)・・・(2)
〔式中の各元素記号はそれぞれの元素の含有量(質量%)を示す。〕
[2]前記化学成分が、さらに、質量%で、Cu:0.2%を超えかつ0.5%未満、Mo:1%以下、V:0.2%以下、Nb:0.1%以下の中から少なくとも1種または2種以上を含有することを特徴とする、[1]に記載の母材の強度、靱性および多層溶接時の溶接熱影響部の靱性に優れる厚肉高張力鋼板。
[3]前記化学成分が、さらに、質量%で、Ca:0.0005〜0.003%、REM:0.0003〜0.003%の中から少なくとも1種または2種を含有することを特徴とする、[1]または[2]に記載の母材の強度、靱性および多層溶接時の溶接熱影響部の靱性に優れる厚肉高張力鋼板。
[4][1]〜[3]のいずれかに記載の化学成分を有するスラブを、Ac3点〜1200℃に加熱し、累積圧下率が50%以上となるように熱間圧延を行い、次いでAr3点以上の温度から、板厚中心部が350℃以下になるまで直接急冷し、その後、450℃〜650℃の温度で焼戻すことを特徴とする、母材の強度、靱性および多層溶接時の溶接熱影響部の靱性に優れる厚肉高張力鋼板の製造方法。
[5][1]〜[3]のいずれかに記載の化学成分を有するスラブを、Ac3点〜1200℃に加熱し、累積圧下率が50%以上となるように熱間圧延を行った後放冷し、次いで再度Ac3点〜1050℃に加熱後、次いでAr3点以上の温度から、板厚中心部が350℃以下になるまで急冷し、その後450℃〜650℃で焼戻すことを特徴とする、母材の強度、靱性および多層溶接時の溶接熱影響部の靱性に優れる厚肉高張力鋼板の製造方法。
Based on the above findings, the present inventors have completed the present invention.
That is, the gist of the present invention is as follows [1] to [5].
[1] By mass%, C: 0.005 to 0.05%, Si: 0.05 to 0.3%, Mn: 0.5 to 5%, P: 0.015% or less, S: 0.00. 005% or less, Cr: 3% or less, Ni: 5% or less, Ti: 0.005-0.02%, Al: 0.02-0.04%, N: 0.007% or less, B: 0.00. 0003-0.003%, O: 0.0005-0.0030% for each defined by the following formulas (1) and (2): Ceq IIW ≧ 0.65%, Pc ≧ 5.5 And the balance has a chemical component consisting of Fe and inevitable impurities, and the average area of individual island martensite formed in the weld heat affected zone during multilayer welding is 3 μm 2 or less Thickness and toughness excellent in the strength and toughness of the base metal and the toughness of the heat affected zone during multi-layer welding Force steel plate.
Ceq IIW = C + Mn / 6 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15 (%) (1)
Pc = 2Mn + 3Ni + Cr + Mo + V-12.5 × C (%) (2)
[Each element symbol in a formula shows content (mass%) of each element. ]
[2] The chemical component further includes, in mass%, Cu: more than 0.2% and less than 0.5%, Mo: 1% or less, V: 0.2% or less, Nb: 0.1% or less A thick high-tensile steel sheet excellent in the strength and toughness of the base material described in [1] and the toughness of the weld heat-affected zone during multi-layer welding.
[3] The chemical component further contains at least one or two of Ca: 0.0005 to 0.003% and REM: 0.0003 to 0.003% by mass%. A thick high-tensile steel sheet excellent in the strength and toughness of the base material according to [1] or [2] and the toughness of the weld heat affected zone during multilayer welding.
[4] The slab having the chemical component according to any one of [1] to [3] is heated to Ac 3 points to 1200 ° C., and hot-rolled so that the cumulative reduction ratio is 50% or more, Next, the strength of the base material, the toughness and the multilayer, characterized in that it is directly quenched from the temperature of Ar 3 or higher until the center of the plate thickness is 350 ° C. or lower and then tempered at a temperature of 450 ° C. to 650 ° C. A method for producing a thick high-strength steel sheet that is excellent in the toughness of the heat-affected zone during welding.
[5] The slab having the chemical component according to any one of [1] to [3] was heated to Ac 3 point to 1200 ° C. and hot-rolled so that the cumulative reduction ratio was 50% or more. After standing to cool, then heating again to Ac 3 point to 1050 ° C, then rapidly cooling from Ar 3 point or higher until the center of thickness is 350 ° C or lower, then tempering at 450 ° C to 650 ° C A method for producing a thick-walled, high-tensile steel sheet having excellent strength and toughness of a base material and toughness of a weld heat-affected zone during multilayer welding.
本発明を用いることで、母材の引張強度が720MPa以上でかつ降伏強度が630MPa以上の高強度を有するとともに、母材の靭性にも優れ、さらに、多層溶接時の溶接熱影響部の靭性にも優れる、板厚が75mm以上の厚肉の高張力鋼板とその有利な製造方法とを提供することができる。 By using the present invention, the base material has a high tensile strength of 720 MPa or more and a yield strength of 630 MPa or more, excellent toughness of the base material, and further to the toughness of the heat affected zone during multi-layer welding. In addition, it is possible to provide a thick high-tensile steel plate having a thickness of 75 mm or more and an advantageous manufacturing method thereof.
以下、本発明について詳細に説明する。
はじめに、本発明の鋼の化学成分の限定理由を説明する。なお、化学成分における各元素の含有量は全て、質量%である。
Hereinafter, the present invention will be described in detail.
First, the reasons for limiting the chemical components of the steel of the present invention will be described. In addition, all content of each element in a chemical component is the mass%.
