JP2013133509A - Hot-rolled steel sheet having excellent shape fixability and aging resistance, and method for manufacturing the same - Google Patents

Hot-rolled steel sheet having excellent shape fixability and aging resistance, and method for manufacturing the same Download PDF

Info

Publication number
JP2013133509A
JP2013133509A JP2011285171A JP2011285171A JP2013133509A JP 2013133509 A JP2013133509 A JP 2013133509A JP 2011285171 A JP2011285171 A JP 2011285171A JP 2011285171 A JP2011285171 A JP 2011285171A JP 2013133509 A JP2013133509 A JP 2013133509A
Authority
JP
Japan
Prior art keywords
less
hot
aging
steel sheet
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011285171A
Other languages
Japanese (ja)
Other versions
JP5834901B2 (en
Inventor
Taro Kizu
太郎 木津
Koichiro Fujita
耕一郎 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011285171A priority Critical patent/JP5834901B2/en
Publication of JP2013133509A publication Critical patent/JP2013133509A/en
Application granted granted Critical
Publication of JP5834901B2 publication Critical patent/JP5834901B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hot-rolled steel sheet having excellent shape fixability and aging resistance without using rare metals, and to provide a method for manufacturing the same.SOLUTION: The hot-rolled steel sheet having excellent shape fixability and aging resistance has a chemical composition including, by mass, 0.0030% or less of C, 0.05% or less of Si, 0.30% or less of Mn, 0.05% or less of P, 0.03% or less of S, 0.01-0.10% of Al, and 0.0030% or less of N, and the balance Fe with inevitable impurities, and satisfies [Mn]×[C]≤4.0×10, wherein [M] represents the content (mass%) of an element M. Further, the steel sheet is characterized in that the aging index AI is 20 MPa or less and the yield strength YP after aging for 6 months at 25°C is 180 MPa or less.

Description

本発明は、自動車、家電、OA機器の分野で、部品にプレス成形して使用される熱延鋼板、特に、形状精度が必要とされる部品に適用可能な熱延鋼板およびその製造方法に関する。   The present invention relates to a hot-rolled steel sheet that is used by press-molding parts in the fields of automobiles, home appliances, and OA equipment, and more particularly to a hot-rolled steel sheet that can be applied to parts that require shape accuracy and a method for manufacturing the same.

従来、鉄鋼材料は、レアメタルを有効に活用することで、用途に応じた様々な特性を実現してきている。しかしながら、近年、レアメタルの価格が急騰し、鋼材価格に大きな影響を与えたり、また、レアメタル資源の枯渇に対する懸念も増大しており、レアメタルを使用しない鉄鋼材料に対する期待は益々大きくなっている。   Conventionally, steel materials have realized various characteristics according to applications by effectively utilizing rare metals. However, in recent years, the price of rare metals has soared, greatly affecting the price of steel materials, and concerns about depletion of rare metal resources are increasing, and expectations for steel materials that do not use rare metals are increasing.

レアメタルを使用しない鉄鋼材料の例として、耐時効性に優れた鋼板を挙げることができる。例えば、特許文献1には、C:0.006wt%以下、Mn:0.05〜0.3wt%、Al:0.02〜0.1wt%を含む極低炭素Alキルド鋼を、Ar3変態点以上の温度で熱延仕上げ圧延を行い、630℃以下の温度で巻取ったのち、76%以上の圧下率で冷間圧延し焼鈍することで、結晶粒径を小さくし、固溶Cを粒界に固定する遅時効性冷延鋼板の製造方法が開示されている。 As an example of a steel material that does not use a rare metal, a steel plate having excellent aging resistance can be given. For example, in Patent Document 1, an ultra-low carbon Al killed steel containing C: 0.006 wt% or less, Mn: 0.05 to 0.3 wt%, Al: 0.02 to 0.1 wt% is hot rolled at a temperature equal to or higher than the Ar 3 transformation point. After final rolling, winding at a temperature of 630 ° C or less, cold rolling and annealing at a reduction rate of 76% or more, the crystal grain size is reduced, and the slow aging that fixes solid solution C to the grain boundaries A method for producing a cold-rolled cold rolled steel sheet is disclosed.

特開昭63-266025号公報Japanese Unexamined Patent Publication No. Sho 63-266025

しかしながら、特許文献1に記載された遅時効性冷延鋼板では、結晶粒径が小さい上に、時効指数AIも高く耐時効性に劣るため、プレス成形時には、降伏強度YPが高くなり、スプリングバックにより形状精度が低下し、形状凍結性に劣るといった問題があった。   However, the slow-aging cold-rolled steel sheet described in Patent Document 1 has a small crystal grain size and also has a high aging index AI and poor aging resistance. Therefore, there is a problem that the shape accuracy is lowered and the shape freezing property is inferior.

本発明は、レアメタルを使用することなく、形状凍結性と耐時効性に優れた熱延鋼板およびその製造方法を提供することを目的とする。   An object of the present invention is to provide a hot-rolled steel sheet excellent in shape freezing property and aging resistance without using a rare metal, and a method for producing the hot-rolled steel sheet.

