JP2013086217A - Urethane resin composition for polishing pad, polyurethane polishing pad, and method of manufacturing polyurethane polishing pad - Google Patents

Urethane resin composition for polishing pad, polyurethane polishing pad, and method of manufacturing polyurethane polishing pad Download PDF

Info

Publication number
JP2013086217A
JP2013086217A JP2011229669A JP2011229669A JP2013086217A JP 2013086217 A JP2013086217 A JP 2013086217A JP 2011229669 A JP2011229669 A JP 2011229669A JP 2011229669 A JP2011229669 A JP 2011229669A JP 2013086217 A JP2013086217 A JP 2013086217A
Authority
JP
Japan
Prior art keywords
polishing pad
polishing
urethane resin
resin composition
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011229669A
Other languages
Japanese (ja)
Other versions
JP2013086217A5 (en
Inventor
Yoshiyuki Oda
善之 小田
Hiroshi Suzaki
弘 須崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2011229669A priority Critical patent/JP2013086217A/en
Priority to KR1020120103093A priority patent/KR20130043060A/en
Priority to TW101134971A priority patent/TW201323496A/en
Priority to CN201210397917.0A priority patent/CN103059551B/en
Publication of JP2013086217A publication Critical patent/JP2013086217A/en
Publication of JP2013086217A5 publication Critical patent/JP2013086217A5/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a CMP polishing pad, which has superior polishing characteristics, or a superior high polishing rate, non-scratchability, and flatness.SOLUTION: An urethane resin composition for polishing pad, which includes a base resin containing an isocyanate group terminal urethane prepolymer (A) and a curing agent containing an isocyanate group reactive compound (B).The urethane resin composition for polishing pad contains fumed silica (C).

Description

本発明は、ガラス基板、シリコンウェハ、半導体デバイスなどのガラス研磨分野に用いられる熱硬化性ウレタン(TSU)タイプの研磨パッド用ウレタン樹脂組成物、それを用いて得られるポリウレタン研磨パッド、及びポリウレタン研磨パッドの製造方法に関する。   The present invention relates to a urethane resin composition for a thermosetting urethane (TSU) type polishing pad used in the glass polishing field such as a glass substrate, a silicon wafer, and a semiconductor device, a polyurethane polishing pad obtained using the same, and polyurethane polishing. The present invention relates to a method for manufacturing a pad.

液晶ディスプレイ(LCD)用ガラス基板、ハードディスク(HDD)用ガラス基板、記録装置用ガラスディスク、光学用レンズ、シリコンウェハ、半導体デバイス等は高度な表面平坦性と面内均一性が要求される。
半導体デバイスでは、半導体回路の集積度が急激に増大するにつれて高密度化を目的とした微細化や多層配線化が進み、加工面を一層高度に平坦化する技術が重要となっている。一方、液晶ディスプレイ用ガラス基板では、液晶ディスプレイの大型化に伴い、加工面のより高度な平坦性が要求されている。平坦性の要求が高度化するのに伴い、研磨加工における研磨精度や研磨効率等の要求性能が高まってきている。
A liquid crystal display (LCD) glass substrate, a hard disk (HDD) glass substrate, a recording device glass disk, an optical lens, a silicon wafer, a semiconductor device, and the like are required to have high surface flatness and in-plane uniformity.
In semiconductor devices, as the degree of integration of semiconductor circuits increases rapidly, miniaturization and multilayer wiring for the purpose of higher density have progressed, and a technique for further flattening the processed surface has become important. On the other hand, with a glass substrate for a liquid crystal display, higher flatness of a processed surface is required with an increase in the size of the liquid crystal display. As the demand for flatness increases, the required performance such as polishing accuracy and polishing efficiency in polishing is increasing.

半導体デバイスや光デバイスの製造プロセスにおいて、優れた平坦性を有する表面を形成することができる研磨方法として、化学的機械的研磨法、いわゆるCMP(Chemical Mechanical Polishing)が広く採用されている。
CMP法では、通常、研磨加工時に、砥粒(研磨粒子)をアルカリ溶液または酸溶液に分散させたスラリ(研磨液)を供給して研磨する、いわゆる遊離砥粒方式が採用されている。すなわち、被研磨物(の加工面)は、スラリー中の砥粒による機械的作用と、アルカリ溶液または酸溶液による化学的作用とで平坦化される。加工面に要求される平坦性の高度化に伴い、CMP法に求められる研磨精度や研磨効率等の研磨性能、具体的には、高研磨レート、非スクラッチ性、高平坦性の要求が高まっている。CMPの遊離砥粒方式の研磨パッドとしては、例えば、摩耗の度合いを適正化し研磨性能の安定化を図る技術が報告されている(例えば、特許文献1参照。)。一方、廃液処理やコスト問題から、遊離砥粒を用いないで固定砥粒型研磨パッドも提案されている(例えば、特許文献2参照。)。
A chemical mechanical polishing method, so-called CMP (Chemical Mechanical Polishing), is widely used as a polishing method capable of forming a surface having excellent flatness in the manufacturing process of semiconductor devices and optical devices.
In the CMP method, a so-called free abrasive method is generally employed in which polishing is performed by supplying a slurry (polishing liquid) in which abrasive grains (polishing particles) are dispersed in an alkali solution or an acid solution during polishing. That is, the object to be polished (the processed surface thereof) is flattened by a mechanical action by the abrasive grains in the slurry and a chemical action by the alkali solution or the acid solution. With the sophistication of flatness required for processed surfaces, the demands for polishing performance such as polishing accuracy and polishing efficiency required for CMP methods, specifically, high polishing rate, non-scratch property, and high flatness are increasing. Yes. As a polishing pad of the CMP free abrasive grain method, for example, a technique for optimizing the degree of wear and stabilizing the polishing performance has been reported (for example, see Patent Document 1). On the other hand, a fixed abrasive type polishing pad has also been proposed without using free abrasive grains due to waste liquid treatment and cost problems (see, for example, Patent Document 2).

しかしながら、前記の遊離砥粒方式の研磨パッドは、摩耗量を制御すべくR値が0.7〜0.9と低く設定している為、ウレタン樹脂がやや脆く、熟成期間が数カ月に及ぶなど品質が安定しない問題がある。又、前記した非遊離砥粒方式である固定砥粒型研磨パッドはどうしてもスクラッチが発生しやすい問題がある。   However, since the loose abrasive type polishing pad has a low R value of 0.7 to 0.9 in order to control the amount of wear, the urethane resin is somewhat brittle and the aging period is several months. There is a problem that quality is not stable. Moreover, the fixed abrasive type polishing pad which is the above-mentioned non-free abrasive type has a problem that scratches are apt to occur.

以上、産業界からは、精密研磨に絶えず要求される高研磨レート、非スクラッチ性、平坦性を満足する研磨パッドが強く求められているものの、未だ見出されていないのが実情である。   As described above, although there is a strong demand from industry for a polishing pad that satisfies the high polishing rate, non-scratch property, and flatness that are constantly required for precision polishing, it has not yet been found.

特開2010−76075号公報JP 2010-76075 A 特開2011−142249号公報JP 2011-142249 A

本発明が解決しようとする課題は、研磨特性に優れる、即ち、高研磨レート、非スクラッチ性、平坦性に優れるCMP法の研磨パッドを提供することである。   The problem to be solved by the present invention is to provide a polishing pad of CMP method having excellent polishing characteristics, that is, high polishing rate, non-scratch property and flatness.

本発明者等は、前記課題を解決すべく研究を進める中で、まず、ウレタン樹脂の組成について鋭意検討を行った。しかしながら、種々の組成を検討したが前記課題を解決することができなかった。
そこで、本発明者等は、R値をなるべく1.0に近づけて品質振れを少なくしても適度な磨耗性を有し、更に、スラリー保持力を高めるべく連続気泡タイプ(低独立気泡率タイプ)の研磨パッドを目標に、シリカの添加を検討した。
その結果、ヒュームドシリカを添加した研磨パッドは、前記課題を満足する研磨パッドが得られることを見出し、本発明を完成するに至った。
The inventors of the present invention made extensive studies on the composition of the urethane resin while researching to solve the above problems. However, although various compositions were examined, the above problem could not be solved.
Therefore, the present inventors have appropriate wear characteristics even when the R value is as close to 1.0 as possible to reduce the quality fluctuation, and further, the open cell type (low closed cell rate type) to increase the slurry holding power. The addition of silica was studied with the goal of a polishing pad of).
As a result, it has been found that a polishing pad to which fumed silica is added can provide a polishing pad that satisfies the above-mentioned problems, and has completed the present invention.

即ち、本発明は、イソシアネート基末端ウレタンプレポリマー(A)を含有する主剤と、イソシアネート基反応性化合物(B)を含有する硬化剤とを含む研磨パッド用ウレタン樹脂組成物であって、更にヒュームドシリカ(C)を含有することを特徴とする研磨パッド用ウレタン樹脂組成物、ポリウレタン研磨パッド、及びポリウレタン研磨パッドの製造方法を提供するものである。   That is, the present invention is a urethane resin composition for a polishing pad comprising a main agent containing an isocyanate group-terminated urethane prepolymer (A) and a curing agent containing an isocyanate group-reactive compound (B), further comprising a fume. The present invention provides a urethane resin composition for a polishing pad, a polyurethane polishing pad, and a method for producing a polyurethane polishing pad, characterized by containing dosilica (C).

本発明の研磨パッド用ウレタン樹脂組成物は、高研磨レート、非スクラッチ性、平坦性に優れる研磨パッドを提供することができる。また、経時使用されても研磨特性が低下しにくく、耐久性に優れるものである。   The urethane resin composition for a polishing pad of the present invention can provide a polishing pad excellent in high polishing rate, non-scratch property, and flatness. Further, even when used over time, the polishing characteristics are not easily lowered, and the durability is excellent.

従って、本発明の研磨パッド用ウレタン樹脂組成物を用いて得られる研磨パッドは、液晶ディスプレイ(LCD)用ガラス基板、ハードディスク(HDD)用ガラス基板、記録装置用ガラスディスク、光学用レンズ、シリコンウェハ、半導体デバイス、LED用サファイヤ基板、炭化珪素基板、ヒ化ガリウム基板等の半導体基板、光学基板、磁性基板など、高度な表面平坦性と面内均一性が要求されるような高い精度の研磨加工に有用である。
Therefore, the polishing pad obtained by using the urethane resin composition for a polishing pad of the present invention includes a glass substrate for a liquid crystal display (LCD), a glass substrate for a hard disk (HDD), a glass disk for a recording device, an optical lens, and a silicon wafer. , Semiconductor devices, sapphire substrates for LEDs, silicon carbide substrates, semiconductor substrates such as gallium arsenide substrates, optical substrates, magnetic substrates, etc., high-precision polishing that requires high surface flatness and in-plane uniformity Useful for.

本発明の研磨パッド用ウレタン樹脂組成物は、イソシアネート基末端ウレタンプレポリマー(A)を含有する主剤と、イソシアネート基反応性化合物(B)を含有する硬化剤と、ヒュームドシリカ(C)と、を含有するものである。   The polishing pad urethane resin composition of the present invention comprises a main agent containing an isocyanate group-terminated urethane prepolymer (A), a curing agent containing an isocyanate group-reactive compound (B), fumed silica (C), It contains.

次に、本発明で使用するイソシアネート基末端ウレタンプレポリマー(A)について説明する。   Next, the isocyanate group-terminated urethane prepolymer (A) used in the present invention will be described.

前記イソシアネート基末端ウレタンプレポリマー(A)(以下、プレポリマー(A)と略す。)は、ポリイソシアネート(a1)とポリオール(a2)を従来公知の方法に従い、反応させて得られるものである。前記プレポリマー(A)を得る際の反応方法は、特に限定されない。   The isocyanate group-terminated urethane prepolymer (A) (hereinafter abbreviated as prepolymer (A)) is obtained by reacting polyisocyanate (a1) and polyol (a2) according to a conventionally known method. The reaction method for obtaining the prepolymer (A) is not particularly limited.

前記プレポリマー(A)を製造する際には、必要に応じて三級アミン触媒や有機金属系触媒等を使用して反応を促進することができる。   When manufacturing the said prepolymer (A), a tertiary amine catalyst, an organometallic catalyst, etc. can be accelerated | stimulated as needed.

前記プレポリマー(A)のイソシアネート基当量(NCO当量)としては、200〜750の範囲であることが好ましく、250〜700の範囲がより好ましい。なお、前記プレポリマー(A)の当量の単位は、g/eqを用いるが略記する。   The isocyanate group equivalent (NCO equivalent) of the prepolymer (A) is preferably in the range of 200 to 750, more preferably in the range of 250 to 700. In addition, although the unit of the equivalent of the said prepolymer (A) uses g / eq, it abbreviates.

前記ポリイソシアネート(a1)としては、特に限定されないが、例えば、トリレンジイソシアネート(TDI−100;2,4−体のトルエンジイソシアネート、TDI−80;2,4−体と2,6−体のトルエンジイソシアネートの混合物で、2,4−体/2,6−体=80/20質量比)、トリジンジイソシアネート(TODI)、ジフェニルメタンジイソシアネ−ト(略称MDI;その4,4’−体、2,4’−体、又は2,2’−体、若しくはそれらの混合物)、ポリメチレンポリフェニルポリイソシアネート、カルボジイミド化ジフェニルメタンポリイソシアネート、キシリレンジイソシアネート(XDI)、1,5−ナフタレンジイソシアネート(NDI)、テトラメチルキシレンジイソシアネート等の芳香族系ジイソシアネ−ト、あるいはイソホロンジイソシアネート(IPDI)、水添ジフェニルメタンジイソシアネート(水添MDI)、水添キシリレンジイソシアネート(水添XDI)等の脂環族系ジイソシアネート、あるいはヘキサメチレンジイソシアネート、ダイマー酸ジイソシアネート、ノルボルネンジイソシアネート等の脂肪族系ジイソシアネート等が挙げられ、これらの中ではトリレンジイソシアネート(TDI)、トリジンジイソシアネート(TODI)、水添ジフェニルメタンジイソシアネート(水添MDI)が、研磨特性をより向上できたり、作業時の反応性の制御がより容易であるため好ましい。これらは、単独使用でも2種以上を併用してもよい。   Although it does not specifically limit as said polyisocyanate (a1), For example, Tolylene diisocyanate (TDI-100; 2, 4- body toluene diisocyanate, TDI-80; 2, 4- body and 2,6- body toluene 2,4-isomer / 2,6-isomer = 80/20 mass ratio), tolidine diisocyanate (TODI), diphenylmethane diisocyanate (abbreviated as MDI; its 4,4′-isomer, 2, 4′-isomer, or 2,2′-isomer, or a mixture thereof), polymethylene polyphenyl polyisocyanate, carbodiimidized diphenylmethane polyisocyanate, xylylene diisocyanate (XDI), 1,5-naphthalene diisocyanate (NDI), tetra Aromatic diisocyanates such as methyl xylene diisocyanate Or alicyclic diisocyanates such as isophorone diisocyanate (IPDI), hydrogenated diphenylmethane diisocyanate (hydrogenated MDI), hydrogenated xylylene diisocyanate (hydrogenated XDI), or hexamethylene diisocyanate, dimer diisocyanate, norbornene diisocyanate, etc. Aliphatic diisocyanates, etc., among them, tolylene diisocyanate (TDI), tolidine diisocyanate (TODI), hydrogenated diphenylmethane diisocyanate (hydrogenated MDI) can improve the polishing characteristics, and the reactivity during work This is preferable because it is easier to control. These may be used alone or in combination of two or more.

前記ポリオール(a2)としては、特に限定はないが、例えば、低分子量ポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ポリエーテルポリオール、ポリエステルポリオール、ポリブタジエンポリオール、シリコーンポリオールからなる群から選択される少なくとも一つを使用することができるが、これら以外のポリオールでも良い。これらポリオールの種類及び量は使用される用途により適宜選択されるが、耐加水分解性の観点から、ポリエーテルポリオールが好ましく、ポリテトラメチレンエーテルグリコールを使用することが特に好ましい。   The polyol (a2) is not particularly limited. For example, at least one selected from the group consisting of a low molecular weight polyol, a polyester polyol, a polycarbonate polyol, a polyether polyol, a polyester polyol, a polybutadiene polyol, and a silicone polyol is used. However, polyols other than these may be used. The kind and amount of these polyols are appropriately selected depending on the intended use. From the viewpoint of hydrolysis resistance, polyether polyols are preferred, and polytetramethylene ether glycol is particularly preferred.

前記低分子量ポリオールとしては、例えば、エチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、2−メチル−1,3−プロパンジオール、2−ブチル−2−エチル−1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、ネオペンチルグリコール(2,2−ジメチル−1,3−プロパンジオール)、2−イソプロピル−1,4−ブタンジオール、3−メチル−2,4−ペンタンジオール、2,4−ペンタンジオール、1,5−ペンタンジオール、3−メチル−1,5−ペンタンジオール、2−メチル−2,4−ペンタンジオール、2,4−ジメチル−1,5−ペンタンジオール、2,4−ジエチル−1,5−ペンタンジオール、1,5−ヘキサンジオール、1,6−ヘキサンジオール、2−エチル−1,3−ヘキサンジオール、2−エチル−1,6−ヘキサンジオール、1,7−ヘプタンジオール、3,5−ヘプタンジオール、1,8−オクタンジオール、2−メチル−1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール等の脂肪族ジオール、シクロヘキサンジメタノール(例えば1,4−シクロヘキサンジメタノール)、シクロヘキサンジオール(例えば1,3−シクロヘキサンジオール、1,4−シクロヘキサンジオール)、2−ビス(4−ヒドロキシシクロヘキシル)−プロパン等の脂環式ジオール、トリメチロールエタン、トリメチロールプロパン、ヘキシトール類、ペンチトール類、グリセリン、ポリグリセリン、ペンタエリスリトール、ジペンタエリスリトール、テトラメチロールプロパン等の三価以上のポリオールが挙げられる。   Examples of the low molecular weight polyol include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, and 2-butyl-2-ethyl-1,3-propane. Diol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol (2,2-dimethyl-1,3-propanediol), 2-isopropyl-1,4-butanediol, 3-methyl-2 , 4-pentanediol, 2,4-pentanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 2-methyl-2,4-pentanediol, 2,4-dimethyl-1, 5-pentanediol, 2,4-diethyl-1,5-pentanediol, 1,5-hexanediol, 1,6-hexanediol, -Ethyl-1,3-hexanediol, 2-ethyl-1,6-hexanediol, 1,7-heptanediol, 3,5-heptanediol, 1,8-octanediol, 2-methyl-1,8- Aliphatic diols such as octanediol, 1,9-nonanediol, 1,10-decanediol, cyclohexanedimethanol (for example, 1,4-cyclohexanedimethanol), cyclohexanediol (for example, 1,3-cyclohexanediol, 1,4 -Cyclohexanediol), alicyclic diols such as 2-bis (4-hydroxycyclohexyl) -propane, trimethylolethane, trimethylolpropane, hexitols, pentitols, glycerin, polyglycerin, pentaerythritol, dipentaerythritol, Tetramethylol Trivalent or more polyols, such as propane and the like.

前記ポリエステルポリオールとしては、例えば、前記低分子量ポリオール等のポリオールと、多価カルボン酸、多価カルボン酸のエステル形成性誘導体(エステル、無水物、ハライド等)、ラクトン、ヒドロキシカルボン酸等とのエステル化物が挙げられる。前記多価カルボン酸としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、2−メチルコハク酸、2−メチルアジピン酸、3−メチルアジピン酸、3−メチルペンタン二酸、2−メチルオクタン二酸、3,8−ジメチルデカン二酸、3,7−ジメチルデカン二酸、脂肪族ジカルボン酸(例えば水添ダイマー酸、ダイマー酸等)、芳香族ジカルボン酸(例えばフタル酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸等)、脂環式ジカルボン酸(例えばシクロヘキサンジカルボン酸等)、トリカルボン酸(例えばトリメリト酸、トリメシン酸、ひまし油脂肪酸の三量体等)、テトラカルボン酸(例えばピロメリット酸)等が挙げられる。前記多価カルボン酸のエステル形成性誘導体としては、例えば、酸無水物、ハライド(クロライド、ブロマイド等)、エステル(例えば、メチルエステル、エチルエステル、プロピルエステル、イソプロピルエステル、ブチルエステル、イソブチルエステル、アミルエステル等の低級脂肪族エステル)等が挙げられる。前記ラクトンとしては、例えば、γ−カプロラクトン、δ−カプロラクトン、ε−カプロラクトン、ジメチル−ε−カプロラクトン、δ−バレロラクトン、γ−バレロラクトン、γ−ブチロラクトン等が挙げられる。また、前記ヒドロキシカルボン酸は、例えば、前記ラクトンが開環した構造のヒドロキシカルボン酸であっても良い。   Examples of the polyester polyol include esters of polyols such as the low molecular weight polyols, and polycarboxylic acids, ester-forming derivatives of polyvalent carboxylic acids (esters, anhydrides, halides, etc.), lactones, hydroxycarboxylic acids, and the like. A compound. Examples of the polyvalent carboxylic acid include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, 2-methylsuccinic acid, and 2-methyladipine. Acid, 3-methyladipic acid, 3-methylpentanedioic acid, 2-methyloctanedioic acid, 3,8-dimethyldecanedioic acid, 3,7-dimethyldecanedioic acid, aliphatic dicarboxylic acid (for example, hydrogenated dimer acid) Dimer acid etc.), aromatic dicarboxylic acid (eg phthalic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid etc.), alicyclic dicarboxylic acid (eg cyclohexane dicarboxylic acid etc.), tricarboxylic acid (eg trimellitic acid, trimesic acid, Castor oil fatty acid trimer, etc.), tetracarboxylic acid (eg, pyromellitic acid), and the like. Examples of the ester-forming derivative of the polyvalent carboxylic acid include acid anhydrides, halides (chloride, bromide, etc.), esters (for example, methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, amyl). And lower aliphatic esters such as esters). Examples of the lactone include γ-caprolactone, δ-caprolactone, ε-caprolactone, dimethyl-ε-caprolactone, δ-valerolactone, γ-valerolactone, and γ-butyrolactone. The hydroxycarboxylic acid may be, for example, a hydroxycarboxylic acid having a structure in which the lactone is ring-opened.

前記ポリエーテルポリオールとしては、例えば、エチレンオキサイド付加物、プロピレンオキサイド付加物、ポリテトラメチレングリコール、前記低分子ポリオールのオキサイド付加物等が挙げられる。前記エチレンオキサイド付加物としては、例えば、ジエチレングリコール、トリエチレングリコール等が挙げられ、前記プロピレンオキサイド付加物としては、例えば、ジプロピレングリコール、トリプロピレングリコール等が挙げられる。前記低分子ポリオールのオキサイド付加物としては、例えば、エチレンオキサイド付加物、プロピレンオキサイド付加物、エチレンオキサイドおよびプロピレンオキサイド付加物等が挙げられる。   Examples of the polyether polyol include an ethylene oxide adduct, a propylene oxide adduct, polytetramethylene glycol, and an oxide adduct of the low molecular polyol. Examples of the ethylene oxide adduct include diethylene glycol and triethylene glycol. Examples of the propylene oxide adduct include dipropylene glycol and tripropylene glycol. Examples of the oxide adduct of the low-molecular polyol include an ethylene oxide adduct, a propylene oxide adduct, ethylene oxide, and a propylene oxide adduct.

前記ポリカーボネートポリオールとしては、例えば、炭酸エステル及び/またはホスゲンと、後述するポリオールとを反応させて得られるものを使用することができる。   As said polycarbonate polyol, what is obtained by making carbonate and / or phosgene react with the polyol mentioned later can be used, for example.

前記炭酸エステルとしては、例えばメチルカーボネートや、ジメチルカーボネート、エチルカーボネート、ジエチルカーボネート、シクロカーボネート、ジフェニルカーボネ−ト等を使用することできる。   As the carbonate ester, for example, methyl carbonate, dimethyl carbonate, ethyl carbonate, diethyl carbonate, cyclocarbonate, diphenyl carbonate and the like can be used.

また、前記炭酸エステルやホスゲンと反応しうるポリオールとしては、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、1,5−ペンタンジオール、1,5−ヘキサンジオール、1,6−ヘキサンジオール、2,5−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、1,11−ウンデカンジオール、1,12−ドデカンジオール、2−メチル−1,3−プロパンジオール、ネオペンチルグリコール、2−ブチル−2−エチル−1,3−プロパンジオール、3−メチル−1,5−ペンタンジオール、2−エチル−1,3−ヘキサンジオール、2−メチル−1,8−オクタンジオール、1,4−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、4,4’−ビフェノール等の比較的低分子量のジヒドロキシ化合物や、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリエーテルポリオールや、ポリヘキサメチレンアジペート、ポリヘキサメチレンサクシネート、ポリカプロラクトン等のポリエステルポリオール等を使用することができる。   Examples of the polyol that can react with the carbonate ester or phosgene include, for example, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propanediol, 1,3-propanediol, dipropylene glycol, and tripropylene glycol. 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, 1,5-hexanediol, 1,6-hexanediol, 2,5-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol, 2 -Methyl-1,3-propanediol, neo Nthyl glycol, 2-butyl-2-ethyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 2-ethyl-1,3-hexanediol, 2-methyl-1,8-octane Dihydroxy compounds of relatively low molecular weight such as diol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, hydroquinone, resorcin, bisphenol A, bisphenol F, 4,4′-biphenol, polyethylene glycol, polypropylene glycol Polyether polyols such as polytetramethylene glycol, and polyester polyols such as polyhexamethylene adipate, polyhexamethylene succinate, and polycaprolactone can be used.

低分子量ポリオールを除く前記ポリオール(a2)の数平均分子量としては、ウレタン樹脂の優れた強度伸度、粘弾性の観点から、500〜5000であることがより好ましく、特に500〜2000であることが更に好ましい。なお、前記ポリオール(a2)の数平均分子量は、水酸基価、酸価から求められる数平均分子量を示す。
数平均分子量=(56100×f)/(水酸基価+酸価)
尚、f:官能基数
The number average molecular weight of the polyol (a2) excluding the low molecular weight polyol is more preferably 500 to 5,000, and particularly preferably 500 to 2,000, from the viewpoint of excellent strength elongation and viscoelasticity of the urethane resin. Further preferred. In addition, the number average molecular weight of the said polyol (a2) shows the number average molecular weight calculated | required from a hydroxyl value and an acid value.
Number average molecular weight = (56100 × f) / (hydroxyl value + acid value)
F: number of functional groups

次に、前記プレポリマー(A)を含有する主剤と組合せて、配合し混合する硬化剤について説明する。   Next, the hardening | curing agent mix | blended and mixed in combination with the main ingredient containing the said prepolymer (A) is demonstrated.

前記硬化剤は、必須成分であるイソシアネート基反応性化合物(B)(以下、反応性化合物(B)と略す。)と共に、発泡剤である水(D)、及び触媒、シリコーン整泡剤などを含有してもよい。   The curing agent includes an isocyanate group-reactive compound (B) which is an essential component (hereinafter abbreviated as a reactive compound (B)), water (D) which is a foaming agent, a catalyst, a silicone foam stabilizer, and the like. You may contain.

前記反応性化合物(B)は、イソシアネート基を有する化合物に対して、良好な反応性を有するものであれば特に限定はないが、例えば、ジアミン化合物やポリオール類が挙げられる。
前記ジアミン化合物の代表例としては、エチレンジアミン、1,6−ヘキサメチレンジアミン、ピペラジン、2,5−ジメチルピペラジン、イソホロンジアミン、4,4’−ジシクロヘキシルメタンジアミン、3,3’−ジメチル−4,4’−ジシクロヘキシルメタンジアミン、1,4−シクロヘキサンジアミン、1,2−プロパンジアミン、ジエチレントリアミン、トリエチレンテトラミン、3,3’−ジクロロ−4,4’−ジアミノジフェニルメタン、ポリアミノクロロフェニルメタン化合物、パンデックス E−50(商標:DIC株式会社製、ポリアミノクルルフェニルメタン化合物)等のアミン化合物、及びヒドラジン、酸ヒドラジド等のヒドラジン類が挙げられる。
前記ポリオール類としては、前記したポリテトラメチレングリコールやポリプロピレングリコール等のポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、低分子量ポリオール等が挙げられる。これらは単独又は2種以上を併用してもよい。即ち、アミン化合物がポリオールに溶解したものを使用してもよい。また、前記したもののなかで2種以上を併用する場合は、前記主剤と、2種以上の反応性化合物(B)を含有する硬化剤と、の2液系のウレタン樹脂組成物としてもよいし、硬化剤を2液以上(例えば、反応性化合物(B)と、前記(B)とは別の反応性化合物(B)’)に分けてもよい。
Although the said reactive compound (B) will not be specifically limited if it has favorable reactivity with respect to the compound which has an isocyanate group, For example, a diamine compound and polyols are mentioned.
Representative examples of the diamine compound include ethylenediamine, 1,6-hexamethylenediamine, piperazine, 2,5-dimethylpiperazine, isophoronediamine, 4,4′-dicyclohexylmethanediamine, 3,3′-dimethyl-4,4. '-Dicyclohexylmethanediamine, 1,4-cyclohexanediamine, 1,2-propanediamine, diethylenetriamine, triethylenetetramine, 3,3'-dichloro-4,4'-diaminodiphenylmethane, polyaminochlorophenylmethane compound, Pandex E- And amine compounds such as 50 (trademark: manufactured by DIC Corporation, polyaminocurlphenylmethane compound), and hydrazines such as hydrazine and acid hydrazide.
Examples of the polyols include polyether polyols such as polytetramethylene glycol and polypropylene glycol, polyester polyols, polycarbonate polyols, and low molecular weight polyols. These may be used alone or in combination of two or more. That is, an amine compound dissolved in a polyol may be used. Moreover, when using 2 or more types together in the above-mentioned thing, it is good also as a 2 liquid type urethane resin composition of the said main ingredient and the hardening | curing agent containing 2 or more types of reactive compounds (B). The curing agent may be divided into two or more liquids (for example, a reactive compound (B) and a reactive compound (B) ′ different from the above (B)).

前記反応性化合物(B)としては、前記した中でも、ポリアミノクロロフェニルメタン化合物が耐熱水性、耐摩耗性の観点から好ましく、3,3’−ジクロロ−4,4’−ジアミノジフェニルメタンが特に好ましい。   As the reactive compound (B), among the above-mentioned compounds, a polyaminochlorophenylmethane compound is preferable from the viewpoint of hot water resistance and wear resistance, and 3,3′-dichloro-4,4′-diaminodiphenylmethane is particularly preferable.

前記反応性化合物(B)の配合量としては、前記プレポリマー(A)100質量部に対して、好ましくは15〜80質量部の範囲であり、より好ましくは20〜60質量部の範囲である。   As a compounding quantity of the said reactive compound (B), Preferably it is the range of 15-80 mass parts with respect to 100 mass parts of said prepolymers (A), More preferably, it is the range of 20-60 mass parts. .

また、前記水(D)は、水発泡法における発泡剤の役割を果たすために配合するものである。水の配合量としては、前記反応性化合物(B)100質量部に対して、好ましくは、0.05〜3質量部の範囲であり、より好ましくは0.5〜2質量部の範囲である。   The water (D) is blended in order to serve as a foaming agent in the water foaming method. As a compounding quantity of water, Preferably it is the range of 0.05-3 mass parts with respect to 100 mass parts of said reactive compounds (B), More preferably, it is the range of 0.5-2 mass parts. .

主剤と硬化剤を混合する際の前記水(D)の添加方法としては、特に限定しないが、例えば、予め硬化剤として、反応性化合物(B)と水(D)と必要に応じて触媒やシリコーン整泡剤等の添加剤を加えて混合しておき、次いで、第一成分(A)と第二成分(B+D+添加剤)を混合し、発泡、硬化させる方法や、例えば反応性化合物(B)の融点が100℃以上の場合は、融点100℃以下の別の反応性化合物(B’)に水(D)と必要に応じて触媒やシリコーン整泡剤等の添加剤を加えて混合しておき、次いで、第一成分(A)と第二成分(B)と第三成分(B’+D+添加剤)を混合し、発泡、硬化させる方法が挙げられる。   The method for adding the water (D) when mixing the main agent and the curing agent is not particularly limited. For example, as the curing agent in advance, the reactive compound (B) and water (D) and, if necessary, a catalyst or Additives such as silicone foam stabilizers are added and mixed, then the first component (A) and the second component (B + D + additive) are mixed and foamed and cured, for example, reactive compounds (B ) Has a melting point of 100 ° C. or higher, mix with another reactive compound (B ′) having a melting point of 100 ° C. or lower with water (D) and, if necessary, an additive such as a catalyst or a silicone foam stabilizer. Next, a method of mixing, foaming and curing the first component (A), the second component (B), and the third component (B ′ + D + additive) can be mentioned.

前記触媒の種類及び添加量は、触媒の混合後から型内に流し込むまでの時間、温度、最終的な発泡状態などを考慮して選択すればよく、特に限定はない。   The type and addition amount of the catalyst may be selected in consideration of the time from mixing the catalyst to pouring into the mold, temperature, final foaming state, etc., and there is no particular limitation.

前記触媒としては、特に限定しないが、例えば、トリエチレンジアミン、N,N,N’,N’−テトラメチルヘキサンジアミン、N,N,N’,N’−テトラメチルプロパンジアミン、N,N,N’,N’’,N’’−ペンタメチルジエチレントリアミン、N,N’,N’−トリメチルアミノエチルピペラジン、N,N−ジメチルシクロヘキシルアミン、N,N,N’,N’−テトラメチルエチレンジアミン、ビス(3−ジメチルアミノプロピル)−N,N−ジメチルプロパンジアミン、N,N−ジシクロヘキシルメチルアミン、ビス(ジメチルアミノエチル)エーテル、N,N’,N’’−トリス(3−ジメチルアミノプロピル)ヘキサヒドロ−S−トリアジン、N,N−ジメチルベンジルアミン、N,N−ジメチルアミノエトキシエトキシエタノール、N,N−ジメチルアミノヘキサノール、N,N−ジメチルアミノエトキシエタノール、N,N,N’−トリメチルアミノエチルエタノールアミン、N,N,N’−トリメチル−2−ヒドロキシエチルプロピレンジアミン、1−メチルイミダゾール、1−イソブチル−2−メチルイミダゾール、1,2−ジメチルイミダゾール、ジメチルエタノールアミン、トリエタノールアミン等のアミン系触媒、ジブチルスズジウラウレート、ジオクチルチンジラウレート、オクチル酸スズ2−エチルヘキサン酸、オクチル酸カリウム、ジブチルスズラウリルメルカプタイド、ビスマストリス(2−エチルヘキサノエート)等の金属系触媒などが挙げられ、これらの中では、泡化特性の強い第3級アミンが好ましいが、脱型性、物性等で問題なければ、いずれの触媒も使用できる。これらは単独使用でもよく2種以上を併用してもいい。   Examples of the catalyst include, but are not limited to, triethylenediamine, N, N, N ′, N′-tetramethylhexanediamine, N, N, N ′, N′-tetramethylpropanediamine, N, N, N ', N ″, N ″ -pentamethyldiethylenetriamine, N, N ′, N′-trimethylaminoethylpiperazine, N, N-dimethylcyclohexylamine, N, N, N ′, N′-tetramethylethylenediamine, bis (3-dimethylaminopropyl) -N, N-dimethylpropanediamine, N, N-dicyclohexylmethylamine, bis (dimethylaminoethyl) ether, N, N ′, N ″ -tris (3-dimethylaminopropyl) hexahydro -S-triazine, N, N-dimethylbenzylamine, N, N-dimethylaminoethoxyethoxy Ethanol, N, N-dimethylaminohexanol, N, N-dimethylaminoethoxyethanol, N, N, N′-trimethylaminoethylethanolamine, N, N, N′-trimethyl-2-hydroxyethylpropylenediamine, 1- Amine-based catalysts such as methylimidazole, 1-isobutyl-2-methylimidazole, 1,2-dimethylimidazole, dimethylethanolamine, triethanolamine, dibutyltin dilaurate, dioctyltin dilaurate, tin octylate 2-ethylhexanoic acid, Examples thereof include metal catalysts such as potassium octylate, dibutyltin lauryl mercaptide, and bismuth tris (2-ethylhexanoate). Among these, tertiary amines having strong foaming properties are preferable. Problems with property, physical properties, etc. In Kere, any catalyst can be used. These may be used alone or in combination of two or more.

前記触媒の配合量は、前記反応性化合物(B)100質量部に対して、好ましくは、0.01〜1.0質量部の範囲であり、より好ましくは、0.05〜0.3質量部の範囲である。前記触媒の配合量がかかる範囲であるならば、安定した発泡状態を有する研磨パッドを得ることができる。   The compounding amount of the catalyst is preferably in the range of 0.01 to 1.0 part by mass, more preferably 0.05 to 0.3 part by mass with respect to 100 parts by mass of the reactive compound (B). Part range. If the amount of the catalyst is within such a range, a polishing pad having a stable foamed state can be obtained.

次に、本発明で使用するヒュームドシリカ(C)について説明する。   Next, fumed silica (C) used in the present invention will be described.

前記ヒュームドシリカ(C)は、前記主剤又は前記硬化剤のどちらに配合されてもよいが、配合量を多く入れられることから、配合比の大きい前記プレポリマー(A)の第一成分に配合されていることがより好ましい。   Although the said fumed silica (C) may be mix | blended with either the said main ingredient or the said hardening | curing agent, since many compounding quantities are put, it mix | blends with the 1st component of the said prepolymer (A) with a large compounding ratio. More preferably.

前記ヒュームドシリカ(C)は、非変成のヒュームドシリカ(煙霧質シリカ)及びヒュームドシリカの粒子表面を、各種表面処理剤により疎水変性したもののどちらでもよい。   The fumed silica (C) may be either non-modified fumed silica (atomaceous silica) or a particle surface of fumed silica that has been hydrophobically modified with various surface treatment agents.

前記ヒュームドシリカとは、乾式法で得られるものであり、具体的には、四塩化ケイ素を気化し、高温の炎中で加水分解した二酸化ケイ素である。ただし、製造工程においては、これらが凝集したものが形成される。   The fumed silica is obtained by a dry method, and specifically is silicon dioxide obtained by vaporizing silicon tetrachloride and hydrolyzing it in a high-temperature flame. However, in the manufacturing process, an aggregate of these is formed.

前記凝集した二酸化ケイ素の表面には、シロキサン及びシラノール基が存在しており、親水性を示す。一方、このシラノール基に表面処理剤を反応させることで、疎水性が付与される。   Siloxane groups and silanol groups are present on the surface of the agglomerated silicon dioxide and show hydrophilicity. On the other hand, hydrophobicity is imparted by reacting this silanol group with a surface treatment agent.

前記表面処理剤としては、例えば、ジメチルジクロロシランやジメチルシリコーンオイル、ヘキサメチルジシラザン、オクチルシラン、ヘキサデシルシラン、アミノシラン、メタクリルシラン、オクタメチルシクロテトラシロキサン、ポリジメチルシロキサン等を挙げることができる。   Examples of the surface treatment agent include dimethyldichlorosilane, dimethylsilicone oil, hexamethyldisilazane, octylsilane, hexadecylsilane, aminosilane, methacrylsilane, octamethylcyclotetrasiloxane, and polydimethylsiloxane.

また、前記ヒュームドシリカ(C)のBET法による比表面積としては、30〜300m/gであることが好ましく、60〜200m/Sであることがより好ましい。 Moreover, as a specific surface area by the BET method of the said fumed silica (C), it is preferable that it is 30-300 m < 2 > / g, and it is more preferable that it is 60-200 m < 2 > / S.

前記ヒュームドシリカ(C)の市販品の親水性タイプとしては、アエロジル50、アエロジル90G、アエロジル130、アエロジル200、アエロジル200CF、アエロジル200V、アエロジル300、アエロジル300CF(以上、日本アエロジル(株)製)等が入手できる。
また、疎水性タイプとしては、アエロジルDT4、アエロジルNA200Y、アエロジルNA50H、アエロジルNA50Y、アエロジルNAX50、アエロジルR104、アエロジルR106、アエロジルR202、アエロジルR202W90、アエロジルR504、アエロジルR711、アエロジルR700、アエロジルR7200、アエロジルR805、アエロジルR805VV90、アエロジルR812、アエロジル812S、アエロジルR816、アエロジルR8200、アエロジルR972、アエロジルR972V、アエロジルR974、アエロジルRA200HS、アエロジルRX200、アエロジルRX300、アエロジルRX50、アエロジルRY200、アエロジルRY200S、アエロジルRY300、アエロジルRY50(以上、日本アエロジル(株)製)等が入手できる。日本アエロジル(株)以外には(株)トクヤマからも同様なヒュームドシリカが入手できる。
Commercially available hydrophilic types of fumed silica (C) include Aerosil 50, Aerosil 90G, Aerosil 130, Aerosil 200, Aerosil 200CF, Aerosil 200V, Aerosil 300, Aerosil 300CF (above, manufactured by Nippon Aerosil Co., Ltd.) Etc. are available.
As hydrophobic types, Aerosil DT4, Aerosil NA200Y, Aerosil NA50H, Aerosil NA50Y, Aerosil NAX50, Aerosil R104, Aerosil R106, Aerosil R202, Aerosil R202W90, Aerosil R504, Aerosil R711, Aerosil R700, Aerosil R780, Aerosil R780 Aerosil R805VV90, Aerosil R812, Aerosil 812S, Aerosil R816, Aerosil R8200, Aerosil R972, Aerosil R972V, Aerosil R974, Aerosil RA200HS, Aerosil RX200, Aerosil RX300, Aerosil RX200R, Aerosil RY200R 50 (or more, manufactured by Nippon Aerosil Co., Ltd.) and the like are available. Other than Nippon Aerosil Co., Ltd., similar fumed silica can be obtained from Tokuyama Co., Ltd.

前記ヒュームドシリカ(C)の使用量としては、前記イソシアネート基末端ウレタンプレポリマー(A)100質量部に対し、0.5〜2.0質量%であることが、液粘度及び研磨特性の観点からより好ましい。   The amount of the fumed silica (C) used is 0.5 to 2.0% by mass with respect to 100 parts by mass of the isocyanate group-terminated urethane prepolymer (A), from the viewpoint of liquid viscosity and polishing characteristics. Is more preferable.

次に、本発明の研磨パッド用ウレタン樹脂組成物について説明する。   Next, the urethane resin composition for a polishing pad of the present invention will be described.

本発明の研磨パッド用ウレタン樹脂組成物を得るための前記主剤と前記硬化剤の配合比、即ち、R値[R]=〔反応性化合物(B)と水(D)を含めた硬化剤中のイソシアネート基と反応し得る基の合計モル数〕/〔主剤であるプレポリマー(A)中のイソシアネート基の全モル数〕は、好ましくは0.7〜1.1の範囲であり、より好ましくは0.8〜1.0の範囲となるように配合比を決定すれば良い。   Compounding ratio of the main agent and the curing agent for obtaining the urethane resin composition for polishing pad of the present invention, that is, R value [R] = [in the curing agent including the reactive compound (B) and water (D) The total number of moles of groups capable of reacting with the isocyanate groups] / [total number of moles of isocyanate groups in the prepolymer (A) as the main agent] is preferably in the range of 0.7 to 1.1, more preferably The mixing ratio may be determined so as to be in the range of 0.8 to 1.0.

本発明の研磨パッド用ウレタン樹脂組成物には、例えば、整泡剤、酸化防止剤、脱泡剤、紫外線吸収剤、砥粒、充填剤、顔料、増粘剤、界面活性剤、難燃剤、可塑剤、滑剤、帯電防止剤、耐熱安定剤、ブレンド用樹脂など、公知慣用の添加剤を本発明の目的を阻害しない範囲で、製造工程の何れの段階においても用いることができる。尚、本発明で記載する添加剤は一例であって、特にその種類を限定するものではない。   The urethane resin composition for a polishing pad of the present invention includes, for example, a foam stabilizer, an antioxidant, a defoamer, an ultraviolet absorber, abrasive grains, a filler, a pigment, a thickener, a surfactant, a flame retardant, Known and commonly used additives such as plasticizers, lubricants, antistatic agents, heat stabilizers, blending resins and the like can be used at any stage of the production process as long as the object of the present invention is not impaired. The additive described in the present invention is an example, and the kind thereof is not particularly limited.

前記整泡剤としては、微細な気泡を安定的に形成可能なものであれば特に限定せず、例えば、シリコン系界面活性剤としてポリエーテル変性シリコーンの、 SZ−1919、SH−192、SH-190、SZ−580、SRX−280A、SZ−1959、SZ−1328E、SF−2937F、SF−2938F、SZ−1671、SH−193、SZ−1923(東レ・ダウコーニング(株)製)等が挙げられる。   The foam stabilizer is not particularly limited as long as it can stably form fine bubbles. For example, SZ-1919, SH-192, SH- 190, SZ-580, SRX-280A, SZ-1959, SZ-1328E, SF-2937F, SF-2938F, SZ-1671, SH-193, SZ-1923 (manufactured by Toray Dow Corning Co., Ltd.) It is done.

前記充填材としては、例えば、炭酸塩、珪酸、珪酸塩、水酸化物、硫酸塩、硼酸塩、チタン酸塩、金属酸化物、炭素物、有機物等が挙げられる。   Examples of the filler include carbonate, silicic acid, silicate, hydroxide, sulfate, borate, titanate, metal oxide, carbon, and organic matter.

次に、本発明のポリウレタン研磨パッド、及びその製造方法について以下に説明する。   Next, the polyurethane polishing pad of the present invention and the manufacturing method thereof will be described below.

本発明のポリウレタン研磨パッドは、前記研磨パッド用ウレタン樹脂組成物を用いて得られるものであり、例えば、前記研磨パッド用ウレタン樹脂組成物に、必要に応じて、前記のような添加剤を加え混合し、所定の形状の型内に注入して発泡、硬化させ、発泡成形物を型から取り出し、シート状などの適当な形状にスライスなど加工して得る。   The polyurethane polishing pad of the present invention is obtained by using the urethane resin composition for polishing pad. For example, the above-described additives are added to the urethane resin composition for polishing pad, if necessary. The mixture is mixed, poured into a mold having a predetermined shape, foamed and cured, and the foamed molded product is taken out of the mold and processed into a suitable shape such as a sheet.

本発明のポリウレタン研磨パッドの製造方法としては、上述の水発泡法以外にも、例えば、中空ビーズを添加させる方法、メカニカルフロス法、混合チャンバー内に非反応性気体を導入混合させる機械発泡法、化学的発泡法など、公知慣用の方法を採用することができ、特に制限しない。   As a method for producing the polyurethane polishing pad of the present invention, in addition to the water foaming method described above, for example, a method of adding hollow beads, a mechanical froth method, a mechanical foaming method of introducing and mixing a non-reactive gas into a mixing chamber, A publicly known and commonly used method such as a chemical foaming method can be employed and is not particularly limited.

本発明のポリウレタン研磨パッドの製造方法として、例えば、〔工程1〕〜〔工程5〕を含む一連の製造方法を例示できる。   As a manufacturing method of the polyurethane polishing pad of the present invention, for example, a series of manufacturing methods including [Step 1] to [Step 5] can be exemplified.

尚、前記添加剤が支障なく添加でき、且つ、均一な配合と混合が支障なく可能であるならば、何れの工程で如何なる方法を選択しても差し支えない。   It should be noted that any method may be selected in any step as long as the additive can be added without any problem and uniform blending and mixing can be performed without any problem.

〔工程1〕主剤(第一成分)の調整工程。
窒素導入管、冷却コンデンサー、温度計、冷却機を備えた反応装置に、例えば、ポリイソシアネート(a1)とポリオール(a2)を各々仕込み、窒素雰囲気下で攪拌しながら、好ましくは、70〜90℃の範囲、より好ましくは75〜85℃の範囲で反応させ、プレポリマー(A)を合成し、前記プレポリマー(A)、及び好ましくは疎水性シリカ(C)を含有する主剤を得る。
[Step 1] A step of adjusting the main agent (first component).
For example, polyisocyanate (a1) and polyol (a2) are charged in a reactor equipped with a nitrogen introduction tube, a cooling condenser, a thermometer, and a cooler, respectively, and preferably 70 to 90 ° C. while stirring in a nitrogen atmosphere. And, more preferably, in the range of 75 to 85 ° C., the prepolymer (A) is synthesized, and the main agent containing the prepolymer (A) and preferably the hydrophobic silica (C) is obtained.

〔工程2〕主剤と硬化剤との混合工程。
次いで、前記プレポリマー(A)を含有する主剤(第一成分)と、イソシアネート基反応性化合物(B)、好ましくは水(C)及び触媒(D)を含有する硬化剤(第二成分)を混合して攪拌して反応液とする。但し、イソシアネート基反応性成分の融点が100℃以上の場合は、例えば、別の反応性化合物(B)’に水(C)及び触媒(D)を溶解させた第三成分とし、第一成分/第二成分/第三成分を混合して攪拌して反応液としても良い。その際、非反応性気体を混合チャンバー内に導入して気体分散反応液としても良い。
混合の際にはプレポリマー(A)を含有する主剤(第一成分)と、反応性化合物(B)を含有する硬化剤(第二成分)、場合によっては前記第三成分を混合注型機のそれぞれのタンクへ入れて、前記プレポリマー(A)を含有する主剤(第一成分)を好ましくは40〜80℃に加温し、前記硬化剤(第二成分)を好ましくは40〜120℃に加温し、場合によっては第三成分を30〜70℃に加熱し、それぞれを混合注型機で混合する。
[Step 2] Mixing step of main agent and curing agent.
Next, a main agent (first component) containing the prepolymer (A) and an isocyanate group-reactive compound (B), preferably a curing agent (second component) containing water (C) and a catalyst (D). Mix and stir to make the reaction solution. However, when the melting point of the isocyanate group-reactive component is 100 ° C. or higher, for example, a third component in which water (C) and catalyst (D) are dissolved in another reactive compound (B) ′ is used as the first component. / The second component / third component may be mixed and stirred to form a reaction solution. At that time, a non-reactive gas may be introduced into the mixing chamber to form a gas dispersion reaction liquid.
When mixing, a main casting agent (first component) containing the prepolymer (A), a curing agent (second component) containing the reactive compound (B), and in some cases, the third component is mixed and casted. The main agent (first component) containing the prepolymer (A) is preferably heated to 40 to 80 ° C, and the curing agent (second component) is preferably 40 to 120 ° C. In some cases, the third component is heated to 30 to 70 ° C., and each is mixed with a mixing caster.

〔工程3〕注型工程。
混合注型機から吐出した前記反応液(場合によっては非反応性気体分散反応液)を、ホースなどを使って、好ましくは40〜120℃に予め加温した型内に注入する。
[Step 3] Casting step.
The reaction liquid discharged from the mixed casting machine (in some cases, a non-reactive gas dispersion reaction liquid) is preferably injected into a mold preheated to 40 to 120 ° C. using a hose or the like.

〔工程4〕硬化工程。
型内に注入された状態で反応液を適切な温度範囲(例えば、40〜120℃の範囲)にて加熱保持し、発泡、硬化させ、好ましくは30分〜2時間、40〜120℃の金型内で放置した後、該成形品を取り出し、好ましくは100〜120℃、8〜17時間の条件でアフターキュアを行い、成形品とする。
[Step 4] Curing step.
While being poured into the mold, the reaction solution is heated and held in an appropriate temperature range (for example, a range of 40 to 120 ° C.), foamed and cured, and preferably gold of 40 to 120 ° C. for 30 minutes to 2 hours. After being left in the mold, the molded product is taken out, and after-curing is preferably performed at 100 to 120 ° C. for 8 to 17 hours to obtain a molded product.

〔工程5〕スライス工程。
前記成形品を適切な厚みにシート状にスライスする。スライス後のシート厚は、研磨の目的に応じて設定すればよく、特に制限はないが、例えば、0.6〜2.0mmの範囲が好ましい。
[Step 5] Slicing step.
The molded product is sliced into a sheet having an appropriate thickness. The sheet thickness after slicing may be set according to the purpose of polishing and is not particularly limited, but is preferably in the range of 0.6 to 2.0 mm, for example.

以上のようにして得られたポリウレタン研磨パッドは、例えば、両面テープにて定盤に固定され、固定されたポリウレタン研磨パッドを定盤とともに回転させ、その上に研磨砥粒を含んだ研磨スラリーを常時供給しながら、半導体基板、光学基板、磁性基板等をポリウレタン研磨パッドに押し付けて研磨が行われる。   The polyurethane polishing pad obtained as described above is fixed to a surface plate with, for example, a double-sided tape, the fixed polyurethane polishing pad is rotated together with the surface plate, and a polishing slurry containing abrasive grains is formed thereon. While constantly supplying, polishing is performed by pressing a semiconductor substrate, an optical substrate, a magnetic substrate or the like against a polyurethane polishing pad.

前記砥粒としては、コロイダルシリカ、酸化セリウム、酸化ジルコニウム、炭化ケイ素、アルミナ等が使用できる。     As the abrasive, colloidal silica, cerium oxide, zirconium oxide, silicon carbide, alumina and the like can be used.

以下、本発明を実施例により、一層具体的に説明するが、本発明の範囲はこれら実施例のみに限定されるものではない。
また、本発明では、特に断りのない限り、「部」は「重量部」、「%」は「重量%」である。
なお、本発明で用いた測定方法及び評価方法は、以下の通りである。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited only to these examples.
In the present invention, “parts” is “parts by weight” and “%” is “% by weight” unless otherwise specified.
The measurement method and evaluation method used in the present invention are as follows.

[実施例1]≪ポリウレタン研磨パッド(P−1)の製造≫
窒素導入管、冷却用コンデンサー、温度計、攪拌機を備えた4ッ口丸底フラスコに、トリレンジイソシアネート(TDI−100)37部を仕込み、攪拌を開始した。次いで、ポリテトラメチレングリコール(数平均分子量1000)63部を仕込み混合し、窒素気流下60℃で8時間反応を行い、イソシアネート基当量335のイソシアネート基末端ウレタンプレポリマー(A−1)を得た。得られたプレポリマー(A−1)に親水性シリカ(商品名:「レオロシールQS20L」、比表面積=220m/g、(株)トクヤマ製)を1.25部添加し、ディスパー分散機で十分に混合し、第一成分とした。得られた第一成分のイソシアネート基当量は、342であった。
次いで、3,3’−ジクロロ−4,4’−ジアミノフェニルメタン(MBOCA)を120℃で溶融し、第二成分とした。
次に、ポリプロピレングリコール(PPG、数平均分子量3000 f=3)100部と、イオン交換水7.0部、ビス(ジメチルアミノエチル)エーテル 0.5部及び表面張力21.3mN/m(25℃)のポリエーテル変性シリコーン整泡剤を4部配合し、十分に攪拌混合して第三成分とした。
次に、ミキシング型エラストマー注型機(EA−408型、東邦機械工業(株)製)の3つのタンクに前記第一成分、第二成分、第三成分をそれぞれ仕込み、減圧脱泡した。次いで、60℃に温調した金型(内寸500×500×20mm)に、R値=0.9になる様、第一成分/第二成分/第三成分=74.1/22.0/3.9(質量比)の配合比で、3350g(第一+第二+第三成分)を注入した。
・吐出量=7500g/min(第一+第二+第三成分)
・ミキサー回転数=3500rpm
・混合チャンバー内乾燥空気導入=無
その後、直ちに、金型の蓋を閉め、60℃で30分保持した後、成形品を取り出した。更に得られた成形品を110℃で16時間のアフターキュアを行った。
得られた成形品をスライサーで厚さ1.4mmに切り出し、シート状のポリウレタン研磨パッド(P−1)を得た。尚、成形品厚み中央部で得られた研磨パッドの性状を表1に示す。
[Example 1] << Manufacture of polyurethane polishing pad (P-1) >>
37 parts of tolylene diisocyanate (TDI-100) was charged into a four-necked round bottom flask equipped with a nitrogen inlet tube, a condenser for cooling, a thermometer, and a stirrer, and stirring was started. Next, 63 parts of polytetramethylene glycol (number average molecular weight 1000) was charged and mixed, and reacted at 60 ° C. for 8 hours under a nitrogen stream to obtain an isocyanate group-terminated urethane prepolymer (A-1) having an isocyanate group equivalent of 335. . 1.25 parts of hydrophilic silica (trade name: “Leoro Seal QS20L”, specific surface area = 220 m 2 / g, manufactured by Tokuyama Corporation) is added to the obtained prepolymer (A-1), and a disper disperser is sufficient. The first component was mixed. The isocyanate group equivalent of the obtained first component was 342.
Subsequently, 3,3′-dichloro-4,4′-diaminophenylmethane (MBOCA) was melted at 120 ° C. to obtain a second component.
Next, 100 parts of polypropylene glycol (PPG, number average molecular weight 3000 f = 3), 7.0 parts of ion-exchanged water, 0.5 part of bis (dimethylaminoethyl) ether and a surface tension of 21.3 mN / m (25 ° C. 4 parts of a polyether-modified silicone foam stabilizer, and the mixture was sufficiently stirred and mixed to obtain the third component.
Next, the first component, the second component, and the third component were respectively charged in three tanks of a mixing type elastomer casting machine (EA-408 type, manufactured by Toho Machine Industry Co., Ltd.) and degassed under reduced pressure. Next, the first component / second component / third component = 74.1 / 22.0 so that the R value = 0.9 is obtained in a mold (inner dimensions: 500 × 500 × 20 mm) adjusted to 60 ° C. 3350 g (first + second + third component) was injected at a blending ratio of /3.9 (mass ratio).
・ Discharge rate = 7500 g / min (first + second + third component)
・ Mixer rotation speed = 3500rpm
Introducing dry air in the mixing chamber = None Thereafter, the lid of the mold was immediately closed and held at 60 ° C for 30 minutes, and then the molded product was taken out. Further, the obtained molded article was after-cured at 110 ° C. for 16 hours.
The obtained molded product was cut out to a thickness of 1.4 mm with a slicer to obtain a sheet-like polyurethane polishing pad (P-1). Table 1 shows the properties of the polishing pad obtained at the center of the molded product thickness.

[実施例2]≪ポリウレタン研磨パッド(P−2)の製造≫
混合チャンバー内乾燥空気導入量を10リットル/minの割合で導入混合させる機械発泡法を用いた以外は実施例1と同様にしてポリウレタン研磨パッド(P−2)を得た。
[Example 2] << Manufacture of polyurethane polishing pad (P-2) >>
A polyurethane polishing pad (P-2) was obtained in the same manner as in Example 1 except that the mechanical foaming method in which the amount of dry air introduced into the mixing chamber was introduced and mixed at a rate of 10 liters / min was used.

[実施例3]≪ポリウレタン研磨パッド(P−3)の製造≫
親水性シリカ(商品名:「レオロシールQS20L」)をジメチルシリコーンオイルで疎水変性したヒュームドシリカ(商品名:「アエロジルRY200S」、比表面積=130m/g、日本アエロジル(株)製)に変更した以外は、実施例1と同様にしてポリウレタン研磨パッド(P−3)を得た。尚、得られた研磨パッドの性状を表1に示す。
[Example 3] << Production of polyurethane polishing pad (P-3) >>
The fumed silica (trade name: “Aerosil RY200S”, specific surface area = 130 m 2 / g, manufactured by Nippon Aerosil Co., Ltd.) obtained by hydrophobically modifying hydrophilic silica (trade name: “Leosil QS20L”) with dimethyl silicone oil. A polyurethane polishing pad (P-3) was obtained in the same manner as Example 1 except for the above. The properties of the resulting polishing pad are shown in Table 1.

[実施例4]≪ポリウレタン研磨パッド(P−4)の製造≫
混合チャンバー内乾燥空気導入量を10リットル/minの割合で導入混合させる機械発泡法を用いた以外は実施例3と同様にしてポリウレタン研磨パッド(P−4)を得た。
[Example 4] << Manufacture of polyurethane polishing pad (P-4) >>
A polyurethane polishing pad (P-4) was obtained in the same manner as in Example 3 except that the mechanical foaming method in which the amount of dry air introduced into the mixing chamber was introduced and mixed at a rate of 10 liters / min.

[比較例1]≪ポリウレタン研磨パッド(P’−1)の製造≫
第一成分をヒュームドシリカを導入せずにイソシアネート基末端ウレタンプレポリマー(A−1)とし、配合比として第一成分/第二成分/第三成分=73.7/22.3/3.9(質量比)にした以外は実施例1と同様にしてポリウレタン研磨パッド(P’−1)を得た。尚、得られた研磨パッドの性状を表2に示す。
[Comparative Example 1] << Manufacture of polyurethane polishing pad (P'-1) >>
The first component is an isocyanate group-terminated urethane prepolymer (A-1) without introducing fumed silica, and the mixing ratio is first component / second component / third component = 73.7 / 22.3 / 3. A polyurethane polishing pad (P′-1) was obtained in the same manner as in Example 1 except that the ratio was 9 (mass ratio). Table 2 shows the properties of the obtained polishing pad.

[比較例2]≪ポリウレタン研磨パッド(P’−2)の製造≫
混合チャンバー内乾燥空気導入量を10リットル/minの割合で導入混合させる機械発泡法を用いた以外は比較例1と同様にしてポリウレタン研磨パッド(P’−2)を得た。
[Comparative Example 2] << Manufacture of polyurethane polishing pad (P'-2) >>
A polyurethane polishing pad (P′-2) was obtained in the same manner as in Comparative Example 1 except that the mechanical foaming method in which the amount of dry air introduced into the mixing chamber was introduced and mixed at a rate of 10 liters / min was used.

[プレポリマー(A)のイソシアネート基当量(NCO当量)の測定方法]
プレポリマー(A)のNCO当量の測定は、JIS K 7301に準拠して、試料を乾燥トルエンに溶解し、過剰のジ−n−ブチルアミン溶液を加えて反応させ、残存するジ−n−ブチルアミンを塩酸標準溶液で逆滴定して求めた。
[Method of measuring isocyanate group equivalent (NCO equivalent) of prepolymer (A)]
The NCO equivalent of the prepolymer (A) is measured according to JIS K 7301 by dissolving the sample in dry toluene, adding an excess of di-n-butylamine solution and reacting it, and removing the remaining di-n-butylamine. Determined by back titration with hydrochloric acid standard solution.

[数平均分子量の測定方法]
実施例及び比較例で使用したポリオールの数平均分子量は、以下のように求めた。
数平均分子量=(56100×f)/(水酸基価+酸価)
尚、f:官能基数
尚、水酸基価及び酸価の測定方法は、JIS K 1557に準じて測定した。
[Measurement method of number average molecular weight]
The number average molecular weight of the polyol used in the examples and comparative examples was determined as follows.
Number average molecular weight = (56100 × f) / (hydroxyl value + acid value)
F: number of functional groups
In addition, the measuring method of a hydroxyl value and an acid value was measured according to JISK1557.

[研磨パッド厚みの測定方法]
ダイヤルゲージ(有効数字:0.01mm)で測定し(n=8)、平均値を研磨パッドの厚みとした。
[Measurement method of polishing pad thickness]
It measured with the dial gauge (significant figure: 0.01 mm) (n = 8), and made the average value thickness of the polishing pad.

[研磨パッドの密度の測定方法]
長さ(有効数字:0.1mm)をメジャーにて(n=2)、厚みを(有効数字:0.01mm)をダイヤルゲージにて(n=8)、重量(有効数字:0.01g)を天秤にて(n=2)測定し、下記式により算出した。
密度(g/cm)=平均重量/(平均長さ1×平均長さ2×平均厚み)
[Measurement method of polishing pad density]
Length (significant figures: 0.1 mm) with a measure (n = 2), thickness (significant figures: 0.01 mm) with a dial gauge (n = 8), weight (significant figures: 0.01 g) Was measured with a balance (n = 2) and calculated according to the following formula.
Density (g / cm 3 ) = average weight / (average length 1 × average length 2 × average thickness)

[研磨パッドの硬度の測定方法]
JIS A 7312に準じて測定した。
[Method of measuring hardness of polishing pad]
Measurement was performed according to JIS A 7312.

[研磨パッドのセル平均径の測定方法]
画像解析装置によりセル径を測定した。
装置:Pore Scan (Goldlucke製)
条件: ポジション 12
Exposure:1000 Gain:30
Threshould:Auto
5回測定(バッチ処理)
300μm以下はカウントせず
[Measurement method of cell average diameter of polishing pad]
The cell diameter was measured with an image analyzer.
Apparatus: Pore Scan (manufactured by Goldluce)
Condition: Position 12
Exposure: 1000 Gain: 30
Threshold: Auto
5 measurements (batch processing)
300μm 2 or less is not counted

[巨大セルの有無]
実施例及び比較例で得られたポリウレタン研磨パッドを目視で観察し、巨大セルの有無を確認した。
なお、直径が1mm以上のセルがポリウレタン研磨パッド上に1個でも存在する場合は、「あり」、
ない場合は、「なし」と表記した。
[Existence of huge cells]
The polyurethane polishing pads obtained in Examples and Comparative Examples were visually observed to confirm the presence or absence of giant cells.
In addition, when there is even one cell having a diameter of 1 mm or more on the polyurethane polishing pad, “Yes”,
When there was not, it was described as “none”.

[研磨パッドの独立気泡率測定方法]
研磨パッドから38×250mmに2枚切り取り、「空気式見掛け容積測定器」(東京サイエンス(株)製 空気比較式比重計1000型)に2枚を丸めて投入して測定した。ASTM D−2856に準じて測定した。
[Method for measuring the closed cell ratio of polishing pads]
Two sheets of 38 × 250 mm were cut from the polishing pad, and the two sheets were rolled into a “pneumatic apparent volume measuring device” (air comparison type hydrometer 1000 model manufactured by Tokyo Science Co., Ltd.) and measured. Measured according to ASTM D-2856.

[研磨レートの評価方法]
両面テープの片面に実施例及び比較例で得られたポリウレタン研磨パッドを貼付け、両面テープの他方片面に研磨機の定盤を貼付け、以下の装置、条件、計算式で研磨レートを測定した。
研磨機:FAM 18 GPAW(Speed Fam製 定盤直径=457.2mm)
研磨条件:
(パッド前処理) パッド表面に赤色鉛筆で2cm間隔で縦横に描いた線が消えるまで、ダイヤモンドドレッサーにてドレス処理(パッドの平坦化)を行った。給水量200ml/分
(研磨対象)単結晶シリコンウェハ 4インチ(102mm t=0.45mm)
(スラリー)コロイダルシリカ溶液 PH=11 (シリカ濃度=2%)
(スラリー流量)60ml/分
(定盤回転数)50rpm (連れ回り式)
(研磨圧力)30kPa
(研磨時間)20分
(研磨レート)研磨前後のポリウレタン研磨パッドの重量差から算出した。即ち、
研磨レート(μm/min)=(研磨前のシリコンウェハの重量(g)−研磨後のシリコンウェハの重量(g))×10000/(単結晶シリコンの密度(g/cm)×シリコンウェハの面積(cm)×研磨時間(min))
※単結晶シリコンの密度=2.329(g/cm
※シリコンウェハの面積=20.4cm
[Evaluation method of polishing rate]
The polyurethane polishing pad obtained in Examples and Comparative Examples was attached to one side of the double-sided tape, the surface plate of the polishing machine was attached to the other side of the double-sided tape, and the polishing rate was measured with the following apparatus, conditions and calculation formula.
Polishing machine: FAM 18 GPA (Speed Fam, platen diameter = 457.2 mm)
Polishing conditions:
(Pad pretreatment) Dressing (pad flattening) was performed with a diamond dresser until the lines drawn vertically and horizontally at intervals of 2 cm with a red pencil disappeared on the pad surface. Water supply amount 200 ml / min (for polishing) Single crystal silicon wafer 4 inches (102 mm t = 0.45 mm)
(Slurry) Colloidal silica solution PH = 11 (Silica concentration = 2%)
(Slurry flow rate) 60 ml / min (Rotating plate speed) 50 rpm (Turning type)
(Polishing pressure) 30kPa
(Polishing time) 20 minutes (Polishing rate) Calculated from the weight difference of the polyurethane polishing pad before and after polishing. That is,
Polishing rate (μm / min) = (weight of silicon wafer before polishing (g) −weight of silicon wafer after polishing (g)) × 10000 / (density of single crystal silicon (g / cm 3 ) × silicon wafer Area (cm 2 ) × polishing time (min))
* Density of single crystal silicon = 2.329 (g / cm 3 )
* Silicon wafer area = 20.4cm 2

[スクラッチの評価方法]
前記[研磨レートの評価方法]にて研磨した後のシリコンウェハにスクラッチ傷があるか否かを目視で観察し、以下のように評価した。
スクラッチ傷がない:「○」
スクラッチ傷がある:「×」
[Scratch evaluation method]
Whether or not the silicon wafer after polishing by the above-mentioned [Evaluation method of polishing rate] has scratches was visually observed and evaluated as follows.
No scratches: “○”
There are scratches: “×”

[平坦性の評価方法]
平坦性の評価は、前記[研磨レートの評価方法]にて研磨した後の単結晶シリコンウェハを表面粗さ計を用いて測定した。
装置:フォームタリサーフ i120 (Tayer Hobson製)
条件:走査スピード:0.5mm/min
測定部位:直径方向 102mmの内99mmを評価
評価基準:高低差が±1.0μmに収まる線分の長さが90mm以上であるものは
「○」と評価した
高低差が±1.0μmに収まる線分の長さが90mm未満であるものは、
「×」と評価した
[Evaluation method of flatness]
The flatness was evaluated by measuring the single crystal silicon wafer after polishing by the above-mentioned [Evaluation method of polishing rate] using a surface roughness meter.
Device: Foam Talysurf i120 (Tayler Hobson)
Condition: Scanning speed: 0.5 mm / min
Measurement site: Evaluate 99mm out of 102mm in diameter direction Evaluation criteria: The length of the line segment whose height difference is within ± 1.0μm is 90mm or more
Rated as “○”
If the length of the line segment where the height difference is within ± 1.0 μm is less than 90 mm,
Rated "x"

Figure 2013086217
Figure 2013086217

Figure 2013086217
Figure 2013086217

Claims (7)

イソシアネート基末端ウレタンプレポリマー(A)を含有する主剤と、イソシアネート基反応性化合物(B)を含有する硬化剤を含む研磨パッド用ウレタン樹脂組成物であって、
更にヒュームドシリカ(C)を含有することを特徴とする研磨パッド用ウレタン樹脂組成物。
A urethane resin composition for a polishing pad comprising a main agent containing an isocyanate group-terminated urethane prepolymer (A) and a curing agent containing an isocyanate group-reactive compound (B),
Furthermore, the urethane resin composition for polishing pads characterized by containing fumed silica (C).
前記ヒュームドシリカ(C)が、前記イソシアネート基末端ウレタンプレポリマー(A)100質量部に対し、0.5〜2質量%使用されるものである、請求項1に記載の研磨パッド用ウレタン樹脂組成物。 The urethane resin for polishing pads according to claim 1, wherein the fumed silica (C) is used in an amount of 0.5 to 2% by mass based on 100 parts by mass of the isocyanate group-terminated urethane prepolymer (A). Composition. 前記硬化剤が、イソシアネート基反応性化合物(B)、発泡剤である水(D)を含有するものである、請求項1に記載の研磨パッド用ウレタン樹脂組成物。 The urethane resin composition for polishing pads according to claim 1, wherein the curing agent contains an isocyanate group-reactive compound (B) and water (D) as a foaming agent. 前記イソシアネート基反応性化合物(B)が、ポリアミノクロロフェニルメタン化合物及び/又はポリオールである、請求項1に記載の研磨パッド用ウレタン樹脂組成物。 The urethane resin composition for polishing pads according to claim 1, wherein the isocyanate group-reactive compound (B) is a polyaminochlorophenylmethane compound and / or a polyol. 前記ポリアミノクロロフェニルメタン化合物が、3,3’−ジクロロ−4,4’−ジアミノジフェニルメタンである、請求項4に記載の研磨パッド用ウレタン樹脂組成物。 The urethane resin composition for polishing pads according to claim 4, wherein the polyaminochlorophenylmethane compound is 3,3'-dichloro-4,4'-diaminodiphenylmethane. 請求項1〜5のいずれか1項に記載の研磨パッド用ウレタン樹脂組成物を用いて得られるポリウレタン研磨パッド。 The polyurethane polishing pad obtained using the urethane resin composition for polishing pads of any one of Claims 1-5. 請求項1〜5のいずれか1項に記載の研磨パッド用ウレタン樹脂組成物を、型内に注入して発泡、硬化させ、発泡成形物を型から取り出し、シート状にスライスすることを特徴とするポリウレタン研磨パッドの製造方法。 The urethane resin composition for a polishing pad according to any one of claims 1 to 5 is injected into a mold and foamed and cured, and the foamed molded product is taken out of the mold and sliced into sheets. A method for producing a polyurethane polishing pad.
JP2011229669A 2011-10-19 2011-10-19 Urethane resin composition for polishing pad, polyurethane polishing pad, and method of manufacturing polyurethane polishing pad Pending JP2013086217A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011229669A JP2013086217A (en) 2011-10-19 2011-10-19 Urethane resin composition for polishing pad, polyurethane polishing pad, and method of manufacturing polyurethane polishing pad
KR1020120103093A KR20130043060A (en) 2011-10-19 2012-09-18 Urethane resin composition for polishing pad and polyurethane polishing pad
TW101134971A TW201323496A (en) 2011-10-19 2012-09-24 Urethane resin composition for polishing pad and urethane polishing pad
CN201210397917.0A CN103059551B (en) 2011-10-19 2012-10-18 Grinding pad urethane resin compositions and polyurethane abrasive pad

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011229669A JP2013086217A (en) 2011-10-19 2011-10-19 Urethane resin composition for polishing pad, polyurethane polishing pad, and method of manufacturing polyurethane polishing pad

Publications (2)

Publication Number Publication Date
JP2013086217A true JP2013086217A (en) 2013-05-13
JP2013086217A5 JP2013086217A5 (en) 2014-10-23

Family

ID=48102466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011229669A Pending JP2013086217A (en) 2011-10-19 2011-10-19 Urethane resin composition for polishing pad, polyurethane polishing pad, and method of manufacturing polyurethane polishing pad

Country Status (4)

Country Link
JP (1) JP2013086217A (en)
KR (1) KR20130043060A (en)
CN (1) CN103059551B (en)
TW (1) TW201323496A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146892A1 (en) * 2012-03-29 2013-10-03 富士紡ホールディングス株式会社 Polishing pad and method for manufacturing polishing pad
JP2015059199A (en) * 2013-09-20 2015-03-30 Dic株式会社 Urethane composition and polishing material
CN104742031A (en) * 2015-04-07 2015-07-01 蓝思科技(长沙)有限公司 Composition, method and mould for regulating grinding and cutting force of polished pad
JP2015208854A (en) * 2014-04-25 2015-11-24 ローム アンド ハース エレクトロニック マテリアルズ シーエムピー ホウルディングス インコーポレイテッド Chemical mechanical polishing pad
JP2016112640A (en) * 2014-12-15 2016-06-23 Dic株式会社 Polishing pad
WO2017217278A1 (en) * 2016-06-16 2017-12-21 Dic株式会社 Polishing pad, method for producing polishing pad and polishing method
KR101949905B1 (en) * 2017-08-23 2019-02-19 에스케이씨 주식회사 Porous polyurethane polishing pad and preparation method thereof
KR101949911B1 (en) * 2017-09-11 2019-02-19 에스케이씨 주식회사 Porous polyurethane polishing pad and preparation method thereof
WO2019050365A1 (en) * 2017-09-11 2019-03-14 에스케이씨 주식회사 Porous polyurethane polishing pad and method for manufacturing same
WO2020095832A1 (en) * 2018-11-09 2020-05-14 株式会社クラレ Polyurethane for polishing layers, polishing layer, polishing pad and method for modifying polishing layer
WO2021011260A1 (en) * 2019-07-12 2021-01-21 Cabot Microelectronics Corporation Polishing pad employing polyamine and cyclohexanedimethanol curatives
CN114874409A (en) * 2022-04-26 2022-08-09 江苏利宏科技发展有限公司 Polyether polyol-based polyurethane resin and preparation method thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104261726B (en) * 2014-09-18 2016-02-03 蓝思科技股份有限公司 Special grinding pad of a kind of two-sided fine finishining of optical glass and preparation method thereof
CN104772693B (en) * 2015-04-20 2017-10-17 蓝思科技(长沙)有限公司 It is a kind of to be used to process diamond lap pad of ultra hard ceramic and preparation method thereof
US10457790B2 (en) * 2016-04-06 2019-10-29 Kpx Chemical Co., Ltd. Method of manufacturing polishing pad
CN106985061A (en) * 2017-03-21 2017-07-28 安徽禾臣新材料有限公司 A kind of absorption layer for being applied to essence polishing
JP7331453B2 (en) * 2019-05-17 2023-08-23 Dic株式会社 Method for manufacturing porous body
CN111534079A (en) * 2020-05-27 2020-08-14 安徽禾臣新材料有限公司 Polyurethane high-polishing grinding material and preparation method thereof
CN112094493A (en) * 2020-08-14 2020-12-18 沈阳化工大学 Nano-modified thermoplastic polyurethane elastomer polishing material and preparation method thereof
CN114806483A (en) * 2020-09-30 2022-07-29 九天起宏(江苏)检测有限公司 Single-component thermoplastic polyurethane adhesive and preparation method thereof
CN114957965A (en) * 2022-07-07 2022-08-30 福建长泰万泰矿物制品有限公司 High-heat-resistance polyurethane composition, polyurethane disc and preparation method thereof
CN115319649B (en) * 2022-09-03 2023-08-04 深圳市永霖科技有限公司 PU polishing sand paper for glass polishing and preparation method thereof
CN116444977B (en) * 2023-06-16 2023-09-05 山东一诺威聚氨酯股份有限公司 Polyurethane elastomer and method for preparing polishing abrasive block by using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134445A (en) * 2000-10-24 2002-05-10 Jsr Corp Composition for polishing pads and polishing pad using the same
JP2005068168A (en) * 2003-08-21 2005-03-17 Kanebo Ltd Two-liquid type composition for glass polishing polyurethane pad, glass polishing polyurethane pad using the same composition and method for producing the same pad
US20100273399A1 (en) * 2009-04-23 2010-10-28 Cabot Microelectronics Corporation Cmp porous pad with particles in a polymeric matrix
WO2011001755A1 (en) * 2009-06-29 2011-01-06 Dic株式会社 Two-pack urethane resin composite for use in an abrasive pad, polyurethane abrasive pad, and method for manufacturing a polyurethane abrasive pad

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002113662A (en) * 2000-10-04 2002-04-16 Sinto Brator Co Ltd Turntable and control method for jet nozzle
US20040224622A1 (en) * 2003-04-15 2004-11-11 Jsr Corporation Polishing pad and production method thereof
CA2595399C (en) * 2005-01-24 2014-05-06 Lubrizol Advanced Materials, Inc. Aqueous dispersions of nanoparticle/polyurethane composites
US9056382B2 (en) * 2009-05-27 2015-06-16 Rogers Corporation Polishing pad, composition for the manufacture thereof, and method of making and using
CN101812229B (en) * 2010-04-02 2012-06-20 宜兴市新光科技有限公司 Heat-insulating and shock-absorbing protective film and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134445A (en) * 2000-10-24 2002-05-10 Jsr Corp Composition for polishing pads and polishing pad using the same
JP2005068168A (en) * 2003-08-21 2005-03-17 Kanebo Ltd Two-liquid type composition for glass polishing polyurethane pad, glass polishing polyurethane pad using the same composition and method for producing the same pad
US20100273399A1 (en) * 2009-04-23 2010-10-28 Cabot Microelectronics Corporation Cmp porous pad with particles in a polymeric matrix
WO2011001755A1 (en) * 2009-06-29 2011-01-06 Dic株式会社 Two-pack urethane resin composite for use in an abrasive pad, polyurethane abrasive pad, and method for manufacturing a polyurethane abrasive pad

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202775A (en) * 2012-03-29 2013-10-07 Fujibo Holdings Inc Polishing pad and method for manufacturing polishing pad
WO2013146892A1 (en) * 2012-03-29 2013-10-03 富士紡ホールディングス株式会社 Polishing pad and method for manufacturing polishing pad
JP2015059199A (en) * 2013-09-20 2015-03-30 Dic株式会社 Urethane composition and polishing material
US11396081B2 (en) 2014-04-25 2022-07-26 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad
JP2015208854A (en) * 2014-04-25 2015-11-24 ローム アンド ハース エレクトロニック マテリアルズ シーエムピー ホウルディングス インコーポレイテッド Chemical mechanical polishing pad
JP2016112640A (en) * 2014-12-15 2016-06-23 Dic株式会社 Polishing pad
CN104742031A (en) * 2015-04-07 2015-07-01 蓝思科技(长沙)有限公司 Composition, method and mould for regulating grinding and cutting force of polished pad
WO2017217278A1 (en) * 2016-06-16 2017-12-21 Dic株式会社 Polishing pad, method for producing polishing pad and polishing method
JPWO2017217278A1 (en) * 2016-06-16 2018-11-08 Dic株式会社 Polishing pad, polishing pad manufacturing method and polishing method
KR101949905B1 (en) * 2017-08-23 2019-02-19 에스케이씨 주식회사 Porous polyurethane polishing pad and preparation method thereof
WO2019050365A1 (en) * 2017-09-11 2019-03-14 에스케이씨 주식회사 Porous polyurethane polishing pad and method for manufacturing same
KR101949911B1 (en) * 2017-09-11 2019-02-19 에스케이씨 주식회사 Porous polyurethane polishing pad and preparation method thereof
US11642752B2 (en) 2017-09-11 2023-05-09 Sk Enpulse Co., Ltd. Porous polyurethane polishing pad and process for preparing the same
WO2020095832A1 (en) * 2018-11-09 2020-05-14 株式会社クラレ Polyurethane for polishing layers, polishing layer, polishing pad and method for modifying polishing layer
JPWO2020095832A1 (en) * 2018-11-09 2021-10-07 株式会社クラレ Polyurethane for polishing layer, polishing layer, polishing pad and method of modifying polishing layer
JP7104174B2 (en) 2018-11-09 2022-07-20 株式会社クラレ Polyurethane for polishing layer, polishing layer, polishing pad and method of modifying polishing layer
WO2021011260A1 (en) * 2019-07-12 2021-01-21 Cabot Microelectronics Corporation Polishing pad employing polyamine and cyclohexanedimethanol curatives
TWI791157B (en) * 2019-07-12 2023-02-01 美商Cmc材料股份有限公司 Polishing pad employing polyamine and cyclohexanedimethanol curatives
CN114874409A (en) * 2022-04-26 2022-08-09 江苏利宏科技发展有限公司 Polyether polyol-based polyurethane resin and preparation method thereof

Also Published As

Publication number Publication date
CN103059551A (en) 2013-04-24
TW201323496A (en) 2013-06-16
KR20130043060A (en) 2013-04-29
CN103059551B (en) 2017-06-06

Similar Documents

Publication Publication Date Title
JP2013086217A (en) Urethane resin composition for polishing pad, polyurethane polishing pad, and method of manufacturing polyurethane polishing pad
JP4636347B1 (en) Two-component urethane resin composition for polishing pad, polyurethane polishing pad, and method for producing polyurethane polishing pad
JP6315246B2 (en) Polishing pad and manufacturing method thereof
JP4897082B2 (en) Polyurethane foam and polishing pad
WO2012141327A1 (en) Polishing pad and manufacturing method therefor
TWI726115B (en) Grinding pad, grinding pad manufacturing method and grinding method
WO2012141328A1 (en) Polishing pad and manufacturing method therefor
JP5166172B2 (en) Polishing pad manufacturing method
TW201641546A (en) Polishing pad and method of making the same
JP2013194163A (en) Polyurethane resin composition for polishing pads, polyurethane polishing pad and method for producing the same
TWI492817B (en) A polishing pad and its manufacturing method, and manufacturing method of a semiconductor device
TWI787420B (en) Polishing pad
JP5078513B2 (en) Polishing pad and method of manufacturing polishing pad
TWI532758B (en) Urethane resin composition for polishing pad, polishing pad and manufacturing method thereof
TWI461450B (en) Two-package curing type polyurethane resin composition and methods for making urethane molded products for polishing pads
WO2010038725A1 (en) Urethane resin composition for polishing pad, polyurethane polishing pad, and method for producing polyurethane polishing pad
TW201942175A (en) Polishing pad, polishing pad production method, and method for polishing surface of optical material or semiconductor material
JP7405500B2 (en) Polishing pad, method for manufacturing polishing pad, and method for polishing the surface of optical or semiconductor material
JP7072429B2 (en) Polishing pads, methods of manufacturing polishing pads, and methods of polishing the surface of optical or semiconductor materials.
JP2019038106A (en) Polishing pad and method for manufacturing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140904

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150910