JP2013095933A - Rolled copper foil, copper-clad laminate, flexible printed wiring board and electronic equipment - Google Patents
Rolled copper foil, copper-clad laminate, flexible printed wiring board and electronic equipment Download PDFInfo
- Publication number
- JP2013095933A JP2013095933A JP2011237231A JP2011237231A JP2013095933A JP 2013095933 A JP2013095933 A JP 2013095933A JP 2011237231 A JP2011237231 A JP 2011237231A JP 2011237231 A JP2011237231 A JP 2011237231A JP 2013095933 A JP2013095933 A JP 2013095933A
- Authority
- JP
- Japan
- Prior art keywords
- copper foil
- printed wiring
- wiring board
- flexible printed
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Parts Printed On Printed Circuit Boards (AREA)
Abstract
Description
本発明は、圧延銅箔、銅張積層板、フレキシブルプリント配線板及び電子機器に関する。 The present invention relates to a rolled copper foil, a copper clad laminate, a flexible printed wiring board, and an electronic device.
電子機器は、製品環境により繰り返しの熱衝撃を受けるため、これに耐え得る信頼性が必要となる。このような熱衝撃を想定した試験としては、JEITAED−4701/001、ED−4701/100、JIS−C60068−2−14等の試験方法が提案されており、マイナス数十℃から100℃前後の温度サイクルに対する耐久性が要求されている。
また、電子機器は、通常複数の電子基板で構成されており、これら電子基板同士を電気的に接続するフレキシブルプリント配線板が電子基板間に設けられている。フレキシブルプリント配線板は、通常、絶縁基板と、該基板表面に形成された銅製の配線とを備えている。電子基盤同士を接続するフレキシブルプリント配線板には、両基板の熱膨張や収縮の違いにより引張応力や圧縮応力が加わるため、良好な屈曲性等が求められる。このようなフレキシブルプリント配線板に求められる特性としては、MIT屈曲性に代表される良好な折り曲げ性、及び、IPC屈曲性に代表される高サイクル屈曲性があり、従来、このような特性を備えた銅箔や銅−樹脂基板積層体が開発されている(特許文献1〜2)。
Since electronic devices are subjected to repeated thermal shocks depending on the product environment, reliability that can withstand this is required. As a test assuming such a thermal shock, test methods such as JISITED-4701 / 001, ED-47011 / 100, and JIS-C60068-2-14 have been proposed. Durability against temperature cycling is required.
Moreover, the electronic device is normally comprised with the some electronic board, and the flexible printed wiring board which electrically connects these electronic boards is provided between the electronic boards. A flexible printed wiring board usually includes an insulating substrate and copper wiring formed on the surface of the substrate. A flexible printed wiring board that connects electronic boards is required to have good flexibility and the like because tensile stress and compressive stress are applied due to differences in thermal expansion and contraction between the two substrates. The characteristics required for such a flexible printed circuit board include good bendability represented by MIT bendability and high cycle bendability represented by IPC bendability. Copper foils and copper-resin substrate laminates have been developed (Patent Documents 1 and 2).
絶縁基板の表面に銅からなる配線が多数形成されたプリント配線板には、実装する電子部品との電気的接続を確立するために、或いは、プリント配線板の相互接続を行うために、端子部分にSn等からなるメッキ層が形成されているのが一般的である。 In order to establish electrical connection with the electronic components to be mounted on the printed wiring board in which many copper wirings are formed on the surface of the insulating substrate, or to interconnect the printed wiring board, the terminal portion In general, a plating layer made of Sn or the like is formed.
プリント配線板は銅箔に絶縁基板を接着させて銅張積層板とした後に、エッチングにより銅箔面に回路パターンを形成するという工程を経て製造されるのが一般的であり、その製造工程において、メッキ層に銅を拡散させるためのフュージング処理(熱処理)が行われる。 A printed wiring board is generally manufactured through a process of forming a circuit pattern on a copper foil surface by etching after bonding an insulating substrate to a copper foil to form a copper-clad laminate. Then, a fusing treatment (heat treatment) for diffusing copper into the plating layer is performed.
しかしながら、Snメッキ層を形成した銅箔をフュージング処理した場合、銅箔とSnメッキ層との界面にカーケンドール効果によると思われるボイドやクラックが発生し、銅箔が脆化して回路が断線するという問題が生じることがある。 However, when the copper foil on which the Sn plating layer is formed is subjected to a fusing treatment, voids and cracks that may be caused by the Kirkendall effect occur at the interface between the copper foil and the Sn plating layer, the copper foil becomes brittle and the circuit is disconnected. May arise.
このような問題に対する技術として、例えば、特許文献3には、可撓性を有する絶縁基板と、その絶縁基板の片面上に形成する回路パターンと、その回路パターンの接続端子部に隣接する領域上に設け、耐Snめっき液性に優れている第1のソルダーレジストと、少なくとも前記回路パターンの接続端子部を除いて前記回路パターン上に設け、可撓性に優れている第2のソルダーレジストと、回路パターンの接続端子部に設けるSn合金めっきとを備えるフレキシブルプリント配線板が開示されている。そして、このような構成により、第1及び第2のソルダーレジストを形成してからSnめっきを行うようにすれば、ソルダーレジストを塗布するときの加熱処理で回路パターンの銅がSnめっきに拡散して脆い性質のSn−銅合金が形成されることを防いで、断線の無い信頼性を向上したフレキシブルプリント配線板を提供することができると記載されている。 As a technique for solving such a problem, for example, Patent Document 3 discloses a flexible insulating substrate, a circuit pattern formed on one surface of the insulating substrate, and a region adjacent to the connection terminal portion of the circuit pattern. A first solder resist excellent in Sn plating solution resistance, and a second solder resist excellent in flexibility provided on the circuit pattern except at least the connection terminal portion of the circuit pattern; A flexible printed wiring board including Sn alloy plating provided on connection terminal portions of a circuit pattern is disclosed. And if it is made to perform Sn plating after forming the 1st and 2nd solder resist by such composition, copper of a circuit pattern will diffuse into Sn plating by heat processing at the time of applying a solder resist. It is described that it is possible to provide a flexible printed wiring board with improved reliability without disconnection by preventing the formation of a brittle Sn-copper alloy.
フレキシブルプリント配線板は、電子機器において上述のように2つの基板間に設けられて両者を電気的に接続している。この2つの基板が同じ線熱膨張係数を有するものであれば問題とはならないが、線熱膨張係数に差がある基板であれば、電子機器の電源のオンとオフや、使用場所の気温変化等によってフレキシブルプリント配線板に応力集中が生じる。これに対し、フレキシブルプリント配線板は、MIT屈曲性に代表される良好な折り曲げ性、及び、IPC屈曲性に代表される高サイクル屈曲性については考慮されて設計されているが、通常、上述のような応力集中は予定されておらず、それに耐え得るように設計されていない。 The flexible printed wiring board is provided between two substrates in an electronic device as described above, and electrically connects the two. If these two boards have the same coefficient of linear thermal expansion, there will be no problem, but if the boards have a difference in coefficient of linear thermal expansion, power on / off of electronic equipment and temperature change at the place of use Stress concentration occurs in the flexible printed wiring board due to the above. On the other hand, the flexible printed wiring board is designed in consideration of good bendability represented by MIT bendability and high cycle bendability represented by IPC bendability. Such stress concentrations are not planned and are not designed to withstand.
本発明者は、上述の応力集中に起因して銅箔にある問題が引き起こされることを見出した。すなわち、上述の応力集中を受けると、回路表面の比較的脆い部分であるSn銅合金層にクラックが最初に生じる(図4a)。一旦クラックが生じると、応力はその箇所に集中し、クラック近傍の銅箔部に粒界が存在する場合、この粒界に沿って銅箔内部にクラックが進展する(図4b)。表面に粒界が多く存在する銅箔は、初めに生じるSn銅合金層のクラックが粒界に沿った銅箔へのクラックに進展し易い。この時、銅箔粒界が解離しやすい性質であればあるほど、銅箔内部へとクラックが進展し易くなる。すなわち電子機器を長期的に使用することにより、繰り返しの応力集中が生じ、最終的には配線部の銅粒界に沿って回路が断線し、これが電子機器の故障の原因のひとつとなっている。 The inventor has found that a problem with copper foil is caused by the stress concentration described above. That is, when the stress concentration described above is applied, a crack is first generated in the Sn copper alloy layer, which is a relatively brittle part of the circuit surface (FIG. 4a). Once a crack is generated, the stress is concentrated at that location, and when a grain boundary exists in the copper foil portion near the crack, the crack develops inside the copper foil along this grain boundary (FIG. 4b). In a copper foil having a large number of grain boundaries on the surface, cracks in the Sn copper alloy layer that occur first tend to develop into cracks in the copper foil along the grain boundaries. At this time, the more easily the copper foil grain boundaries are dissociated, the easier it is for cracks to propagate into the copper foil. In other words, long-term use of electronic equipment causes repeated stress concentration, and eventually the circuit breaks along the copper grain boundary of the wiring part, which is one of the causes of failure of electronic equipment. .
そこで、本発明は、プリント配線板の配線として用いられたときに、長期の使用によっても配線にクラックが発生しない圧延銅箔、及び、それを用いた銅張積層板、フレキシブルプリント配線板及び電子機器を提供することを課題とする。 Therefore, the present invention provides a rolled copper foil that does not crack in wiring even when used for a long time when used as a wiring of a printed wiring board, and a copper-clad laminate, a flexible printed wiring board, and an electronic device using the same. It is an object to provide a device.
本発明者は、鋭意検討の結果、プリント配線板の配線の銅箔として、結晶内における結晶方位の角度差が2°以上である部位を結晶粒界としたとき、Σ19以上の粒界の合計長さが所定値以下に制御された圧延銅箔を用いることで、長期間使用してもプリント配線板の配線におけるクラックの発生を良好に抑制することができることを見出した。 As a result of diligent study, the present inventor, as a copper foil of the wiring of a printed wiring board, when a portion where the angle difference of crystal orientation in the crystal is 2 ° or more is a crystal grain boundary, the total of the grain boundaries of Σ19 or more It has been found that by using a rolled copper foil whose length is controlled to a predetermined value or less, the occurrence of cracks in the wiring of the printed wiring board can be satisfactorily suppressed even when used for a long time.
EBSPにより測定した粒界は、その粒界の性質からΣ(シグマ)値という指標へ分類算出される。Σ値はもともとの結晶格子の単位胞体積と、粒界での重なりとして形成された対応格子の単位胞体積の比で表わされる。すなわちΣ値が小さいほど粒界の単位体積あたりの対応格子数が大きくなり、逆にΣ値が大きいほど粒界の単位胞体積あたりの対応格子数が小さくなる。Σ値が大きいほど単位粒界面に重なる格子数が少なくなるので、その分、粒界剥離が起こり易くなり、それによってクラックが進展し易くなる傾向があると考えられる。 Grain boundaries measured by EBSP are classified and calculated from the properties of the grain boundaries into an index called Σ (sigma) value. The Σ value is expressed as the ratio of the unit cell volume of the original crystal lattice to the unit cell volume of the corresponding lattice formed as an overlap at the grain boundary. That is, the smaller the Σ value, the larger the corresponding number of lattices per unit volume of the grain boundary. Conversely, the larger the Σ value, the smaller the corresponding number of lattices per unit cell volume of the grain boundary. The larger the Σ value, the smaller the number of lattices that overlap the unit grain interface. Therefore, it is considered that the grain boundary delamination tends to occur, and the cracks tend to easily develop.
以上の知見を基礎として完成した本発明は一側面において、結晶の金属組織の測定点に電子線を照射して得られた結晶方位と、前記測定点の周囲に0.5μm離間して位置する複数の隣接測定点に電子線を照射して得られた結晶方位との方位角度差が2°以上の部位を結晶粒界として前記結晶粒界のΣ値を決定したとき、400℃で1時間の焼鈍後に測定したΣ19以上の結晶粒界の長さの合計が8cm/mm2以下である圧延銅箔である。 The present invention completed on the basis of the above knowledge is, in one aspect, positioned at a distance of 0.5 μm around the crystal orientation obtained by irradiating the measurement point of the crystallographic metal structure with an electron beam and the measurement point. When the Σ value of the crystal grain boundary is determined with a part having an azimuth angle difference of 2 ° or more from the crystal orientation obtained by irradiating a plurality of adjacent measurement points with an electron beam as the crystal grain boundary, at 400 ° C. for 1 hour Is a rolled copper foil in which the total length of the grain boundaries of Σ19 or more measured after annealing is 8 cm / mm 2 or less.
本発明に係る圧延銅箔の一実施形態においては、400℃で1時間の焼鈍後に測定した前記Σ19以上の結晶粒界の長さの合計が6cm/mm2以下である。 In one embodiment of the rolled copper foil according to the present invention, the total length of the grain boundaries of Σ19 or more measured after annealing at 400 ° C. for 1 hour is 6 cm / mm 2 or less.
本発明に係る圧延銅箔の更に別の一実施形態においては、線熱膨張係数が1.2倍以上差のある第1基板と第2基板とを電気的に接続するフレキシブルプリント配線板の配線として用いたときに、前記フレキシブルプリント配線板に−65℃〜+150℃の温度変化を300回繰り返しても前記配線にクラックが発生しない。 In yet another embodiment of the rolled copper foil according to the present invention, the wiring of the flexible printed wiring board that electrically connects the first substrate and the second substrate having a linear thermal expansion coefficient difference of 1.2 times or more. When used as a crack, the wiring does not crack even if the temperature change of −65 ° C. to + 150 ° C. is repeated 300 times on the flexible printed wiring board.
本発明に係る圧延銅箔の更に別の一実施形態においては、Ag、Sn、In、Zr及びZnからなる群から選択された1種又は2種以上を合計で10〜1300質量ppm含む。 In still another embodiment of the rolled copper foil according to the present invention, 10 to 1300 mass ppm in total of one or more selected from the group consisting of Ag, Sn, In, Zr and Zn is included.
本発明に係る圧延銅箔の更に別の一実施形態においては、厚さが5〜70μmである。 In still another embodiment of the rolled copper foil according to the present invention, the thickness is 5 to 70 μm.
本発明は別の一側面において、本発明に係る銅箔を備えた銅張積層板である。 In another aspect, the present invention is a copper clad laminate comprising the copper foil according to the present invention.
本発明は更に別の一側面において、本発明に係る銅張積層板を材料としたフレキシブルプリント配線板である。 In still another aspect, the present invention is a flexible printed wiring board made of the copper clad laminate according to the present invention.
本発明に係るフレキシブルプリント配線板の別の一実施形態においては、端子部又は配線部の少なくとも一部にSn層及び/又はSn銅合金層が施されている。 In another embodiment of the flexible printed wiring board according to the present invention, a Sn layer and / or a Sn copper alloy layer is applied to at least a part of the terminal portion or the wiring portion.
本発明は更に別の一側面において、本発明に係るフレキシブルプリント配線板と、前記フレキシブルプリント配線板で電気的に接続された第1の基板及び第2の基板とを備えた電子機器である。 In still another aspect, the present invention is an electronic device including the flexible printed wiring board according to the present invention, and a first substrate and a second substrate electrically connected by the flexible printed wiring board.
本発明によれば、プリント配線板の配線として用いられたときに、長期の使用によっても配線にクラックが発生しない圧延銅箔、及び、それを用いた銅張積層板、フレキシブルプリント配線板及び電子機器を提供することができる。 According to the present invention, when used as a wiring of a printed wiring board, a rolled copper foil that does not generate cracks even after long-term use, and a copper-clad laminate, a flexible printed wiring board, and an electronic device using the rolled copper foil Equipment can be provided.
(圧延銅箔の構成)
フレキシブルプリント配線板用圧延銅箔の材料としては、タフピッチ銅(JIS−H3100 C1100)や無酸素銅(JIS−H3100 C1020、JIS−H3510 C1011)が使用可能である。
さらには、タフピッチ銅及び無酸素銅をベースした銅合金箔も使用可能である。タフピッチ銅及び無酸素銅をベースした銅合金箔は、具体的には、Ag、Sn、In、Zr及びZnからなる群から選択された1種又は2種以上を合計で10〜1300質量ppm含む。
なお、本明細書において「銅箔」には銅合金箔も含まれ、「タフピッチ銅」及び「無酸素銅」で形成した銅箔には、タフピッチ銅及び無酸素銅をベースとした銅合金箔も含まれる。
(Configuration of rolled copper foil)
As a material of the rolled copper foil for a flexible printed wiring board, tough pitch copper (JIS-H3100 C1100) or oxygen-free copper (JIS-H3100 C1020, JIS-H3510 C1011) can be used.
Furthermore, copper alloy foils based on tough pitch copper and oxygen-free copper can also be used. Specifically, the copper alloy foil based on tough pitch copper and oxygen-free copper contains 10 to 1300 mass ppm in total of one or more selected from the group consisting of Ag, Sn, In, Zr and Zn. .
In this specification, “copper foil” includes copper alloy foil, and copper foil formed of “tough pitch copper” and “oxygen-free copper” includes copper alloy foil based on tough pitch copper and oxygen-free copper. Is also included.
本発明に用いることのできる圧延銅箔の厚さとしては、5〜70μmが好ましく、5〜40μmがより好ましい。銅箔の厚さが5μm未満であると銅箔のハンドリングが悪くなる場合があり、40μm超であるとフレキシブル性が低下する場合がある。圧延銅箔の厚さは、5〜12μmが更に好ましい。 As thickness of the rolled copper foil which can be used for this invention, 5-70 micrometers is preferable and 5-40 micrometers is more preferable. When the thickness of the copper foil is less than 5 μm, the handling of the copper foil may be deteriorated, and when it is more than 40 μm, the flexibility may be deteriorated. As for the thickness of rolled copper foil, 5-12 micrometers is still more preferable.
本発明の圧延銅箔は、結晶の金属組織の測定点に電子線を照射して得られた結晶方位と、前記測定点の周囲に0.5μm離間して位置する複数の隣接測定点に電子線を照射して得られた結晶方位との方位角度差が2°以上の部位を結晶粒界として前記結晶粒界のΣ値を決定したとき、400℃で1時間の焼鈍後に測定したΣ19以上の結晶粒界の長さの合計が8cm/mm2以下に制御されている。 The rolled copper foil of the present invention has a crystal orientation obtained by irradiating a measurement point of a metal structure of a crystal with an electron beam and a plurality of adjacent measurement points located 0.5 μm apart around the measurement point. Σ19 or more measured after annealing at 400 ° C. for 1 hour when the Σ value of the crystal grain boundary was determined with a region having an azimuth angle difference of 2 ° or more as a crystal grain boundary obtained by irradiation with a line The total length of the crystal grain boundaries is controlled to 8 cm / mm 2 or less.
ここで、上記結晶粒界の判定法、及び、上記結晶粒界の長さの算出法を具体的に説明する。図1に、本発明の圧延銅箔の結晶方位の測定態様を表す模式図を示す。まず圧延銅箔の結晶の金属組織における測定点を決定する。図1では、測定点を、No.1(以下、測定点1という)と記載している。また、測定点1を中心とし、測定点1と各辺との距離がそれぞれ0.25μmである正六角形を決定する。隣接測定点(測定点2〜7)は、この測定点1を中心にして、周囲に0.5μm離間して位置する(測定ステップ0.5μmという)。そして、測定点1〜7について電子線を照射して得られた結晶方位を測定し、測定点1と、隣接測定点(測定点2〜7)との方位角度差をそれぞれ求める。このようにして求めた方位角度差が2°以上であるとき、当該隣接測定点を結晶粒界と判定する。 Here, the determination method of the crystal grain boundary and the calculation method of the length of the crystal grain boundary will be specifically described. In FIG. 1, the schematic diagram showing the measurement aspect of the crystal orientation of the rolled copper foil of this invention is shown. First, the measurement point in the metal structure of the rolled copper foil crystal is determined. In FIG. 1 (hereinafter referred to as measurement point 1). Further, a regular hexagon whose center is the measurement point 1 and whose distance between the measurement point 1 and each side is 0.25 μm is determined. Adjacent measurement points (measurement points 2 to 7) are located at a distance of 0.5 μm around the measurement point 1 (referred to as measurement step 0.5 μm). And the crystal orientation obtained by irradiating an electron beam about the measurement points 1-7 is measured, and the azimuth angle difference between the measurement point 1 and the adjacent measurement points (measurement points 2 to 7) is obtained. When the orientation angle difference thus obtained is 2 ° or more, the adjacent measurement point is determined as a crystal grain boundary.
さらに、これらの隣接測定点(測定点2〜7)について、測定点1と同様に、それぞれを中心として各辺との距離がそれぞれ0.25μmである正六角形を決定する。このように正六角形を順に決定していくと、図1に示すように互いに接し合う複数の正六角形で銅箔の金属組織が埋められていく。そして、各測定点についても上述と同様にして当該測定点と、隣接測定点との方位角度差をそれぞれ求め、その方位角度差が2°以上であるとき、当該隣接測定点を結晶粒界と判定する。 Further, for these adjacent measurement points (measurement points 2 to 7), similarly to the measurement point 1, a regular hexagon having a distance of 0.25 μm from each side is determined. When the regular hexagons are sequentially determined in this way, the metal structure of the copper foil is filled with a plurality of regular hexagons in contact with each other as shown in FIG. And for each measurement point, the azimuth angle difference between the measurement point and the adjacent measurement point is determined in the same manner as described above, and when the azimuth angle difference is 2 ° or more, the adjacent measurement point is defined as a grain boundary. judge.
このようにして決定された結晶粒界の隣接する結晶粒同士の方位及び角度差から結晶粒界のΣ値が決定される。決定されたΣ値の中からΣ19以上の結晶粒界の長さを合計する。この値を測定面積で除する事で、Σ19以上の結晶粒界の長さ(cm/mm2)を算出する。 The Σ value of the crystal grain boundary is determined from the orientation and angle difference between adjacent crystal grains of the crystal grain boundary thus determined. From the determined Σ values, the lengths of grain boundaries of Σ19 or more are summed. By dividing this value by the measurement area, the length (cm / mm 2 ) of the crystal grain boundary of Σ19 or more is calculated.
400℃で1時間の焼鈍後の圧延銅箔において、結晶方位の方位角度差が2°以上である部位を結晶粒界と判定してΣ値を決定したとき、Σ19以上の結晶粒界の長さの合計が小さければ小さいほど、耐疲労特性が良好となることを発明者は見出している。この点、本発明の圧延銅箔は、Σ19以上の結晶粒界の長さの合計が8cm/mm2以下に制御されているため、良好な耐疲労特性を有している。Σ19以上の結晶粒界の長さの合計は8cm/mm2以下に制御されていることが好ましく、6cm/mm2以下に制御されていることがより好ましく、3cm/mm2以下に制御されていることが更に好ましく、1cm/mm2以下に制御されていることが最も好ましい。また、Σ19以上の結晶粒界の長さの合計の下限値は特には設ける必要はないが、銅箔の製造性等を考慮すると0.001cm/mm2以上である。 In a rolled copper foil after annealing at 400 ° C. for 1 hour, when a Σ value is determined by determining a portion having a crystal orientation difference of 2 ° or more as a crystal grain boundary, the length of the crystal grain boundary of Σ19 or more The inventor has found that the smaller the total thickness, the better the fatigue resistance. In this respect, the rolled copper foil of the present invention has good fatigue resistance because the total length of grain boundaries of Σ19 or more is controlled to 8 cm / mm 2 or less. The total length of the grain boundaries of Σ19 or more is preferably controlled to 8 cm / mm 2 or less, more preferably 6 cm / mm 2 or less, and 3 cm / mm 2 or less. More preferably, it is most preferably controlled to 1 cm / mm 2 or less. Further, the lower limit of the total length of the crystal grain boundaries of Σ19 or more is not particularly required, but is 0.001 cm / mm 2 or more considering the manufacturability of the copper foil.
(フレキシブルプリント配線板の構成)
本発明に係るフレキシブルプリント配線板は、絶縁基板と、この絶縁基板の表面に形成された配線パターンとを備えている。絶縁基板は、フレキシブルプリント配線板に適用可能な良好な屈曲性及び折れ曲げ性を有するものであれば特に制限を受けないが、例えば、ポリイミドフィルム、液晶ポリマーフィルム、ポリエチレンナフタレート、ポリエチレンテレフタレート等を使用することができる。絶縁基板の厚さは、12〜50μmが好ましい。厚さが12μm未満であるとハンドリングが悪くなり、50μm超であるとフレキシブル性が低下する。配線パターンは、上述のフレキシブルプリント配線板用圧延銅箔を用いて形成されている。配線パターンの形状は特に限定されず、どのようなものであってもよい。また、フレキシブルプリント配線板の端子部又は配線部の一部に、Sn層及び/又はSn銅合金層が形成されていても良い。
(Configuration of flexible printed wiring board)
A flexible printed wiring board according to the present invention includes an insulating substrate and a wiring pattern formed on the surface of the insulating substrate. The insulating substrate is not particularly limited as long as it has good bendability and bendability applicable to flexible printed wiring boards. For example, polyimide film, liquid crystal polymer film, polyethylene naphthalate, polyethylene terephthalate, etc. Can be used. The thickness of the insulating substrate is preferably 12 to 50 μm. When the thickness is less than 12 μm, the handling becomes worse, and when it exceeds 50 μm, the flexibility is lowered. The wiring pattern is formed using the above-mentioned rolled copper foil for flexible printed wiring boards. The shape of the wiring pattern is not particularly limited, and any shape may be used. Further, an Sn layer and / or an Sn copper alloy layer may be formed on a part of the terminal portion or the wiring portion of the flexible printed wiring board.
(フレキシブルプリント配線板の特性)
本発明に係るフレキシブルプリント配線板は、上述のような圧延銅箔を用いて形成されているため、以下の特性を有する。すなわち、フレキシブルプリント配線板が電気的に接続する第1基板及び第2基板について、両基板が1.2倍以上の線熱膨張係数の差を有している場合、フレキシブルプリント配線板に対して−65℃〜+150℃の温度変化を300回繰り返しても配線にクラックが発生しない。フレキシブルプリント配線板が電気的に接続している第1基板及び第2基板の線熱膨張係数の差が大きければ大きいほど、フレキシブルプリント配線板に加わる応力集中が大きくなる。通常、第1基板及び第2基板の線熱膨張係数の差が1.5倍以上であれば、温度変化によって両基板の膨張の差によって発生する応力集中に耐え切れず、フレキシブルプリント配線板の配線にクラックが生じる可能性が高い。これに対し、本発明においては、このような状態においても配線へのクラックの発生が良好に抑制される。
ここで、図2に、一例として、第1基板(FR4)及び第2基板(ガラス基板)と、それらの間に形成されたフレキシブルプリント配線板との接続形態を示す。上記線熱膨張係数は、図2に示すように基板端部が延びる方向と平行な方向の膨張係数であり、室温での値を用いる。また、上記「フレキシブルプリント配線板に対して−65℃〜+150℃の温度変化を300回繰り返す」とは、図3に示すように、フレキシブルプリント配線板に対して高温槽及び低温槽にてそれぞれ150℃及び−65℃で30分間保持し、これを1サイクルとして300サイクル繰り返すことをいう。なお、高温槽と低温槽との間の移し変えは1分間以内で行う。その他の条件はJIS−C60068−2−14に従うことで行う。
(Characteristics of flexible printed wiring board)
Since the flexible printed wiring board which concerns on this invention is formed using the above rolled copper foil, it has the following characteristics. That is, with respect to the first printed circuit board and the second printed circuit board to which the flexible printed wiring board is electrically connected, when both boards have a difference in linear thermal expansion coefficient of 1.2 times or more, the flexible printed wiring board Even if the temperature change from −65 ° C. to + 150 ° C. is repeated 300 times, the wiring does not crack. The greater the difference in coefficient of linear thermal expansion between the first substrate and the second substrate to which the flexible printed wiring board is electrically connected, the greater the concentration of stress applied to the flexible printed wiring board. Normally, if the difference in linear thermal expansion coefficient between the first substrate and the second substrate is 1.5 times or more, it cannot withstand the stress concentration caused by the difference in expansion between the two substrates due to temperature change, and the flexible printed wiring board There is a high possibility of cracks in the wiring. On the other hand, in the present invention, the occurrence of cracks in the wiring is well suppressed even in such a state.
Here, FIG. 2 shows, as an example, a connection form between the first substrate (FR4) and the second substrate (glass substrate) and a flexible printed wiring board formed therebetween. The linear thermal expansion coefficient is an expansion coefficient in a direction parallel to the direction in which the substrate end extends as shown in FIG. 2, and a value at room temperature is used. Moreover, the above-mentioned “repeating the temperature change of −65 ° C. to + 150 ° C. 300 times with respect to the flexible printed wiring board” means that, as shown in FIG. It means holding at 150 ° C. and −65 ° C. for 30 minutes and repeating this for 300 cycles as one cycle. In addition, the transfer between a high temperature tank and a low temperature tank is performed within 1 minute. Other conditions are performed according to JIS-C60068-2-14.
(フレキシブルプリント配線板の製法)
フレキシブルプリント配線板は、上記圧延銅箔を用いて製造することができる。以下に、フレキシブルプリント配線板の製造例を示す。
まず、圧延銅箔と、良好な屈曲性及び折れ曲げ性を有するポリイミドフィルム、液晶ポリマーフィルム等の絶縁基板とを貼り合わせて銅張積層板を製造する。
(Production method of flexible printed wiring board)
The flexible printed wiring board can be manufactured using the rolled copper foil. Below, the manufacture example of a flexible printed wiring board is shown.
First, a copper clad laminate is manufactured by laminating a rolled copper foil and an insulating substrate such as a polyimide film or a liquid crystal polymer film having good flexibility and foldability.
貼り合わせの方法は、ポリイミドフィルムの場合、熱硬化性ポリイミドフィルムに熱可塑性のポリイミド接着剤を塗工、乾燥した後、銅箔と積層させ、熱圧着させる。圧着方法としては常圧または真空下で熱プレスする方法や熱ロールによってラミネートする方法がある。またポリイミドフィルムの場合、銅箔にポリイミドの前駆体を塗工、乾燥、硬化させることで銅張積層板を作製する方法がある。 In the case of a polyimide film, the bonding is performed by applying a thermoplastic polyimide adhesive to a thermosetting polyimide film, drying it, laminating it with a copper foil, and thermocompression bonding. As a pressure bonding method, there are a method of hot pressing under normal pressure or vacuum and a method of laminating by a hot roll. In the case of a polyimide film, there is a method for producing a copper-clad laminate by applying a polyimide precursor to a copper foil, drying and curing.
銅張積層板からフレキシブルプリント配線板(FPC)を作製する工程は当業者に周知の方法を用いればよい。例えば、エッチングレジストを銅張積層板の銅箔面に配線パターンとしての必要部分だけに形成し、エッチング液を銅箔面に噴射することで不要銅箔を除去して回路パターンを形成する。次いでエッチングレジストを剥離・除去して配線パターンを露出することで、フレキシブルプリント配線板を作製する。次に、配線端子部への接続及び防錆目的で、すずめっき及びウィスカー防止のフュージング処理を行い、その後導体パターンの保護目的で必要箇所にソルダーレジストを成膜する。すずめっきの厚みは、一般的には0.1〜2.0μmである。また、フュージング処理により生じるSn層及び/又はSn銅合金層の合計の厚みは一般的には0.1〜3.0μmである。 As a process for producing a flexible printed wiring board (FPC) from a copper clad laminate, a method known to those skilled in the art may be used. For example, an etching resist is formed only on a necessary portion as a wiring pattern on the copper foil surface of the copper clad laminate, and an unnecessary liquid foil is removed by spraying an etching solution onto the copper foil surface to form a circuit pattern. Next, a flexible printed wiring board is produced by peeling and removing the etching resist to expose the wiring pattern. Next, for the purpose of connection to the wiring terminal portion and rust prevention, a tin plating and whisker prevention fusing treatment is performed, and then a solder resist film is formed at a necessary location for the purpose of protecting the conductor pattern. The thickness of tin plating is generally 0.1 to 2.0 μm. The total thickness of the Sn layer and / or Sn copper alloy layer generated by the fusing treatment is generally 0.1 to 3.0 μm.
このフレキシブルプリント配線板を2つの電子基板間に設けて、それらを電気的に接続させることで、種々の電子機器を作製することができる。電子機器としては、特に限定されず、例えば、液晶ディスプレイ、カーナビゲーション、携帯電話、ゲーム機、CDプレイヤー、デジタルカメラ、テレビ、DVDプレイヤー、電子手帳、電子辞書、電卓、ビデオカメラ、プリンター等が挙げられる。 Various electronic devices can be manufactured by providing this flexible printed wiring board between two electronic substrates and electrically connecting them. The electronic device is not particularly limited, and examples thereof include a liquid crystal display, a car navigation system, a mobile phone, a game machine, a CD player, a digital camera, a TV, a DVD player, an electronic notebook, an electronic dictionary, a calculator, a video camera, a printer, and the like. It is done.
以下、本発明の実施例を示すが、これらは本発明をより良く理解するために提供するものであり、本発明が限定されることを意図するものではない。 EXAMPLES Examples of the present invention will be described below, but these are provided for better understanding of the present invention and are not intended to limit the present invention.
(例1:実施例1〜21)
タフピッチ銅〔TPC〕(実施例1、8〜14、19)(JIS−H3100 C1100)、無酸素銅(実施例2〜7、15〜18、20、21)(JIS−H3100 C1020)に表1に記載の元素を添加して作製したインゴットを熱間圧延で厚さ7mmの板に加工し、表面研削で酸化物を取り除いた後、冷間圧延、焼鈍、酸洗を繰り返して、厚さを0.1mmにした。この後、表1に記載の厚さまでの冷間圧延を各パスの平均加工度が10%以下となるように表1に記載の条件で冷間圧延を行って加工した。また、0.1mm以下の冷間圧延で1パスの加工度が10%を超えた場合、そのパスの後に80〜120℃に焼鈍してから次のパスに移った。
なお、各パスの平均加工度は、下記式のように各パスの加工度の合計をパス回数で除した値とした。
各パスの平均加工度(%)=(1パス目加工度(%)+2パス目加工度(%)+…+最終パス加工度(%))/(パス回数)
続いて400℃で1時間の焼鈍を行った。
続いて、銅箔表面に表面処理をスパッタで施した。表面処理としては、フレキシブルプリント配線板のベースフィルムと接着させる表面に、Cr、Niをスパッタにより付着させた。また、上記表面と逆側の表面側に、Pd、Niをスパッタにより付着させた。
続いて、実施例1〜17、19〜21はカプトンEN(登録商標)に熱可塑性PI接着剤を1μm塗工、乾燥して形成した38.5μm厚の樹脂層を銅箔に積層させて真空熱プレスによって銅張積層体を作製した。実施例18は銅箔にポリイミドワニス(宇部興産(株)製UワニスS)を塗工、乾燥、硬化させ37.5μmの樹脂層を形成させて銅張積層体を作製した。
続いて、作製した積層体の銅箔に対して、L(ライン)/S(スペース)=20μm/30μmで回路を形成し、無電解Snめっきをした後、170℃で2時間のフュージング処理をした。これをFPC供試材とした。当該供試材の配線の銅箔表面に対する面積率は、回路を形成していない部分も含まれるため30%であった。
(Example 1: Examples 1 to 21)
Table 1 in tough pitch copper [TPC] (Examples 1, 8-14, 19) (JIS-H3100 C1100), oxygen-free copper (Examples 2-7, 15-18, 20, 21) (JIS-H3100 C1020) After the ingot produced by adding the element described in the above is processed into a plate having a thickness of 7 mm by hot rolling and the oxide is removed by surface grinding, the thickness is increased by repeating cold rolling, annealing, and pickling. 0.1 mm. Thereafter, cold rolling to the thickness shown in Table 1 was performed by performing cold rolling under the conditions shown in Table 1 so that the average degree of processing in each pass was 10% or less. Moreover, when the workability of 1 pass exceeded 10% by cold rolling of 0.1 mm or less, it annealed to 80-120 degreeC after the pass, and moved to the next pass.
In addition, the average degree of processing of each pass was a value obtained by dividing the total degree of processing of each pass by the number of passes as in the following equation.
Average machining degree of each pass (%) = (First pass machining degree (%) + Second pass machining degree (%) + ... + Final pass machining degree (%)) / (Number of passes)
Subsequently, annealing was performed at 400 ° C. for 1 hour.
Subsequently, a surface treatment was applied to the copper foil surface by sputtering. As the surface treatment, Cr and Ni were attached to the surface to be bonded to the base film of the flexible printed wiring board by sputtering. Further, Pd and Ni were deposited on the surface side opposite to the above surface by sputtering.
Subsequently, in Examples 1 to 17 and 19 to 21, a 38.5 μm-thick resin layer formed by applying 1 μm of a thermoplastic PI adhesive to Kapton EN (registered trademark) and drying it was laminated on a copper foil to form a vacuum. A copper clad laminate was produced by hot pressing. In Example 18, polyimide varnish (U varnish S manufactured by Ube Industries Co., Ltd.) was applied to a copper foil, dried and cured to form a 37.5 μm resin layer to prepare a copper clad laminate.
Subsequently, a circuit was formed with L (line) / S (space) = 20 μm / 30 μm on the copper foil of the produced laminate, and after electroless Sn plating, a fusing treatment was performed at 170 ° C. for 2 hours. did. This was used as an FPC specimen. The area ratio with respect to the copper foil surface of the wiring of the test material was 30% because a portion where no circuit was formed was included.
(例2:比較例1〜4)
比較例1及び2は、タフピッチ銅〔TPC〕のインゴットを使用し、厚さ0.1mm以下の冷間圧延で平均加工度10%以下にしない、または厚さ0.1mm以下の冷間圧延で1パスの加工度が10%を超えてもその後に焼鈍しなかった。比較例1及び2の厚さ0.1mm以下の冷間圧延の条件と、厚さ0.1mm以下の冷間圧延で1パスの加工度が10%を超えた後の焼鈍の有無を表1に示す。また、厚さを0.1mmにするまでは、実施例1と同様の加工を施した。比較例1及び2に係る銅張積層体及びその回路は、実施例1と同様に作製した。
比較例3は、メタライズ法によって、Kapton150EN(樹脂厚37.5μm)にシード層であるNiCr層をスパッタ製膜後、銅厚が8μmになるよう銅めっきを施した。作製した積層体の銅箔に対してL/S=20μm/30μmの回路を形成し、無電解Snめっきをした後、170℃で2時間の熱処理をした。これをFPC供試材とした。
比較例4は、市販の特殊電解銅箔にポリイミドワニス(宇部興産(株)製UワニスS)を塗工、乾燥、硬化(400℃1時間)させ37.5μmの樹脂層を形成させて銅張積層体を作製した。作製した積層体の銅箔に対してL/S=20μm/30μmの回路を形成し、無電解Snめっきをした後、170℃で2時間のフュージング処理をした。これをFPC供試材とした。
(Example 2: Comparative Examples 1 to 4)
In Comparative Examples 1 and 2, an ingot of tough pitch copper [TPC] is used, and the average workability is not reduced to 10% or less by cold rolling with a thickness of 0.1 mm or less, or by cold rolling with a thickness of 0.1 mm or less. Even if the processing degree of 1 pass exceeded 10%, it was not annealed thereafter. Table 1 shows the conditions of cold rolling with a thickness of 0.1 mm or less in Comparative Examples 1 and 2 and the presence or absence of annealing after the workability of one pass exceeds 10% in the cold rolling with a thickness of 0.1 mm or less. Shown in Further, the same processing as in Example 1 was performed until the thickness was 0.1 mm. The copper clad laminate and its circuit according to Comparative Examples 1 and 2 were produced in the same manner as in Example 1.
In Comparative Example 3, a NiCr layer as a seed layer was formed on Kapton 150EN (resin thickness: 37.5 μm) by sputtering using a metallization method, and then copper plating was performed so that the copper thickness became 8 μm. A circuit of L / S = 20 μm / 30 μm was formed on the copper foil of the produced laminate, and after electroless Sn plating, heat treatment was performed at 170 ° C. for 2 hours. This was used as an FPC specimen.
In Comparative Example 4, polyimide varnish (U varnish S manufactured by Ube Industries Co., Ltd.) was applied to a commercially available special electrolytic copper foil, dried, and cured (400 ° C. for 1 hour) to form a 37.5 μm resin layer. A stretched laminate was produced. A circuit of L / S = 20 μm / 30 μm was formed on the copper foil of the produced laminate, and after electroless Sn plating, fusing treatment was performed at 170 ° C. for 2 hours. This was used as an FPC specimen.
このようにして作製した実施例1〜21及び比較例1〜4のFPC供試材について、線熱膨張3ppmのガラス基板と13ppmのFR4基板とを図2のように市販の異方性導電フィルム(ACF)を介して熱圧着接続し、−65℃〜+150℃の温度変化を最大1000回まで繰り返した。
ここで、回路断線は以下のように判定した。すなわち、フレキシブルプリント配線板の配線回路の抵抗値を、デジタルマルチメーターを用いて連続測定した。測定した抵抗値が、初期値(上記繰り返し歪を与える前の抵抗値)の150%以上になった時に回路が断線したと判定した。表1では、回路断線と判定されたときの繰り返し歪の付与のサイクル(破断サイクル)の回数を記載している。
For the FPC specimens of Examples 1 to 21 and Comparative Examples 1 to 4 thus produced, a commercially available anisotropic conductive film as shown in FIG. 2 was prepared by using a 3 ppm linear thermal expansion glass substrate and a 13 ppm FR4 substrate. Thermocompression bonding was performed via (ACF), and the temperature change from −65 ° C. to + 150 ° C. was repeated up to 1000 times.
Here, the circuit disconnection was determined as follows. That is, the resistance value of the wiring circuit of the flexible printed wiring board was continuously measured using a digital multimeter. It was determined that the circuit was disconnected when the measured resistance value was 150% or more of the initial value (resistance value before applying the repeated strain). Table 1 shows the number of cycles (fracture cycle) for applying repeated strain when it is determined that the circuit is disconnected.
上記実施例1〜21、比較例1、2は、最終冷間圧延後に400℃で1時間加熱した後のサンプルについて、その銅箔面を電子顕微鏡JEOL JXA−8500Fを用い、TSL社製OIMでEBSP解析を行い、粒界のΣ値を決定し銅箔単位面積(mm2)当りのΣ19以上の結晶粒界の長さの合計(cm)を測定した。Σ値の測定は、OIM Analysis 5.31ソフトを用いたため、Σ1〜上限Σ49までの各Σ値の粒界長さが得られた。このため、「Σ19以上の結晶粒界の長さの合計」とはΣ19からΣ49までの銅箔単位面積(mm2)当たりの各粒界長さの合計を示す。なお、ソフト上でΣ値が割り当てられない粒界の長さは除外した。比較例3は、銅めっき後のサンプルを同様に測定した。比較例4は、市販の特殊電解銅箔を400℃で1時間加熱した後のサンプルを同様に測定した。
なお、上記実施例及び比較例のサンプル作製における「400℃で1時間加熱」は、積層板を作製する際のポリイミドワニスの硬化工程を模したものである。
測定結果を表1に示す。
In Examples 1 to 21 and Comparative Examples 1 and 2, the copper foil surface of the sample after heating at 400 ° C. for 1 hour after the final cold rolling was OIM manufactured by TSL using an electron microscope JEOL JXA-8500F. EBSP analysis was performed to determine the Σ value of the grain boundary, and the total length (cm) of crystal grain boundaries of Σ19 or more per copper foil unit area (mm 2 ) was measured. Since the Σ value was measured using OIM Analysis 5.31 software, the grain boundary length of each Σ value from Σ1 to the upper limit Σ49 was obtained. For this reason, the “total length of grain boundaries of Σ19 or more” indicates the total length of each grain boundary per copper foil unit area (mm 2 ) from Σ19 to Σ49. In addition, the length of the grain boundary where Σ value is not assigned on the software was excluded. In Comparative Example 3, the sample after copper plating was measured in the same manner. The comparative example 4 measured the sample after heating the commercially available special electrolytic copper foil at 400 degreeC for 1 hour similarly.
In addition, “heating at 400 ° C. for 1 hour” in the sample preparation of the above examples and comparative examples simulates the curing process of the polyimide varnish when the laminated plate is manufactured.
The measurement results are shown in Table 1.
(評価)
実施例1〜21は、いずれもΣ19以上の結晶粒界の長さの合計が8cm/mm2以下に制御されており、線熱膨張係数が1.5倍以上差のある第1基板(ガラス基板)と第2基板(FR4基板)とを電気的に接続するフレキシブルプリント配線板の配線として用いたときに、フレキシブルプリント配線板に−65℃〜+150℃の温度変化を300回繰り返しても配線断線しなかった。
比較例1は、厚さ0.1mm以下の冷間圧延で1パスの加工度が10%を超えてもその後に焼鈍しておらず、Σ19以上の結晶粒界の長さの合計が8cm/mm2を超えており、繰り返し歪を210回与えたときに配線断線した。
比較例2は、厚さ0.1mm以下の冷間圧延で平均加工度10%以下にしておらず、Σ19以上の結晶粒界の長さの合計が8cm/mm2を超えており、繰り返し歪を200回与えたときに配線断線した。
比較例3及び4は、圧延銅箔を用いておらず、Σ19以上の結晶粒界の長さの合計が8cm/mm2を超えており、繰り返し歪をそれぞれ150回、240回与えたときに配線断線した。
(Evaluation)
In each of Examples 1 to 21, the total length of the grain boundaries of Σ19 or more is controlled to 8 cm / mm 2 or less, and the first substrate (glass) having a difference of 1.5 times or more in linear thermal expansion coefficient Board) and a second printed circuit board (FR4 board) are used as wiring for a flexible printed wiring board to electrically connect the wiring to the flexible printed wiring board even if the temperature change of −65 ° C. to + 150 ° C. is repeated 300 times. There was no disconnection.
In Comparative Example 1, even if the degree of processing in one pass exceeds 10% by cold rolling with a thickness of 0.1 mm or less, annealing is not performed thereafter, and the total length of the grain boundaries of Σ19 or more is 8 cm / It exceeds the mm 2, and the wire is broken when given the repeated strain 210 times.
In Comparative Example 2, the average workability was not reduced to 10% or less by cold rolling with a thickness of 0.1 mm or less, the total length of the grain boundaries of Σ19 or more exceeded 8 cm / mm 2 , and repeated strain When 200 times was given, the wiring was disconnected.
In Comparative Examples 3 and 4, when a rolled copper foil was not used, the total length of the grain boundaries of Σ19 or more exceeded 8 cm / mm 2 , and repeated strain was applied 150 times and 240 times, respectively. The wiring was disconnected.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011237231A JP2013095933A (en) | 2011-10-28 | 2011-10-28 | Rolled copper foil, copper-clad laminate, flexible printed wiring board and electronic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011237231A JP2013095933A (en) | 2011-10-28 | 2011-10-28 | Rolled copper foil, copper-clad laminate, flexible printed wiring board and electronic equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013095933A true JP2013095933A (en) | 2013-05-20 |
Family
ID=48618220
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011237231A Pending JP2013095933A (en) | 2011-10-28 | 2011-10-28 | Rolled copper foil, copper-clad laminate, flexible printed wiring board and electronic equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013095933A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106011525A (en) * | 2015-03-30 | 2016-10-12 | Jx金属株式会社 | Copper alloy foil for flexible printed wiring board, copper-clad laminate using same, flexible printed wiring board and electronic device |
-
2011
- 2011-10-28 JP JP2011237231A patent/JP2013095933A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106011525A (en) * | 2015-03-30 | 2016-10-12 | Jx金属株式会社 | Copper alloy foil for flexible printed wiring board, copper-clad laminate using same, flexible printed wiring board and electronic device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101318051B1 (en) | Laminate for flexible wiring board | |
TWI646207B (en) | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
TWI588273B (en) | Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board and electronic equipment | |
KR102098479B1 (en) | Copper foil for flexible printed circuit, copper clad laminate using the same, flexible printed circuit and electronic device | |
JP6781562B2 (en) | Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices | |
KR20170113104A (en) | Copper foil for flexible printed wiring board, copper-clad laminate using the same, flexible printed wiring board and electronic device | |
KR101525368B1 (en) | Copper foil for flexible printed wiring board, copper-clad laminate, flexible printed wiring board and electronic device | |
JP6104200B2 (en) | Rolled copper foil, copper clad laminate, flexible printed circuit board, and electronic device | |
TWI663270B (en) | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
JP2022095855A (en) | Copper foil for flexible printed substrate | |
CN107046763B (en) | Copper foil for flexible printed board and copper-clad laminate using same | |
JP5933943B2 (en) | Rolled copper foil for flexible printed wiring boards, copper-clad laminates, flexible printed wiring boards, and electronic equipment | |
JP5329491B2 (en) | Copper foil for flexible printed wiring board and method for producing the same | |
JP2013095933A (en) | Rolled copper foil, copper-clad laminate, flexible printed wiring board and electronic equipment | |
JP6030325B2 (en) | Rolled copper foil, copper-clad laminate, flexible printed wiring board, and electronic equipment | |
JP2013082984A (en) | Rolled copper foil, copper-clad laminate, flexible printed wiring board, and electronic equipment | |
CN107046768B (en) | Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device | |
JP2013067853A (en) | Rolled copper foil, copper-clad laminate, flexible printed wiring board and electronic device | |
JP5788225B2 (en) | Rolled copper foil, copper-clad laminate, flexible printed wiring board, and electronic equipment | |
JP6647253B2 (en) | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
KR101721314B1 (en) | Rolled copper foil, copper clad laminate, and flexible printed board and electronic device | |
JP6712561B2 (en) | Rolled copper foil for flexible printed circuit board, copper clad laminate using the same, flexible printed circuit board, and electronic device | |
CN111526674A (en) | Rolled copper foil, copper-clad laminate, flexible printed board, and electronic device | |
JP2016191091A (en) | Rolled copper foil for flexible printed wiring board | |
TWI539017B (en) | Rolled copper foil, copper clad laminate, and flexible printed circuit boards and electronic equipment |