本発明者等は、上記の目的とする熱延鋼板について次のような検討を行った。   The inventors of the present invention conducted the following investigation on the hot-rolled steel sheet having the above object.

レアメタルを含有しない種々の極低炭素Alキルド鋼板(板厚2.0mm)を25℃で6ヶ月時効させた後、140×100mmの試験片を採取し、図1に示す形状のポンチとダイを用いて、しわ押さえ力200kNで、図2に示すような高さ5mmの張出し成形を行い、図2に示す点線に沿って高さプロファイルを測定し、最大高さと最小高さの差を反り高さとして求め、形状凍結性を評価した。また、時効処理前の鋼板から、同様に140×100mmの試験片を採取し、図1に示す形状のポンチとダイを用いて、しわ押さえ力200kNで、図2に示すような高さ5mmの張出し成形を行い、時効処理前の鋼板の反り高さを求めた。そして、25℃、6ヶ月の時効前後での反り高さの差を求めて、これを反り高さのばらつきとし、形状凍結性のばらつきを評価した。   After aging various ultra-low carbon Al killed steel plates (thickness 2.0mm) that do not contain rare metals for 6 months at 25 ° C, 140 × 100mm specimens were collected and used with punches and dies with the shape shown in Fig. 1. Then, with a wrinkle holding force of 200 kN, perform 5 mm height forming as shown in Fig. 2, measure the height profile along the dotted line shown in Fig. 2, and warp the difference between the maximum height and the minimum height And the shape freezing property was evaluated. Similarly, a 140 × 100 mm test piece was taken from the steel sheet before aging treatment, and using a punch and die having the shape shown in FIG. 1, a wrinkle holding force of 200 kN and a height of 5 mm as shown in FIG. Overhang forming was performed, and the warp height of the steel sheet before aging treatment was determined. Then, the difference in warp height before and after aging at 25 ° C. for 6 months was obtained, and this was regarded as the variation in warp height, and the variation in shape freezing property was evaluated.

また、時効前の鋼板のAIを、JIS 5号試験片を用いて、予歪み7.5%を付加し、100℃で30分熱処理した後に引張試験を行って求めたYPから予歪み付加後の応力を引いて求めた。さらに、時効後YPを、JIS 5号試験片を用いて、引張試験を行って求めた。引張試験は、いずれの場合も、JIS Z2241に準じて行った。   In addition, AI of steel plate before aging was applied with JIS No. 5 test piece, pre-strained 7.5%, stress after applying pre-strain from YP obtained by conducting a tensile test after heat treatment at 100 ° C for 30 minutes It was calculated by subtracting Furthermore, YP after aging was obtained by conducting a tensile test using a JIS No. 5 test piece. In each case, the tensile test was performed according to JIS Z2241.

図3に時効後YPと反り高さとの関係を示したが、時効後YPが180MPaを超えると、反り高さが急激に大きくなり、一方、時効後YPを180MPa以下にすれば、反り高さを0.15mm以下にでき、優れた形状凍結性が得られることがわかる。   Fig. 3 shows the relationship between YP after aging and warp height.If YP after aging exceeds 180 MPa, the warp height increases rapidly, while if YP after aging is 180 MPa or less, the warp height increases. It can be seen that an excellent shape freezing property can be obtained.

また、図4にAIと反り高さのばらつきとの関係を示したが、AIが20MPaを超えると、反り高さのばらつきが急激に大きくなり、一方、AIを20MPa以下にすれば、反り高さのばらつきを0.02mm以下に小さくできることがわかる。   Figure 4 shows the relationship between AI and warp height variation.If AI exceeds 20 MPa, the warp height variation increases rapidly, while if AI is set to 20 MPa or less, the warp height is increased. It can be seen that the variation in thickness can be reduced to 0.02 mm or less.

このように、反り高さを小さくすることで、形状凍結性を改善でき、例えばプレス成形後の反り高さを0mm、すなわち反りをなくすために追加プレスをする場合でも、反りの矯正が容易となる。また、反り高さのばらつきを小さくすることで、追加プレスを行うような場合であっても、反り高さに応じた所定の条件でばらつきなく反りを小さくすることができる。   In this way, by reducing the warp height, the shape freezing property can be improved, for example, the warp height after press molding is 0 mm, that is, even when an additional press is performed to eliminate the warp, it is easy to correct the warp. Become. Further, by reducing the variation in the warp height, it is possible to reduce the warp without variation under a predetermined condition corresponding to the warp height even when performing additional pressing.

本発明は、以上のような知見に基づきなされたもので、質量%で、C:0.0030%以下、Si:0.05%以下、Mn:0.30%以下、P:0.05%以下、S:0.03%以下、Al:0.01〜0.10%、N:0.0030%以下を含み、かつ[Mn]×[C]≦4.0×10-4を満たし、残部がFeおよび不可避的不純物である化学組成を有するとともに、時効指数AIが20MPa以下、25℃で6ヶ月時効後の降伏強度YPが180MPa以下であることを特徴とする形状凍結性と耐時効性に優れた熱延鋼板を提供する。 The present invention has been made based on the above findings, and in mass%, C: 0.0030% or less, Si: 0.05% or less, Mn: 0.30% or less, P: 0.05% or less, S: 0.03% or less, Al: 0.01 to 0.10%, N: not more than 0.0030%, satisfying [Mn] × [C] ≦ 4.0 × 10 −4 , the balance being Fe and inevitable impurities, and aging index AI The present invention provides a hot-rolled steel sheet excellent in shape freezing property and aging resistance, characterized in that the yield strength YP after aging at 25 ° C. for 6 months is 180 MPa or less.

本発明の熱延鋼板は、上記の化学組成を有する鋼のスラブを、熱間圧延するに際し、950℃以下での累積歪みを0.6〜2.0とするとともに、オーステナイト域で仕上げ圧延を終了し、50℃/s以下の平均冷却速度で冷却後、(450+[Mn]/[C])℃以上の巻取り温度で巻取る方法により製造できる。   The hot-rolled steel sheet of the present invention, when hot-rolling a steel slab having the above chemical composition, has a cumulative strain of 950 ° C. or lower at 0.6 to 2.0 and finishes the finish rolling in the austenite region, 50 It can be manufactured by a method of winding at a winding temperature of (450+ [Mn] / [C]) ° C or higher after cooling at an average cooling rate of ° C / s or less.

ただし、[M]は元素Mの含有量(質量%)を表す。   However, [M] represents the content (mass%) of the element M.

本発明により、レアメタルを使用せずに、形状凍結性と耐時効性に優れた熱延鋼板を製造できるようになった。本発明の熱延鋼板は、自動車、家電、OA機器の分野におけるプレス成形部品に好適である。   According to the present invention, a hot-rolled steel sheet having excellent shape freezing property and aging resistance can be produced without using a rare metal. The hot-rolled steel sheet of the present invention is suitable for press-formed parts in the fields of automobiles, home appliances, and OA equipment.

反り高さを求めるために用いたポンチとダイの形状を示す図である。It is a figure which shows the shape of the punch and die which were used in order to obtain | require curvature height. 張出し成形後の高さプロファイルの測定位置を示す図である。It is a figure which shows the measurement position of the height profile after bulge forming. 時効後YPと反り高さとの関係を示す図である。It is a figure which shows the relationship between YP after aging and curvature height. AIと反り高さのばらつきとの関係を示す図である。It is a figure which shows the relationship between AI and the dispersion | variation in curvature height. 平均冷却速度30℃/sにおける累積歪みとAIとの関係を示す図である。It is a figure which shows the relationship between the accumulation distortion and AI in the average cooling rate of 30 degrees C / s. 平均冷却速度30℃/sにおける累積歪みと時効後YPとの関係を示す図である。It is a figure which shows the relationship between the accumulation distortion in 30 degreeC / s average cooling rate, and YP after aging. [Mn]×[C]とAIとの関係を示す図である。It is a figure which shows the relationship between [Mn] x [C] and AI. [Mn]×[C]と時効後YPとの関係を示す図である。It is a figure which shows the relationship between [Mn] x [C] and YP after aging.

以下に、本発明の詳細を説明する。なお、以下の「%」は、特に断らない限り「質量%」を表す。   Details of the present invention will be described below. The “%” below represents “% by mass” unless otherwise specified.

1)化学組成
C:0.0030%以下
Cは、固溶Cとして粒内に存在するとAIを上昇させる。一方、固溶Cは粒界に偏析すると、粒内に存在する場合に比べてAIを低下させることができる。ただし、粒界の固溶C量が多くなりすぎるとセメンタイトとして存在するようになり、YPを上昇させる。それゆえ、25℃で6ヶ月時効後YPを180MPa以下にするには、C量は0.0030%以下、好ましくは0.0020%以下、より好ましくは0.0015%以下とする必要がある。
1) Chemical composition
C: 0.0030% or less
C, when present in the grain as solute C, raises AI. On the other hand, when solute C segregates at the grain boundaries, AI can be reduced compared to the case where it exists in the grains. However, if the amount of solute C at the grain boundary becomes too large, it will exist as cementite and raise YP. Therefore, in order to reduce the YP after aging at 25 ° C. for 6 months to 180 MPa or less, the C content needs to be 0.0030% or less, preferably 0.0020% or less, more preferably 0.0015% or less.

Si:0.05%以下
多量のSiは、硬質化により成形性を劣化させる。また、熱間圧延時に、オーステナイトからフェライトに変態する温度を上昇させ、オーステナイト域で仕上げ圧延を終了させるのを困難にする。したがって、Si量は0.05%以下、好ましくは0.03%以下とする。
Si: 0.05% or less A large amount of Si deteriorates formability by hardening. Moreover, the temperature which transforms from austenite to ferrite is increased during hot rolling, making it difficult to finish finish rolling in the austenite region. Therefore, the Si content is 0.05% or less, preferably 0.03% or less.

Mn:0.30%以下、かつ[Mn]×[C]≦4.0×10-4
Mnは、硬質化により成形性を劣化させる。したがって、Mn量は0.30%以下、好ましくは0.15%以下、より好ましく0.10%以下とする。
Mn: 0.30% or less and [Mn] × [C] ≦ 4.0 × 10 −4
Mn deteriorates moldability by hardening. Therefore, the Mn content is 0.30% or less, preferably 0.15% or less, more preferably 0.10% or less.

さらに、MnはCとの相互作用を有し、固溶Cの拡散を阻害してCの粒界偏析を抑制するため、AIを上昇させる。この影響は、C量が多いほど顕著となる。発明者らが検討した結果、AIを20MPa以下にするには、Mn量は0.30%以下とし、さらに[Mn]×[C]≦4.0×10-4、好ましくは[Mn]×[C]≦3.0×10-4、より好ましくは[Mn]×[C]≦2.0×10-4を満足する必要がある。なお、本願では上記のようにMn量を調整して固溶Cの粒界偏析を図るため、細粒化により固溶Cの粒界偏析を行った場合と比べてYPの上昇を抑えることができ、低AI化に加え、低YP化も達成でき、結果、時効後YPを低下することができる。 Furthermore, Mn has an interaction with C and raises AI in order to inhibit the diffusion of solute C and suppress the segregation of C grain boundaries. This effect becomes more prominent as the C content increases. As a result of investigations by the inventors, in order to make AI 20 MPa or less, the Mn amount is 0.30% or less, and [Mn] × [C] ≦ 4.0 × 10 −4 , preferably [Mn] × [C] ≦ It is necessary to satisfy 3.0 × 10 −4 , more preferably [Mn] × [C] ≦ 2.0 × 10 −4 . In the present application, the amount of Mn is adjusted as described above to achieve grain boundary segregation of solute C. Therefore, it is possible to suppress the increase in YP compared to the case where grain boundary segregation of solute C is performed by refining. In addition to lowering AI, lowering YP can also be achieved, and as a result, YP can be lowered after aging.

P:0.05%以下
Pは、粒界に偏析して延性や靭性を劣化させる。また、熱間圧延時には、オーステナイトからフェライトに変態する温度を上昇させ、オーステナイト域で仕上げ圧延を終了させるのを困難にする。したがって、P量は0.05%以下、好ましくは0.03%以下とする。
P: 0.05% or less
P segregates at the grain boundaries and deteriorates ductility and toughness. Moreover, at the time of hot rolling, the temperature which transforms from austenite to ferrite is raised, making it difficult to finish finish rolling in the austenite region. Therefore, the P content is 0.05% or less, preferably 0.03% or less.

S: 0.03%以下
Sは、熱間での延性を著しく低下させ、熱間割れを誘発し、表面性状を著しく劣化させる。したがって、S量は0.03%以下、好ましくは0.02%以下、より好ましくは0.01%以下とする。
S: 0.03% or less
S significantly lowers the hot ductility, induces hot cracking, and significantly deteriorates the surface properties. Therefore, the S content is 0.03% or less, preferably 0.02% or less, more preferably 0.01% or less.

Al:0.01〜0.10%
Alは、Nを窒化物として固定することで、固溶Nによる時効硬化を抑制することができる。それゆえ、AIを20MPa以下にするには、Al量は0.01%以上、好ましくは0.03%以上、より好ましくは0.05%以上とする必要がある。一方、0.10%を超える多量のAlは、熱間圧延時に、オーステナイトからフェライトに変態する温度を上昇させ、オーステナイト域で仕上げ圧延を終了させるのを困難にする。したがって、Al量は0.01〜0.10%、好ましくは0.03〜0.10%、より好ましくは0.05〜0.10%とする。
Al: 0.01-0.10%
Al can suppress age hardening due to solute N by fixing N as a nitride. Therefore, in order to reduce AI to 20 MPa or less, the Al content needs to be 0.01% or more, preferably 0.03% or more, more preferably 0.05% or more. On the other hand, a large amount of Al exceeding 0.10% raises the temperature of transformation from austenite to ferrite during hot rolling, making it difficult to finish the finish rolling in the austenite region. Therefore, the Al content is 0.01 to 0.10%, preferably 0.03 to 0.10%, more preferably 0.05 to 0.10%.

N:0.0030%以下
Nは、多量に含有されると、熱間圧延中にスラブ割れを伴い、表面疵が発生する恐れがある。また、固溶Nとして存在する場合には、時効硬化を引き起こす。したがって、N量は0.0030%以下、好ましくは0.0020%以下とする。
N: 0.0030% or less
When N is contained in a large amount, there is a risk that surface flaws occur due to slab cracking during hot rolling. Moreover, when it exists as solid solution N, age hardening is caused. Therefore, the N content is 0.0030% or less, preferably 0.0020% or less.

残部は、Feおよび不可避的不純物である。   The balance is Fe and inevitable impurities.

2)AI:20MPa以下、時効後YP:180MPa以下
上述したように、優れた形状凍結性を得るには、AIが20MPa以下、25℃で6ヶ月時効後のYPが180MPa以下である必要がある。
2) AI: 20MPa or less, YP after aging: 180MPa or less As described above, AI must be 20MPa or less and YP after 6 months aging at 25 ° C must be 180MPa or less to obtain excellent shape freezing properties. .

3)製造方法
本発明の熱延鋼板は、上記の化学組成を有する鋼のスラブを、以下の条件で熱間圧延することによって製造できる。
3) Manufacturing method The hot-rolled steel sheet of the present invention can be manufactured by hot rolling a steel slab having the above chemical composition under the following conditions.

950℃以下での熱間圧延の累積歪み:0.6〜2.0
熱間圧延において、950℃以下の低温域での累積歪みが0.6未満だと、熱間圧延後の結晶粒が粗大化して、粒内に固溶Cが残り、AIを20MPa以下にできない。一方、この低温域での累積歪みが2.0を超えると、熱間圧延後の結晶粒が微細化して、YPが極端に上昇し、時効後のYPを180MPa以下にできない。したがって、950℃以下での熱間圧延の累積歪みは0.6〜2.0とする。なお、950℃以下での累積歪とは、圧延工程での復熱、加熱で温度上昇がある場合も含めて、熱間圧延中の圧延温度が最後に950℃以下になってからの累積歪である。また、圧延温度とは各圧延機入り側の温度である。ここで、累積歪は、圧延温度が950℃以下になったスタンドでの入り側板厚をt1、最終スタンドでの出側板厚をt2として、-ln(t2/t1)により求めることができる。
Cumulative strain of hot rolling below 950 ° C: 0.6-2.0
In hot rolling, if the cumulative strain in a low temperature region of 950 ° C. or lower is less than 0.6, the crystal grains after hot rolling become coarse and solid solution C remains in the grains, and AI cannot be reduced to 20 MPa or lower. On the other hand, when the cumulative strain in this low temperature region exceeds 2.0, the crystal grains after hot rolling become finer, YP increases extremely, and YP after aging cannot be reduced to 180 MPa or less. Therefore, the cumulative strain of hot rolling at 950 ° C. or lower is set to 0.6 to 2.0. Note that the cumulative strain at 950 ° C or lower is the cumulative strain after the rolling temperature during hot rolling last decreased to 950 ° C or lower, including the case of reheating in the rolling process and when the temperature rises due to heating. It is. Moreover, rolling temperature is the temperature at the entrance side of each rolling mill. Here, the cumulative strain can be obtained by -ln (t2 / t1), where t1 is the entry side thickness at the stand where the rolling temperature is 950 ° C. or less, and t2 is the exit thickness at the final stand.

仕上げ圧延:オーステナイト域で終了
仕上げ圧延中にフェライト域で圧延が行われると、熱間圧延後の結晶粒が粗大化するだけでなく、圧延荷重が大きく低下し、通板上のトラブルが発生する。したがって、仕上げ圧延はオーステナイト域で終了させる必要がある。
Finish rolling: Finished in the austenite region If rolling is performed in the ferrite region during finish rolling, not only will the crystal grains after hot rolling become coarse, but also the rolling load will be greatly reduced, causing trouble on the plate. . Therefore, finish rolling must be completed in the austenite region.

仕上げ圧延後の平均冷却速度:50℃/s以下
仕上げ圧延後の平均冷却速度が50℃/sを超えると、フェライトの変態温度が低下するため、フェライト域での固溶Cの拡散が抑制され、固溶Cを粒界に偏析させることが困難になり、AIを20MPa以下にできない。したがって、仕上げ圧延から巻取りまでの平均冷却速度は50℃/s以下、好ましくは30℃/s以下とする。平均冷却速度の下限はとくに規定しないが、冷却速度が小さいと結晶粒が粗大化するため10℃/s以上が好ましい。
Average cooling rate after finish rolling: 50 ° C / s or less If the average cooling rate after finish rolling exceeds 50 ° C / s, the transformation temperature of ferrite decreases, so the diffusion of solute C in the ferrite region is suppressed. , It becomes difficult to segregate solute C at the grain boundaries, and AI cannot be reduced below 20 MPa. Therefore, the average cooling rate from finish rolling to winding is 50 ° C./s or less, preferably 30 ° C./s or less. The lower limit of the average cooling rate is not particularly specified, but if the cooling rate is low, the crystal grains become coarse, and therefore it is preferably 10 ° C./s or more.

巻取り温度:(450+[Mn]/[C])℃以上
巻取り温度が低いと、固溶Cの拡散が抑制されることから、固溶Cを粒界に偏析させることができなくなり、AIを20MPa以下にできない。これは、[C]に対する[Mn]の比が大きいほど顕著になることから、巻取り温度は(450+[Mn]/[C])℃以上とする必要がある。
Winding temperature: (450+ [Mn] / [C]) ° C or higher If the winding temperature is low, diffusion of solid solution C is suppressed, so that solid solution C cannot be segregated at the grain boundaries, AI cannot be reduced below 20MPa. This becomes more prominent as the ratio of [Mn] to [C] increases, so the coiling temperature must be (450+ [Mn] / [C]) ° C. or higher.

なお、鋼の溶製方法には、通常の転炉法、電炉法などを適宜適用することができる。また、溶製された鋼は、スラブに鋳造後、そのまま、あるいは冷却して加熱後、熱間圧延が施される。熱間圧延後の鋼板には、酸洗処理、圧下率0.5〜3%程度の調質圧延、溶融亜鉛めっき処理や化成処理などの表面処理を施すことができる。   In addition, a normal converter method, an electric furnace method, etc. can be suitably applied to the melting method of steel. The molten steel is cast into a slab and then subjected to hot rolling as it is or after cooling and heating. The steel sheet after hot rolling can be subjected to a surface treatment such as pickling, temper rolling with a rolling reduction of about 0.5 to 3%, hot dip galvanizing or chemical conversion.

表1に示す化学組成の鋼を溶製し、スラブとした後、1200℃で1時間加熱し、粗圧延および7スタンドの圧延機により7回圧延(圧下)する、7パスからなる仕上げ圧延を行った。表2に、各スタンドすなわち各パス入り側での板厚、各パス入り側での温度、および最終パス(第7パス目)出側での板厚および温度を示した。また、950℃以下での累積歪みを示す。なお、表2のパス出側温度は全てオーステナイト域となっていた。ここで、温度は、放射温度計を用いて測定した鋼の表面温度であり、950℃以下での累積歪みは、圧延途中で温度が950℃を下回りさらに復熱などにより昇温して950℃を上回った場合は、最後に950℃以下になってからの累積歪みとした。仕上げ圧延後は、表2に示すように、平均冷却速度10〜60℃/sで冷却し、650℃の巻取り温度で巻取って熱延鋼板とした。巻取り後の熱延鋼板には、酸洗、次いで1.0%の圧下率で調質圧延を行った。そして、圧延方向からJIS5号引張試験片を切り出し、引張試験を行ってYP、引張強度TS、伸びElを測定した。また、上記の方法により、AIおよび時効後YPの測定を行った。   A steel with the chemical composition shown in Table 1 is melted and made into a slab, heated at 1200 ° C for 1 hour, rough rolled and rolled 7 times (reduced) by a 7-stand rolling mill. went. Table 2 shows the thickness of each stand, that is, the thickness at the entrance side of each pass, the temperature at the entrance side of each pass, and the thickness and temperature at the exit side of the final pass (seventh pass). Moreover, the cumulative strain at 950 ° C. or lower is shown. In addition, all pass outlet temperatures in Table 2 were in the austenite region. Here, the temperature is the surface temperature of the steel measured using a radiation thermometer, and the cumulative strain at 950 ° C. or lower is 950 ° C. during the rolling because the temperature falls below 950 ° C. In the case of exceeding the value, the cumulative strain after the temperature finally reached 950 ° C. or lower was taken as the cumulative strain. After finish rolling, as shown in Table 2, the steel sheet was cooled at an average cooling rate of 10 to 60 ° C./s and wound at a winding temperature of 650 ° C. to obtain a hot rolled steel sheet. The hot-rolled steel sheet after winding was pickled and then temper-rolled at a rolling reduction of 1.0%. Then, a JIS No. 5 tensile test piece was cut out from the rolling direction, a tensile test was performed, and YP, tensile strength TS, and elongation El were measured. In addition, AI and post-aging YP were measured by the above methods.

結果を表3に示す。   The results are shown in Table 3.

また、図5に、平均冷却速度が30℃/sのときの950℃以下の累積歪みとAIの関係を、図6に、平均冷却速度が30℃/sのときの累積歪みと時効後YPの関係を示す。累積歪みを0.6〜2.0とすることでAIを20MPa以下、時効後YPを180MPa以下とでき、形状凍結性に優れることがわかる。また、表3の供試鋼No.4に示すように、平均冷却速度が50℃/sを超えると、AIが20MPaを超え、時効後YPが180MPaを超えて、形状凍結性に劣ることがわかる。   Figure 5 shows the relationship between AI and cumulative strain below 950 ° C when the average cooling rate is 30 ° C / s, and Fig. 6 shows cumulative strain and YP after aging when the average cooling rate is 30 ° C / s. The relationship is shown. It can be seen that by setting the cumulative strain to 0.6 to 2.0, AI can be 20 MPa or less and YP after aging is 180 MPa or less, and the shape freezing property is excellent. Also, as shown in test steel No. 4 in Table 3, when the average cooling rate exceeds 50 ° C / s, AI exceeds 20MPa, YP exceeds 180MPa after aging, and shape freezeability may be inferior. Recognize.

表4に示す化学組成の鋼を溶製し、スラブとした後、表2の供試鋼No.3と同様な950℃以下での累積歪みで仕上げ圧延し、平均冷却速度30℃/sで冷却後、巻取り温度を変えて熱延鋼板とした。そして、実施例1と同様に、YP、TS、El、AIおよび時効後YPの測定を行った。   After melting the steel with the chemical composition shown in Table 4 into a slab, it was finish-rolled with a cumulative strain at 950 ° C or lower, similar to the test steel No. 3 in Table 2, and the average cooling rate was 30 ° C / s. After cooling, the coiling temperature was changed to obtain a hot rolled steel sheet. Then, as in Example 1, YP, TS, El, AI, and post-aging YP were measured.

結果を表4に示す。   The results are shown in Table 4.

また、図7に、[Mn]×[C]とAIとの関係を、図8に、[Mn]×[C]と時効後YPとの関係を示す。[Mn]×[C]≦4.0×10-4とすることでAIを20MPa以下、時効後YPを180MPa以下とでき、形状凍結性に優れることがわかる。また、表4の供試鋼No.17、19に示すように、巻取り温度が(450+[Mn]/[C])℃未満になると、[Mn]×[C]≦4.0×10-4であっても、AIが20MPaを超え、時効後YPが180MPaを超えて、形状凍結性に劣ることがわかる。さらに、表4の供試鋼No.23、29に示すように、C量やMn量が本発明の範囲外だと、[Mn]×[C]≦4.0×10-4であっても、AIが20MPaを超え、時効後YPが180MPaを超えて、形状凍結性に劣ることがわかる。 FIG. 7 shows the relationship between [Mn] × [C] and AI, and FIG. 8 shows the relationship between [Mn] × [C] and post-aging YP. It can be seen that by setting [Mn] × [C] ≦ 4.0 × 10 −4 , AI can be 20 MPa or less and YP after aging is 180 MPa or less, and the shape freezing property is excellent. As shown in test steel Nos. 17 and 19 in Table 4, when the coiling temperature was less than (450+ [Mn] / [C]) ° C., [Mn] × [C] ≦ 4.0 × 10 − Even when 4 , AI exceeds 20MPa and YP after aging exceeds 180MPa, it can be seen that the shape freezing property is inferior. Furthermore, as shown in test steel Nos. 23 and 29 in Table 4, when the amount of C and the amount of Mn are outside the scope of the present invention, even if [Mn] × [C] ≦ 4.0 × 10 −4 , AI exceeds 20MPa and YP exceeds 180MPa after aging.

Claims (2)

質量%で、C:0.0030%以下、Si:0.05%以下、Mn:0.30%以下、P:0.05%以下、S:0.03%以下、Al:0.01〜0.10%、N:0.0030%以下を含み、かつ[Mn]×[C]≦4.0×10-4を満たし、残部がFeおよび不可避的不純物である化学組成を有するとともに、時効指数AIが20MPa以下、25℃で6ヶ月時効後の降伏強度YPが180MPa以下であることを特徴とする形状凍結性と耐時効性に優れた熱延鋼板;ただし、[M]は元素Mの含有量(質量%)を表す。 In mass%, C: 0.0030% or less, Si: 0.05% or less, Mn: 0.30% or less, P: 0.05% or less, S: 0.03% or less, Al: 0.01-0.10%, N: 0.0030% or less, and It has a chemical composition satisfying [Mn] × [C] ≦ 4.0 × 10 −4 , the balance being Fe and inevitable impurities, an aging index AI of 20 MPa or less, and a yield strength YP after aging for 6 months at 25 ° C. A hot-rolled steel sheet excellent in shape freezing property and aging resistance characterized by being 180 MPa or less; provided that [M] represents the content (% by mass) of element M. 請求項1に記載の化学組成を有する鋼のスラブを、熱間圧延するに際し、950℃以下での累積歪みを0.6〜2.0とするとともに、オーステナイト域で仕上げ圧延を終了し、50℃/s以下の平均冷却速度で冷却後、(450+[Mn]/[C])℃以上の巻取り温度で巻取ることを特徴とする形状凍結性と耐時効性に優れた熱延鋼板の製造方法;ただし、[M]は元素Mの含有量(質量%)を表す。   When the steel slab having the chemical composition according to claim 1 is hot-rolled, the cumulative strain at 950 ° C. or lower is set to 0.6 to 2.0, and finish rolling is finished in the austenite region, and 50 ° C./s or lower. After cooling at an average cooling rate of (450+ [Mn] / [C]) a method of producing a hot-rolled steel sheet excellent in shape freezing and aging resistance, characterized by winding at a winding temperature of (450+ [Mn] / [C]) ° C. or higher; However, [M] represents the content (mass%) of the element M.
JP2011285171A 2011-12-27 2011-12-27 Hot-rolled steel sheet excellent in shape freezing and aging resistance and method for producing the same Expired - Fee Related JP5834901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011285171A JP5834901B2 (en) 2011-12-27 2011-12-27 Hot-rolled steel sheet excellent in shape freezing and aging resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011285171A JP5834901B2 (en) 2011-12-27 2011-12-27 Hot-rolled steel sheet excellent in shape freezing and aging resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013133509A true JP2013133509A (en) 2013-07-08
JP5834901B2 JP5834901B2 (en) 2015-12-24

Family

ID=48910411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011285171A Expired - Fee Related JP5834901B2 (en) 2011-12-27 2011-12-27 Hot-rolled steel sheet excellent in shape freezing and aging resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP5834901B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219424A (en) * 1988-07-07 1990-01-23 Nippon Steel Corp Manufacture of monaging hot rolled steel plate
JPH04346625A (en) * 1991-05-24 1992-12-02 Kobe Steel Ltd Manufacture of baking hardening type cold rolled steel sheet excellent in aging resistance and press formability
JPH05195060A (en) * 1992-01-13 1993-08-03 Kobe Steel Ltd Production of baking hardening type cold rolled steel sheet excellent in ageing resistance and press formability
JPH08157954A (en) * 1994-11-30 1996-06-18 Nippon Steel Corp Production of non-aging hot rolled steel plate with excellent workability
JPH08157962A (en) * 1994-11-30 1996-06-18 Nippon Steel Corp Production of non-aging hot rolled steel plate for deep drawing, reduced in anisotropy
JPH11181526A (en) * 1997-12-19 1999-07-06 Kobe Steel Ltd Production of hot rolled steel plate excellent in workability and non-aging characteristic

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219424A (en) * 1988-07-07 1990-01-23 Nippon Steel Corp Manufacture of monaging hot rolled steel plate
JPH04346625A (en) * 1991-05-24 1992-12-02 Kobe Steel Ltd Manufacture of baking hardening type cold rolled steel sheet excellent in aging resistance and press formability
JPH05195060A (en) * 1992-01-13 1993-08-03 Kobe Steel Ltd Production of baking hardening type cold rolled steel sheet excellent in ageing resistance and press formability
JPH08157954A (en) * 1994-11-30 1996-06-18 Nippon Steel Corp Production of non-aging hot rolled steel plate with excellent workability
JPH08157962A (en) * 1994-11-30 1996-06-18 Nippon Steel Corp Production of non-aging hot rolled steel plate for deep drawing, reduced in anisotropy
JPH11181526A (en) * 1997-12-19 1999-07-06 Kobe Steel Ltd Production of hot rolled steel plate excellent in workability and non-aging characteristic

Also Published As

Publication number Publication date
JP5834901B2 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP5609223B2 (en) High-strength steel sheet with excellent warm workability and manufacturing method thereof
JP5609945B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
KR101402365B1 (en) Cold-rolled steel sheet having excellent slow-aging property and high curability in baking, and method for producing same
JP6766190B2 (en) Ultra-high-strength, high-ductility steel sheet with excellent yield strength and its manufacturing method
JP5387073B2 (en) Steel plate for hot pressing, method for manufacturing the same, and method for manufacturing steel plate member for hot pressing
JP2012153957A (en) High-strength cold-rolled steel sheet with excellent ductility, and method for producing the same
JP5501819B2 (en) Cold-rolled steel sheet for nitriding with excellent nitriding characteristics and anti-recrystallization softening characteristics and method for producing the same
JP5046400B2 (en) Method for producing cold-rolled steel sheet with excellent recrystallization softening resistance and cold-rolled steel sheet for automatic transmission
CN115461482A (en) Steel sheet, component and method for producing same
WO2014057519A1 (en) Cold-rolled steel sheet with superior shape fixability and manufacturing method therefor
KR101891427B1 (en) Steel sheet for cans and manufacturing method thereof
JP6500389B2 (en) Method of manufacturing hot rolled steel sheet
JP5903884B2 (en) Manufacturing method of high-strength thin steel sheet with excellent resistance to folding back
JP5660291B2 (en) High strength cold-rolled thin steel sheet with excellent formability and method for producing the same
JP4715496B2 (en) Method for producing cold-rolled steel sheets with excellent strain aging resistance and small in-plane anisotropy
JP2015145521A (en) High strength cold rolled steel sheet and method for producing the same
JP5834901B2 (en) Hot-rolled steel sheet excellent in shape freezing and aging resistance and method for producing the same
JP5846113B2 (en) High strength thin steel sheet with excellent dent resistance and method for producing the same
JP6225733B2 (en) High strength hot rolled steel sheet and method for producing the same
JP5534112B2 (en) Hot-rolled steel sheet for cold rolling material and manufacturing method thereof
JP2007211337A (en) Cold-rolled steel sheet having excellent strain-aging resistance and low in-plane anisotropy and method for manufacture thereof
JP5887920B2 (en) Cold-rolled steel sheet with excellent shape freezing and aging resistance and method for producing the same
JP4114522B2 (en) Ultra-high strength cold-rolled steel sheet and method for producing the same
JP4604883B2 (en) Steel plate with small anisotropy and method for producing the same
JP2013224490A (en) Method of manufacturing hot-pressed steel sheet member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151019

R150 Certificate of patent or registration of utility model

Ref document number: 5834901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees