JP2013104082A - Cu-Co-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME - Google Patents

Cu-Co-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME Download PDF

Info

Publication number
JP2013104082A
JP2013104082A JP2011247743A JP2011247743A JP2013104082A JP 2013104082 A JP2013104082 A JP 2013104082A JP 2011247743 A JP2011247743 A JP 2011247743A JP 2011247743 A JP2011247743 A JP 2011247743A JP 2013104082 A JP2013104082 A JP 2013104082A
Authority
JP
Japan
Prior art keywords
mass
annealing
rolling
alloy
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011247743A
Other languages
Japanese (ja)
Inventor
Yasuhiro Okafuji
康弘 岡藤
Takatsugu Hatano
隆紹 波多野
Masayuki Nagano
真之 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2011247743A priority Critical patent/JP2013104082A/en
Publication of JP2013104082A publication Critical patent/JP2013104082A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a Cu-Co-Si-based alloy having both high strength and high notch bendability, and a method for producing the same.SOLUTION: The Cu-Co-Si-based alloy includes 0.5-3.0 mass% of Co and 0.1-1.0 mass% of Si, with the balance comprising copper and unavoidable impurities, wherein when EBSD (electron backscatter diffraction) measurement is performed in the direction parallel to the thickness direction and crystal orientation is analyzed at the central part in the thickness direction which is a cross-sectional position of 45-55% to the thickness, P defined by the following formula is 1-8. P=(F1+0.2×F2)/(F3+F4), wherein F1, F2, F3, and F4 are each an area ratio of respective orientations: {100}<001>, {012}<100>, {362}<853>, and {231}<346>.

Description

本発明は、コネクタ、端子、リレー、スイッチ等の導電性ばね材やトランジスタ、集積回路(IC)等の半導体機器のリ−ドフレーム材として好適な、優れた強度、曲げ加工性、耐応力緩和特性、導電性等を備えた銅合金及びその製造方法に関する。   The present invention is excellent in strength, bending workability, stress relaxation suitable as a lead frame material for semiconductor devices such as conductive spring materials such as connectors, terminals, relays and switches, and transistors and integrated circuits (ICs). The present invention relates to a copper alloy having characteristics, conductivity, and the like, and a method for manufacturing the copper alloy.

近年、電気・電子部品の小型化が進み、これら部品に使用される銅合金に良好な強度、導電率及び曲げ加工性が要求されている。この要求に応じ、従来のりん青銅や黄銅といった固溶強化型銅合金に替わり、高い強度及び導電率を有するコルソン合金等の析出強化型銅合金の需要が増加している。コルソン合金の一つであるCu−Co−Si系合金は、Cuマトリックス中にCoとSiとの化合物粒子を析出させた合金であり、高強度、高い導電率、良好な曲げ加工性を兼ね備えている。一般に強度と曲げ加工性は相反する性質であり、Cu−Co−Si系合金においても高強度を維持しつつ曲げ加工性を改善することが望まれている。   In recent years, electrical and electronic parts have been miniaturized, and copper alloys used for these parts are required to have good strength, electrical conductivity, and bending workability. In response to this demand, demand for precipitation strengthened copper alloys such as Corson alloys having high strength and conductivity is increasing instead of conventional solid solution strengthened copper alloys such as phosphor bronze and brass. Cu-Co-Si alloy, which is one of the Corson alloys, is an alloy in which compound particles of Co and Si are precipitated in a Cu matrix, and has high strength, high electrical conductivity, and good bending workability. Yes. In general, strength and bending workability are contradictory properties, and it is desired to improve bending workability while maintaining high strength even in Cu-Co-Si based alloys.

銅合金板をコネクタ等の電子・電子部品にプレス加工する際、曲げ加工部の寸法精度を向上させるため、あらかじめ銅合金板表面にノッチング加工と呼ばれる切り込み加工を施し、この切り込みに沿って銅合金板を曲げることがある(以下、ノッチ曲げともいう)。このノッチ曲げは、例えば車載用メス端子のプレス加工において多用されている。ノッチング加工により銅合金は加工硬化し延性を失うため、続く曲げ加工において銅合金に割れが生じやすくやすくなる。したがって、ノッチ曲げに用いられる銅合金には、特に良好な曲げ加工性が求められる。   In order to improve the dimensional accuracy of the bent part when pressing a copper alloy plate into an electronic / electronic part such as a connector, the surface of the copper alloy plate is cut in advance called a notching process, and the copper alloy is cut along the cut. The plate may be bent (hereinafter also referred to as notch bending). This notch bending is frequently used, for example, in press working of a vehicle-mounted female terminal. Since the copper alloy is work-hardened and loses ductility by the notching process, the copper alloy is easily cracked in the subsequent bending process. Therefore, particularly good bending workability is required for the copper alloy used for notch bending.

近年、Cu−Co−Si系合金の曲げ性を改善する技術として、SEM−EBSP法で測定されるCube方位{0 0 1}<1 0 0>の面積率を制御する方策が提唱されている。例えば、特許文献1(WO2009−148101号)では、(1)鋳造、(2)均質加熱処理、(3)熱間加工、(4)水冷、(5)面削、(6)冷間圧延、(7)熱処理(400〜800℃で5秒〜20時間)、(8)冷間圧延(加工率50%以下)、(9)中間溶体化熱処理、(10)冷間圧延(加工率:R1)、(11)時効析出熱処理、(12)仕上げ冷間圧延(加工率:R2)、(13)調質焼鈍、の各工程(R1+R2を5〜65%)を順次行うことにより、Cube方位の面積率を5〜50%に制御し曲げ加工性を改善している。   In recent years, as a technique for improving the bendability of a Cu—Co—Si based alloy, a method for controlling the area ratio of the Cube orientation {0 0 1} <1 0 0> measured by the SEM-EBSP method has been proposed. . For example, in Patent Document 1 (WO2009-148101), (1) casting, (2) homogeneous heat treatment, (3) hot working, (4) water cooling, (5) face milling, (6) cold rolling, (7) Heat treatment (at 400 to 800 ° C. for 5 seconds to 20 hours), (8) Cold rolling (working rate 50% or less), (9) Intermediate solution heat treatment, (10) Cold rolling (working rate: R1) ), (11) aging precipitation heat treatment, (12) finish cold rolling (processing rate: R2), and (13) temper annealing (R1 + R2 is 5 to 65%), by sequentially performing Cube orientation Bending workability is improved by controlling the area ratio to 5 to 50%.

また、特許文献2(特開2011−17072号)では、Cube方位の面積率を5〜60%に制御すると同時に、Brass方位およびCopper方位の面積率をともに20%以下に制御し、曲げ加工性を改善している。そのための製造工程としては、(1)鋳造、(2)熱間圧延、(3)冷間圧延(加工度85〜99%)、(4)熱処理(300〜700℃、5分〜20時間)、(5)冷間圧延(加工度5〜35%)、(6)溶体化処理、(7)時効処理、(8)冷間圧延(加工度2〜30%)、(9)調質焼鈍、の工程を順次行う場合に最も良好な曲げ性が得られている。   In Patent Document 2 (Japanese Patent Application Laid-Open No. 2011-17072), the area ratio of the Cube orientation is controlled to 5 to 60%, and at the same time, the area ratios of the Brass orientation and Copper orientation are both controlled to 20% or less, and bending workability is improved. Has improved. Manufacturing processes for this purpose include (1) casting, (2) hot rolling, (3) cold rolling (working degree 85 to 99%), and (4) heat treatment (300 to 700 ° C, 5 minutes to 20 hours). (5) Cold rolling (working degree 5 to 35%), (6) Solution treatment, (7) Aging treatment, (8) Cold rolling (working degree 2 to 30%), (9) Temper annealing The best bendability is obtained when the steps are sequentially performed.

また、特許文献3(特開2011−117034号)では、Cube方位の面積率を5〜60%に制御すると同時に、Brass方位およびCopper方位の面積率をともに20%以下に制御し、曲げ加工性を改善している。そのための製造工程としては、(1)鋳造、(2)熱間圧延(終了後に5K/秒以下の除冷)、(3)冷間圧延(圧延率70%以上)、(4)中間焼鈍(300〜800℃、5秒〜2時間)、(5)冷間圧延(圧延率5〜50%)、(6)溶体化熱処理(5秒〜300秒)、(7)時効熱処理、(8)冷間圧延(加工率50%以下)、(9)低温焼鈍、の各工程を順次行い、最も良好な曲げ性を得ている。   In Patent Document 3 (Japanese Patent Application Laid-Open No. 2011-117034), the area ratio of the Cube orientation is controlled to 5 to 60%, and at the same time, the area ratios of the Brass orientation and Copper orientation are both controlled to 20% or less, and bending workability is improved. Has improved. Manufacturing processes for this purpose include (1) casting, (2) hot rolling (cooling after 5 K / second or less after completion), (3) cold rolling (rolling rate of 70% or more), (4) intermediate annealing ( 300 to 800 ° C., 5 seconds to 2 hours), (5) cold rolling (rolling rate 5 to 50%), (6) solution heat treatment (5 seconds to 300 seconds), (7) aging heat treatment, (8) Each step of cold rolling (working rate of 50% or less) and (9) low temperature annealing are sequentially performed to obtain the best bendability.

WO2009−148101号公報WO2009-148101 特開2011−17072号公報JP 2011-17072 A 特開2011−117034号公報JP 2011-1117034 A

本発明者らは、前記先行発明の効果について検証試験を行った。その結果、曲げ加工性をW曲げ試験で評価した場合に、一定の改善効果が認められた。しかしながら、ノッチ曲げに対しては、十分といえる曲げ加工性が得られなかった。そこで、本発明は、高強度及び高ノッチ曲げ性を兼備したCu−Co−Si系合金及びその製造方法を提供することを課題とする。   The present inventors conducted a verification test on the effect of the preceding invention. As a result, when the bending workability was evaluated by the W bending test, a certain improvement effect was recognized. However, sufficient bending workability was not obtained for notch bending. Then, this invention makes it a subject to provide the Cu-Co-Si type alloy which has high intensity | strength and high notch bendability, and its manufacturing method.

従来技術では、銅合金の結晶方位をEBSD法で解析し、得られたデータに基づき、銅合金の特性を改良している。ここで、EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)とは、SEM(Scanning Electron Microscope:走査電子顕微鏡)内で試料に電子線を照射したときに生じる反射電子菊池線回折(菊池パターン)を利用して結晶方位を解析する技術である。通常、電子線は銅合金表面に照射され、このとき得られる情報は電子線が侵入する数10nmの深さまでの方位情報、すなわち極表層の方位情報である。また、特許文献3に記載されているように、方位分布は板厚方向に変化しており、板厚方向に何点か任意にとって平均する方法ではノッチ曲げのように特殊な曲げを実施する場合に、曲げに影響を与える板厚箇所の方位分布が測れない。
一方、本発明者らは、ノッチ曲げに対しては、銅合金板内部の結晶方位を制御する必要があることを見出した。これはノッチング加工により、曲げの内角が板内部に移動するためである。そして、板厚方向中央部の結晶方位をノッチ曲げに対して適正化し、この結晶方位を得るための製造方法を明らかにした。
In the prior art, the crystal orientation of a copper alloy is analyzed by the EBSD method, and the characteristics of the copper alloy are improved based on the obtained data. Here, EBSD (Electron Back Scatter Diffraction: Electron Back Scattering Diffraction) is a reflection electron Kikuchi line diffraction (Kikuchi pattern) generated when a sample is irradiated with an electron beam in a SEM (Scanning Electron Microscope). This is a technique for analyzing crystal orientation by using it. Usually, the surface of the copper alloy is irradiated with an electron beam, and information obtained at this time is orientation information up to a depth of several tens of nanometers in which the electron beam penetrates, that is, orientation information of the polar surface layer. In addition, as described in Patent Document 3, the orientation distribution changes in the thickness direction, and a method of averaging several points in the thickness direction arbitrarily performs special bending such as notch bending. In addition, it is impossible to measure the azimuth distribution at the plate thickness location that affects bending.
On the other hand, the present inventors have found that it is necessary to control the crystal orientation inside the copper alloy plate for notch bending. This is because the inner angle of bending moves into the plate by notching. Then, the crystal orientation in the central part in the plate thickness direction was optimized for notch bending, and a manufacturing method for obtaining this crystal orientation was clarified.

以上の知見を背景にして完成した本発明は一側面において、0.5〜3.0質量%のCo及び0.1〜1.0質量%のSiを含有し、残部が銅及び不可避的不純物からなり、板厚に対し45〜55%の断面位置である板厚方向の中央部において、板厚方向と平行にEBSD測定を行い、結晶方位を解析したときに、次式で定義されるPが1〜8であるCu−Co−Si系合金である:
P=(F1+0.2×F2)/(F3+F4)
(ただし、F1、F2、F3及びF4は、それぞれ、{1 0 0}<0 0 1>、{0 1 2}<1 0 0>、{3 6 2}<8 5 3>及び{2 3 1}<3 4 6>の各方位の面積率である)。
In one aspect, the present invention completed on the basis of the above knowledge contains 0.5 to 3.0 mass% Co and 0.1 to 1.0 mass% Si, with the balance being copper and inevitable impurities. When the EBSD measurement is performed in parallel with the plate thickness direction and the crystal orientation is analyzed at the central portion in the plate thickness direction, which is a cross-sectional position of 45 to 55% of the plate thickness, P defined by the following equation Is a Cu-Co-Si based alloy in which 1 to 8 are:
P = (F1 + 0.2 × F2) / (F3 + F4)
(However, F1, F2, F3 and F4 are {1 0 0} <0 0 1>, {0 1 2} <1 0 0>, {3 6 2} <8 5 3> and {2 3 respectively. 1} <3 4 6> in each orientation).

本発明に係るCu−Co−Si系合金は一実施形態において、Niを0.005〜0.8質量%含有する。   In one embodiment, the Cu—Co—Si alloy according to the present invention contains 0.005 to 0.8 mass% of Ni.

本発明に係るCu−Co−Si系合金は一実施形態において、Sn、Zn、Mg、Fe、Ti、Zr、Al、P、Mn、Cr及びAgのうち1種以上を総量で0.005〜3.0質量%含有する。   In one embodiment, the Cu—Co—Si alloy according to the present invention has a total amount of one or more of Sn, Zn, Mg, Fe, Ti, Zr, Al, P, Mn, Cr, and Ag in a range of 0.005 to 0.005. Contain 3.0% by mass.

また、本発明は別の一側面において、0.5〜3.0質量%のCo及び0.1〜1.0質量%のSiを含有し、残部が銅及び不可避的不純物からなるインゴットを作製し、前記インゴットを、温度800〜1000℃で厚み5〜20mmまで熱間圧延した後、加工度30〜99%の冷間圧延を行い、軟化度0.25〜0.75の熱処理を行って導電率を30〜65%IACSの範囲に調整した後、加工度7〜50%の冷間圧延を行い、次いで、800〜1050℃で5〜300秒間の溶体化処理、及び、400〜600℃で2〜20時間の時効処理を行う方法であり、
前記軟化度は、温度Tのときの軟化度をSTとして、次式で示されるCu−Co−Si系合金の製造方法である:
T=(σ0−σT)/(σ0−σ900
(σ0は焼鈍前の引張強さであり、σTおよびσ900はそれぞれT℃および900℃で焼鈍後の引張強さである。)。
In another aspect of the present invention, an ingot containing 0.5 to 3.0% by mass of Co and 0.1 to 1.0% by mass of Si, the balance being copper and inevitable impurities is produced. The ingot is hot-rolled at a temperature of 800 to 1000 ° C. to a thickness of 5 to 20 mm, then cold-rolled with a working degree of 30 to 99%, and subjected to a heat treatment with a softening degree of 0.25 to 0.75. After adjusting the conductivity within the range of 30 to 65% IACS, cold rolling with a workability of 7 to 50% is performed, followed by solution treatment at 800 to 1050 ° C. for 5 to 300 seconds, and 400 to 600 ° C. And aging treatment for 2 to 20 hours,
The softening degree, the softening degree at the temperature T as S T, is the manufacturing method of the Cu-Co-Si-based alloy represented by the following formula:
S T = (σ 0 −σ T ) / (σ 0 −σ 900 )
0 is the tensile strength before annealing, and σ T and σ 900 are the tensile strength after annealing at T ° C. and 900 ° C., respectively.)

本発明に係るCu−Co−Si系合金の製造方法は一実施形態において、前記インゴットがNiを0.005〜0.8質量%含有する。   In one embodiment of the method for producing a Cu—Co—Si alloy according to the present invention, the ingot contains 0.005 to 0.8 mass% of Ni.

本発明に係るCu−Co−Si系合金の製造方法は別の一実施形態において、前記インゴットがSn、Zn、Mg、Fe、Ti、Zr、Al、P、Mn、Cr及びAgのうち1種以上を総量で0.005〜3.0質量%含有する。   In another embodiment of the method for producing a Cu—Co—Si alloy according to the present invention, the ingot is one of Sn, Zn, Mg, Fe, Ti, Zr, Al, P, Mn, Cr, and Ag. The total amount is 0.005 to 3.0% by mass.

本発明は更に別の一側面において、上記銅合金を備えた伸銅品である。   In still another aspect of the present invention, a copper product having the copper alloy is provided.

本発明は更に別の一側面において、上記銅合金を備えた電子機器部品である。   In another aspect of the present invention, there is provided an electronic device component including the copper alloy.

本発明によれば、高強度及び高ノッチ曲げ性を兼備したCu−Co−Si系合金及びその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the Cu-Co-Si type alloy which has high intensity | strength and high notch bendability, and its manufacturing method can be provided.

本発明に係る合金を種々の温度で焼鈍したときの焼鈍温度と引張強さとの関係を示すグラフである。It is a graph which shows the relationship between the annealing temperature when the alloy which concerns on this invention is annealed at various temperatures, and tensile strength. 実施例におけるノッチ曲げ試験の試験手順を示す図である。It is a figure which shows the test procedure of the notch bending test in an Example.

(Co及びSiの添加量)
Co及びSiは、適当な時効処理を行うことにより、Co2Si等の金属間化合物として析出する。この析出物の作用により強度が向上し、析出によりCuマトリックス中に固溶したCo及びSiが減少するため導電率が向上する。しかしながら、Coが0.5質量%未満又はSiが0.1質量%未満になると所望の強度が得られず、反対にCoが3.0質量%を超えると又はSiが1.0質量%を超えると導電率が低下する。このため、本発明に係るCu−Co−Si系合金では、Coの添加量は0.5〜3.0質量%とし、Siの添加量は0.1〜1.0質量%としている。さらに、Coの添加量は1.0〜2.0質量%が好ましく、Siの添加量は0.2〜0.50質量%が好ましい。
(Co and Si addition amount)
Co and Si are deposited as an intermetallic compound such as Co 2 Si by performing an appropriate aging treatment. The strength is improved by the action of the precipitates, and Co and Si dissolved in the Cu matrix are reduced by precipitation, so that the conductivity is improved. However, if Co is less than 0.5% by mass or Si is less than 0.1% by mass, the desired strength cannot be obtained, and conversely, if Co exceeds 3.0% by mass or Si is less than 1.0% by mass. When it exceeds, electrical conductivity will fall. For this reason, in the Cu—Co—Si based alloy according to the present invention, the amount of Co added is 0.5 to 3.0 mass% and the amount of Si added is 0.1 to 1.0 mass%. Furthermore, the addition amount of Co is preferably 1.0 to 2.0% by mass, and the addition amount of Si is preferably 0.2 to 0.50% by mass.

(その他の添加元素)
Niは強度上昇に寄与する。Niが0.005質量%未満であると上記の効果は得られず、0.8質量%を超えると導電率が著しく低下する。このため、本発明にかかわるCu−Co−Si系合金では、Niを0.005〜0.8質量%含有することが好ましい。
Sn、Zn、Mg、Fe、Ti、Zr、Al、P、Mn、Cr、Agは強度上昇に寄与する。さらにZnはSnめっきの耐熱剥離性の向上に、Mgは応力緩和特性の向上に、Zr、Cr、Mnは熱間加工性の向上に効果がある。Sn、Zn、Mg、Fe、Ti、Zr、Al、P、Mn、Cr、Agが総量で0.005質量%未満であると上記の効果は得られず、3.0質量%を超えると導電率が著しく低下する。このため、本発明に係るCu−Co−Si系合金では、これらの元素を総量で0.005〜3.0質量%含有することが好ましく、0.01〜2.5質量%含有することがより好ましい。
(Other additive elements)
Ni contributes to an increase in strength. When Ni is less than 0.005% by mass, the above effect cannot be obtained, and when it exceeds 0.8% by mass, the conductivity is remarkably lowered. For this reason, it is preferable that the Cu—Co—Si based alloy according to the present invention contains 0.005 to 0.8 mass% of Ni.
Sn, Zn, Mg, Fe, Ti, Zr, Al, P, Mn, Cr, and Ag contribute to an increase in strength. Furthermore, Zn is effective in improving the heat-resistant peelability of Sn plating, Mg is effective in improving stress relaxation characteristics, and Zr, Cr, and Mn are effective in improving hot workability. If the total amount of Sn, Zn, Mg, Fe, Ti, Zr, Al, P, Mn, Cr, and Ag is less than 0.005% by mass, the above effect cannot be obtained. The rate drops significantly. For this reason, in the Cu-Co-Si based alloy according to the present invention, these elements are preferably contained in a total amount of 0.005 to 3.0% by mass, and 0.01 to 2.5% by mass. More preferred.

(結晶方位)
種々のCu−Co−Si系合金板について、その板厚方向中央部においてEBSD法により結晶方位分布を測定し、結晶方位分布関数を用い、発達している方位成分を求めたところ、{1 0 0}<0 0 1>、{0 1 2}<1 0 0>、{3 6 2}<8 5 3>及び{2 3 1}<3 4 6>の4方位が検出された。ここで、例えば{0 0 1}<1 0 0>方位とは、圧延面法線方向(ND)に(0 0 1)面が、圧延方向(RD)に(1 0 0)面が向いている状態を示す。
各方位の発達度とノッチ曲げ性との関係について実験的に検討した結果、ノッチ曲げに対し{1 0 0}<0 0 1>は非常に有効な方位成分であり、次いで、{0 1 2}<1 0 0>も有効であった。一方、{3 6 2}<8 5 3>及び{2 3 1}<3 4 6>はノッチ曲げ性に対し有害な成分であった。
そして、{1 0 0}<0 0 1>、{0 1 2}<1 0 0>、{3 6 2}<8 5 3>及び{2 3 1}<3 4 6>方位の面積率をそれぞれF1、F2、F3及びF4としたときに、次式で与えられるPがノッチ曲げ性と良好な相関を示し、Pが1以上の場合に良好なノッチ曲げ性が得られた。
P=(F1+0.2×F2)/(F3+F4)
また、Pが1未満になると、ノッチ曲げ性が急激に低下した。一方、Pが8を超えるとヤング率が急激に低下した。ヤング率が低下すると、S=E×d(S:ばね力,E:ヤング率,d:変位)の関係があるため、コネクタ等の部品に加工された後に所望のばね力が得られなくなる。このため、本発明に係るCu−Co−Si系合金は、上記Pを1〜8とした。より好ましいPは1〜7である。
ここで、板厚の中央部とは、板厚に対し45〜55%の断面位置を指す。
(Crystal orientation)
For various Cu—Co—Si based alloy plates, the crystal orientation distribution was measured by the EBSD method at the center in the plate thickness direction, and the developed orientation component was determined using the crystal orientation distribution function. Four orientations were detected: 0} <0 0 1>, {0 1 2} <1 0 0>, {3 6 2} <8 5 3> and {2 3 1} <3 4 6>. Here, for example, the {0 0 1} <1 0 0> orientation means that the (0 0 1) plane is oriented in the rolling surface normal direction (ND) and the (1 0 0) plane is oriented in the rolling direction (RD). Indicates the state.
As a result of experimentally examining the relationship between the degree of development of each orientation and the notch bendability, {1 0 0} <0 0 1> is a very effective orientation component for notch bending, and then {0 1 2 } <1 0 0> was also effective. On the other hand, {3 6 2} <8 5 3> and {2 3 1} <3 4 6> were harmful components to the notch bendability.
Then, the area ratio of {1 0 0} <0 0 1>, {0 1 2} <1 0 0>, {3 6 2} <8 5 3> and {2 3 1} <3 4 6> orientations When F1, F2, F3, and F4 were set, respectively, P given by the following equation showed a good correlation with the notch bendability, and when P was 1 or more, good notch bendability was obtained.
P = (F1 + 0.2 × F2) / (F3 + F4)
Moreover, when P became less than 1, notch bendability fell rapidly. On the other hand, when P exceeded 8, the Young's modulus rapidly decreased. When the Young's modulus decreases, there is a relationship of S = E × d (S: spring force, E: Young's modulus, d: displacement), so that a desired spring force cannot be obtained after being processed into a component such as a connector. For this reason, the Cu-Co-Si-based alloy according to the present invention sets the above P to 1 to 8. More preferable P is 1-7.
Here, the central portion of the plate thickness refers to a cross-sectional position of 45 to 55% with respect to the plate thickness.

(製造方法)
Cu−Co−Si系合金の一般的な製造プロセスでは、まず溶解炉で電気銅、Co、Si等の原料を溶解し、所望の組成の溶湯を得る。そして、この溶湯をインゴットに鋳造する。その後、熱間圧延、冷間圧延、溶体化処理、時効処理の順で所望の厚みおよび特性を有する条や箔に仕上げる。熱処理後には、時効時に生成した表面酸化膜を除去するために、表面の酸洗や研磨等を行ってもよい。また、高強度化のために、溶体化処理と時効の間や時効後に冷間圧延を行ってもよい。
本発明では、上述の結晶方位を得るために、溶体化処理の前に、熱処理(以下、予備焼鈍ともいう)及び比較的低加工度の冷間圧延(以下、軽圧延ともいう)を行う。
予備焼鈍は、熱間圧延後の冷間圧延により形成された圧延組織中に、部分的に再結晶粒を生成させることを目的に行う。圧延組織中の再結晶粒の割合には最適値があり、少なすぎてもまた多すぎても上述の結晶方位が得られない。最適な割合の再結晶粒は、下記に定義する軟化度STが0.25〜0.75になるよう、予備焼鈍条件を調整することにより得られる。
図1に本発明に係る合金を種々の温度で焼鈍したときの焼鈍温度と引張強さとの関係を例示する。熱電対を取り付けた試料を950℃の管状炉に挿入し、熱電対で測定される試料温度が所定温度に到達したときに、試料を炉から取り出して水冷し、引張強さを測定したものである。試料到達温度が500〜700℃の間で再結晶が進行し、引張強さが急激に低下している。高温側での引張強さの緩やかな低下は、再結晶粒の成長によるものである。
(Production method)
In a general manufacturing process of a Cu—Co—Si alloy, first, raw materials such as electrolytic copper, Co, and Si are melted in a melting furnace to obtain a molten metal having a desired composition. Then, this molten metal is cast into an ingot. Thereafter, the strips and foils having desired thickness and characteristics are finished in the order of hot rolling, cold rolling, solution treatment, and aging treatment. After the heat treatment, surface pickling or polishing may be performed in order to remove the surface oxide film generated during aging. In order to increase the strength, cold rolling may be performed between the solution treatment and aging or after aging.
In the present invention, heat treatment (hereinafter also referred to as pre-annealing) and cold rolling (hereinafter also referred to as light rolling) having a relatively low degree of processing are performed before the solution treatment in order to obtain the above crystal orientation.
The preliminary annealing is performed for the purpose of partially generating recrystallized grains in a rolled structure formed by cold rolling after hot rolling. There is an optimum value for the ratio of recrystallized grains in the rolled structure, and the above-mentioned crystal orientation cannot be obtained if the amount is too small or too large. Optimal ratio of recrystallized grains, so that the softening degree S T defined below is 0.25 to 0.75, obtained by adjusting the pre-annealing conditions.
FIG. 1 illustrates the relationship between the annealing temperature and the tensile strength when the alloy according to the present invention is annealed at various temperatures. A sample with a thermocouple attached was inserted into a tube furnace at 950 ° C., and when the sample temperature measured by the thermocouple reached a predetermined temperature, the sample was taken out of the furnace, cooled with water, and the tensile strength was measured. is there. Recrystallization proceeds when the sample arrival temperature is 500 to 700 ° C., and the tensile strength is drastically decreased. The gradual decrease in tensile strength on the high temperature side is due to the growth of recrystallized grains.

温度Tのときの軟化度STを次式で定義する。
T=(σ0−σT)/(σ0−σ900
ここで、σ0は焼鈍前の引張強さであり、σTおよびσ900はそれぞれT℃および900℃で焼鈍後の引張強さである。900℃という温度は、本発明に係る合金を900℃で焼鈍すると安定して完全再結晶することから、再結晶後の引張強さを知るための基準温度として採用している。
Tが0.25未満、又は、0.75超になると、Pが1未満になる。
予備焼鈍上がりの導電率は30〜65%IACSの範囲とする。導電率が30%IACS未満になると、Pが1未満になる。予備焼鈍上がりの導電率が65%IACSを超えると、Pが8を超える。
予備焼鈍の温度、時間および冷却速度は特に制約されず、ST及び導電率を上記範囲に調整することが重要である。一般的には、連続焼鈍炉を用いる場合には炉温400〜700℃で5秒間〜10分間の範囲、バッチ焼鈍炉を用いる場合には炉温350〜600℃で30分間〜20時間の範囲で行われる。
なお、予備焼鈍条件の設定は、次の手順により行うことができる。
(1)予備焼鈍前の材料の引張り試験強さ(σ0)を測定する。
(2)予備焼鈍前の材料を900℃で焼鈍する。具体的には、熱電対を取り付けた材料を950℃の管状炉に挿入し、熱電対で測定される試料温度が900℃に到達したときに、試料を炉から取り出して水冷する。
(3)上記900℃焼鈍後の材料の引張強さ(σ900)を求める。
(4)例えば、σ0が600MPa、σ900が300MPaの場合、軟化度0.25及び0.75に相当する引張強さは、それぞれ525MPa及び375MPaである。
(5)焼鈍後の引張強さが375〜525MPaとなり、同時に焼鈍後の導電率が30〜65%IACSとなるように、予備焼鈍の条件を求める。
The softening of S T at the temperature T is defined by the following equation.
S T = (σ 0 −σ T ) / (σ 0 −σ 900 )
Here, σ 0 is the tensile strength before annealing, and σ T and σ 900 are the tensile strength after annealing at T ° C. and 900 ° C., respectively. The temperature of 900 ° C. is adopted as a reference temperature for knowing the tensile strength after recrystallization because the alloy according to the present invention is stably completely recrystallized when annealed at 900 ° C.
S T is less than 0.25, or, at a 0.75 greater, P is less than 1.
The conductivity after pre-annealing is in the range of 30 to 65% IACS. When the conductivity is less than 30% IACS, P is less than 1. When the pre-annealing conductivity exceeds 65% IACS, P exceeds 8.
The temperature, time and cooling rate of the pre-annealing are not particularly limited, and it is important to adjust ST and conductivity within the above ranges. Generally, when a continuous annealing furnace is used, the furnace temperature ranges from 400 to 700 ° C. for 5 seconds to 10 minutes, and when a batch annealing furnace is used, the furnace temperature ranges from 350 to 600 ° C. for 30 minutes to 20 hours. Done in
The pre-annealing conditions can be set by the following procedure.
(1) Measure the tensile test strength (σ 0 ) of the material before pre-annealing.
(2) The material before preliminary annealing is annealed at 900 ° C. Specifically, the material to which the thermocouple is attached is inserted into a tubular furnace at 950 ° C., and when the sample temperature measured by the thermocouple reaches 900 ° C., the sample is taken out of the furnace and cooled with water.
(3) Obtain the tensile strength (σ 900 ) of the material after annealing at 900 ° C.
(4) For example, when σ 0 is 600 MPa and σ 900 is 300 MPa, the tensile strengths corresponding to the softening degrees 0.25 and 0.75 are 525 MPa and 375 MPa, respectively.
(5) Pre-annealing conditions are determined so that the tensile strength after annealing is 375 to 525 MPa and the electrical conductivity after annealing is 30 to 65% IACS.

上記焼鈍の後、溶体化処理に先立ち、加工度7〜50%の軽圧延を行う。加工度R(%)は次式で定義する。
R=(t0−t)/t0×100(t0:圧延前の板厚,t:圧延後の板厚)
加工度がこの範囲から外れるとPが1未満になる。
After the annealing, light rolling with a working degree of 7 to 50% is performed prior to the solution treatment. The processing degree R (%) is defined by the following equation.
R = (t 0 −t) / t 0 × 100 (t 0 : plate thickness before rolling, t: plate thickness after rolling)
If the degree of processing is out of this range, P becomes less than 1.

本発明合金の製造方法を工程順に列記すると次のようになる。
(1)インゴットの鋳造
(2)熱間圧延(温度800〜1000℃、厚み5〜20mm程度まで)
(3)冷間圧延(加工度30〜99%)
(4)予備焼鈍(軟化度:ST=0.25〜0.75、導電率=30〜65%IACS)
(5)軽圧延(加工度7〜50%)
(6)溶体化処理(800〜1050℃で5〜300秒)
(7)冷間圧延(加工度1〜60%)
(8)時効処理(400〜600℃で2〜20時間)
(9)冷間圧延(加工度1〜50%)
(10)歪取り焼鈍(300〜700℃で5秒〜10時間)
ここで、冷間圧延(3)の加工度は30〜99%とすることが好ましい。予備焼鈍(4)で部分的に再結晶粒を生成させるためには、冷間圧延(3)で歪を導入しておく必要があり、30%以上の加工度で有効な歪が得られる。一方、加工度が99%を超えると、圧延材のエッジ等に割れが発生し、圧延中の材料が破断することがある。
冷間圧延(7)及び(9)は高強度化のために任意に行うものであり、圧延加工度の増加とともに強度が増加する反面、曲げ性が低下する。冷間圧延(7)及び(9)の有無およびそれぞれの加工度によらず、板厚中央部の結晶方位制御によりノッチ曲げ性が向上するという本発明の効果は得られる。冷間圧延(7)及び(9)は行っても良いし行わなくても良い。ただし、冷間圧延(7)及び(9)におけるそれぞれの加工度が上記上限値を超えることは曲げ性の点から好ましくなく、それぞれの加工度が上記下限値を下回ることは高強度化の効果の点から好ましくない。
歪取り焼鈍(10)は、冷間圧延(9)を行う場合にこの冷間圧延で低下するばね限界値等を回復させるために任意に行うものである。歪取り焼鈍(10)の有無に関わらず、板厚中央部の結晶方位制御によりノッチ曲げ性が向上するという本発明の効果は得られる。歪取り焼鈍(10)は行っても良いし行わなくても良い。
なお、工程(2)、(6)及び(8)については、Cu−Co−Si系合金の一般的な製造条件を選択すればよい。
It is as follows when the manufacturing method of this invention alloy is listed in order of a process.
(1) Ingot casting (2) Hot rolling (temperature 800-1000 ° C, thickness 5-20mm)
(3) Cold rolling (working degree 30-99%)
(4) Pre-annealing (degree of softening: S T = 0.25 to 0.75, conductivity = 30 to 65% IACS)
(5) Light rolling (working degree 7-50%)
(6) Solution treatment (800 to 1050 ° C. for 5 to 300 seconds)
(7) Cold rolling (working degree 1-60%)
(8) Aging treatment (2 to 20 hours at 400 to 600 ° C.)
(9) Cold rolling (working degree 1-50%)
(10) Strain relief annealing (at 300 to 700 ° C. for 5 seconds to 10 hours)
Here, it is preferable that the workability of cold rolling (3) is 30 to 99%. In order to generate recrystallized grains partially by pre-annealing (4), it is necessary to introduce strain by cold rolling (3), and effective strain can be obtained at a workability of 30% or more. On the other hand, if the degree of work exceeds 99%, cracks may occur at the edges of the rolled material and the material being rolled may break.
Cold rolling (7) and (9) is optionally performed to increase the strength, and the strength increases as the degree of rolling process increases, but the bendability decreases. The effect of the present invention that the notch bendability is improved by controlling the crystal orientation in the central portion of the plate thickness can be obtained regardless of the presence or absence of cold rolling (7) and (9) and the respective working degrees. Cold rolling (7) and (9) may or may not be performed. However, it is not preferable from the viewpoint of bendability that the respective working degrees in the cold rolling (7) and (9) exceed the above upper limit value, and the fact that each working degree is below the above lower limit effect of increasing the strength. From the point of view, it is not preferable.
The strain relief annealing (10) is optionally performed in order to recover the spring limit value and the like which are lowered by the cold rolling when the cold rolling (9) is performed. Regardless of the presence or absence of strain relief annealing (10), the effect of the present invention is obtained in that the notch bendability is improved by controlling the crystal orientation at the center of the plate thickness. The strain relief annealing (10) may or may not be performed.
In addition, what is necessary is just to select the general manufacturing conditions of a Cu-Co-Si type alloy about process (2), (6), and (8).

本発明のCu−Co−Si系合金は種々の伸銅品、例えば板、条及び箔に加工することができ、更に、本発明のCu−Co−Si系合金は、リードフレーム、コネクタ、ピン、端子、リレー、スイッチ、二次電池用箔材等の電子機器部品等に使用することができる。   The Cu—Co—Si based alloy of the present invention can be processed into various copper products, such as plates, strips and foils. Furthermore, the Cu—Co—Si based alloy of the present invention can be used for lead frames, connectors and pins. It can be used for electronic device parts such as terminals, relays, switches, and foil materials for secondary batteries.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。   Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.

(例1)
Co:1.3質量%、Si:0.3質量%を含有し残部が銅及び不可避的不純物からなる合金を実験材料とし、予備焼鈍及び軽圧延条件と結晶方位との関係、さらに結晶方位が製品の曲げ性および機械的特性に及ぼす影響を検討した。
高周波溶解炉にてアルゴン雰囲気中で内径60mm、深さ200mmの黒鉛るつぼを用い電気銅2.5kgを溶解した。上記合金組成が得られるよう合金元素を添加し、溶湯温度を1300℃に調整した後、鋳鉄製の鋳型に鋳込み、厚さ30mm、幅60mm、長さ120mmのインゴットを製造した。このインゴットを1000℃で3時間加熱し、厚さ10mmまで熱間圧延した。熱間圧延板表面の酸化スケールをグラインダーで研削して除去した。研削後の厚みは9mmであった。その後、次の工程順で圧延および熱処理を施し、板厚0.15mmの製品試料を作製した。
(1)冷間圧延:軽圧延の圧延加工度に応じ、所定の厚みまで冷間圧延した。
(2)予備焼鈍:所定温度に調整した電気炉に試料を挿入し、所定時間保持した後、試料を水槽に入れ冷却(水冷)または試料を大気中に放置し冷却(空冷)の二通りの条件で冷却した。
(3)軽圧延:種々の圧延加工度で、厚み0.18mmまで冷間圧延を行った。
(4)溶体化処理:1000℃に調整した電気炉に試料を挿入し、10秒間保持した後、試料を水槽に入れ冷却した。
(5)時効処理:電気炉を用い500℃で5時間、Ar雰囲気中で加熱した。
(6)冷間圧延:0.18mmから0.15mmまで加工度17%で冷間圧延した。
(7)歪取り焼鈍:400℃に調整した電気炉に試料を挿入し、10秒間保持した後、試料を大気中に放置し冷却した。
(Example 1)
Co: 1.3% by mass, Si: 0.3% by mass, with the balance being copper and an inevitable impurity alloy as an experimental material, the relationship between the pre-annealing and light rolling conditions and the crystal orientation, and the crystal orientation The effects on the bendability and mechanical properties of the products were investigated.
In a high frequency melting furnace, 2.5 kg of electrolytic copper was melted using a graphite crucible having an inner diameter of 60 mm and a depth of 200 mm in an argon atmosphere. Alloy elements were added to obtain the above alloy composition, the melt temperature was adjusted to 1300 ° C., and then cast into a cast iron mold to produce an ingot having a thickness of 30 mm, a width of 60 mm, and a length of 120 mm. This ingot was heated at 1000 ° C. for 3 hours and hot-rolled to a thickness of 10 mm. The oxidized scale on the surface of the hot rolled plate was removed by grinding with a grinder. The thickness after grinding was 9 mm. Thereafter, rolling and heat treatment were performed in the following order of steps to produce a product sample having a thickness of 0.15 mm.
(1) Cold rolling: Cold rolling was performed to a predetermined thickness according to the rolling degree of light rolling.
(2) Pre-annealing: Insert the sample into an electric furnace adjusted to a predetermined temperature, hold it for a predetermined time, then place the sample in a water bath and cool (water cooling) or leave the sample in the atmosphere and cool (air cooling) Cooled under conditions.
(3) Light rolling: Cold rolling to various thicknesses of 0.18 mm was performed.
(4) Solution treatment: The sample was inserted into an electric furnace adjusted to 1000 ° C. and held for 10 seconds, and then the sample was placed in a water bath and cooled.
(5) Aging treatment: Heated in an Ar atmosphere at 500 ° C. for 5 hours using an electric furnace.
(6) Cold rolling: Cold rolled from 0.18 mm to 0.15 mm at a workability of 17%.
(7) Strain relief annealing: The sample was inserted into an electric furnace adjusted to 400 ° C. and held for 10 seconds, and then the sample was left in the air and cooled.

予備焼鈍後の試料および製品試料(この場合は歪取り焼鈍上がり)について、次の評価を行った。
(予備焼鈍での軟化度評価)
予備焼鈍前および予備焼鈍後の試料につき、引張試験機を用いてJIS Z 2241に準拠し圧延方向と平行に引張強さを測定し、それぞれの値をσ0およびσTとした。また、900℃焼鈍試料を前記手順(950℃の炉に挿入し試料が900℃に到達したときに水冷)で作製し、圧延方向と平行に引張強さを同様に測定しσ900を求めた。σ0、σT、σ900から、軟化度STを求めた。
T=(σ0−σT)/(σ0−σ900
The following evaluation was performed on the sample after the pre-annealing and the product sample (in this case, the strain relief annealing was completed).
(Evaluation of softening degree in preliminary annealing)
About the sample before pre-annealing and after pre-annealing, the tensile strength was measured in parallel with the rolling direction according to JIS Z 2241 using a tensile tester, and the respective values were set as σ 0 and σ T. In addition, a 900 ° C. annealed sample was prepared by the above procedure (water cooling when the sample reached 900 ° C. when inserted in a 950 ° C. furnace), and the tensile strength was measured in parallel with the rolling direction to obtain σ 900 . . The softening degree S T was determined from σ 0 , σ T , and σ 900 .
S T = (σ 0 −σ T ) / (σ 0 −σ 900 )

(予備焼鈍後の導電率測定)
予備焼鈍後の試料につき、JIS H 0505に準拠して導電率を測定した。測定での通電は圧延方向と平行に行った。
(Conductivity measurement after pre-annealing)
The electrical conductivity of the sample after preliminary annealing was measured according to JIS H 0505. The energization in the measurement was performed in parallel with the rolling direction.

(製品の結晶方位測定)
板厚方向表層および板厚方向中央部において、{1 0 0}<0 0 1>、{0 1 2}<1 0 0>、{3 6 2}<8 5 3>及び{2 3 1}<3 4 6>の各方位の面積率を測定した。
表層の結晶方位を解析するための試料として、試料表面を機械研摩して圧延模様等による微小凹凸を除去した後、電解研磨により鏡面に仕上げた。これによる表面の研摩深さは2〜3μmの範囲であった。
また、板厚中央部の結晶方位を解析するための試料として、一方の表面から板厚中央部までを塩化第二鉄溶液を用いたエッチングにより除去し、その後、機械研摩と電解研磨により鏡面に仕上げた。仕上げ後の試料の厚みは、元の板厚に対し45〜55%の範囲であった。
EBSD測定では、結晶粒を200個以上含む、500μm四方の試料面積に対し、0.5μmのステップでスキャンし、結晶方位分布を測定した。そして、結晶方位密度関数解析を行って、{1 0 0}<0 0 1>、{0 1 2}<1 0 0>、{3 6 2}<8 5 3>及び{2 3 1}<3 4 6>の各方位から10°以内の方位差を持つ領域の面積率を求め、それぞれをF1、F2、F3及びF4とした。以上の解析にはTSL社製OIM Analysis 5.3を使用した。EBSDによる方位解析において得られる情報は、電子線が試料に侵入する数10nmの深さまでの方位情報を含んでいるが、測定している広さに対して充分に小さいため、面積率として記載した。
(Measurement of crystal orientation of products)
{1 0 0} <0 0 1>, {0 1 2} <1 0 0>, {3 6 2} <8 5 3> and {2 3 1} in the thickness direction surface layer and the thickness direction central portion The area ratio of each direction of <3 4 6> was measured.
As a sample for analyzing the crystal orientation of the surface layer, the sample surface was mechanically polished to remove minute irregularities due to a rolling pattern or the like, and then finished to a mirror surface by electrolytic polishing. The surface polishing depth was in the range of 2 to 3 μm.
In addition, as a sample for analyzing the crystal orientation of the central part of the plate thickness, from one surface to the central part of the plate thickness is removed by etching using a ferric chloride solution, and then mirror-polished by mechanical polishing and electrolytic polishing. Finished. The thickness of the sample after finishing was in the range of 45 to 55% with respect to the original plate thickness.
In the EBSD measurement, a 500 μm square sample area containing 200 or more crystal grains was scanned in 0.5 μm steps to measure the crystal orientation distribution. Then, a crystal orientation density function analysis is performed, and {1 0 0} <0 0 1>, {0 1 2} <1 0 0>, {3 6 2} <8 5 3> and {2 3 1} < The area ratio of a region having an azimuth difference within 10 ° from each azimuth of 3 4 6> was determined, and each of them was designated as F1, F2, F3, and F4. For the above analysis, OIM Analysis 5.3 manufactured by TSL was used. The information obtained in the azimuth analysis by EBSD includes azimuth information up to a depth of several tens of nanometers in which the electron beam penetrates the sample, but is described as an area ratio because it is sufficiently small with respect to the measured width. .

(製品の引張り試験)
引張試験機を用いてJIS Z2241に準拠し圧延方向と平行に引張強さを測定した。
(Product tensile test)
Tensile strength was measured in parallel with the rolling direction in accordance with JIS Z2241 using a tensile tester.

(製品のノッチ曲げ試験)
試験手順を図2に示す。板厚tに対し深さ1/3tのノッチング加工を施した。ノッチ先端の角度は90度とし、先端に幅0.1mmの平坦部を設けた。次に、JIS H3100に準拠し、内曲げ半径をtとし、Good Way方向(曲げ軸が圧延方向と直交)にW曲げ試験を行った。そして、曲げ断面を機械研磨及びバフ研磨で鏡面に仕上げ、光学顕微鏡で割れの有無を観察した。割れが認められない場合を○、割れが認められた場合を×と評価した。
(Product notch bending test)
The test procedure is shown in FIG. A notching process with a depth of 1 / 3t was applied to the plate thickness t. The angle of the notch tip was 90 degrees, and a flat portion having a width of 0.1 mm was provided at the tip. Next, in accordance with JIS H3100, the inner bending radius was t, and a W bending test was performed in the Good Way direction (the bending axis was orthogonal to the rolling direction). Then, the bent section was finished to a mirror surface by mechanical polishing and buffing, and the presence or absence of cracks was observed with an optical microscope. The case where a crack was not recognized was evaluated as ○, and the case where a crack was observed was evaluated as ×.

(製品のW曲げ試験)
JIS H3100に準拠し、内曲げ半径をtとし、Good Way方向(曲げ軸が圧延方向と直交)にW曲げ試験を行った。そして、曲げ断面を機械研磨及びバフ研磨で鏡面に仕上げ、光学顕微鏡で割れの有無を観察した。割れが認められない場合を○、割れが認められた場合を×と評価した。
(Product W-bending test)
In accordance with JIS H3100, the inner bending radius was t, and a W bending test was performed in the Good Way direction (the bending axis was orthogonal to the rolling direction). Then, the bent section was finished to a mirror surface by mechanical polishing and buffing, and the presence or absence of cracks was observed with an optical microscope. The case where a crack was not recognized was evaluated as ○, and the case where a crack was observed was evaluated as ×.

(ヤング率測定)
長手方向が圧延方向と平行になるように、板厚t、幅W(=10mm)、長さ100mmの短冊形状の試料を採取した。この試料の片端を固定し、固定端からL(=100t)の位置にS(=0.15N)の荷重を加え、このときのたわみdから、次式を用い圧延平行方向のヤング率Eを求めた。
E=4・S・(L/t)3/(W・d)
表1に評価結果を示す。
(Young's modulus measurement)
A strip-shaped sample having a thickness t, a width W (= 10 mm), and a length of 100 mm was collected so that the longitudinal direction was parallel to the rolling direction. One end of this sample is fixed, and a load of S (= 0.15 N) is applied to a position of L (= 100 t) from the fixed end. From the deflection d at this time, Young's modulus E in the rolling parallel direction is calculated using the following equation. Asked.
E = 4 · S · (L / t) 3 / (W · d)
Table 1 shows the evaluation results.

発明例は、いずれも本発明が規定する条件で予備焼鈍および軽圧延を行ったものであり、板厚中央部の結晶方位が本発明の規定を満たし、W曲げ、ノッチ曲げとも割れが発生せず、引張強さは600MPa以上と高く、110GPaを超える高いヤング率が得られた。
比較例1は、予備焼鈍での軟化度が0.25未満になったため、板厚中央部におけるPが1未満になり、ノッチ曲げで割れが発生した。比較例2は、予備焼鈍での軟化度が0.75を超えたため、板厚中央部におけるPが1未満になり、ノッチ曲げで割れが発生した。比較例3は、予備焼鈍での軟化度が0.75を超えさらに予備焼鈍後の導電率が30%IACS未満になったため、板厚中央部におけるPが1未満になり、ノッチ曲げで割れが発生した。比較例5および6は、軽圧延の加工度が本発明の規定から外れたものであり、板厚中央部におけるPが1未満になった。以上の比較例では、W曲げでは割れが発生しなかったが、ノッチ曲げでは割れが発生した。なお、これら比較例の予備焼鈍および軽圧延は特許文献2が推奨する条件の範囲で行われたものであった。
比較例4は、予備焼鈍後の導電率が65%IACSを超えたため、Pが8を超え、ヤング率が100GPa未満の低い値になった。
比較例7は、熱間圧延後に表面研削した後の板厚9mmから、予備焼鈍および軽圧延を行わず、そのまま板厚0.18mmまで圧延したものである。板厚中央部、表層部ともに、Pが1未満になった。その結果、W曲げ、ノッチ曲げの双方で割れが発生した。
In each of the inventive examples, pre-annealing and light rolling were performed under the conditions specified by the present invention, the crystal orientation at the center of the plate thickness satisfied the specifications of the present invention, and cracking occurred in both W bending and notch bending. The tensile strength was as high as 600 MPa or higher, and a high Young's modulus exceeding 110 GPa was obtained.
In Comparative Example 1, since the degree of softening in the pre-annealing was less than 0.25, P in the central portion of the plate thickness was less than 1, and cracking occurred due to notch bending. In Comparative Example 2, since the degree of softening in the pre-annealing exceeded 0.75, P in the central portion of the plate thickness was less than 1, and cracking occurred by notch bending. In Comparative Example 3, the degree of softening in the pre-annealing exceeded 0.75, and the electrical conductivity after the pre-annealing was less than 30% IACS, so that P in the center of the plate thickness was less than 1, and cracking occurred by notch bending. Occurred. In Comparative Examples 5 and 6, the workability of light rolling deviated from the definition of the present invention, and P in the central portion of the plate thickness was less than 1. In the above comparative examples, cracks did not occur in W bending, but cracks occurred in notch bending. In addition, the preliminary annealing and light rolling of these comparative examples were performed in the range of the conditions which patent document 2 recommends.
In Comparative Example 4, the electrical conductivity after pre-annealing exceeded 65% IACS, so P exceeded 8, and the Young's modulus was a low value of less than 100 GPa.
Comparative Example 7 is a sheet thickness of 9 mm after surface grinding after hot rolling, and rolled as it is to 0.18 mm without pre-annealing and light rolling. P was less than 1 in both the central portion of the plate thickness and the surface layer portion. As a result, cracks occurred in both W bending and notch bending.

(例2)
例1で示したノッチ曲げ性の改善効果が、異なる成分および製造条件のCu−Co−Si合金でも得られるかについて検討した。
まず、例1と同様の方法で鋳造、熱間圧延および表面研削を行い、表2の成分を有する厚み9mmの板を得た。この板に対し次の工程順で圧延および熱処理を施し、表2に示す板厚の製品試料を得た。
(1)冷間圧延
(2)予備焼鈍:所定温度に調整した電気炉に、試料を挿入し、所定時間保持した後、試料を水槽に入れ冷却(水冷)または試料を大気中に放置し冷却(空冷)の二通りの条件で冷却した。
(3)軽圧延
(4)溶体化処理:所定温度に調整した電気炉に試料を挿入し、10秒間保持した後、試料を水槽に入れ冷却した。該温度は再結晶粒の平均直径が5〜25μmの範囲になる範囲で選択した。
(5)冷間圧延(圧延1)
(6)時効処理:電気炉を用い所定温度で5時間、Ar雰囲気中で加熱した。該温度は時効後の引張強さが最大になるように選択した。
(7)冷間圧延(圧延2)
(8)歪取り焼鈍:所定温度に調整した電気炉に試料を挿入し、10秒間保持した後、試料を大気中に放置し冷却した。
(Example 2)
It was examined whether the effect of improving the notch bendability shown in Example 1 could be obtained with Cu-Co-Si alloys having different components and production conditions.
First, casting, hot rolling and surface grinding were performed in the same manner as in Example 1 to obtain a 9 mm thick plate having the components shown in Table 2. This plate was subjected to rolling and heat treatment in the following process order to obtain a product sample having a plate thickness shown in Table 2.
(1) Cold rolling (2) Pre-annealing: Insert the sample into an electric furnace adjusted to a predetermined temperature and hold it for a predetermined time, then place the sample in a water bath and cool (water cooling) or leave the sample in the air for cooling Cooling was performed under two conditions (air cooling).
(3) Light rolling (4) Solution treatment: The sample was inserted into an electric furnace adjusted to a predetermined temperature and held for 10 seconds, and then the sample was placed in a water bath and cooled. The temperature was selected so that the average diameter of the recrystallized grains was in the range of 5 to 25 μm.
(5) Cold rolling (Rolling 1)
(6) Aging treatment: Heating was performed in an Ar atmosphere using an electric furnace at a predetermined temperature for 5 hours. The temperature was selected to maximize the tensile strength after aging.
(7) Cold rolling (Rolling 2)
(8) Strain relief annealing: The sample was inserted into an electric furnace adjusted to a predetermined temperature and held for 10 seconds, and then the sample was left in the air and cooled.

予備焼鈍後の試料および製品試料について、例1と同様の評価を行った。表2及び3に評価結果を示す。圧延1、圧延2、歪取り焼鈍のいずれかを行わなかった場合は、それぞれの加工度または温度の欄に「なし」と表記している。   Evaluation similar to Example 1 was performed about the sample and product sample after preliminary annealing. Tables 2 and 3 show the evaluation results. When any one of rolling 1, rolling 2, and strain relief annealing is not performed, “none” is written in the column of the degree of processing or temperature.

発明例は、いずれも本発明が規定する濃度のCoおよびSiを含有し、本発明が規定する条件で予備焼鈍および軽圧延を行ったものであり、板厚中央部の結晶方位が本発明の規定を満たし、ノッチ曲げが可能であり、550MPaを超える高い引張強さおよび110GPaを超える高いヤング率が得られた。ここで、圧延2の加工度が50%を超えた発明例16、および圧延1の加工度が60%を超えた比較例17では、ノッチ曲げ試験で割れが発生したものの、実用上許容できる極微細な割れであったため、○と評価した。
比較例8は軽圧延の加工度が50%を超えたものである。例1の合金と同様、板厚中央部の結晶方位が発明の規定から外れ、ノッチ曲げで割れが発生した。同じ成分の前記発明例16、17と比べると、引張強さが低いにも関わらず、発生した割れは電子部品としての機能を阻害するレベルの顕著なものであった。
比較例9、10は予備焼鈍での軟化度が本発明の規定を満足しなかったものである。例1比較例の合金と同様、板厚中央部の結晶方位が発明の規定から外れ、ノッチ曲げで割れが発生した。
比較例11はCoおよびSi濃度が本発明の規定を下回ったものであり、ノッチ曲げ性は良好であったが、引張強さが500MPaにも達しなかった。
Each of the inventive examples contains Co and Si at a concentration specified by the present invention, and is pre-annealed and light-rolled under the conditions specified by the present invention. Satisfactory, notch bending was possible, high tensile strength exceeding 550 MPa and high Young's modulus exceeding 110 GPa were obtained. Here, in Invention Example 16 in which the workability of rolling 2 exceeded 50% and Comparative Example 17 in which the workability of rolling 1 exceeded 60%, although cracks occurred in the notch bending test, they were practically acceptable. Since it was a fine crack, it evaluated as (circle).
In Comparative Example 8, the light rolling workability exceeds 50%. Similar to the alloy of Example 1, the crystal orientation at the center of the plate thickness deviated from the provisions of the invention, and cracking occurred by notch bending. Compared to Invention Examples 16 and 17 of the same component, although the tensile strength was low, the generated cracks were remarkable at a level that hinders the function as an electronic component.
In Comparative Examples 9 and 10, the degree of softening in the pre-annealing did not satisfy the definition of the present invention. Example 1 Similar to the alloy of the comparative example, the crystal orientation at the center of the plate thickness deviated from the provisions of the invention, and cracking occurred by notch bending.
In Comparative Example 11, the Co and Si concentrations were less than those of the present invention, and the notch bendability was good, but the tensile strength did not reach 500 MPa.

(例3)
Co:1.86質量%、Si:0.56質量%を含有し残部が銅及び不可避的不純物からなる合金を実験材料とし、熱間圧延の1パスの加工率を低下し、パスとパスの間の時間及び温度を制御したときの結晶方位や製品の曲げ性および機械的特性に及ぼす影響を検討した。
高周波溶解炉にてアルゴン雰囲気中で内径60mm、深さ200mmの黒鉛るつぼを用い電気銅2.5kgを溶解した。上記合金組成が得られるよう合金元素を添加し、溶湯温度を1300℃に調整した後、鋳鉄製の鋳型に鋳込み、厚さ30mm、幅60mm、長さ120mmのインゴットを製造した。このインゴットを1000℃で10時間加熱し、厚さ10mmまで熱間圧延した後、水冷した。その熱間圧延は、1パス加工率が14%のリバース式圧延を合計8パス行い、パスとパスの間の保持時間は30秒とした。熱間圧延板表面の酸化スケールをグラインダーで研削して除去した。研削後の厚みは9mmであった。その後、加工度97%の冷間圧延を行い、予備焼鈍として、600℃に調整した電気炉に試料を挿入し、1時間保持した後、試料を水槽に入れ冷却した。その後に、加工度35%の冷間圧延を行い、1000℃に調整した電気炉に試料を挿入し、10秒保持した後、試料を水槽に入れ冷却し、電気炉を用い500℃で5時間、Ar雰囲気中で加熱し、加工度25%で冷間圧延を行い、350℃に調整した電気炉に試料を挿入し、10秒保持した後、試料を大気中に放置し冷却することで、板厚0.15mmの製品試料を作製した。予備焼鈍後の試料および製品試料について、例1と同様の評価を行った。表4〜6に評価結果を示す。
(Example 3)
An alloy containing Co: 1.86% by mass and Si: 0.56% by mass with the balance being copper and inevitable impurities is used as an experimental material, and the processing rate of one pass of hot rolling is reduced. The effects of controlling the time and temperature on the crystal orientation and the bendability and mechanical properties of the products were investigated.
In a high frequency melting furnace, 2.5 kg of electrolytic copper was melted using a graphite crucible having an inner diameter of 60 mm and a depth of 200 mm in an argon atmosphere. Alloy elements were added to obtain the above alloy composition, the melt temperature was adjusted to 1300 ° C., and then cast into a cast iron mold to produce an ingot having a thickness of 30 mm, a width of 60 mm, and a length of 120 mm. The ingot was heated at 1000 ° C. for 10 hours, hot-rolled to a thickness of 10 mm, and then cooled with water. In the hot rolling, reverse-type rolling with a one-pass processing rate of 14% was performed for a total of 8 passes, and the holding time between passes was 30 seconds. The oxidized scale on the surface of the hot rolled plate was removed by grinding with a grinder. The thickness after grinding was 9 mm. Thereafter, cold rolling with a workability of 97% was performed, and as a preliminary annealing, the sample was inserted into an electric furnace adjusted to 600 ° C. and held for 1 hour, and then the sample was placed in a water bath and cooled. After that, cold rolling with a working degree of 35% was performed, the sample was inserted into an electric furnace adjusted to 1000 ° C. and held for 10 seconds, then the sample was placed in a water bath and cooled, and the electric furnace was used at 500 ° C. for 5 hours. , By heating in an Ar atmosphere, cold rolling at a workability of 25%, inserting the sample into an electric furnace adjusted to 350 ° C., holding for 10 seconds, and then allowing the sample to stand in the air and cool, A product sample having a thickness of 0.15 mm was produced. Evaluation similar to Example 1 was performed about the sample and product sample after preliminary annealing. Tables 4 to 6 show the evaluation results.

比較例12は、1パスの加工度を30%以下とし、各パス間の保持時間を20〜100秒とした熱間圧延を実施し、熱間圧延と溶体化処理との間に300〜700℃の温度で10秒〜5時間の予備焼鈍を行い、800〜1000℃で溶体化処理を行ったものである。比較例1の合金と同様、板厚中央部の結晶方位が発明の規定から外れ、ノッチ曲げで割れが発生した。   In Comparative Example 12, hot rolling was performed with a processing degree of one pass being 30% or less and a holding time between each pass being 20 to 100 seconds, and 300 to 700 between the hot rolling and the solution treatment. Pre-annealing is performed at a temperature of 10 ° C. for 10 seconds to 5 hours, and a solution treatment is performed at 800 to 1000 ° C. Similar to the alloy of Comparative Example 1, the crystal orientation at the center of the plate thickness deviated from the provisions of the invention, and cracking occurred by notch bending.

Claims (8)

0.5〜3.0質量%のCo及び0.1〜1.0質量%のSiを含有し、残部が銅及び不可避的不純物からなり、板厚に対し45〜55%の断面位置である板厚方向の中央部において、板厚方向と平行にEBSD測定を行い、結晶方位を解析したときに、次式で定義されるPが1〜8であるCu−Co−Si系合金:
P=(F1+0.2×F2)/(F3+F4)
(ただし、F1、F2、F3及びF4は、それぞれ、{1 0 0}<0 0 1>、{0 1 2}<1 0 0>、{3 6 2}<8 5 3>及び{2 3 1}<3 4 6>の各方位の面積率である)。
It contains 0.5 to 3.0% by mass of Co and 0.1 to 1.0% by mass of Si, the balance is made of copper and inevitable impurities, and the cross-sectional position is 45 to 55% with respect to the plate thickness. A Cu—Co—Si-based alloy in which P defined by the following formula is 1 to 8 when EBSD measurement is performed in parallel with the plate thickness direction at the center in the plate thickness direction and the crystal orientation is analyzed:
P = (F1 + 0.2 × F2) / (F3 + F4)
(However, F1, F2, F3 and F4 are {1 0 0} <0 0 1>, {0 1 2} <1 0 0>, {3 6 2} <8 5 3> and {2 3 respectively. 1} <3 4 6> in each orientation).
Niを0.005〜0.8質量%含有する請求項1に記載のCu−Co−Si系合金。   The Cu-Co-Si-based alloy according to claim 1, containing 0.005 to 0.8 mass% of Ni. Sn、Zn、Mg、Fe、Ti、Zr、Al、P、Mn、Cr及びAgのうち1種以上を総量で0.005〜3.0質量%含有する請求項1又は2に記載のCu−Co−Si系合金。   Cu- of Claim 1 or 2 which contains 0.005-3.0 mass% of 1 or more types in total in Sn, Zn, Mg, Fe, Ti, Zr, Al, P, Mn, Cr, and Ag. Co-Si alloy. 0.5〜3.0質量%のCo及び0.1〜1.0質量%のSiを含有し、残部が銅及び不可避的不純物からなるインゴットを作製し、前記インゴットを、温度800〜1000℃で厚み5〜20mmまで熱間圧延した後、加工度30〜99%の冷間圧延を行い、軟化度0.25〜0.75の熱処理を行って導電率を30〜65%IACSの範囲に調整した後、加工度7〜50%の冷間圧延を行い、次いで、800〜1050℃で5〜300秒間の溶体化処理、及び、400〜600℃で2〜20時間の時効処理を行う方法であり、
前記軟化度は、温度Tのときの軟化度をSTとして、次式で示されるCu−Co−Si系合金の製造方法である:
T=(σ0−σT)/(σ0−σ900
(σ0は焼鈍前の引張強さであり、σTおよびσ900はそれぞれT℃および900℃で焼鈍後の引張強さである。)。
An ingot containing 0.5 to 3.0% by mass of Co and 0.1 to 1.0% by mass of Si, the balance being made of copper and inevitable impurities, was prepared, and the ingot was heated at a temperature of 800 to 1000 ° C. After hot rolling to a thickness of 5 to 20 mm, cold rolling with a working degree of 30 to 99% is performed, and a heat treatment with a softening degree of 0.25 to 0.75 is performed to make the conductivity within a range of 30 to 65% IACS. After the adjustment, a method of performing cold rolling at a workability of 7 to 50%, and then performing a solution treatment at 800 to 1050 ° C. for 5 to 300 seconds and an aging treatment at 400 to 600 ° C. for 2 to 20 hours And
The softening degree, the softening degree at the temperature T as S T, is the manufacturing method of the Cu-Co-Si-based alloy represented by the following formula:
S T = (σ 0 −σ T ) / (σ 0 −σ 900 )
0 is the tensile strength before annealing, and σ T and σ 900 are the tensile strength after annealing at T ° C. and 900 ° C., respectively.)
前記インゴットがNiを0.005〜0.8質量%含有する請求項4に記載のCu−Co−Si系合金の製造方法。   The manufacturing method of the Cu-Co-Si type alloy of Claim 4 in which the said ingot contains 0.005-0.8 mass% of Ni. 前記インゴットがSn、Zn、Mg、Fe、Ti、Zr、Al、P、Mn、Cr及びAgのうち1種以上を総量で0.005〜3.0質量%含有する請求項4又は5に記載のCu−Co−Si系合金の製造方法。   The said ingot contains 0.005-3.0 mass% in total of 1 or more types in Sn, Zn, Mg, Fe, Ti, Zr, Al, P, Mn, Cr, and Ag. A method for producing a Cu—Co—Si based alloy. 請求項1、2又は3に記載の銅合金を備えた伸銅品。   A copper drawn product comprising the copper alloy according to claim 1, 2 or 3. 請求項1、2又は3に記載の銅合金を備えた電子機器部品。   The electronic device component provided with the copper alloy of Claim 1, 2, or 3.
JP2011247743A 2011-11-11 2011-11-11 Cu-Co-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME Pending JP2013104082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011247743A JP2013104082A (en) 2011-11-11 2011-11-11 Cu-Co-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011247743A JP2013104082A (en) 2011-11-11 2011-11-11 Cu-Co-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME

Publications (1)

Publication Number Publication Date
JP2013104082A true JP2013104082A (en) 2013-05-30

Family

ID=48623867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011247743A Pending JP2013104082A (en) 2011-11-11 2011-11-11 Cu-Co-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME

Country Status (1)

Country Link
JP (1) JP2013104082A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015022789A1 (en) * 2013-08-13 2015-02-19 Jx日鉱日石金属株式会社 Copper alloy sheet having excellent conductivity and bending deflection factor
KR101612185B1 (en) 2013-07-31 2016-04-12 제이엑스 킨조쿠 가부시키가이샤 Cu-co-si-based copper alloy strip and method of manufacturing the same
KR101612186B1 (en) 2013-07-31 2016-04-12 제이엑스 킨조쿠 가부시키가이샤 Cu-co-si-based copper alloy strip and method of manufacturing the same
WO2018174079A1 (en) * 2017-03-21 2018-09-27 Jx金属株式会社 Copper alloy strip exhibiting improved dimensional accuracy after press-working
KR20190119621A (en) * 2017-03-22 2019-10-22 제이엑스금속주식회사 Copper alloy bath with improved dimensional accuracy after press working

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101612186B1 (en) 2013-07-31 2016-04-12 제이엑스 킨조쿠 가부시키가이샤 Cu-co-si-based copper alloy strip and method of manufacturing the same
TWI550107B (en) * 2013-07-31 2016-09-21 Jx Nippon Mining & Metals Corp Cu-Co-Si copper alloy strip and method for producing the same
KR101612185B1 (en) 2013-07-31 2016-04-12 제이엑스 킨조쿠 가부시키가이샤 Cu-co-si-based copper alloy strip and method of manufacturing the same
US11021774B2 (en) 2013-08-13 2021-06-01 Jx Nippon Mining & Metals Corporation Copper alloy plate having excellent electrical conductivity and bending deflection coefficient
CN105518166A (en) * 2013-08-13 2016-04-20 Jx日矿日石金属株式会社 Copper alloy sheet having excellent conductivity and bending deflection factor
JP2015036438A (en) * 2013-08-13 2015-02-23 Jx日鉱日石金属株式会社 Copper alloy sheet having excellent conductivity and bending deflection coefficient
WO2015022789A1 (en) * 2013-08-13 2015-02-19 Jx日鉱日石金属株式会社 Copper alloy sheet having excellent conductivity and bending deflection factor
WO2018174079A1 (en) * 2017-03-21 2018-09-27 Jx金属株式会社 Copper alloy strip exhibiting improved dimensional accuracy after press-working
JP2018154912A (en) * 2017-03-21 2018-10-04 Jx金属株式会社 Copper alloy strip improved in dimensional accuracy after press working
CN110462075B (en) * 2017-03-21 2021-08-31 Jx金属株式会社 Copper alloy strip with improved dimensional accuracy after stamping
US11203799B2 (en) 2017-03-21 2021-12-21 Jx Nippon Mining & Metals Corporation Copper alloy strip exhibiting improved dimensional accuracy after press-working
KR20190119621A (en) * 2017-03-22 2019-10-22 제이엑스금속주식회사 Copper alloy bath with improved dimensional accuracy after press working
KR102278795B1 (en) 2017-03-22 2021-07-19 제이엑스금속주식회사 Copper alloy body with improved dimensional accuracy after press working

Similar Documents

Publication Publication Date Title
JP4857395B1 (en) Cu-Ni-Si alloy and method for producing the same
JP5117604B1 (en) Cu-Ni-Si alloy and method for producing the same
TWI752208B (en) Cu-co-si copper alloy plate material and manufacturing method, and parts using the plate material
JP6228725B2 (en) Cu-Co-Si alloy and method for producing the same
JP2013104082A (en) Cu-Co-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
JP6345290B1 (en) Copper alloy strip with improved dimensional accuracy after press working
WO2013069376A1 (en) Cu-co-si-based alloy and method for producing same
TWI467035B (en) Carbene alloy and its manufacturing method
JP5039863B1 (en) Corson alloy and manufacturing method thereof
JP6196757B2 (en) Corson alloy and manufacturing method thereof
JP4987155B1 (en) Cu-Ni-Si alloy and method for producing the same
JP6246454B2 (en) Cu-Ni-Si alloy and method for producing the same
JP2016199808A (en) Cu-Co-Si-BASED ALLOY AND PRODUCTION METHOD THEREFOR
JP2013100586A (en) Copper-titanium alloy and method of manufacturing the same
JP2017014624A (en) Corson alloy and manufacturing method therefor
JP2016211078A (en) Cu-Ni-Si-BASED ALLOY AND MANUFACTURING METHOD THEREFOR
JP2016084542A (en) Corson alloy and manufacturing method therefor