JP2013122862A - Cylindrical alkaline storage battery - Google Patents

Cylindrical alkaline storage battery Download PDF

Info

Publication number
JP2013122862A
JP2013122862A JP2011270952A JP2011270952A JP2013122862A JP 2013122862 A JP2013122862 A JP 2013122862A JP 2011270952 A JP2011270952 A JP 2011270952A JP 2011270952 A JP2011270952 A JP 2011270952A JP 2013122862 A JP2013122862 A JP 2013122862A
Authority
JP
Japan
Prior art keywords
negative electrode
storage battery
separator
peripheral wall
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011270952A
Other languages
Japanese (ja)
Inventor
Shinichi Sumiyama
真一 住山
Fumio Kato
文生 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011270952A priority Critical patent/JP2013122862A/en
Publication of JP2013122862A publication Critical patent/JP2013122862A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an alkaline storage battery with reduced internal resistance and an excellent high-rate discharge characteristic and cycle life characteristic by focusing the adhesion and space between the inner peripheral wall of its outer packaging can and its group of electrodes.SOLUTION: A cylindrical alkaline storage battery comprises: a cylindrical outer packaging can with a bottom and its upper end being opened; and a group of electrodes being wound in a spiral shape and inserted into the outer packaging can, the group of electrodes being formed with a belt-shaped positive and negative electrode interposing a separator and the negative electrode being positioned at the outermost periphery. The cylindrical alkaline storage battery has a current collection structure in which the outer peripheral part being formed by the negative electrode is contacting the inner peripheral wall of the outer packaging can, and also has a current collection structure in which a positive electrode lead from the positive electrode is connected to a conductive lid plate disposed inside the opening of the outer packaging can. Also, a conductive coating film is coated on the inner peripheral wall of the outer packaging can, and alkaline electrolyte is being filled after the group of electrodes are inserted into the outer packaging can whose diameter to be reduced.

Description

本発明は、円筒型アルカリ蓄電池に関し、特に好適な電極群と外装缶を持つものに関する。   The present invention relates to a cylindrical alkaline storage battery, and particularly to a battery having an electrode group and an outer can.

アルカリ蓄電池としては、含まれる活物質の種類によって、例えばニッケルカドミウム蓄電池、ニッケル水素蓄電池等をあげることができる。これらアルカリ蓄電池には、セパレータを間に挟んで負極板と正極板を巻回した渦巻状電極群を、筒状の外装缶内に収容した円筒型のものがある。負極からなる最外周部が外装缶の内周壁に接する集電構造と正極からは正極リードが外装缶の開口内に配置された導電性の蓋板に接続された集電構造を備えた構造を有している。   As an alkaline storage battery, a nickel cadmium storage battery, a nickel hydride storage battery, etc. can be mention | raise | lifted according to the kind of active material contained, for example. These alkaline storage batteries include a cylindrical battery in which a spiral electrode group in which a negative electrode plate and a positive electrode plate are wound with a separator interposed therebetween is housed in a cylindrical outer can. A current collecting structure in which the outermost peripheral portion made of the negative electrode is in contact with the inner peripheral wall of the outer can and a structure having a current collecting structure in which the positive electrode lead from the positive electrode is connected to a conductive cover plate disposed in the opening of the outer can. Have.

この種の円筒型アルカリ蓄電池は、広汎な用途に好適することから、各種性能の向上のため、様々な技術開発が行われている。   Since this type of cylindrical alkaline storage battery is suitable for a wide range of applications, various technological developments have been made to improve various performances.

例えば、外装缶と側周壁内面と活物質の接触面積の増大を図ることのできる形状を有する電池缶の製造方法が提案されている(特許文献1参照)。   For example, a method for manufacturing a battery can having a shape capable of increasing the contact area between an outer can, an inner surface of a side peripheral wall, and an active material has been proposed (see Patent Document 1).

また、サイクル寿命向上のためにセパレータの電解液保持性向上を目的に、例えば、正極と、水素吸蔵合金を含む負極と、前記正極および前記負極の間に介在されるセパレータと、アルカリ電解液とを具備し、前記セパレータは、合成樹脂繊維の不織布からなり、10kgf/cmの加圧を受けた時の圧縮率が加圧前の厚さに対して40%以下で、かつその圧縮状態での厚さが0.10mm以上である円筒型アルカリ蓄電池が開示されている(特許文献2参照)。 For the purpose of improving the electrolyte solution retention of the separator for the purpose of improving the cycle life, for example, a positive electrode, a negative electrode containing a hydrogen storage alloy, a separator interposed between the positive electrode and the negative electrode, an alkaline electrolyte, The separator is made of a synthetic resin fiber nonwoven fabric, and the compression rate when subjected to a pressure of 10 kgf / cm 2 is 40% or less with respect to the thickness before the pressure, and in the compressed state. A cylindrical alkaline storage battery having a thickness of 0.10 mm or more is disclosed (see Patent Document 2).

同様な目的で、正極と負極の間にセパレータが介在された構造の電極群を具備し、このセパレータは、30体積%以上のシンジオタクチックポリプロピレン繊維を含むと共に、JIS P−8117−1980に規定されるガーレー法で測定した通気度が0.5sec/100cc〜10sec/100ccである構成が開示されている(特許文献3参照)。   For the same purpose, an electrode group having a structure in which a separator is interposed between a positive electrode and a negative electrode is provided. This separator includes 30% by volume or more of syndiotactic polypropylene fibers and is defined in JIS P-8117-1980. Disclosed is a configuration in which the air permeability measured by the Gurley method is 0.5 sec / 100 cc to 10 sec / 100 cc (see Patent Document 3).

特開2002−15712号公報JP 2002-15712 A 特開2000−195486号公報JP 2000-195486 A 特開2000−268800号公報JP 2000-268800 A

特許文献1に代表される外装缶と側周壁内面と活物質の接触面積の増大を図るような従来の技術では、ハイレート放電特性は向上するもののサイクル寿命特性向上に課題があった。   In the conventional technique which attempts to increase the contact area between the outer can represented by Patent Document 1 and the inner surface of the side peripheral wall and the active material, the high-rate discharge characteristics are improved, but there is a problem in improving the cycle life characteristics.

逆に、特許文献2及び3に代表されるサイクル寿命向上のためにセパレータの保液性を向上させるような従来の技術では、内部抵抗を低くできないため、ハイレート放電特性向上に課題があった。   On the other hand, the conventional techniques for improving the liquid retention of the separator for improving the cycle life represented by Patent Documents 2 and 3 have a problem in improving the high-rate discharge characteristics because the internal resistance cannot be lowered.

このように従来の技術では、ハイレート放電特性とサイクル寿命特性の両立は困難であった。   As described above, in the conventional technique, it is difficult to achieve both high rate discharge characteristics and cycle life characteristics.

そこで、本発明は上記の従来の問題を解決するものであり、外装缶内周壁と電極群の密着性及びその空間に着眼し、内部抵抗を低くし、ハイレート放電特性とサイクル寿命特性に優れたアルカリ蓄電池を提供することを目的とする。   Therefore, the present invention solves the above-described conventional problems, focusing on the adhesion between the outer peripheral wall of the outer can and the electrode group and its space, lowering the internal resistance, and being excellent in high-rate discharge characteristics and cycle life characteristics. An object is to provide an alkaline storage battery.

上記した目的を達成するため、請求項1の発明では、帯状の負極並びに正極をセパレータを介して前記負極が最外周に位置付けられるように渦巻状に巻回してなる電極群を、前記電極群の最大直径よりも大きな内径を有する上端が開口した有底円筒形状をなす円筒状外装缶に挿入し、その後、アルカリ電解液を注入し、さらに前記外装缶を縮径した円筒型アルカリ蓄電池において、前記負極の最外周部が前記外装缶の内周壁に接する集電構造を備え、前記外装缶は、内周壁に導電性塗膜が塗布されていることを特徴とする。   In order to achieve the above-described object, in the invention of claim 1, an electrode group formed by winding a strip-shaped negative electrode and a positive electrode in a spiral shape so that the negative electrode is positioned on the outermost periphery through a separator, Inserted into a cylindrical outer can having a bottomed cylindrical shape with an upper end having an inner diameter larger than the maximum diameter, and then injecting an alkaline electrolyte, and further reducing the diameter of the outer can in the cylindrical alkaline storage battery, The outermost peripheral part of the negative electrode has a current collecting structure in contact with the inner peripheral wall of the outer can, and the outer can has a conductive coating applied to the inner peripheral wall.

この構成では、外装缶の内周壁に導電性塗膜が塗布され、電極群の最大直径よりも大きな内径を有する外装缶に挿入した後、外装缶を縮径することにより、外装缶内周壁と負極の密着性が向上し、接触抵抗が低減される。また、外装缶内周壁と負極の間に形成される空間が低減し、その空間に存在するアルカリ電解液も低減され、セパレータに保持されるアルカリ電解液が増加する。その結果、サイクル寿命が向上する。   In this configuration, the conductive coating is applied to the inner peripheral wall of the outer can and inserted into the outer can having an inner diameter larger than the maximum diameter of the electrode group. The adhesion of the negative electrode is improved and the contact resistance is reduced. Moreover, the space formed between the outer peripheral wall of the outer can and the negative electrode is reduced, the alkaline electrolyte present in the space is also reduced, and the alkaline electrolyte retained in the separator is increased. As a result, the cycle life is improved.

請求項2の発明では、この導電性塗膜は黒鉛とカーボンブラックからなり、黒鉛の分量は55wt%以上80wt%以下、カーボンブラックの分量が20wt%以上45wt%以下とした構成にしている。   In the second aspect of the invention, the conductive coating film is composed of graphite and carbon black, and the graphite content is 55 wt% to 80 wt%, and the carbon black content is 20 wt% to 45 wt%.

上記した構成では、導電性塗膜に黒鉛とカーボンブラックを使用することで、黒鉛の撥水効果により、外装缶内周壁と負極の間に形成される空間へのアルカリ電解液の存在が更に低減され、セパレータに保持される電解液が増加する。また、比表面積の大きいカーボンブラックを使用することで、導電性塗膜の表面粗さが増大し、外装缶内周壁と負極の接触が点接触から面接触となり理想的な集電効果が発揮される。   In the configuration described above, the use of graphite and carbon black for the conductive coating further reduces the presence of alkaline electrolyte in the space formed between the inner peripheral wall of the outer can and the negative electrode due to the water repellent effect of graphite. As a result, the electrolyte solution retained in the separator increases. Also, by using carbon black with a large specific surface area, the surface roughness of the conductive coating increases, and the contact between the inner peripheral wall of the outer can and the negative electrode changes from point contact to surface contact, and an ideal current collection effect is exhibited. The

請求項3の発明では、この負極の最外周部は内周部よりも厚みが薄く、かつ前記負極の最外周部の端部厚みが0.10mm以上0.35mm以下の範囲とした構成にしている。   In the invention of claim 3, the outermost peripheral portion of the negative electrode is thinner than the inner peripheral portion, and the end thickness of the outermost peripheral portion of the negative electrode is in the range of 0.10 mm to 0.35 mm. Yes.

上記した構成では、外装缶内周壁と負極の間に形成される空間が低減し、外装缶内周壁と負極の密着性が向上し、接触抵抗が低減される。また、その空間に存在するアルカリ電解液も低減され、セパレータに保持されるアルカリ電解液が更に増加する。   In the above configuration, the space formed between the outer peripheral wall of the outer can and the negative electrode is reduced, the adhesion between the outer peripheral wall of the outer can and the negative electrode is improved, and the contact resistance is reduced. In addition, the alkaline electrolyte present in the space is reduced, and the alkaline electrolyte retained in the separator is further increased.

請求項4の発明では、前記セパレータは、ポリオレフィン製不織布に、硫酸処理により親水性を付与したセパレータと、ポリオレフィン製不織布に、フッ素処理または界面活性剤処理またはプラズマ処理により親水性を付与したセパレータとを併用したものであり、硫酸処理以外により親水性を付与したセパレータの併用割合がセパレータ全体の35wt%以上75wt%であるした構成にしている。   In the invention of claim 4, the separator is a polyolefin nonwoven fabric imparted with hydrophilicity by sulfuric acid treatment, and a polyolefin nonwoven fabric imparted hydrophilicity by fluorine treatment, surfactant treatment or plasma treatment, and The combined ratio of the separator to which hydrophilicity is imparted by other than the sulfuric acid treatment is 35 wt% or more and 75 wt% of the whole separator.

上記した構成では、硫酸処理により親水性を付与したセパレータより吸液性が高いフッ素処理、界面活性剤処理もしくはプラズマ処理により親水性を付与したものを併用した構成とすることで、外装缶内周壁と負極の間に形成される空間が低減されたことにより、余剰となったアルカリ電解液をセパレータに確実に保持することができる。   In the configuration described above, the outer peripheral wall of the outer can can be obtained by using a combination of fluorine treatment, surfactant treatment, or plasma treatment that has higher hydrophilicity than a separator that has been rendered hydrophilic by sulfuric acid treatment. By reducing the space formed between the negative electrode and the negative electrode, the excess alkaline electrolyte can be reliably held in the separator.

本発明は、円筒型アルカリ蓄電池において電極群を構成する最外周部の負極が外装缶の内周壁に接している構造で、導電性塗膜が塗布された外装缶に電極群を挿入した後、外装缶を縮径し、外装缶内周壁と電極群を構成する最外周部の負極との密着性を向上させることで電池の内部抵抗が低いアルカリ蓄電池を提供することができる。また、外装缶内周壁と負極の間に形成される空間が低減し、その空間に存在するアルカリ電解液も低減され、セパレータに保持されるアルカリ電解液が増加する。その結果、サイクル寿命が向上する。   The present invention is a structure in which the outermost peripheral negative electrode constituting the electrode group in the cylindrical alkaline storage battery is in contact with the inner peripheral wall of the outer can, and after inserting the electrode group into the outer can coated with the conductive coating film, By reducing the diameter of the outer can and improving the adhesion between the inner peripheral wall of the outer can and the negative electrode of the outermost peripheral portion constituting the electrode group, an alkaline storage battery having a low internal resistance of the battery can be provided. Moreover, the space formed between the outer peripheral wall of the outer can and the negative electrode is reduced, the alkaline electrolyte present in the space is also reduced, and the alkaline electrolyte retained in the separator is increased. As a result, the cycle life is improved.

本発明の一実施形態に係る円筒型ニッケル水素蓄電池の部分切欠き斜視図1 is a partially cutaway perspective view of a cylindrical nickel-metal hydride storage battery according to an embodiment of the present invention. 本発明の一実施形態に係る円筒型ニッケル水素蓄電池の横断面図1 is a cross-sectional view of a cylindrical nickel-metal hydride storage battery according to an embodiment of the present invention. 本発明の一実施形態に係る縮径金型の縦断面図The longitudinal cross-sectional view of the diameter-reduction mold which concerns on one Embodiment of this invention

以下に添付の図面を参照して、本発明の一実施形態の円筒型ニッケル水素蓄電池を詳細に説明する。 Hereinafter, a cylindrical nickel-metal hydride storage battery according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1に示したように、円筒型ニッケル水素蓄電池は上端が開口した有底円筒形状をなす外装缶1を備え、外装缶1は導電性を有して負極端子として機能する。また、外装缶内周壁には、導電性塗膜21が形成されている。外装缶1の開口内には、リング状の絶縁パッキン2を介して導電性の蓋板3が配置され、開口縁をかしめ加工することにより絶縁パッキン2及び蓋板3は開口内に固定されている。尚、外装缶には絶縁パッキンを外装缶に確実に固定するために溝4が設けられている。また、かしめ加工された外装缶1の開口縁と絶縁パッキン2の間には、封止性を高める目的でブローンアスファルト、ポリブテン、ポリアミド等の封止剤が単体、若しくは混合物として配置されている(図示せず)。   As shown in FIG. 1, the cylindrical nickel-metal hydride storage battery includes an outer can 1 having a bottomed cylindrical shape with an open upper end, and the outer can 1 has conductivity and functions as a negative electrode terminal. A conductive coating film 21 is formed on the inner peripheral wall of the outer can. In the opening of the outer can 1, a conductive cover plate 3 is disposed via a ring-shaped insulating packing 2, and the insulating packing 2 and the cover plate 3 are fixed in the opening by caulking the opening edge. Yes. The outer can is provided with a groove 4 to securely fix the insulating packing to the outer can. In addition, a sealing agent such as blown asphalt, polybutene, polyamide, or the like is disposed between the opening edge of the caulked outer can 1 and the insulating packing 2 as a single substance or a mixture for the purpose of improving sealing performance ( Not shown).

開口縁をかしめ加工した後、外装缶の胴体部とかしめ部が縮径され、溝4が圧着される。外装缶1の外周面は、絶縁を確保するための外装ラベル5で被覆されている。更に、かしめ部と外装ラベル5の間にドーナツ状絶縁部材6が蓋板3を覆うように配置されている。   After caulking the opening edge, the body portion and the caulking portion of the outer can are reduced in diameter, and the groove 4 is crimped. The outer peripheral surface of the outer can 1 is covered with an outer label 5 for ensuring insulation. Further, a donut-shaped insulating member 6 is disposed between the caulking portion and the exterior label 5 so as to cover the cover plate 3.

蓋板3は中央にガス抜き孔7を有し、蓋板3の外面上にはガス抜き孔7を塞いでゴム製の弁体8が配置されている。更に蓋板3の外面上には、弁体8を覆う帽子状の正極端子9が固定され、正極端子9は弁体8を蓋板3に押圧している。従って、通常時、外装缶1は絶縁パッキン2及び弁体8とともに蓋板3により気密に閉塞されている。一方、外装缶1内でガスが発生してその内圧が高まった場合には弁体8が圧縮され、ガス抜き孔7を通して外装缶1からガスが放出される。つまり、蓋板3、弁体8及び正極端子9は、安全弁を形成している。   The cover plate 3 has a gas vent hole 7 in the center, and a rubber valve element 8 is disposed on the outer surface of the cover plate 3 so as to close the gas vent hole 7. Further, a cap-like positive electrode terminal 9 covering the valve body 8 is fixed on the outer surface of the lid plate 3, and the positive electrode terminal 9 presses the valve body 8 against the lid plate 3. Therefore, at the normal time, the outer can 1 is airtightly closed by the cover plate 3 together with the insulating packing 2 and the valve body 8. On the other hand, when gas is generated in the outer can 1 and its internal pressure increases, the valve body 8 is compressed, and the gas is released from the outer can 1 through the gas vent hole 7. That is, the cover plate 3, the valve body 8, and the positive electrode terminal 9 form a safety valve.

外装缶1内には、アルカリ電解液(図示せず)とともに略円柱状の電極群10が収容され、電極群10はその最外周部が外装缶1の内周壁に直接接触している。詳細な条件は、後述するが、外装缶の内周壁には、導電性塗膜が形成されており、電極群10を外装缶にスムーズに収容することと活物質を充填する内容積を確保するために、外装缶の内径は電極群10の最大直径より大きくなっている。   A substantially cylindrical electrode group 10 is accommodated in the outer can 1 together with an alkaline electrolyte (not shown), and the outermost peripheral portion of the electrode group 10 is in direct contact with the inner peripheral wall of the outer can 1. Although detailed conditions will be described later, a conductive coating film is formed on the inner peripheral wall of the outer can, and the electrode group 10 can be smoothly accommodated in the outer can and the internal volume filled with the active material can be ensured. Therefore, the inner diameter of the outer can is larger than the maximum diameter of the electrode group 10.

電極群10は、正極11、負極12及びセパレータ13からなり、アルカリ電解液としては、例えば、水酸化ナトリウム水溶液、水酸化リチウム水溶液、水酸化カリウム水溶液、及びこれらのうち2つ以上を混合した水溶液等をあげることができる。   The electrode group 10 includes a positive electrode 11, a negative electrode 12, and a separator 13. Examples of the alkaline electrolyte include a sodium hydroxide aqueous solution, a lithium hydroxide aqueous solution, a potassium hydroxide aqueous solution, and an aqueous solution obtained by mixing two or more of these. Etc.

更に外装缶内には、電極群10の一端と蓋板3との間に、正極リード14が配置され、
正極リード14の両端は正極11及び蓋板3に接続されている。従って、正極端子9と正極11との間は、正極リード14及び蓋板3を介して電気的に接続されている。なお、蓋板3と電極群10との間には円形のスリット付き絶縁部材15が配置され、正極リード14は円形のスリット付き絶縁部材15に設けられたスリットを通して延びている。また、電極群10と外装缶1の底部との間にも円形の絶縁部材16が配置されている。
Further, in the outer can, a positive electrode lead 14 is disposed between one end of the electrode group 10 and the lid plate 3,
Both ends of the positive electrode lead 14 are connected to the positive electrode 11 and the lid plate 3. Therefore, the positive electrode terminal 9 and the positive electrode 11 are electrically connected via the positive electrode lead 14 and the cover plate 3. An insulating member 15 with a circular slit is disposed between the cover plate 3 and the electrode group 10, and the positive electrode lead 14 extends through a slit provided in the insulating member 15 with a circular slit. A circular insulating member 16 is also disposed between the electrode group 10 and the bottom of the outer can 1.

図2を参照すると、電極群10において、正極11及び負極12は、セパレータ13を間に挟んだ状態で電極群10の径方向でみて交互に重ね合わされている。より詳しくは、電極群10は、それぞれ帯状の正極11、負極12及びセパレータ13を用意し、これら正極11及び負極12を、セパレータ13を介してそれらの一端側から巻芯を用いて渦巻状に巻回して形成される。このため、正極11及び負極12の最内周部の端部、正極内端17、負極内端18が電極群10の中心側に位置付けられる一方、正極11及び負極12の最外周部の端部、正極外端19、負極外端20が電極群10の外周側に位置付けられている。また、負極12は、正極11に比べて長く、正極内端17の内側から正極外端19の外側まで渦巻き状に延び、セパレータ13を介して正極11を長手方向全域に亘って両側から挟んでいる。電極群10の最外周部にはセパレータ13は巻回されておらず、電極群10の最外周部は、負極となっている。電極群10の最外周部において、負極12と外装缶1とは互いに電気的に接続され、負極外端20は、セパレータ13を介して負極12が正極外端19の外側を覆うために十分な長さだけ離間して、正極外端19の近傍に位置付けられている。   Referring to FIG. 2, in the electrode group 10, the positive electrode 11 and the negative electrode 12 are alternately overlapped when viewed in the radial direction of the electrode group 10 with the separator 13 interposed therebetween. More specifically, each of the electrode groups 10 includes a strip-like positive electrode 11, a negative electrode 12, and a separator 13, and the positive electrode 11 and the negative electrode 12 are spirally formed using a core from one end of the separator 11. It is formed by winding. Therefore, the end portions of the innermost peripheral portion of the positive electrode 11 and the negative electrode 12, the inner end portion 17 of the positive electrode, and the inner end portion 18 of the negative electrode are positioned on the center side of the electrode group 10, while the end portions of the outermost peripheral portion of the positive electrode 11 and the negative electrode 12 The positive electrode outer end 19 and the negative electrode outer end 20 are positioned on the outer peripheral side of the electrode group 10. The negative electrode 12 is longer than the positive electrode 11 and extends spirally from the inner side of the positive electrode inner end 17 to the outer side of the positive electrode outer end 19, and sandwiches the positive electrode 11 from both sides across the entire longitudinal direction via the separator 13. Yes. The separator 13 is not wound around the outermost peripheral portion of the electrode group 10, and the outermost peripheral portion of the electrode group 10 is a negative electrode. In the outermost peripheral part of the electrode group 10, the negative electrode 12 and the outer can 1 are electrically connected to each other, and the negative electrode outer end 20 is sufficient for the negative electrode 12 to cover the outside of the positive electrode outer end 19 through the separator 13. It is located in the vicinity of the positive electrode outer end 19, separated by a length.

セパレータ13の材質としては、例えば、ポリアミド繊維製不織布、ポリエチレンやポリプロピレンなどのポリオレフィン繊維製不織布に親水性官能基を付与したものをあげることができる。   Examples of the material of the separator 13 include polyamide fiber nonwoven fabrics, and polyolefin fiber nonwoven fabrics such as polyethylene and polypropylene that are provided with hydrophilic functional groups.

正極11は、帯状をなす導電性の正極芯体を有し(図示せず)、この芯体には正極合剤が保持されている。正極芯体としては、例えば、多孔質構造を有する発泡ニッケル基材等をあげることができ、発泡ニッケル基材の場合には、正極合剤は発泡ニッケル基材の連通孔内に保持される。   The positive electrode 11 has a strip-shaped conductive positive electrode core (not shown), and a positive electrode mixture is held in the core. Examples of the positive electrode core include a foamed nickel base material having a porous structure. In the case of a foamed nickel base material, the positive electrode mixture is held in the communication hole of the foamed nickel base material.

正極合剤は、例えば、正極活物質、添加剤及び結着剤からなる。正極活物質としては、特に限定されないが、水酸化ニッケル粒子、あるいは、コバルト、亜鉛、カドミウム等を固溶した水酸化ニッケル粒子をあげることができる。また、添加剤としてはコバルト化合物からなる導電剤を、結着剤としては親水性若しくは疎水性のポリマー等をそれぞれあげることができる。   The positive electrode mixture includes, for example, a positive electrode active material, an additive, and a binder. The positive electrode active material is not particularly limited, and examples thereof include nickel hydroxide particles or nickel hydroxide particles in which cobalt, zinc, cadmium or the like is dissolved. Examples of the additive include a conductive agent made of a cobalt compound, and examples of the binder include a hydrophilic or hydrophobic polymer.

負極12は、帯状をなす導電性の負極芯体を有し、この負極芯体には負極合剤が保持されている。負極芯体は、厚み方向に複数の貫通孔(図示せず)を有するシート状の金属材からなり、このようなものとして、例えば、パンチングメタル、金属粉末焼結体基板、エキスパンデッドメタル及びニッケルネット等をあげることができる。とりわけ、パンチングメタルや、金属粉末を成型してから焼結した金属粉末焼結体基板は負極芯体に好適する。   The negative electrode 12 has a conductive negative electrode core having a strip shape, and a negative electrode mixture is held in the negative electrode core. The negative electrode core is made of a sheet-like metal material having a plurality of through-holes (not shown) in the thickness direction, and examples thereof include a punching metal, a metal powder sintered body substrate, an expanded metal, and Nickel net etc. can be mentioned. In particular, a punched metal or a metal powder sintered body substrate that is sintered after molding metal powder is suitable for the negative electrode core.

負極合剤は、ニッケル水素蓄電池であることから、負極活物質としての水素を吸蔵及び放出可能な水素吸蔵合金粒子であり、必要に応じて、導電剤、増粘剤、結着剤などの添加剤を含んでいる。尚、本明細書においては、説明の便宜上、水素吸蔵合金も負極活物質という。さらに水素吸蔵合金粒子は、充電時にアルカリ電解液中で電気化学的に発生させた水素を吸蔵でき、なおかつ放電時にその吸蔵水素を容易に放出できるものであればよい。このような水素吸蔵合金としては、特に限定されないが、例えば、LaNiやMmNi(Mmはミッシュメタル)等のAB型系、あるいは、希土類−マグネシウム−ニッケ
ル系水素吸蔵合金等のAB型系のものが挙げられる。
Since the negative electrode mixture is a nickel-metal hydride storage battery, it is a hydrogen storage alloy particle capable of occluding and releasing hydrogen as the negative electrode active material. If necessary, addition of a conductive agent, a thickener, a binder, etc. Contains agents. In the present specification, the hydrogen storage alloy is also referred to as a negative electrode active material for convenience of explanation. Further, the hydrogen storage alloy particles may be any particles as long as they can store hydrogen generated electrochemically in an alkaline electrolyte during charging and can easily release the stored hydrogen during discharge. Such a hydrogen storage alloy is not particularly limited. For example, AB 5 type such as LaNi 5 or MmNi 5 (Mm is Misch metal), or AB 3 type such as rare earth-magnesium-nickel hydrogen storage alloy. The one of the system is mentioned.

導電剤としては、電子伝導性を有する材料であること以外は特に限定されず、各種の電子伝導性材料を用いることができる。具体的には、例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛、膨張黒鉛などのグラファイト類、例えば、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック類、例えば、炭素繊維、金属繊維などの導電性繊維類、例えば、銅粉などの金属粉末類、例えば、ポリフェニレン誘導体などの有機導電性材料などが挙げられ、なかでも、人造黒鉛、ケッチェンブラック、炭素繊維が好ましい。上記例示の電子伝導性材料は、単独で用いてもよく、2種以上を混合して用いてもよい。また、上記例示の電子伝導性材料は、負極活物質の表面に被覆させて用いてもよい。   The conductive agent is not particularly limited except that it is a material having electron conductivity, and various electron conductive materials can be used. Specifically, for example, graphite such as natural graphite (such as flake graphite), artificial graphite, and expanded graphite, for example, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black Examples thereof include conductive fibers such as carbon fibers and metal fibers, metal powders such as copper powder, and organic conductive materials such as polyphenylene derivatives, among others, artificial graphite and ketjen black Carbon fiber is preferred. The electron conductive materials exemplified above may be used alone or in combination of two or more. Moreover, you may use the electron conductive material of the said example coat | covered on the surface of a negative electrode active material.

増粘剤は、負極活物質を、負極合剤ペーストを用いて作製する場合において、負極合剤ペーストに対して粘性を付与する。例えば、負極合剤ペーストの分散媒として水を用いる場合には、増粘剤として、カルボキシメチルセルロース(CMC)およびその変性体、ポリビニルアルコール、メチルセルロース、ポリエチレンオキシド、ポリアクリル酸、ポリアクリル酸塩などを用いることができる。   The thickener imparts viscosity to the negative electrode mixture paste when the negative electrode active material is produced using the negative electrode mixture paste. For example, when water is used as a dispersion medium for the negative electrode mixture paste, carboxymethyl cellulose (CMC) and its modified body, polyvinyl alcohol, methyl cellulose, polyethylene oxide, polyacrylic acid, polyacrylate, etc. are used as a thickener. Can be used.

結着剤は、水素吸蔵合金粉末や導電剤を集電体に結着させる役割を果たす。結着剤は、熱可塑性樹脂および熱硬化性樹脂のいずれであってもよい。結着剤の具体例としては、例えば、スチレン−ブタジエン共重合ゴム(SBR)、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体などのフッ素系ポリマー、例えば、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体、エチレン−アクリル酸メチル共重合体、エチレン−メタクリル酸メチル共重合体、およびこれらエチレン−(メタ)アクリル酸系共重合体のNaイオン架橋体、などが挙げられる。これらは、単独で用いてもよく、2種以上を混合して用いてもよい。 The binder serves to bind the hydrogen storage alloy powder or the conductive agent to the current collector. The binder may be either a thermoplastic resin or a thermosetting resin. Specific examples of the binder include, for example, styrene-butadiene copolymer rubber (SBR), for example, polyolefin such as polyethylene and polypropylene, for example, polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer Polymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer, polychlorotrifluoro Ethylene, vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, vinylidene fluoride-hexaful Fluoropolymers such as propylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer, such as ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, ethylene -Methyl acrylate copolymer, ethylene-methyl methacrylate copolymer, Na + ion cross-linked product of these ethylene- (meth) acrylic acid copolymers, and the like. These may be used alone or in combination of two or more.

上記した外装缶内周壁に形成された導電性塗膜21の固形分は、黒鉛、カーボンブラックの混合物で形成されている。バインダーとしては、ポリ塩化ビニル、ポリビニルブチラールなどのビニル基を有する化合物が好ましく、単独で用いてもよく、2種以上を混合して用いてもよい。外装缶内周壁との密着性及び導電性の観点から、バインダーとして、10wt%〜20wt%のポリビニルブチラールと、90wt%〜80wt%の固形分が最も好ましい配合比である。また、溶媒にはメチルエチルケトン、シクロヘキサノン、水などが好ましく、溶媒としては、2種類以上を混合して用いてもよい。環境面より、より好ましくは、水が好ましい。   The solid content of the conductive coating film 21 formed on the inner peripheral wall of the outer can described above is formed of a mixture of graphite and carbon black. As a binder, the compound which has vinyl groups, such as polyvinyl chloride and polyvinyl butyral, is preferable, may be used independently and may be used in mixture of 2 or more types. From the viewpoints of adhesion to the inner peripheral wall of the outer can and electrical conductivity, 10 wt% to 20 wt% of polyvinyl butyral and 90 wt% to 80 wt% of solid content are the most preferable blending ratio. Further, methyl ethyl ketone, cyclohexanone, water and the like are preferable as the solvent, and two or more kinds of solvents may be mixed and used. From the environmental aspect, water is more preferable.

上記溶媒に固形分及びバインダーを分散させた液体混合物を高速回転させた外装缶に噴射させて塗布し、溶媒を除去するために乾燥させると外装缶の内周壁に厚さ2〜10μmの導電性塗膜21が形成される。外装缶内周壁の塗膜形成範囲は、外装缶1の開口縁から5.50mm以下の範囲(外装缶底面部含む)である。   When the liquid mixture in which the solid content and the binder are dispersed in the solvent is sprayed and applied to the outer can rotated at high speed, and dried to remove the solvent, the inner peripheral wall of the outer can has a thickness of 2 to 10 μm. A coating film 21 is formed. The coating film formation range of the outer peripheral wall of the outer can is a range of 5.50 mm or less (including the bottom surface of the outer can) from the opening edge of the outer can 1.

次に上記した外装缶1の開口縁をかしめ加工した後の縮径に関して説明する。   Next, the diameter reduction after caulking the opening edge of the outer can 1 will be described.

上記したかしめ加工した後、図3に示す円注体30に外装缶1を通過させることで外装缶1の胴体部31及びかしめ部32を縮径する。電池のマイナス端子方向より円注体30に挿入し、縮径を行うことで絶縁パッキンへの応力が緩和される。縮径加工した後、溝の圧着、ドーナツ状絶縁部材6をかしめ部上部に配置し、外装ラベル5を被覆する。   After the caulking process described above, the body portion 31 and the caulking portion 32 of the outer can 1 are reduced in diameter by passing the outer can 1 through the circular cast body 30 shown in FIG. By inserting into the circular casting 30 from the negative terminal direction of the battery and reducing the diameter, stress on the insulating packing is relieved. After the diameter reduction processing, the pressure bonding of the groove, the donut-shaped insulating member 6 is arranged on the upper part of the caulking portion, and the exterior label 5 is covered.

次に上記した導電性塗膜21の黒鉛とカーボンブラックの配合比に関して詳細に説明する。その配合比は黒鉛55wt%〜80wt%、カーボンブラック35wt%〜20wt%であることが最も好ましい。黒鉛の撥水効果により、外装缶内周壁と負極の間に形成される空間へのアルカリ電解液の存在が低減される効果と比表面積の大きいカーボンブラックを使用することで、塗膜表面粗さが増大し、外装缶内周壁と負極の接触抵抗が低減される集電効果が最大限発揮されるためである。   Next, the blending ratio of graphite and carbon black in the conductive coating film 21 will be described in detail. The compounding ratio is most preferably 55 wt% to 80 wt% of graphite and 35 wt% to 20 wt% of carbon black. The effect of reducing the presence of alkaline electrolyte in the space formed between the inner peripheral wall of the outer can and the negative electrode due to the water repellent effect of graphite, and the use of carbon black with a large specific surface area enables the coating film surface roughness This is because the current collection effect that the contact resistance between the inner peripheral wall of the outer can and the negative electrode is reduced is maximized.

次に上記した電極群10を構成する負極12に関して詳細に説明する。外装缶1に電極群10を挿入後、外装缶内周壁と最外周部の負極外端20とその負極外端20の外側に位置するセパレータ及び内周部負極とで構成する空間22が発生する。この空間22の体積が小さい方が、本発明の効果である外装缶内周壁と最外周部の負極12との密着性を向上させることで電池の内部抵抗が低くできる。また、外装缶内周壁と負極12の間に形成される空間22が低減し、その空間22に存在するアルカリ電解液を低減させる効果がより一層発揮される。   Next, the negative electrode 12 constituting the electrode group 10 will be described in detail. After inserting the electrode group 10 into the outer can 1, a space 22 composed of the outer peripheral inner wall, the outermost negative electrode outer end 20, the separator located outside the negative electrode outer end 20 and the inner peripheral negative electrode is generated. . When the volume of the space 22 is smaller, the internal resistance of the battery can be lowered by improving the adhesion between the inner peripheral wall of the outer can and the negative electrode 12 at the outermost periphery, which is an effect of the present invention. Further, the space 22 formed between the inner wall of the outer can and the negative electrode 12 is reduced, and the effect of reducing the alkaline electrolyte present in the space 22 is further exhibited.

空間22を低減させる方法として、電極群10を構成し、最外周部に位置する負極12を作製する際、最外周部に位置する部分の厚みを内周部に位置する部分より薄くする。または、パンチングメタルに負極合剤を塗布した後、最外周部に位置する部分の厚みを内周部に位置する部分より薄く削る方法等が挙げられる。最外周部の負極外端20の厚みが0.10mm〜0.35mmの範囲であれば良い。   As a method of reducing the space 22, when the electrode group 10 is configured and the negative electrode 12 positioned at the outermost peripheral portion is manufactured, the thickness of the portion positioned at the outermost peripheral portion is made thinner than the portion positioned at the inner peripheral portion. Or after applying a negative electrode mixture to punching metal, the method of shaving the thickness of the part located in an outermost peripheral part thinner than the part located in an inner peripheral part, etc. are mentioned. The thickness of the outermost negative electrode outer end 20 may be in the range of 0.10 mm to 0.35 mm.

次に上記したセパレータ13に関して詳細に説明する。その前にアルカリ蓄電池の自己放電に関して説明する。アルカリ蓄電池は保存中に自己放電が生じるが、これは、正極中に残存する硝酸イオン(NO )が電池組立後に電解液中に溶出し、これが負極で還元されて亜硝酸イオン(NO )またはアンモニウムイオン(NH )などの窒素系不純物となり、再び正極で酸化されて硝酸イオン(NO )となる。いわゆるシャトル反応が正極と負極の両極間で引き起こされることが原因であると考えられている。従来からニッケルカドミウム蓄電池で使用されていたポリアミド製不織布では、アルカリ電解液中で徐々に分解され、アンモニアを生成し、これが正極で硝酸イオンに酸化され、負極で還元されるシャトル効果により自己放電が大きいものであった。これに代わるものとしてポリオレフィン製不織布が用いられるようになった。 Next, the separator 13 will be described in detail. Before that, the self-discharge of the alkaline storage battery will be described. Alkaline storage batteries undergo self-discharge during storage. This is because nitrate ions (NO 3 ) remaining in the positive electrode elute into the electrolyte after the assembly of the battery, and this is reduced at the negative electrode and nitrite ions (NO 2). -) or become ammonium ions (NH 4 +) nitrogen-based impurities such as nitrate ion (NO 3 is oxidized at the positive electrode again - a). It is considered that the so-called shuttle reaction is caused between the positive electrode and the negative electrode. Polyamide nonwoven fabrics that have been used in nickel cadmium storage batteries have been gradually decomposed in alkaline electrolyte to produce ammonia, which is oxidized to nitrate ions at the positive electrode and self-discharged due to the shuttle effect that is reduced at the negative electrode. It was a big one. As an alternative, polyolefin nonwoven fabrics have been used.

この種のポリオレフィン系不織布は、アルカリ電解液との親水性に劣るために、親水化処理を施して親水性を向上させることが必要となる。そこで、ポリオレフィン系不織布からなるセパレータのアルカリ電解液との親水性を向上させるために、ポリオレフィン系不織布に、硫酸処理、フッ素処理、界面活性剤処理、プラズマ処理等の種々の親水化処理を施し、親水性に優れたセパレータ13として使用されるようになった。   Since this type of polyolefin-based nonwoven fabric is inferior in hydrophilicity with an alkaline electrolyte, it is necessary to perform hydrophilic treatment to improve hydrophilicity. Therefore, in order to improve the hydrophilicity with the alkaline electrolyte of the separator made of polyolefin nonwoven fabric, the polyolefin nonwoven fabric is subjected to various hydrophilic treatments such as sulfuric acid treatment, fluorine treatment, surfactant treatment, plasma treatment, It came to be used as the separator 13 excellent in hydrophilicity.

硫酸処理は、硫酸もしくは発煙硫酸等の硫酸基を含む酸で不織布を処理することにより行われる。硫酸処理によって不織布の繊維には、スルホン基(−SOH)等のSに起因した官能基が導入される。硫酸処理されたポリオレフィン製不織布であると、電解液中に溶出した窒素系不純物を捕捉することができる。このように硫酸処理されたポリオレフィン製不織布は、保存特性に優れたアルカリ蓄電池が得られるようになる。 The sulfuric acid treatment is performed by treating the nonwoven fabric with an acid containing a sulfuric acid group such as sulfuric acid or fuming sulfuric acid. The functional group resulting from S, such as a sulfone group (—SO 3 H), is introduced into the nonwoven fabric fiber by the sulfuric acid treatment. The non-woven fabric made of polyolefin treated with sulfuric acid can capture nitrogen-based impurities eluted in the electrolytic solution. The sulfuric acid-treated polyolefin non-woven fabric can provide an alkaline storage battery with excellent storage characteristics.

フッ素処理は、例えば、不活性ガスで希釈したフッ素ガスに酸素ガス、二酸化炭素ガス、二酸化硫黄ガスなどを更に添加した混合ガスを用いて不織布を処理することによって行なわれる。フッ素ガス処理によって、不織布の繊維にはOH、COOH、SOHなどの親水基が導入される。 The fluorine treatment is performed, for example, by treating the nonwoven fabric with a mixed gas obtained by further adding oxygen gas, carbon dioxide gas, sulfur dioxide gas or the like to fluorine gas diluted with an inert gas. By the fluorine gas treatment, hydrophilic groups such as OH, COOH, and SO 3 H are introduced into the nonwoven fabric fibers.

界面活性剤処理では、不織布が、界面活性剤を溶解した溶液中に浸漬された後、乾燥させられる。界面活性剤としては、例えば、脂肪酸塩、アルキルエトキシカルボン酸塩、アシル化アミノ酸塩等の飽和カルボン酸塩や硫酸エステル塩、スルホン酸塩等を用いることができる。界面活性剤処理では、不織布の繊維に界面活性剤が吸着し、親水性が向上する。   In the surfactant treatment, the nonwoven fabric is dipped in a solution in which the surfactant is dissolved and then dried. Examples of the surfactant that can be used include saturated carboxylates such as fatty acid salts, alkyl ethoxy carboxylates, acylated amino acid salts, sulfate ester salts, sulfonates, and the like. In the surfactant treatment, the surfactant is adsorbed on the fibers of the nonwoven fabric, and the hydrophilicity is improved.

また、プラズマ処理は、酸素ガスをプラズマ化して酸素のラジカルを発生させ、この酸素のラジカルで不織布を処理することにより行われる。プラズマ処理によって、不織布の繊維にはOH、COOH基等の親水性官能基が導入される。   The plasma treatment is performed by converting oxygen gas into plasma to generate oxygen radicals and treating the nonwoven fabric with the oxygen radicals. By the plasma treatment, hydrophilic functional groups such as OH and COOH groups are introduced into the fibers of the nonwoven fabric.

硫酸処理と比較し、フッ素処理、界面活性剤処理、プラズマ処理は、処理が簡易で、電解液中に溶出した窒素系不純物を捕捉するという機能を有しないため自己放電特性は悪くなるものの吸液性が高い特徴を持つ。これら親水化処理のなかでは、得られるセパレータの吸液性と長期安定性に優れる理由により、フッ素処理が好ましい。   Compared to sulfuric acid treatment, fluorine treatment, surfactant treatment, and plasma treatment are simpler and do not have the function of trapping nitrogen-based impurities eluted in the electrolyte solution. It has high characteristics. Of these hydrophilization treatments, fluorine treatment is preferred because of the excellent separator properties and long-term stability of the resulting separator.

硫酸処理とフッ素処理または界面活性剤処理またはプラズマ処理を施したポリオレフィン系不織布を併用し、かつ硫酸処理以外で親水性付与を施した不織布の併用割合が不織布全体の35wt%〜75wt%の範囲に規定すると自己放電特性を損なわず、吸液性が向上することで、外装缶を縮径することにより、外装缶内周壁と負極の間に形成される空間が低減し、余剰となったアルカリ電解液をセパレータ13に確実に保持することができる。   Combined use of polyolefin nonwoven fabric subjected to sulfuric acid treatment and fluorine treatment or surfactant treatment or plasma treatment, and the combined proportion of nonwoven fabric imparted with hydrophilicity other than sulfuric acid treatment is in the range of 35 wt% to 75 wt% of the entire nonwoven fabric. If specified, the self-discharge characteristics are not impaired, and the liquid absorption is improved. By reducing the diameter of the outer can, the space formed between the inner peripheral wall of the outer can and the negative electrode is reduced, resulting in excess alkaline electrolysis. The liquid can be reliably held in the separator 13.

尚、セパレータの併用方法は、熱溶着により、異種セパレータを併用することができ、溶着部の重ねしろは、8.0mm以下が好ましい。また、複数枚重ね合わせることで併用することができる。併用割合は、上記重量範囲において任意にコントロールすることが可能である。   In addition, as for the combined use method of a separator, a different kind separator can be used together by heat welding, and the overlap of the welding part is preferably 8.0 mm or less. Moreover, it can be used together by superimposing a plurality of sheets. The combination ratio can be arbitrarily controlled within the above weight range.

以下、本発明の実施例を挙げて本発明の構成及び効果をさらに説明するが、本発明はこれら実施例に限定されるものではない。単3サイズの円筒型ニッケル水素蓄電池を以下に示す実施例及び比較例にて100個ずつ作製した。得られた実施例及び比較例の各電池について、以下の評価試験を行った。   Hereinafter, although the example and the example of the present invention are given and the composition and effect of the present invention are further explained, the present invention is not limited to these examples. 100 AA-sized cylindrical nickel-metal hydride storage batteries were produced in the following examples and comparative examples. The following evaluation tests were performed on the batteries of the obtained examples and comparative examples.

(1)ハイレート放電特性の測定
実施例及び比較例の各電池について、1ItAの電流値で1.5時間充電した後、3ItAの電流値で終止電圧1.0Vまで放電させたときの放電容量を測定した。この結果を、比較例1の結果を100として規格化して各表に示す。なお、各電池の結果は50個の平均値である。
(1) Measurement of high rate discharge characteristics For each battery of the example and the comparative example, after charging for 1.5 hours at a current value of 1 ItA, the discharge capacity when discharged to a final voltage of 1.0 V at a current value of 3 ItA It was measured. The results are shown in each table, normalized with the result of Comparative Example 1 being 100. In addition, the result of each battery is an average value of 50 pieces.

(2)サイクル寿命の測定
実施例及び比較例の各電池について、1ItAの電流値で1.5時間充電した後、放電容量を測定しながら1ItAの電流値で終止電圧1.0Vまで放電させる充放電サイクルを、放電容量が初期の放電容量の80%以下になるまで繰り返し、そのサイクル数を数えた。この結果を、比較例1の結果を100として規格化して各表に示す。なお、各電池の結果は50個の平均値である。
(2) Measurement of cycle life For each battery of the example and comparative example, after charging for 1.5 hours at a current value of 1 ItA, charging to discharge to a final voltage of 1.0 V at a current value of 1 ItA while measuring the discharge capacity. The discharge cycle was repeated until the discharge capacity became 80% or less of the initial discharge capacity, and the number of cycles was counted. The results are shown in each table, normalized with the result of Comparative Example 1 being 100. In addition, the result of each battery is an average value of 50 pieces.

<実施例1>
厚さ0.35mmのニッケルめっき鋼板から、所定の開口部と胴体部の厚さを有する外径が14.25mm、側厚が0.13mm、高さが51.40mmをプレス加工にて製缶し、外装缶を作製した。
<Example 1>
Can made from a nickel-plated steel sheet with a thickness of 0.35 mm by press working with an outer diameter of 14.25 mm, a side thickness of 0.13 mm, and a height of 51.40 mm having a predetermined opening and body thickness And the exterior can was produced.

次に導電性塗膜として黒鉛とカーボンブラックを有機溶媒ポリビニルブチラールに分散させた液体混合物を作製した。黒鉛とカーボンブラックの混合重量比は70:30とし、その固形分と有機溶媒の混合重量比は15:85とした。上記、液体導電性物質を高速回転させた外装缶に噴射させて塗布し、170℃で10秒間乾燥させ、外装缶の内周壁に厚さ6μmの導電性塗膜を形成させた。外装缶内周壁の塗膜形成範囲は、外装缶の開口縁から5.50mm以下の範囲全内周壁(外装缶底面部含む)とした。   Next, a liquid mixture in which graphite and carbon black were dispersed in an organic solvent polyvinyl butyral as a conductive coating film was prepared. The mixing weight ratio of graphite and carbon black was 70:30, and the mixing weight ratio of the solid content and the organic solvent was 15:85. The liquid conductive material was sprayed and applied to an outer can rotated at high speed, and dried at 170 ° C. for 10 seconds to form a conductive coating film having a thickness of 6 μm on the inner peripheral wall of the outer can. The coating film formation range of the outer peripheral wall of the outer can was the entire inner peripheral wall (including the outer can bottom) including 5.50 mm or less from the opening edge of the outer can.

正極は、水酸化ニッケル粒子、酸化コバルト粒子及び結着剤を含むペーストを調製した。発泡ニッケル基材に対してこのペーストを充填した後、乾燥を経てから圧延・裁断処理を施し、正極を作製した。   For the positive electrode, a paste containing nickel hydroxide particles, cobalt oxide particles and a binder was prepared. After filling this paste with respect to the foamed nickel base material, it was dried and then subjected to rolling / cutting to produce a positive electrode.

負極は、組成がMm1.0Ni4.0Co0.4Mn0.3Al0.3(ただし、Mmはミッシュメタルを表す)で示されるAB5型系の水素吸蔵合金のインゴットを機械的に粉砕して篩い分け、水素吸蔵合金粒子を得た。この水素吸蔵合金粒子と、結着剤としてのポリテトラフルオロエチレン、ポリアクリル酸ソーダ及びカルボキシメチルセルロースと、導電剤としてのカーボンブラックと、水とを混合してスラリーを調製した。パンチングメタルに対してこのスラリーを塗着した後、乾燥を経てから圧延・裁断処理を施し、負極を作製した。 For the negative electrode, an ingot of a hydrogen storage alloy of AB5 type having a composition of Mm 1.0 Ni 4.0 Co 0.4 Mn 0.3 Al 0.3 (where Mm represents Misch metal) is mechanically formed. And sieved to obtain hydrogen storage alloy particles. A slurry was prepared by mixing the hydrogen storage alloy particles, polytetrafluoroethylene, sodium polyacrylate and carboxymethyl cellulose as a binder, carbon black as a conductive agent, and water. After applying this slurry to the punching metal, it was dried and then subjected to rolling / cutting to produce a negative electrode.

得られた負極と正極とを、厚みが0.12mmの硫酸処理を施したポリアミド製のセパレータ2枚を熱溶着して巻回し、電極群を作製した。電極群の外径は13.70mm、負極の最外端部厚みを0.35mmとなるようにし、最外周以外の内側の厚みは0.45mmで作製した。   The obtained negative electrode and positive electrode were wound by thermally welding two polyamide separators having a thickness of 0.12 mm and subjected to sulfuric acid treatment to produce an electrode group. The outer diameter of the electrode group was 13.70 mm, the outermost end thickness of the negative electrode was 0.35 mm, and the inner thickness other than the outermost periphery was 0.45 mm.

アルカリ電解液は、水酸化ナトリウム4.40mol/l、水酸化カリウム1.10mol/lの濃度となるようにイオン交換水で調整し、2.38gを注入し、減圧下で含侵させた。   The alkaline electrolyte was adjusted with ion-exchanged water to have a concentration of 4.40 mol / l sodium hydroxide and 1.10 mol / l potassium hydroxide, and 2.38 g was injected and impregnated under reduced pressure.

外装缶の開口縁を安全弁付きの蓋板を取り付けてかしめ加工した後、外装缶の胴体部とを外径14.00に縮径し、溝入れ部を圧着し、全弁付きの蓋体を取り付けて、円筒型ニッケル水素蓄電池を作製した。   After attaching the cover plate with a safety valve and caulking the opening edge of the outer can, the body part of the outer can is reduced in diameter to 14.00, the grooving part is crimped, and the cover with all valves is attached. A cylindrical nickel-metal hydride storage battery was prepared by attaching.

<比較例1>
製缶時に外装缶の外径を14.00mmにし、開口縁をかしめ加工した後、縮径しないことと外装缶内周壁に導電性物質を塗布しないこととした以外は、実施例1と同様の方法により電池を作製した。
<Comparative Example 1>
The outer diameter of the outer can was set to 14.00 mm at the time of can making and after caulking the opening edge, the same as in Example 1 except that the diameter was not reduced and the conductive material was not applied to the inner peripheral wall of the outer can. A battery was produced by the method.

<比較例2>
外装缶内周壁に導電性物質を塗布しないこととした以外は、実施例1と同様の方法により電池を作製した。
<Comparative example 2>
A battery was produced in the same manner as in Example 1 except that the conductive material was not applied to the inner peripheral wall of the outer can.

<比較例3>
製缶時に外装缶の外径を14.00mmにし、開口縁をかしめ加工した後、縮径しないこととした以外は、実施例1と同様の方法により電池を作製した。
<Comparative Example 3>
A battery was fabricated in the same manner as in Example 1 except that the outer diameter of the outer can was 14.00 mm at the time of can making, the opening edge was caulked, and then the diameter was not reduced.

表1に示すようにハイレート放電特性及びサイクル寿命を評価した結果、比較例1と比較し、比較例2に関しては、ハイレート放電特性は同等であり、サイクル寿命は向上した。比較例3に関しては、ハイレート放電特性は向上し、サイクル寿命は同等であった。一方、実施例1に関しては、ハイレート放電特性及びサイクル寿命いずれも向上した。本発明の実施例1は、外装缶内周壁に導電性物質の塗布及び外装缶を縮径した相乗効果により、ハイレート放電特性及びサイクル寿命の両特性の向上が認められた。   As shown in Table 1, the high rate discharge characteristics and the cycle life were evaluated. As a result, compared with Comparative Example 1, the high rate discharge characteristics were the same for Comparative Example 2, and the cycle life was improved. Regarding Comparative Example 3, the high rate discharge characteristics were improved and the cycle life was equivalent. On the other hand, in Example 1, both the high rate discharge characteristics and the cycle life were improved. In Example 1 of the present invention, improvement in both high rate discharge characteristics and cycle life was recognized due to the synergistic effect of applying a conductive material to the inner peripheral wall of the outer can and reducing the diameter of the outer can.

次に導電性塗膜固形分の重量比に関して検討した。   Next, the weight ratio of the conductive coating film solids was examined.

<実施例2>
黒鉛とカーボンブラックの重量比を55:45としこととした以外は、実施例1と同様の方法により電池を作製した。
<Example 2>
A battery was fabricated in the same manner as in Example 1 except that the weight ratio of graphite to carbon black was 55:45.

<実施例3>
黒鉛とカーボンブラックの重量比を80:20としこととした以外は、実施例1と同様の方法により電池を作製した。
<Example 3>
A battery was fabricated in the same manner as in Example 1 except that the weight ratio of graphite to carbon black was 80:20.

表2に示すように、実施例1と比較し、ハイレート放電特性及びサイクル寿命のいずれかの特性の向上が認められた。これは黒鉛とカーボンブラックの重量比が黒鉛55〜80wt%、カーボンブラック45〜20wt%の範囲において、外装缶内周壁と負極の接触抵抗が低減される効果と外装缶内周壁と負極の間に形成される空間へのアルカリ電解液の存在が低減される効果を同時に発現させる最適範囲と考えられる。   As shown in Table 2, as compared with Example 1, improvement in either the high rate discharge characteristics or the cycle life was recognized. This is because, when the weight ratio of graphite to carbon black is in the range of 55 to 80 wt% graphite and 45 to 20 wt% carbon black, the contact resistance between the outer peripheral wall of the outer can and the negative electrode is reduced, and between the inner peripheral wall of the outer can and the negative electrode. This is considered to be the optimum range in which the effect of reducing the presence of the alkaline electrolyte in the formed space can be exhibited at the same time.

次に負極最外端部の厚みに関して検討した。   Next, the thickness of the outermost end of the negative electrode was examined.

<実施例4>
負極最外端部の厚みを0.23mmとした。この負極は、負極が保持されるパンチングメタルの最外周部の厚みを薄くし、また開口率を大きくすることで作製した。それ以外は、実施例1と同様の方法により電池を作製した。
<Example 4>
The thickness of the outermost end of the negative electrode was 0.23 mm. This negative electrode was produced by reducing the thickness of the outermost peripheral part of the punching metal holding the negative electrode and increasing the aperture ratio. Otherwise, a battery was fabricated in the same manner as in Example 1.

<実施例5>
負極最外端部の厚みを0.10mmとした。この負極は、負極が保持されるパンチングメタルの最外周部の厚みを実施例4より更に薄くし、また開口率を更に大きくすることで作製した。それ以外は、実施例1と同様の方法により電池を作製した。
<Example 5>
The thickness of the outermost end of the negative electrode was 0.10 mm. This negative electrode was produced by making the thickness of the outermost peripheral portion of the punching metal on which the negative electrode is held thinner than in Example 4 and further increasing the aperture ratio. Otherwise, a battery was fabricated in the same manner as in Example 1.

表3に示すように、実施例1と比較し、ハイレート放電特性及びサイクル寿命の両特性の向上が認められた。これは負極最端部の厚みが0.10〜0.35mmの範囲において、外装缶内周壁と負極の接触抵抗が低減される効果と外装缶内周壁と負極の間に形成される空間へのアルカリ電解液の存在が低減される効果を同時に発現させる最適範囲と考えられる。   As shown in Table 3, compared with Example 1, improvements in both high rate discharge characteristics and cycle life characteristics were observed. This is because the contact resistance between the outer peripheral wall of the outer can and the negative electrode is reduced and the space formed between the inner peripheral wall of the outer can and the negative electrode in the range where the thickness of the negative electrode end is 0.10 to 0.35 mm. This is considered to be the optimum range in which the effect of reducing the presence of the alkaline electrolyte is developed at the same time.

次にセパレータに関して検討した。   Next, the separator was examined.

<実施例6>
硫酸処理を施したセパレータ65重量%とフッ素処理を施したセパレータ35重量%を熱溶着し、親水処理の異なるセパレータを作製した。それ以外は、実施例1と同様の方法により電池を作製した。
<Example 6>
65% by weight of the separator treated with sulfuric acid and 35% by weight of the separator treated with fluorine were thermally welded to produce separators with different hydrophilic treatments. Otherwise, a battery was fabricated in the same manner as in Example 1.

<実施例7>
硫酸処理を施したセパレータ25重量%とフッ素処理を施したセパレータ75%を熱溶着し、親水処理の異なるセパレータを作製した。それ以外は、実施例1と同様の方法により電池を作製した。
<Example 7>
25% by weight of the separator treated with sulfuric acid and 75% of the separator treated with fluorine were heat-welded to produce separators with different hydrophilic treatments. Otherwise, a battery was fabricated in the same manner as in Example 1.

表4に示すように、実施例1と比較し、ハイレート放電特性及びサイクル寿命の両特性の向上が認められた。これは、フッ素処理を施したセパレータを併用することにより、セパレータの吸液性が向上する。外装缶を縮径し、外装缶内周壁と負極の間に形成される空間が低減することで余剰となったアルカリ電解液をセパレータに確実に保持することができるためである。   As shown in Table 4, compared with Example 1, improvement in both high rate discharge characteristics and cycle life characteristics was observed. This improves the liquid absorbency of the separator by using a separator subjected to fluorine treatment. This is because the outer can is reduced in diameter, and the space formed between the inner peripheral wall of the outer can and the negative electrode is reduced, so that the excess alkaline electrolyte can be reliably held in the separator.

なお、上述の実施例ではニッケル水素蓄電池について説明したが、ニッケルカドミニウム蓄電池で用いることもでき、種々の可変が可能である。   In addition, although the nickel hydride storage battery was demonstrated in the above-mentioned Example, it can also be used with a nickel cadmium storage battery, and various variable are possible.

本発明は、ハイレート放電、サイクル寿命が長いアルカリ蓄電池に有用である。   The present invention is useful for alkaline storage batteries having a high rate discharge and a long cycle life.

1 外装缶
2 絶縁パッキン
3 蓋板
4 溝
5 外装ラベル
6 ドーナツ状絶縁部材
7 ガス抜き孔
8 弁体
9 正極端子
10 電極群
11 正極
12 負極
13 セパレータ
14 正極リード
15 スリット付き絶縁部材
16 絶縁部材
17 正極内端
18 負極内端
19 正極外端
20 負極外端
21 導電性塗膜
22 空間
DESCRIPTION OF SYMBOLS 1 Exterior can 2 Insulation packing 3 Cover plate 4 Groove 5 Exterior label 6 Donut-shaped insulating member 7 Degassing hole 8 Valve body 9 Positive electrode terminal 10 Electrode group 11 Positive electrode 12 Negative electrode 13 Separator 14 Positive electrode lead 15 Insulating member 16 with slit 16 Insulating member 17 Positive electrode inner end 18 Negative electrode inner end 19 Positive electrode outer end 20 Negative electrode outer end 21 Conductive coating film 22 Space

Claims (4)

帯状の負極および正極をセパレータを介して前記負極が最外周に位置付けられるように渦巻状に巻回してなる電極群を、前記電極群の最大直径よりも大きな内径を有する上端が開口した有底円筒形状をなす円筒状外装缶に挿入し、その後、アルカリ電解液を注入し、さらに前記外装缶を縮径した円筒型アルカリ蓄電池において、前記負極の最外周部が前記外装缶の内周壁に接する集電構造を備え、前記外装缶は、内周壁に導電性塗膜が塗布されていることを特徴とする円筒型アルカリ蓄電池。   A bottomed cylinder in which an electrode group formed by winding a strip-shaped negative electrode and a positive electrode in a spiral shape so that the negative electrode is positioned on the outermost periphery through a separator has an open upper end having an inner diameter larger than the maximum diameter of the electrode group In a cylindrical alkaline storage battery that is inserted into a cylindrical outer can having a shape, then injected with an alkaline electrolyte, and the outer can is reduced in diameter, the outermost peripheral portion of the negative electrode is in contact with the inner peripheral wall of the outer can. A cylindrical alkaline storage battery comprising an electrical structure, wherein the outer can has an inner peripheral wall coated with a conductive coating film. 前記導電性塗膜は黒鉛とカーボンブラックからなり、黒鉛の分量は55wt%以上80wt%以下、カーボンブラックの分量が20wt%以上45wt%以下である請求項1記載の円筒型アルカリ蓄電池。   2. The cylindrical alkaline storage battery according to claim 1, wherein the conductive coating film is composed of graphite and carbon black, the amount of graphite is 55 wt% or more and 80 wt% or less, and the amount of carbon black is 20 wt% or more and 45 wt% or less. 前記負極の最外周部は内周部よりも厚みが薄く、かつ前記負極の最外周部の端部厚みが0.10mm以上0.35mm以下の範囲であることを特徴とする請求項1または2記載の円筒型アルカリ蓄電池。   The outermost peripheral portion of the negative electrode is thinner than the inner peripheral portion, and the end thickness of the outermost peripheral portion of the negative electrode is in a range of 0.10 mm to 0.35 mm. The cylindrical alkaline storage battery described. 前記セパレータは、ポリオレフィン製不織布に、硫酸処理により親水性を付与したセパレータと、ポリオレフィン製不織布に、フッ素処理または界面活性剤処理またはプラズマ処理により親水性を付与したセパレータとを併用したものであり、硫酸処理以外により親水性を付与したセパレータの併用割合がセパレータ全体の35wt%以上75wt%であることを特徴とする請求項1から3のいずれか一項に記載の円筒型アルカリ蓄電池。   The separator is a combination of a polyolefin nonwoven fabric provided with hydrophilicity by sulfuric acid treatment and a polyolefin nonwoven fabric provided with hydrophilicity by fluorine treatment or surfactant treatment or plasma treatment. The cylindrical alkaline storage battery according to any one of claims 1 to 3, wherein the combined ratio of the separator imparted with hydrophilicity other than the sulfuric acid treatment is 35 wt% or more and 75 wt% of the entire separator.
JP2011270952A 2011-12-12 2011-12-12 Cylindrical alkaline storage battery Pending JP2013122862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011270952A JP2013122862A (en) 2011-12-12 2011-12-12 Cylindrical alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011270952A JP2013122862A (en) 2011-12-12 2011-12-12 Cylindrical alkaline storage battery

Publications (1)

Publication Number Publication Date
JP2013122862A true JP2013122862A (en) 2013-06-20

Family

ID=48774717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011270952A Pending JP2013122862A (en) 2011-12-12 2011-12-12 Cylindrical alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2013122862A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015008092A (en) * 2013-06-25 2015-01-15 株式会社Gsユアサ Battery
JP2015069887A (en) * 2013-09-30 2015-04-13 株式会社Gsユアサ Alkaline storage battery and method for manufacturing alkaline storage battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015008092A (en) * 2013-06-25 2015-01-15 株式会社Gsユアサ Battery
JP2015069887A (en) * 2013-09-30 2015-04-13 株式会社Gsユアサ Alkaline storage battery and method for manufacturing alkaline storage battery
US9899653B2 (en) 2013-09-30 2018-02-20 Gs Yuasa International Ltd. Alkaline storage battery, and method for producing alkaline storage battery

Similar Documents

Publication Publication Date Title
JP5935013B2 (en) Cylindrical alkaline storage battery
US9755226B2 (en) Nickel-hydrogen storage battery and battery pack
EP2669973A1 (en) Alkaline rechargeable battery
WO2017168963A1 (en) Nickel-hydrogen battery
US20050019657A1 (en) Nickel-hydrogen cell
CN106463786B (en) Nickel-hydrogen secondary battery
JP4868809B2 (en) Cylindrical alkaline storage battery
JP2013122862A (en) Cylindrical alkaline storage battery
JP3557063B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3567021B2 (en) Alkaline secondary battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JP3895984B2 (en) Nickel / hydrogen storage battery
JP4859354B2 (en) A hydrogen storage alloy electrode for an alkaline storage battery, an alkaline storage battery using the electrode, and a method for producing the electrode.
JP2926732B2 (en) Alkaline secondary battery
WO2024070232A1 (en) Negative electrode for alkaline secondary batteries, alkaline secondary battery, and method for producing negative electrode for alkaline secondary batteries
JP7128069B2 (en) Positive electrode for alkaline secondary battery and alkaline secondary battery provided with this positive electrode
JP2000200612A (en) Rectangular alkaline secondary battery
JP2004127590A (en) Hydrogen storing alloy electrode and alkaline storage battery using the same
JP7125218B2 (en) Negative electrode for alkaline secondary battery and alkaline secondary battery
JP6787728B2 (en) Negative electrode for nickel-metal hydride secondary battery, nickel-metal hydride secondary battery including this negative electrode
JP2022182855A (en) Negative electrode for alkaline storage battery and alkaline storage battery using the same
JPH09213363A (en) Manufacture of alkali storage battery
JP2022182856A (en) Hydrogen storage alloy negative electrode and nickel hydrogen secondary battery including the same
JPH113697A (en) Chargeable/dischargeable battery and its manufacture
JP2001006723A (en) Alkaline secondary battery and manufacture of alkaline secondary battery