・C:0.005〜0.05%
Cは、構造用鋼に求められる強度を得るために必要不可欠な元素であるが、多量に添加すると、溶接熱影響部に生成する島状マルテンサイトの生成量が多くなり、さらに島状マルテンサイト中のC濃度を上昇させ、島状マルテンサイトの硬度を上昇させて靭性を低下させるので上限を0.05%とした。また、0.005%より添加量が少ないと、十分な強度が得られず、合金元素の大量添加が必要になり製造コストが高くなるので、下限を0.005%とする。好ましくは0.01%〜0.05%である。
・ C: 0.005 to 0.05%
C is an indispensable element for obtaining the strength required for structural steel, but when added in a large amount, the amount of island martensite generated in the weld heat affected zone increases, and island martensite further increases. The upper limit was set to 0.05% because the C concentration in the steel was increased to increase the hardness of the island martensite and reduce the toughness. On the other hand, if the addition amount is less than 0.005%, sufficient strength cannot be obtained, and a large amount of alloying element is required, resulting in an increase in production cost. Therefore, the lower limit is made 0.005%. Preferably, it is 0.01% to 0.05%.
・Si:0.05〜0.3%
Siは脱酸剤として作用し、本発明では適度な脱酸を行うために0.05%以上添加する必要があるが、0.3%を超えて含有すると、母材靭性が著しく低下するとともに、溶接熱影響部において島状マルテンサイトの生成を助長し、溶接熱影響部靭性が顕著に低下する。このため、Siの範囲を0.05%〜0.3%とした。
・ Si: 0.05-0.3%
Si acts as a deoxidizer, and in the present invention, it is necessary to add 0.05% or more in order to carry out moderate deoxidation. However, if it exceeds 0.3%, the toughness of the base material is remarkably lowered. The formation of island martensite is promoted in the weld heat affected zone, and the weld heat affected zone toughness is significantly reduced. For this reason, the range of Si was made into 0.05%-0.3%.
・Mn:0.5〜5%
Mnは母材強度を確保する観点から0.5%以上添加する必要がある。一方5%より多く添加すると、過剰に焼入性を高め、溶接熱影響部の靭性を著しく低下させることから、5%以下とする必要がある。
Mn: 0.5-5%
Mn needs to be added in an amount of 0.5% or more from the viewpoint of securing the strength of the base material. On the other hand, if it is added more than 5%, the hardenability is excessively increased and the toughness of the weld heat affected zone is remarkably lowered, so it is necessary to make it 5% or less.
・P:0.015%以下
Pは、0.015%を超えて含有すると、母材および溶接熱影響部の靭性を著しく低下させるため0.015%以下に制限する。
・S:0.005%以下
Sは、0.005%を超えて含有すると、母材および溶接熱影響部の靭性を顕著に低下させるため、0.005%以下とする。
-P: 0.015% or less When P is contained exceeding 0.015%, the toughness of the base metal and the weld heat affected zone is remarkably lowered, so that it is limited to 0.015% or less.
S: 0.005% or less If S exceeds 0.005%, the toughness of the base metal and the weld heat affected zone is significantly reduced, so the content is made 0.005% or less.
・Cr:3%以下
Crは、母材の高強度化に有効な元素であるが、多量に添加すると靭性を低下させるので、3%以下とする。好ましくは、0.1%〜2.7%である。
・Ni:5%以下
Niは、鋼の強度および溶接熱影響部の靭性を向上させる有益な元素である。しかし、他の合金元素に比べ高価であるため上限を5%とする。好ましくは0.8〜5%である。
-Cr: 3% or less Cr is an element effective for increasing the strength of the base material, but if added in a large amount, the toughness is reduced, so 3% or less. Preferably, it is 0.1% to 2.7%.
Ni: 5% or less Ni is a beneficial element that improves the strength of the steel and the toughness of the weld heat affected zone. However, since it is more expensive than other alloy elements, the upper limit is made 5%. Preferably it is 0.8 to 5%.
・Ti:0.005〜0.02%
Tiは鋼中でTi窒化物を形成して固溶窒素量を低下させることでBNの析出を抑制し、鋼中にBを十分に固溶させて焼入性を確保することができる。さらに、Ti窒化物はオーステナイト温度域でも安定な析出物であり、溶接熱影響部のオーステナイトの粗大化を効果的に抑制することができるので、Tiを0.005%以上添加する必要がある。一方、0.02%より多く含有すると、Ti窒化物が粗大化し母材および溶接熱影響部の靭性を低下させるので0.02%以下に制限する必要がある。
Ti: 0.005-0.02%
Ti forms Ti nitride in steel and reduces the amount of dissolved nitrogen, thereby suppressing precipitation of BN and sufficiently solidifying B in steel to ensure hardenability. Furthermore, Ti nitride is a stable precipitate even in the austenite temperature range, and it is possible to effectively suppress the coarsening of austenite in the weld heat affected zone. Therefore, it is necessary to add 0.005% or more of Ti. On the other hand, if the content is more than 0.02%, Ti nitride becomes coarse and lowers the toughness of the base metal and the weld heat affected zone, so it is necessary to limit it to 0.02% or less.
・Al:0.02%〜0.04%
Alは溶鋼を十分に脱酸するために、0.02%以上含有する必要がある。一方、0.04%より多く含有すると、母材中に固溶するAl量が多くなり、母材靭性を低下させるので0.04%以下に制限する必要がある。
Al: 0.02% to 0.04%
Al needs to contain 0.02% or more in order to fully deoxidize molten steel. On the other hand, when the content is more than 0.04%, the amount of Al dissolved in the base material increases, and the base material toughness is lowered. Therefore, it is necessary to limit the content to 0.04% or less.
・N:0.007%以下
Nは、母材中に固溶すると著しく母材靭性を低下させ、さらに溶接熱影響部においても粗大な炭窒化物を形成し靭性を低下させるので、0.007%以下に制限する必要がある。
N: 0.007% or less N, when dissolved in the base material, significantly reduces the base material toughness, and further forms coarse carbonitrides in the weld heat affected zone to reduce the toughness. It is necessary to limit it to less than%.
・B:0.0003〜0.003%
Bは、オーステナイト粒界に偏析することで粒界からのフェライト変態を抑制し、ベイナイト分率を増加させることで高強度化する効果があり、0.0003%以上添加する必要がある。しかし、0.003%を超えて添加すると、炭窒化物として析出し焼入性を低下させ、靭性が低下するので上限を0.003%とする。好ましくは0.0005〜0.0020%である。
・ B: 0.0003 to 0.003%
B has the effect of suppressing the ferrite transformation from the grain boundary by segregating at the austenite grain boundary and increasing the strength by increasing the bainite fraction, and it is necessary to add 0.0003% or more. However, if added over 0.003%, it precipitates as carbonitride, lowers the hardenability and lowers the toughness, so the upper limit is made 0.003%. Preferably it is 0.0005 to 0.0020%.
・O:0.0005〜0.0030%
O(酸素)は、鋼中に酸化物の形態で存在する場合、オーステナイトの粒成長を抑制することで母材靱性を改善する場合があるが、降伏強度が630MPa以上の高張力鋼板では、強度が高いことで酸化物を起点とする破壊が起こりやすく、その上限を0.0030%とする必要がある。一方、酸素量を0.0005%未満とすることは操業上の負荷が大きいことから下限を0.0005%とする。
・ O: 0.0005 to 0.0030%
When O (oxygen) is present in the form of an oxide in the steel, the toughness of the base metal may be improved by suppressing the grain growth of austenite. However, in a high-tensile steel sheet having a yield strength of 630 MPa or more, Is high, the oxide tends to break, and the upper limit must be 0.0030%. On the other hand, if the oxygen amount is less than 0.0005%, the operational load is large, so the lower limit is made 0.0005%.
本発明の高張力鋼は、上記必須元素に加えて、さらに強度、靱性を高める目的でCu、Mo、V、Nbの中から少なくとも1種類または2種類以上を含有することができる。
・Cu:0.2%を超え0.5%未満
Cuは靱性を損なうことなく鋼の強度の向上が図れるが、0.5%以上添加すると熱間圧延時に鋼板表面に割れを生じるので0.5%未満とする。また、添加量が0.2%以下の場合、十分な強度上昇が得られないので、添加する場合には、0.2%を超える添加が必要である。
In addition to the above essential elements, the high-tensile steel of the present invention can contain at least one or more of Cu, Mo, V, and Nb for the purpose of further enhancing strength and toughness.
Cu: more than 0.2% and less than 0.5% Cu can improve the strength of the steel without impairing the toughness, but if added over 0.5%, it causes cracking on the surface of the steel sheet during hot rolling. Less than 5%. Further, when the addition amount is 0.2% or less, a sufficient increase in strength cannot be obtained. Therefore, when it is added, addition exceeding 0.2% is necessary.
・Mo:1%以下
Moは、母材の高強度化に有効な元素であるが、多量に添加すると合金炭化物の析出による硬度の上昇を引き起こし、靭性を低下させるので1%以下とする。
・V:0.2%以下
Vは母材の強度、靱性の向上に効果があり、また、VNとして析出することで固溶Nの低下に有効であるが、0.2%より多く添加すると硬質なVCの析出により靭性が低下するので0.2%以下にする。好ましくは、0.1%以下である。
・Nb:0.1%以下
Nbは鋼の強化に有効な元素であるが、0.1%を超える添加は多層溶接時の溶接熱影響部の靭性を著しく低下させるので、0.1%以下とする。
Mo: 1% or less Mo is an element effective for increasing the strength of the base material. However, if added in a large amount, it causes an increase in hardness due to precipitation of alloy carbides and lowers toughness, so the content is made 1% or less.
V: 0.2% or less V is effective in improving the strength and toughness of the base material, and is effective in reducing solid solution N by being precipitated as VN. Since toughness is reduced by precipitation of hard VC, the content is made 0.2% or less. Preferably, it is 0.1% or less.
Nb: 0.1% or less Nb is an element effective for strengthening steel, but addition exceeding 0.1% significantly reduces the toughness of the weld heat affected zone during multi-layer welding, so 0.1% or less And
本発明の高張力鋼は、上記化学成分に加えて、さらに材質を改善する目的でCa,REMの中から少なくとも1種類または2種類を含有することができる。
・Ca:0.0005〜0.003%
Caを0.0005%以上添加すると、有害なOおよびNを酸化物および硫化物として固定し鋼の材質を改善する。しかし、0.003%を超えて添加しても、その効果が飽和するため0.003%以下とする。
・REM:0.0003〜0.003%
REMとはCe、Laをはじめとする希土類金属を指す。REMも0.0003%以上添加すると、Caと同様に、鋼中で酸化物および硫化物を形成して材質の改善効果があるが、0.003%より多く添加してもその効果が飽和するため、0.0003〜0.003%に限定する。
In addition to the above chemical components, the high-tensile steel of the present invention can contain at least one or two of Ca and REM for the purpose of further improving the material.
・ Ca: 0.0005 to 0.003%
When Ca is added in an amount of 0.0005% or more, harmful O and N are fixed as oxides and sulfides, and the steel material is improved. However, even if added over 0.003%, the effect is saturated, so the content is made 0.003% or less.
・ REM: 0.0003 to 0.003%
REM refers to rare earth metals including Ce and La. When REM is added in an amount of 0.0003% or more, an oxide and sulfide are formed in the steel in the same manner as Ca, and there is an effect of improving the material, but the effect is saturated even if it is added more than 0.003%. Therefore, it is limited to 0.0003 to 0.003%.
・CeqIIW≧0.65%
本発明では、多層溶接時の溶接熱影響部(HAZ)の靭性を向上させる目的で母材中のC量を低減しているが、一方で強度を確保するために合金元素の添加が必要であり、下記の式(1)式で定義するCeqIIWがCeqIIW≧0.65%の関係を満たすように成分を添加すれば、母材の引張強度が720MPa以上で、かつ降伏強度が630MPa以上にすることができ、母材の強度を十分に確保することができる。
CeqIIW=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15(%)・・・(1)
なお、式中の各元素記号はそれぞれの元素の含有量(質量%)を示す。
・ Ceq IIW ≧ 0.65%
In the present invention, the amount of C in the base material is reduced for the purpose of improving the toughness of the heat affected zone (HAZ) during multi-layer welding, but on the other hand, addition of an alloy element is necessary to ensure strength. Yes , if the components are added so that Ceq IIW defined by the following formula (1) satisfies the relationship of Ceq IIW ≧ 0.65%, the tensile strength of the base material is 720 MPa or more, and the yield strength is 630 MPa or more. The strength of the base material can be sufficiently secured.
Ceq IIW = C + Mn / 6 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15 (%) (1)
In addition, each element symbol in a formula shows content (mass%) of each element.
・Pc≧5.5
多層溶接時の溶接熱影響部のボンド部近傍における靱性劣化は、多層溶接時に2相域加熱部に形成される島状マルテンサイトを含む脆化組織の生成に起因している。この脆化組織の靱性を改善するには、従来技術のように単にCを低減しただけでは不十分であり、さらに、形成される個々の島状マルテンサイトの大きさ(面積)を小さくして、島状マルテンサイトの硬さを低減してマトリクスとの硬度差を小さくしてやる必要があること、そして、その達成手段としては、Mn、Ni、Cr、Mo、Vを適正量添加し、Cを低減してやることが有効であり、下記(2)式で定義されるPcがPc≧5.5の関係を満たすことが必要である。
Pc=2Mn+3Ni+Cr+Mo+V−12.5×C(%)・・・(2)
なお、式中の各元素記号はそれぞれの元素の含有量(質量%)を示す。
・ Pc ≧ 5.5
The deterioration in toughness in the vicinity of the bond portion of the weld heat affected zone during multi-layer welding is due to the formation of an embrittled structure including island martensite formed in the two-phase zone heating section during multi-layer welding. In order to improve the toughness of this embrittled structure, it is not sufficient to simply reduce C as in the prior art, and furthermore, the size (area) of the individual island martensite formed is reduced. It is necessary to reduce the hardness of the island martensite to reduce the hardness difference from the matrix, and as means for achieving this, Mn, Ni, Cr, Mo, V are added in appropriate amounts, and C is added. It is effective to reduce it, and it is necessary that Pc defined by the following formula (2) satisfies the relationship of Pc ≧ 5.5.
Pc = 2Mn + 3Ni + Cr + Mo + V-12.5 × C (%) (2)
In addition, each element symbol in a formula shows content (mass%) of each element.
ここで、上記Pc≧5.5の関係の意味するところは、以下のとおりである。
MnおよびNiは、オーステナイト安定化元素であるため、これらの元素の含有量を高めることによって、オーステナイト中に固溶するCの濃度上昇を抑制し、さらに炭化物生成元素であるCr、Mo、Vを添加することにより析出した炭化物が溶解してオーステナイト中に濃化することを抑制することによって、溶接熱影響部に生成する島状マルテンサイトの1つ1つの大きさを微細化することができる。
そして、Pc≧5.5の関係を満たすように、Mn、Ni、Cr、Mo、Vを適正量添加し、Cを低減することにより、個々の島状マルテンサイトの平均面積を3μm2以下とすることができ、同時に島状マルテンサイトの硬さが低下し、マトリクス組織との硬度差を小さくすることができる。その結果、島状マルテンサイトが破壊の起点になり難くなり、溶接部の靱性を顕著に向上することができる。
Here, the meaning of the relationship of Pc ≧ 5.5 is as follows.
Since Mn and Ni are austenite stabilizing elements, by increasing the content of these elements, the increase in the concentration of C dissolved in austenite is suppressed, and further, carbide forming elements such as Cr, Mo, and V are added. The size of each of the island-like martensites generated in the weld heat affected zone can be refined by suppressing the precipitation of the precipitated carbides by the addition and concentration in the austenite.
Then, an appropriate amount of Mn, Ni, Cr, Mo, V is added so as to satisfy the relationship of Pc ≧ 5.5, and by reducing C, the average area of individual island martensite is 3 μm 2 or less. At the same time, the hardness of the island-like martensite is reduced, and the hardness difference from the matrix structure can be reduced. As a result, the island martensite is less likely to be a starting point of fracture, and the toughness of the welded portion can be significantly improved.
本発明において、溶接熱影響部に形成される個々の島状マルテンサイトの平均面積とは、溶接熱影響部の断面において観察される個々の島状マルテンサイトの面積の平均値のことである。
具体的には、例えば、溶接熱影響部の断面を2段エッチングして島状マルテンサイトを現出させた後、2相域に加熱されるボンド部近傍を、走査型電子顕微鏡(SEM)を用いて倍率3000倍で10視野撮影し、画像解析することにより、個々の島状マルテンサイトの平均面積を測定することができる。
In the present invention, the average area of the individual island martensite formed in the weld heat affected zone is the average value of the area of the individual island martensite observed in the cross section of the weld heat affected zone.
Specifically, for example, after the cross section of the weld heat affected zone is etched in two steps to reveal island martensite, the vicinity of the bond portion heated to the two-phase region is scanned with a scanning electron microscope (SEM). The average area of each island-like martensite can be measured by taking 10 fields of view at a magnification of 3000 and analyzing the images.
次に、本発明の製造工程について説明する。
・スラブの加熱温度:Ac3点〜1200℃
上記化学成分の溶鋼を連続鋳造法および造塊法等の通常の鋳造方法でスラブを製造して圧延素材とする。
スラブの加熱温度は、添加元素を充分に固溶させるためおよび圧延負荷を小さくするため、Ac3点以上とすることが必要である。しかし加熱温度が1200℃を超えると、オーステナイト粒が粗大化して、充分な靱性が得られない。このため、スラブの加熱温度はAc3点〜1200℃の範囲内とする。
Next, the manufacturing process of the present invention will be described.
-Slab heating temperature: Ac 3 points to 1200 ° C
A slab is produced from the molten steel having the above chemical components by a normal casting method such as a continuous casting method or an ingot-making method to obtain a rolled material.
The heating temperature of the slab needs to be Ac 3 or more in order to sufficiently dissolve the additive element and reduce the rolling load. However, when the heating temperature exceeds 1200 ° C., austenite grains become coarse and sufficient toughness cannot be obtained. For this reason, the heating temperature of a slab shall be in the range of Ac 3- point-1200 degreeC.
なお、Ac3点は、下記の(3)式より計算される。
Ac3=937.2−476.5C+56Si−19.7Mn−16.3Cu−
26.6Ni−4.9Cr+38.1Mo+124.8V+136.3Ti−
19.1Nb+198.4Al+3315B(℃) ・・・(3)
なお、(3)式での各元素記号はそれぞれの元素の含有量(質量%)を示す。
In addition, Ac 3 points | pieces are calculated from the following (3) Formula.
Ac 3 = 937.2-476.5C + 56Si-19.7Mn -16.3Cu-
26.6Ni-4.9Cr + 38.1Mo + 124.8V + 136.3Ti-
19.1 Nb + 198.4Al + 3315B (° C.) (3)
In addition, each element symbol in (3) Formula shows content (mass%) of each element.
・熱間圧延の累積圧下率:50%以上
上記の温度範囲に加熱されたスラブは、板厚中心部まで十分な加工を加え組織を微細化し、強度と靱性を向上させるため、累積圧下率が50%以上となるように熱間圧延することが必要である。
-Cumulative rolling reduction of hot rolling: 50% or more The slab heated to the above temperature range is sufficiently processed to the center of the plate thickness to refine the structure and improve strength and toughness. It is necessary to hot-roll so that it may become 50% or more.
・熱間圧延後の熱処理(焼入れ):板厚中心部が350℃以下になるまで急冷
熱間圧延後の熱処理として急冷を行うが、本発明では、以下の1)、2)のいずれかの冷却を行う。
1)熱間圧延後、Ar3点以上の焼入温度から直接、板厚中心部が350℃以下になる
まで急冷を行う(この処理を「DQ−T」という)。
2)熱間圧延後放冷し、Ac3点〜1050℃の間に再加熱し、Ar3点以上の焼入温度
から板厚中心部が350℃以下になるまで急冷を行う(この処理を「RQ−T」と
いう)。
ここで、板厚中心部が350℃以下になるまで急冷としているのは、鋼全体を焼入れするためである。
また、2)において再加熱温度を1050℃以下としているのは、1050℃を超える高温の再加熱ではオーステナイト粒の粗大化による、母材強度および靭性の低下が著しいためである。
・ Heat treatment after hot rolling (quenching): quenching until the center of the plate thickness is 350 ° C. or less Rapid quenching is performed as a heat treatment after hot rolling. In the present invention, either of the following 1) or 2) Cool down.
1) After hot rolling, quenching is performed directly from the quenching temperature of 3 or more points of Ar until the center of the plate thickness is 350 ° C. or less (this process is referred to as “DQ-T”).
2) Allow to cool after hot rolling, reheat between Ac 3 points to 1050 ° C, and perform quenching from the quenching temperature of Ar 3 points or more until the center of the plate thickness is 350 ° C or less (this treatment "RQ-T").
Here, the reason why the rapid cooling is performed until the central portion of the plate thickness is 350 ° C. or less is to quench the entire steel.
In addition, in 2), the reheating temperature is set to 1050 ° C. or less because reheating at a high temperature exceeding 1050 ° C. significantly reduces the base material strength and toughness due to coarsening of austenite grains.
なお、Ar3点は、以下の(4)式から計算される。
Ar3=910−273C−74Mn−56Ni−16Cr−9Mo−5Cu(℃)
・・・(4)
〔(4)式における各元素記号は、それぞれの元素の含有量(質量%)を示す。〕
Ar 3 points are calculated from the following equation (4).
Ar 3 = 910-273C-74Mn-56Ni-16Cr-9Mo-5Cu (° C.)
... (4)
[Each element symbol in the formula (4) indicates the content (% by mass) of each element. ]
板厚中心部の温度は、板厚、表面温度および冷却条件等から、シミュレーション計算等により求められる。例えば、差分法を用い、板厚方向の温度分布を計算することにより、板厚中心温度が求められる。
急冷の方法は、工業的には水冷とすることが一般的であるが、冷却速度は可能な限り早い方が望ましいため、冷却方法は水冷以外でも良く、例えばガス冷却などの方法もある。
The temperature at the center of the plate thickness is obtained by simulation calculation or the like from the plate thickness, surface temperature, cooling conditions, and the like. For example, the plate thickness center temperature is obtained by calculating the temperature distribution in the plate thickness direction using the difference method.
The quenching method is generally water cooling industrially, but since it is desirable that the cooling rate be as fast as possible, the cooling method may be other than water cooling, for example, gas cooling.
・焼戻し処理温度:450℃〜650℃
急冷後、上記の熱処理の1)、2)のいずれの場合でも450℃〜650℃で焼戻しを行う。
急冷後、450℃〜650℃で焼戻すのは、450℃未満では残留応力の除去効果が少なく、一方、650℃を超える温度では、種々の炭窒化物が析出するとともに、母材の組織が粗大化し、強度、靱性が大幅に低下するためである。
-Tempering temperature: 450 ° C to 650 ° C
After the rapid cooling, tempering is performed at 450 ° C. to 650 ° C. in both cases 1) and 2) of the heat treatment.
After quenching, tempering at 450 ° C. to 650 ° C. is less effective for removing residual stress at temperatures lower than 450 ° C., while various carbonitrides precipitate at temperatures higher than 650 ° C. This is because it becomes coarse and the strength and toughness are greatly reduced.
なお、工業的には、鋼の強靭化を目的に、繰返し焼入れする場合があるが、本発明においても繰返し焼入れしても良いが、最終の焼入れの際に、Ac3点〜1050℃に加熱後、板厚中心部が350℃以下になるまで急冷し、その後450℃〜650℃で焼戻すことが必要である。 In addition, industrially, it may be repeatedly quenched for the purpose of toughening the steel, but may be repeatedly quenched in the present invention, but is heated to Ac 3 point to 1050 ° C. in the final quenching. Thereafter, it is necessary to rapidly cool the sheet thickness center portion to 350 ° C. or lower, and then to temper at 450 ° C. to 650 ° C.
以上説明したように、本発明の高張力鋼板の製造では、焼入れ焼戻しを行うことが重要であり、この熱処理によって、強度および靱性に優れる鋼を製造することができる。 As described above, in the production of the high-strength steel sheet of the present invention, it is important to perform quenching and tempering, and this heat treatment can produce steel having excellent strength and toughness.
表1に示す種々の化学成分(鋼番1〜22)に調整したスラブを素材とし、該スラブを1050〜1200℃に加熱して累積圧下率が50〜70%の熱間圧延を行い、そして、表2に示す製造条件で板厚75〜155mmの厚鋼板(試料No.1〜27)を製造した。
ここで、表1における鋼番No.1〜14は本発明の化学成分の条件を満たしている本発明鋼であるのに対して、鋼番No.15〜22は本発明の化学成分の条件を外れる比較鋼である。
この様にして得られた鋼板に、引張試験およびシャルピー試験を実施した。
引張試験は、各鋼板の板厚の1/4の位置から圧延方向にJIS4号引張試験片を採取し、引張強度(TS)および降伏強度(YP)を測定した。
シャルピー試験は、各鋼板の板厚の1/4の位置から、圧延方向にVノッチ試験片を採取し−60℃における吸収エネルギー(vE−60)を3回の平均値として求めて、母材の靱性を評価した。
Using a slab adjusted to various chemical components (steel numbers 1 to 22) shown in Table 1 as a raw material, the slab is heated to 1050 to 1200 ° C. and subjected to hot rolling with a cumulative reduction ratio of 50 to 70%, and A thick steel plate (sample Nos. 1-27) having a plate thickness of 75-155 mm was manufactured under the manufacturing conditions shown in Table 2.
Here, steel No. in Table 1 1 to 14 are steels of the present invention that satisfy the conditions of the chemical components of the present invention. 15-22 are comparative steels that deviate from the conditions of the chemical components of the present invention.
The steel plate thus obtained was subjected to a tensile test and a Charpy test.
In the tensile test, a JIS No. 4 tensile test piece was taken in the rolling direction from a position of 1/4 of the thickness of each steel plate, and the tensile strength (TS) and the yield strength (YP) were measured.
In the Charpy test, a V-notch test piece was sampled in the rolling direction from a position of ¼ of the thickness of each steel plate, and the absorbed energy (vE- 60 ) at −60 ° C. was obtained as an average value of three times. The toughness of was evaluated.
また、各鋼板から採取した鋼板にX開先(開先角度45°)加工を施し、入熱50kJ/cmのサブマージアーク溶接を行って多層溶接継手を作製し、板厚の1/4の位置から圧延方向にVノッチ試験片を、ボンド部をノッチ位置として採取し、−60℃における吸収エネルギー(vE−60)を3回の平均値として求めて、溶接熱影響部(HAZ)の靱性を評価した。 In addition, X-groove (groove angle 45 °) processing is performed on the steel plates taken from each steel plate, and a submerged arc welding with a heat input of 50 kJ / cm is performed to produce a multi-layer welded joint. V-notch specimens are taken in the rolling direction, the bond part is taken as the notch position, the absorbed energy at -60 ° C. (vE- 60 ) is obtained as an average of three times, and the toughness of the weld heat affected zone (HAZ) is determined. evaluated.
溶接熱影響部に形成される個々の島状マルテンサイトの平均面積は、溶接熱影響部の断面を2段エッチングして島状マルテンサイトを現出させた後、2相域に加熱されるボンド部近傍を、走査型電子顕微鏡(SEM)を用いて倍率3000倍で10視野撮影し、画像解析することにより、個々の島状マルテンサイトの面積を測定し、その平均値を求めた。 The average area of the individual island martensite formed in the heat affected zone is the bond that is heated in a two-phase region after the cross section of the weld heat affected zone is etched in two steps to reveal the island martensite. The vicinity of the part was photographed with 10 fields of view at a magnification of 3000 using a scanning electron microscope (SEM), and image analysis was performed to measure the area of each island martensite, and the average value was obtained.
上記の製造条件および試験結果を表2に示す。
この結果から、本発明例(試料No.1〜15)の鋼材は、いずれも母材強度がTS(引張強度)≧720MPa、YP(降伏強度)≧630MPaおよび母材靭性がvE−60≧120Jであり、母材の強度と靭性がともに優れていることがわかる。さらに、溶接熱影響部(HAZ)では、vE−60≧70Jであり、溶接熱影響部においても良好な靱性を有していることがわかる。
The above production conditions and test results are shown in Table 2.
From these results, the steel materials of the present invention examples (sample Nos. 1 to 15) all have a base material strength of TS (tensile strength) ≧ 720 MPa, YP (yield strength) ≧ 630 MPa, and a base material toughness of vE −60 ≧ 120 J. It can be seen that both the strength and toughness of the base material are excellent. Furthermore, in the welding heat affected zone (HAZ), vE- 60 ≧ 70 J, and it can be seen that the weld heat affected zone also has good toughness.
これに対して、本発明の化学成分範囲を外れる試料No.16〜23の比較例(鋼番15〜22)は、母材の引張強度がTS<720MPaまたは降伏強度がYP<630MPaであるか、もしくは母材の靭性がvE−60<120J、もしくは溶接熱影響部(HAZ)においてvE−60<70Jとなっており、母材の強度、靱性および溶接熱影響部における靭性のいずれか一つ以上の特性が劣っていることが認められる。 On the other hand, sample no. In Comparative Examples 16 to 23 (steel numbers 15 to 22), the base material has a tensile strength of TS <720 MPa or a yield strength of YP <630 MPa, or the base material has a toughness of vE- 60 <120 J, or welding heat. In the affected zone (HAZ), vE- 60 <70 J, and it is recognized that any one or more characteristics of the strength, toughness of the base metal and the toughness in the weld heat affected zone are inferior.
また、表2の試料No.24〜27の比較例は、鋼番がそれぞれ8、10、13、13であり、化学成分が本発明の範囲内であるものの、製造条件が本発明の範囲外であり、母材特性が低化し、母材の強度、靱性のいずれか一つ以上の特性が劣っていることが認められる。
In addition, sample No. In Comparative Examples 24-27, the steel numbers are 8, 10, 13, and 13 and the chemical components are within the scope of the present invention, but the manufacturing conditions are outside the scope of the present invention, and the base material characteristics are low. It is recognized that at least one of the characteristics of the strength and toughness of the base material is inferior.
Claims (5)
記
CeqIIW=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15(%)・・・(1)
Pc=2Mn+3Ni+Cr+Mo+V−12.5×C(%)・・・(2)
〔式中の各元素記号はそれぞれの元素の含有量(質量%)を示す。〕 In mass%, C: 0.005 to 0.05%, Si: 0.05 to 0.3%, Mn: 0.5 to 5%, P: 0.015% or less, S: 0.005% or less Cr: 3% or less, Ni: 5% or less, Ti: 0.005-0.02%, Al: 0.02-0.04%, N: 0.007% or less, B: 0.0003-0 0.003% and O: 0.0005 to 0.0030% satisfy the relations of Ceq IIW ≧ 0.65% and Pc ≧ 5.5 for each of the formulas (1) and (2) defined below. And the remainder has a chemical component composed of Fe and inevitable impurities, and the average area of individual island martensite formed in the weld heat affected zone during multilayer welding is 3 μm 2 or less. Thick high-strength steel with excellent strength and toughness of the base metal and toughness of the heat affected zone during multi-layer welding .
Ceq IIW = C + Mn / 6 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15 (%) (1)
Pc = 2Mn + 3Ni + Cr + Mo + V-12.5 × C (%) (2)
[Each element symbol in a formula shows content (mass%) of each element. ]
The slab having the chemical component according to any one of claims 1 to 3 is heated to Ac 3 point to 1200 ° C, and hot-rolled so that the cumulative reduction ratio is 50% or more, and then allowed to cool. Then, after again heating to Ac 3 point to 1050 ° C., then rapidly cooling from the temperature of Ar 3 point or more until the center of thickness is 350 ° C. or less, and then tempering at 450 ° C. to 650 ° C. A method for producing a thick-walled high-tensile steel sheet having excellent strength and toughness of a base material and toughness of a weld heat-affected zone during multilayer welding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012273142A JP5935678B2 (en) | 2011-12-28 | 2012-12-14 | High toughness high strength steel and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011288168 | 2011-12-28 | ||
JP2011288168 | 2011-12-28 | ||
JP2012273142A JP5935678B2 (en) | 2011-12-28 | 2012-12-14 | High toughness high strength steel and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013151742A true JP2013151742A (en) | 2013-08-08 |
JP5935678B2 JP5935678B2 (en) | 2016-06-15 |
Family
ID=49048299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012273142A Active JP5935678B2 (en) | 2011-12-28 | 2012-12-14 | High toughness high strength steel and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5935678B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017002349A (en) * | 2015-06-09 | 2017-01-05 | Jfeスチール株式会社 | High tensile steel plate and production method thereof |
JP2017155254A (en) * | 2016-02-29 | 2017-09-07 | Jfeスチール株式会社 | High strength thick steel sheet excellent in large heat input weld heat-affected zone toughness |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002224835A (en) * | 2001-01-30 | 2002-08-13 | Nippon Steel Corp | Method of welding high toughness high tension steel having excellent weld heat influence zone toughness |
JP2004011008A (en) * | 2002-06-11 | 2004-01-15 | Nippon Steel Corp | Steel member and structure excellent in weld zone toughness |
JP2004300567A (en) * | 2003-03-19 | 2004-10-28 | Kobe Steel Ltd | High tensile steel sheet and its manufacturing method |
JP2008184638A (en) * | 2007-01-29 | 2008-08-14 | Sumitomo Metal Ind Ltd | Thick high tensile strength steel plate, and method for producing the same |
KR20090016854A (en) * | 2007-08-13 | 2009-02-18 | 주식회사 포스코 | Ultra high strength welding joint of 950mpa grade having excellent low temperature toughness |
JP2011202214A (en) * | 2010-03-25 | 2011-10-13 | Jfe Steel Corp | Thick high tensile strength steel plate having excellent low temperature toughness in multilayer weld zone and method for producing the same |
-
2012
- 2012-12-14 JP JP2012273142A patent/JP5935678B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002224835A (en) * | 2001-01-30 | 2002-08-13 | Nippon Steel Corp | Method of welding high toughness high tension steel having excellent weld heat influence zone toughness |
JP2004011008A (en) * | 2002-06-11 | 2004-01-15 | Nippon Steel Corp | Steel member and structure excellent in weld zone toughness |
JP2004300567A (en) * | 2003-03-19 | 2004-10-28 | Kobe Steel Ltd | High tensile steel sheet and its manufacturing method |
JP2008184638A (en) * | 2007-01-29 | 2008-08-14 | Sumitomo Metal Ind Ltd | Thick high tensile strength steel plate, and method for producing the same |
KR20090016854A (en) * | 2007-08-13 | 2009-02-18 | 주식회사 포스코 | Ultra high strength welding joint of 950mpa grade having excellent low temperature toughness |
JP2011202214A (en) * | 2010-03-25 | 2011-10-13 | Jfe Steel Corp | Thick high tensile strength steel plate having excellent low temperature toughness in multilayer weld zone and method for producing the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017002349A (en) * | 2015-06-09 | 2017-01-05 | Jfeスチール株式会社 | High tensile steel plate and production method thereof |
JP2017155254A (en) * | 2016-02-29 | 2017-09-07 | Jfeスチール株式会社 | High strength thick steel sheet excellent in large heat input weld heat-affected zone toughness |
Also Published As
Publication number | Publication date |
---|---|
JP5935678B2 (en) | 2016-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101386042B1 (en) | Steel material for high heat input welding | |
JP5076658B2 (en) | Steel material for large heat input welding | |
CN114402089B (en) | Thick steel plate and method for producing thick steel plate | |
JP2008274405A (en) | High-strength steel sheet excellent in sr resistant property and deformation performance, and method for manufacturing the same | |
JP5630322B2 (en) | High-tensile steel plate with excellent toughness and manufacturing method thereof | |
JP5034290B2 (en) | Low yield ratio high strength thick steel plate and method for producing the same | |
JP2011202214A (en) | Thick high tensile strength steel plate having excellent low temperature toughness in multilayer weld zone and method for producing the same | |
JP5630321B2 (en) | High-tensile steel plate with excellent toughness and manufacturing method thereof | |
JP5194572B2 (en) | Method for producing high-tensile steel material with excellent weld crack resistance | |
TWI526545B (en) | Steel material for welding | |
JP2005256037A (en) | Method for producing high strength-high toughness-thick steel plate | |
JP4730088B2 (en) | Low yield ratio high strength thick steel plate and method for producing the same | |
JP2013104065A (en) | Thick high-tensile strength steel plate excellent in low temperature toughness of weld zone and method for producing the same | |
JP4419695B2 (en) | Low yield ratio high strength high toughness steel sheet and method for producing the same | |
JP6277679B2 (en) | High-tensile steel plate with excellent gas cut cracking resistance and high heat input weld toughness | |
JP2005068478A (en) | Method for manufacturing thick steel plate with low yield ratio and high tension superior in toughness at heat-affected zone in super heavy-heat-input welding | |
JP5935678B2 (en) | High toughness high strength steel and method for producing the same | |
JP5055899B2 (en) | Method for producing high-strength welded steel pipe excellent in weld heat-affected zone toughness and having tensile strength of 760 MPa or more, and high-strength welded steel pipe | |
JP7533408B2 (en) | Steel plate and its manufacturing method | |
JP2017053028A (en) | Ferrite-martensite two-phase stainless steel and manufacturing method therefor | |
JPWO2019050010A1 (en) | Steel sheet and manufacturing method thereof | |
JP6237681B2 (en) | Low yield ratio high strength steel plate with excellent weld heat affected zone toughness | |
JP5552967B2 (en) | Thick high-strength steel sheet with excellent low-temperature toughness of welds and method for producing the same | |
JP5151510B2 (en) | Manufacturing method of high strength steel with excellent low temperature toughness and crack propagation stop properties | |
JP2007204789A (en) | High-strength seamless steel pipe and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150223 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151201 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160122 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160412 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160425 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5935678 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |