JP2013026272A - Encoder device, optical device, and exposure device - Google Patents

Encoder device, optical device, and exposure device Download PDF

Info

Publication number
JP2013026272A
JP2013026272A JP2011156740A JP2011156740A JP2013026272A JP 2013026272 A JP2013026272 A JP 2013026272A JP 2011156740 A JP2011156740 A JP 2011156740A JP 2011156740 A JP2011156740 A JP 2011156740A JP 2013026272 A JP2013026272 A JP 2013026272A
Authority
JP
Japan
Prior art keywords
light
measurement
angle
measurement light
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011156740A
Other languages
Japanese (ja)
Other versions
JP2013026272A5 (en
JP5862857B2 (en
Inventor
Zhigiang Liu
志強 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2011156740A priority Critical patent/JP5862857B2/en
Publication of JP2013026272A publication Critical patent/JP2013026272A/en
Publication of JP2013026272A5 publication Critical patent/JP2013026272A5/ja
Application granted granted Critical
Publication of JP5862857B2 publication Critical patent/JP5862857B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve measurement accuracy by lowering a height of an optical system and reducing influence of a 0th order beam from a diffraction grating.SOLUTION: An encoder 10X in X-axis comprises: a diffraction grating 12X, having a periodic direction in X direction and disposed in a first component 6; a laser source 16 which supplies a coherent measurement beam MX1 and a reference beam RX1; an inclined mirror 32XA which is disposed in a second component 7 and reflects the measurement beam MX1 toward the diffraction grating 12X at an angle deviated from Littrow angle by a predetermined angle; a photoelectronic sensor 40XA which detects an interference beam between a diffraction beam from the diffraction grating 12X and the reference beam RX1; and a measurement calculation part 42X which calculates a relative movement amount of the second component 7 against the first component 6 in X direction using a detection signal of the photoelectronic sensor 40XA.

Description

本発明は、相対移動する部材間の相対移動量を計測するエンコーダ装置、このエンコーダ装置を備えた光学装置及び露光装置、並びにこの露光装置を用いたデバイス製造方法に関する。   The present invention relates to an encoder apparatus that measures a relative movement amount between members that move relatively, an optical apparatus and an exposure apparatus that include the encoder apparatus, and a device manufacturing method that uses the exposure apparatus.

半導体素子等の電子デバイス(マイクロデバイス)を生産するためのフォトリソグラフィ工程で用いられる、いわゆるステッパー又はスキャニングステッパーなどの露光装置においては、従来より、露光対象の基板を移動するステージの位置計測はレーザ干渉計によって行われていた。ところが、レーザ干渉計では、計測用ビームの光路が長く、かつ変化するため、その光路上の雰囲気の温度揺らぎに起因する計測値の短期的な変動が無視できなくなりつつある。   In an exposure apparatus such as a so-called stepper or scanning stepper used in a photolithography process for producing an electronic device (microdevice) such as a semiconductor element, the position measurement of a stage that moves a substrate to be exposed has conventionally been a laser. It was done by an interferometer. However, in the laser interferometer, since the optical path of the measurement beam is long and changes, short-term fluctuations in measured values due to temperature fluctuations in the atmosphere on the optical path are becoming difficult to ignore.

そこで、例えばステージに固定された回折格子にレーザ光よりなる計測光を照射し、回折格子から発生する回折光と他の回折光又は参照光との干渉光を光電変換して得られる検出信号から、その回折格子が設けられた部材(ステージ等)の相対移動量を計測する、いわゆるエンコーダ装置(干渉型エンコーダ)も使用されつつある(例えば特許文献1参照)。このエンコーダ装置は、レーザ干渉計に比べて計測値の短期的安定性に優れるとともに、レーザ干渉計に近い分解能が得られるようになっている。   Therefore, for example, from a detection signal obtained by irradiating the diffraction grating fixed to the stage with measurement light made of laser light and photoelectrically converting interference light between the diffracted light generated from the diffraction grating and other diffracted light or reference light A so-called encoder device (interference encoder) that measures the relative movement amount of a member (such as a stage) provided with the diffraction grating is also being used (see, for example, Patent Document 1). This encoder device is excellent in short-term stability of measurement values as compared with a laser interferometer, and can obtain a resolution close to that of a laser interferometer.

国際公開第2008/029757号パンフレットInternational Publication No. 2008/029757 Pamphlet

従来のエンコーダ装置は、ほぼ計測光の入射面に沿って、回折光と他の回折光又は参照光とを干渉させるための複数の光学部材を配置していたため、光学系の高さが高くなり、その光学系を例えば狭い空間に組み込むことが困難であった。
さらに、従来のエンコーダ装置では、計測情報を含むある回折光と、回折格子から発生する0次光(正反射光)の方向とが平行になる恐れがあった。このように回折光と0次光とが平行である状態で、検出対象の干渉光にその0次光が混入すると、その干渉光に本来の計測情報を含む周期とは異なる周期の干渉光が含まれるため、計測精度が低下する恐れがあった。
In the conventional encoder device, a plurality of optical members for causing the diffracted light and other diffracted light or reference light to interfere with each other are arranged almost along the incident surface of the measurement light, so that the height of the optical system becomes high. For example, it is difficult to incorporate the optical system in a narrow space.
Further, in the conventional encoder device, there is a possibility that certain diffracted light including measurement information and the direction of zero-order light (regularly reflected light) generated from the diffraction grating are parallel. When the 0th-order light is mixed with the interference light to be detected in a state where the diffracted light and the 0th-order light are parallel in this way, interference light having a period different from the period including the original measurement information is included in the interference light. As a result, the measurement accuracy may be reduced.

本発明の態様は、このような課題に鑑み、回折格子を用いて計測を行う際に、光学系の高さを低くするとともに、回折格子からの0次光の影響を低減して計測精度を向上することを目的とする。   In view of such a problem, the aspect of the present invention reduces the height of the optical system and reduces the influence of zero-order light from the diffraction grating when measuring using the diffraction grating. It aims to improve.

本発明の第1の態様によれば、第1部材に対して少なくとも第1方向に相対移動する第2部材の相対移動量を計測するエンコーダ装置が提供される。このエンコーダ装置は、その第1部材及びその第2部材の一方に設けられ、その第1方向を周期方向とする格子パターンを有する反射型の回折格子と、互いに可干渉性のある第1計測光及び第2計測光を供給する光源部と、その第1部材及びその第2部材の他方に設けられ、その光源部から供給された第1計測光をその格子パターン面に向けて反射する第1反射部材と、その回折格子からの回折光と他の回折光又はその第2計測光との干渉光を検出する第1光電検出器と、その第1光電検出器の検出信号を用いてその第2部材の相対移動量を求める計測部と、を備え、その反射部材からその格子パターン面に向かうその第1計測光のその第1方向の入射角を、その回折格子のリトロー角に対して所定角度変化した角度に設定するものである。   According to the first aspect of the present invention, there is provided an encoder device that measures the relative movement amount of the second member that moves relative to the first member in at least the first direction. This encoder device is provided on one of the first member and the second member, and a reflective diffraction grating having a grating pattern whose first direction is a periodic direction, and a first measurement light having coherence with each other. And a light source unit that supplies the second measurement light, and a first member that is provided on the other of the first member and the second member, and reflects the first measurement light supplied from the light source unit toward the lattice pattern surface. The first photoelectric detector that detects interference light between the diffracted light from the diffraction member and the other diffracted light or the second measurement light, and the detection signal of the first photoelectric detector. A measurement unit for obtaining a relative movement amount of the two members, and the incident angle in the first direction of the first measurement light directed from the reflecting member toward the grating pattern surface is predetermined with respect to the Littrow angle of the diffraction grating. The angle is set to the changed angle.

また、第2の態様によれば、本発明のエンコーダ装置と、対象物用の光学系と、を備える光学装置が提供される。
また、第3の態様によれば、パターンを被露光体に露光する露光装置が提供される。この露光装置は、フレームと、その被露光体を支持するとともにそのフレームに対して少なくとも第1方向に相対移動可能なステージと、その第1方向へのそのステージの相対移動量を計測するための本発明のエンコーダ装置と、を備えるものである。
Moreover, according to the 2nd aspect, an optical apparatus provided with the encoder apparatus of this invention and the optical system for objects is provided.
Moreover, according to the 3rd aspect, the exposure apparatus which exposes a pattern to a to-be-exposed body is provided. The exposure apparatus supports a frame, a stage that supports the object to be exposed, and is relatively movable in at least a first direction with respect to the frame, and measures a relative movement amount of the stage in the first direction. And an encoder device according to the present invention.

また、第4の様態によれば、リソグラフィ工程を含み、そのリソグラフィ工程では、上記露光装置を用いて物体を露光するデバイス製造方法が提供される。   According to the fourth aspect, there is provided a device manufacturing method that includes a lithography process, and in the lithography process, exposes an object using the exposure apparatus.

本発明によれば、計測光を格子パターン面に向けて反射する反射部材を設けているため、エンコーダ装置の光学系の高さ(格子パターン面の法線方向の高さ)を低くできる。
さらに、その反射部材からその格子パターン面に向かう計測光の第1方向の入射角を、回折格子のリトロー角に対して所定角度変化した角度に設定しているため、格子パターン面の高さの変化に対して回折光の横シフト量が小さく、干渉光の強度変化が小さいとともに、回折格子からの0次光の影響を低減して計測精度を向上できる。
According to the present invention, since the reflecting member that reflects the measurement light toward the grating pattern surface is provided, the height of the optical system of the encoder device (the height in the normal direction of the grating pattern surface) can be reduced.
Furthermore, since the incident angle in the first direction of the measurement light directed from the reflecting member toward the grating pattern surface is set to an angle changed by a predetermined angle with respect to the Littrow angle of the diffraction grating, the height of the grating pattern surface is The lateral shift amount of the diffracted light is small with respect to the change, the intensity change of the interference light is small, and the influence of the zero-order light from the diffraction grating can be reduced to improve the measurement accuracy.

(A)は実施形態の一例に係るエンコーダを示す斜視図、(B)は図1(A)中の傾斜ミラーの反射面等を示す図である。(A) is a perspective view which shows the encoder which concerns on an example of embodiment, (B) is a figure which shows the reflective surface etc. of the inclination mirror in FIG. 1 (A). 図1のエンコーダの2回目の回折光の光路を示す斜視図である。It is a perspective view which shows the optical path of the 2nd time diffracted light of the encoder of FIG. (A)は傾斜ミラーからの反射光が回折格子に垂直入射する状態を示す図、(B)は傾斜ミラーからの反射光が回折格子にX方向に傾斜して入射する状態を示す図、(C)は傾斜ミラーからの反射光が回折格子にX方向及びY方向に傾斜して入射する状態を示す図である。(A) is a diagram showing a state in which reflected light from an inclined mirror is perpendicularly incident on the diffraction grating, (B) is a diagram showing a state in which reflected light from the inclined mirror is incident on the diffraction grating while being inclined in the X direction. C) is a diagram showing a state in which the reflected light from the inclined mirror is incident on the diffraction grating while being inclined in the X direction and the Y direction. (A)は傾斜ミラーからの反射光が楔形プリズムを介して回折格子に入射する状態を示す斜視図、(B)は図4(A)のB方向から視た図、(C)は2次元の回折格子を使用する例を示す斜視図である。(A) is a perspective view showing a state in which reflected light from an inclined mirror enters a diffraction grating through a wedge-shaped prism, (B) is a view seen from the direction B in FIG. 4 (A), and (C) is a two-dimensional view. It is a perspective view which shows the example which uses this diffraction grating. 第1実施例に係る2次元のエンコーダを示す平面図である。It is a top view which shows the two-dimensional encoder which concerns on 1st Example. 第2実施例に係るエンコーダを示す平面図である。It is a top view which shows the encoder which concerns on 2nd Example. (A)は図6のAA線に沿う断面図、(B)は図6のBB線に沿う図、(C)は図6のBB線に沿って一部を省略して示す図である。(A) is sectional drawing which follows the AA line of FIG. 6, (B) is a figure which follows the BB line of FIG. 6, (C) is a figure which abbreviate | omits and shows a part along the BB line of FIG. 図6の参照光の光路を示す平面図である。It is a top view which shows the optical path of the reference light of FIG. 第3実施例に係る露光装置の概略構成を示す図である。It is a figure which shows schematic structure of the exposure apparatus which concerns on 3rd Example. 図9のウエハステージに設けられた回折格子及び複数の検出ヘッドの配置の一例を示す平面図である。FIG. 10 is a plan view showing an example of the arrangement of diffraction gratings and a plurality of detection heads provided on the wafer stage of FIG. 9. 図9の露光装置の制御系を示すブロック図である。It is a block diagram which shows the control system of the exposure apparatus of FIG. 電子デバイスの製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of an electronic device.

以下、本発明の実施形態の一例につき図1〜図4を参照して説明する。図1(A)は本実施形態に係るX軸のエンコーダ10Xの要部を示す斜視図である。図1(A)において、一例として、第1部材6に対して第2部材7は2次元平面内で相対移動可能に配置され、第2部材7の互いに直交する相対移動可能な2つの方向に平行にX軸及びY軸を取り、X軸及びY軸によって規定される平面(XY面)に直交する軸をZ軸として説明する。また、X軸、Y軸、及びZ軸に平行な軸の回りの角度をそれぞれθx方向、θy方向、及びθz方向の角度とも呼ぶ。   Hereinafter, an exemplary embodiment of the present invention will be described with reference to FIGS. FIG. 1A is a perspective view showing a main part of an X-axis encoder 10X according to the present embodiment. In FIG. 1A, as an example, the second member 7 is disposed so as to be relatively movable in a two-dimensional plane with respect to the first member 6, and the second member 7 is disposed in two directions that are relatively movable relative to each other. A description will be given assuming that the X axis and the Y axis are taken in parallel, and the axis orthogonal to the plane (XY plane) defined by the X axis and the Y axis is the Z axis. In addition, the angles around axes parallel to the X axis, the Y axis, and the Z axis are also referred to as angles in the θx direction, the θy direction, and the θz direction, respectively.

図1(A)において、エンコーダ10Xは、第1部材6の上面に固定された、XY面に平行な平板状のX軸の回折格子12Xと、第2部材7の上面に固定されて回折格子12Xに計測光を照射するX軸の検出ヘッド14Xと、検出ヘッド14Xに計測用のレーザ光を供給するレーザ光源16と、検出ヘッド14Xから出力される検出信号を処理して第1部材6に対する第2部材7の少なくともX方向の相対移動量を求める計測演算部42Xと、を有する。さらに、第1部材6に対する第2部材7のY方向の相対移動量を求めるY軸のエンコーダも備えられている。図1(A)では、Y軸のエンコーダのうちの検出ヘッド14Yのみが図示されている。   In FIG. 1A, an encoder 10X includes a flat plate-shaped X-axis diffraction grating 12X fixed to the upper surface of the first member 6 and parallel to the XY plane, and a diffraction grating fixed to the upper surface of the second member 7. An X-axis detection head 14X that irradiates measurement light to 12X, a laser light source 16 that supplies laser light for measurement to the detection head 14X, and a detection signal output from the detection head 14X to process the first member 6 A measurement calculation unit 42X that obtains a relative movement amount of at least the second member 7 in the X direction. Further, a Y-axis encoder for obtaining a relative movement amount of the second member 7 in the Y direction with respect to the first member 6 is also provided. In FIG. 1A, only the detection head 14Y of the Y-axis encoder is shown.

回折格子12XのXY面に平行な格子パターン面12Xbには、X方向に所定の周期(ピッチ)を持ち、位相型でかつ反射型の格子パターン12Xaが形成されている。格子パターン12Xaの周期は、一例として100nm〜4μm程度(例えば2μm周期)である。格子パターン12Xaは、例えばホログラム(例えば感光性樹脂に干渉縞を焼き付けたもの)として、又はガラス板等に機械的に溝等を形成して反射膜を被着することで作製可能である。さらに、格子パターン面12Xbは、保護用の平板ガラスで覆われていてもよい。なお、回折格子12Xの代わりに、X方向、Y方向に周期的に形成された格子パターンを持つ2次元の回折格子を使用してもよい。   On the grating pattern surface 12Xb parallel to the XY plane of the diffraction grating 12X, a phase-type and reflection-type grating pattern 12Xa having a predetermined period (pitch) in the X direction is formed. The period of the lattice pattern 12Xa is about 100 nm to 4 μm (for example, a period of 2 μm) as an example. The grating pattern 12Xa can be produced, for example, as a hologram (for example, an interference fringe baked on a photosensitive resin) or by mechanically forming a groove or the like on a glass plate or the like and applying a reflective film. Furthermore, the lattice pattern surface 12Xb may be covered with a protective flat glass. Instead of the diffraction grating 12X, a two-dimensional diffraction grating having a grating pattern periodically formed in the X direction and the Y direction may be used.

レーザ光源16は、例えばHe−Neレーザ又は半導体レーザ等よりなり、一例として偏光方向が互いに直交するとともに互いに周波数が異なる第1及び第2の直線偏光のレーザ光XR,YRよりなる2周波ヘテロダイン光を射出する。そのレーザ光XR,YRは互いに可干渉であり、それらの平均波長をλとする。レーザ光源16は、レーザ光XR,YRから分岐した2つの光束の干渉光を光電変換して得られる基準周波数の信号(基準信号)を計測演算部42Xに供給する。なお、ホモダイン干渉方式も使用可能である。   The laser light source 16 is made of, for example, a He—Ne laser or a semiconductor laser. For example, a dual-frequency heterodyne light composed of first and second linearly polarized laser beams XR and YR whose polarization directions are orthogonal to each other and have different frequencies. Inject. The laser beams XR and YR are coherent with each other, and their average wavelength is λ. The laser light source 16 supplies a reference frequency signal (reference signal) obtained by photoelectrically converting the interference light of two light beams branched from the laser beams XR and YR to the measurement calculation unit 42X. A homodyne interference method can also be used.

レーザ光源16から射出されたヘテロダイン光は、偏光ビームスプリッタ(以下、PBSという。)18により互いに同じ光量のP偏光の第1のレーザ光XRと、S偏光の第2のレーザ光YRとに分割される。第1のレーザ光XRは、偏光方向を調整するための1/2波長板20Aを介してPBS22Xに入射し、−X方向に向かうS偏光のX軸の計測光MXと、+Y方向に向かうP偏光のY軸の参照光RYとに分割される。Y軸の参照光RYはミラー45A,45Bを介してY軸の検出ヘッド14Yに供給され、参照光RYは、検出ヘッド14Y内でY軸の計測光によってY軸の回折格子(不図示)から発生する回折光と干渉する。   The heterodyne light emitted from the laser light source 16 is split into a P-polarized first laser light XR and an S-polarized second laser light YR having the same light quantity by a polarizing beam splitter (hereinafter referred to as PBS) 18. Is done. The first laser beam XR is incident on the PBS 22X via the half-wave plate 20A for adjusting the polarization direction, and the S-polarized X-axis measurement beam MX in the -X direction and the P beam in the + Y direction. It is split into polarized Y-axis reference light RY. The Y-axis reference light RY is supplied to the Y-axis detection head 14Y via the mirrors 45A and 45B, and the reference light RY is transmitted from the Y-axis diffraction grating (not shown) by the Y-axis measurement light in the detection head 14Y. Interferes with the generated diffracted light.

また、PBS18で分割された第2のレーザ光YRは、1/2波長板20Bを介してPBS22Yに入射し、P偏光のY軸の計測光MYとS偏光のX軸の参照光RXとに分割され、Y軸の計測光MYはY軸の検出ヘッド14Yに供給される。1/2波長板20B及びPBS22Yは検出ヘッド14Yの一部とみなすことも可能である。1/2波長板20A,20Bの回転角は、それぞれ計測光MX及びMYの光量がその入射するレーザ光XR,YRの光量の95%程度になるように調整される。PBS22Yで反射されたS偏光の参照光RXは、1/2波長板20CによってP偏光に変換された後、ミラー45C,45Dを介して光路が+Z方向にシフトした状態でハーフミラー45Eに入射し、互いに同じ光量の第1及び第2の参照光RX1,RX2に分割される。参照光RX1はP偏光としてPBS38XAに入射し、参照光RX2は、ミラー45Fを介してP偏光としてPBS38XBに入射する。参照光RX1,RX2は、PBS38XA,38XBで後述のX軸の第1及び第2の回折光と合流して干渉光(ヘテロダインビーム)となる。これらの干渉光は、波長板(不図示)を介してフォトダイオード等からなる第1及び第2の光電センサ40XA,40XBに入射する。なお、実際には、参照光RX1,RX2の光路長は、対応する計測光(回折光)の光路長とほぼ等しくなるように光路が設定されている。   The second laser light YR divided by the PBS 18 is incident on the PBS 22Y via the half-wave plate 20B, and is converted into the P-polarized Y-axis measurement light MY and the S-polarized X-axis reference light RX. The Y-axis measurement light MY is divided and supplied to the Y-axis detection head 14Y. The half-wave plate 20B and the PBS 22Y can be regarded as a part of the detection head 14Y. The rotation angles of the half-wave plates 20A and 20B are adjusted so that the light amounts of the measurement beams MX and MY are about 95% of the light amounts of the incident laser beams XR and YR, respectively. The S-polarized reference light RX reflected by the PBS 22Y is converted into P-polarized light by the half-wave plate 20C, and then enters the half mirror 45E via the mirrors 45C and 45D with the optical path shifted in the + Z direction. The first and second reference beams RX1 and RX2 having the same light amount are divided. The reference light RX1 enters the PBS 38XA as P-polarized light, and the reference light RX2 enters the PBS 38XB as P-polarized light through the mirror 45F. The reference beams RX1 and RX2 are combined with first and second diffracted beams on the X axis, which will be described later, in PBSs 38XA and 38XB to become interference light (heterodyne beams). These interference lights enter the first and second photoelectric sensors 40XA and 40XB made of a photodiode or the like via a wave plate (not shown). In practice, the optical paths are set so that the optical path lengths of the reference beams RX1 and RX2 are substantially equal to the optical path length of the corresponding measurement light (diffracted light).

このように本実施形態では、X軸のレーザ光XRから分割された参照光RYがY軸の検出ヘッド14Yに供給され、Y軸のレーザ光YRから分割された参照光RX(RX1,RX2)がX軸の検出ヘッド14Xで生成される回折光と干渉する。一例として、回折格子12Xでの回折効率はほぼ10%であり、後述のように2回の回折を行わせることによって、最終的に使用される回折光の効率はほぼ1%になる。従って、このように計測光MX,MYの光量をほぼ95%にしておくことによって、最終的に干渉する回折光と参照光との光量比はほぼ1:1になり、参照光を減衰する必要がなくなるため、レーザ光XR,YRの使用効率が高くなる。ミラー45A〜45F,ハーフミラー45E、及び1/2波長板20Cから参照光の光路長を計測光の光路長に合わせるための光学系44が構成されている。   As described above, in this embodiment, the reference light RY divided from the X-axis laser light XR is supplied to the Y-axis detection head 14Y, and the reference light RX (RX1, RX2) divided from the Y-axis laser light YR. Interferes with the diffracted light generated by the X-axis detection head 14X. As an example, the diffraction efficiency of the diffraction grating 12X is approximately 10%, and the efficiency of the finally used diffracted light is approximately 1% by performing diffraction twice as described later. Accordingly, by setting the light amounts of the measurement beams MX and MY to approximately 95% in this way, the light amount ratio between the finally diffracted light and the reference light becomes approximately 1: 1, and it is necessary to attenuate the reference light. Therefore, the use efficiency of the laser beams XR and YR is increased. An optical system 44 for adjusting the optical path length of the reference light to the optical path length of the measurement light is configured from the mirrors 45A to 45F, the half mirror 45E, and the half-wave plate 20C.

また、後述のように本実施形態では、X方向(又はY方向)の相対移動量XとZ方向の相対移動量Zとの差分(X−Z)(又はY−Z)とを計測するために、X方向の回折格子12X(又はY方向の回折格子12Y)でも+1次と-1次の回折光を利用する。本実施形態では、相対移動量Xを計測するための+1次と−1次との回折光の波長(λ1とする)を同じにする。同様に相対移動量Yを計測する際に、+1次と−1次との回折光の波長(λ2とする)を同じにする。このように、移動量Xと移動量Yとを計測する計測光(回折格子12X,12Yで回折される光)を異なる波長にしている。このことで、前述のように移動量Xを計測するための計測光(波長λ1)と参照光(波長λ2)との光量比が95:5になる場合に、移動量Yを計測するための計測光(波長λ2)と参照光(波長λ1)との光量比も95:5になる。この場合の波長λ1,λ2は、レーザ光源16から射出されるヘテロダインビームの二つの波長である。   Further, as described later, in this embodiment, in order to measure the difference (XZ) (or YZ) between the relative movement amount X in the X direction (or Y direction) and the relative movement amount Z in the Z direction. In addition, the + 1st order and −1st order diffracted lights are also used in the X direction diffraction grating 12X (or the Y direction diffraction grating 12Y). In the present embodiment, the wavelengths of the + 1st order and −1st order diffracted light (measured as λ1) for measuring the relative movement amount X are made the same. Similarly, when measuring the relative movement amount Y, the wavelengths of the diffracted light of the + 1st order and the −1st order (referred to as λ2) are made the same. Thus, the measurement light (light diffracted by the diffraction gratings 12X and 12Y) for measuring the movement amount X and the movement amount Y is set to have different wavelengths. Thus, as described above, when the light amount ratio between the measurement light (wavelength λ1) and the reference light (wavelength λ2) for measuring the movement amount X is 95: 5, the movement amount Y is measured. The light quantity ratio between the measurement light (wavelength λ2) and the reference light (wavelength λ1) is also 95: 5. In this case, the wavelengths λ1 and λ2 are two wavelengths of the heterodyne beam emitted from the laser light source 16.

本実施形態の検出ヘッド14Xは2階建て構造であり、PBS18,22X,22Y等は第2部材7上の1階部分にあるのに対して、PBS38XA,38XB等は不図示のフレームを介して2階部分に配置されている。
また、X軸の検出ヘッド14Xは、上記の1/2波長板20A、PBS22X、及び参照光用の光学系44とともに、1階部分にX方向に離れたハーフミラー面25A及び反射面25Bを有し、2階部分に反射面25Cを有する光路変更部材24Xと、光路変更部材24Xの−X方向の端部近傍に配置されてY軸にほぼ45°で傾斜する反射面を持つミラー36Xと、を有する。さらに、検出ヘッド14Xは、光路変更部材24Xの+Y方向側に対向するように、X方向に隣接して対称に配置された第1及び第2のPBS28A,28Bと、PBS28A,28Bの+X方向側及び−X方向側の側面に対称に固定された第1及び第2のコーナキューブ29A,29Bと、PBS28Aの+Y方向側に不図示のフレームによって支持された+1次回折光用の第1及び第2の傾斜ミラー32XA,32XBと、PBS28Bの+Y方向側に不図示のフレームによって支持された−1次回折光用の第1及び第2の傾斜ミラー34XA,34XBと、を有する。傾斜ミラー32XA,34XAは1階部分に反射面を有し、傾斜ミラー32XB,34XBは2階部分に反射面を有する。また、PBS28A及び28Bの偏光ビームスプリッタ面は、それぞれZY面に平行な面をθz方向に45°及び−45°回転した面である。また、PBS28A,28Bの−Y方向の側面に1/2波長板27が固定され、PBS28A,28Bの+Y方向の側面に1/4波長板30が固定されている。1/2波長板27、PBS28A,28B、コーナキューブ29A,29B、1/4波長板30、傾斜ミラー32XA,32XB、及び傾斜ミラー34XA,34XBを含んで、±1次の各2回の回折を行わせるためのX軸の回折光発生部26Xが構成されている。
The detection head 14X of the present embodiment has a two-story structure, and the PBSs 18, 22X, 22Y, etc. are on the first floor portion on the second member 7, whereas the PBSs 38XA, 38XB, etc. are passed through a frame (not shown). Located on the second floor.
The X-axis detection head 14X has a half mirror surface 25A and a reflection surface 25B separated in the X direction on the first floor, together with the half-wave plate 20A, the PBS 22X, and the optical system 44 for reference light. An optical path changing member 24X having a reflecting surface 25C on the second floor, a mirror 36X having a reflecting surface disposed near the end of the optical path changing member 24X in the -X direction and inclined at approximately 45 ° with respect to the Y axis, Have Further, the detection head 14X includes first and second PBSs 28A and 28B that are symmetrically disposed adjacent to each other in the X direction so as to face the + Y direction side of the optical path changing member 24X, and the + X direction side of the PBSs 28A and 28B. The first and second corner cubes 29A and 29B fixed symmetrically on the side surface on the −X direction side, and the first and second + 1st order diffracted light beams supported by a frame (not shown) on the + Y direction side of the PBS 28A. Inclined mirrors 32XA and 32XB, and first and second inclined mirrors 34XA and 34XB for -1st order diffracted light supported by a frame (not shown) on the + Y direction side of PBS 28B. The inclined mirrors 32XA and 34XA have a reflecting surface on the first floor portion, and the inclined mirrors 32XB and 34XB have a reflecting surface on the second floor portion. The polarization beam splitter surfaces of the PBSs 28A and 28B are surfaces obtained by rotating a plane parallel to the ZY plane by 45 ° and −45 ° in the θz direction, respectively. Further, a half-wave plate 27 is fixed to the side surfaces of the PBSs 28A and 28B in the -Y direction, and a quarter-wave plate 30 is fixed to the side surfaces of the PBSs 28A and 28B in the + Y direction. Including the 1/2 wavelength plate 27, PBS 28A, 28B, corner cubes 29A, 29B, 1/4 wavelength plate 30, tilting mirrors 32XA, 32XB, and tilting mirrors 34XA, 34XB, each ± 2nd order diffraction An X-axis diffracted light generator 26X is configured to be performed.

検出ヘッド14Xにおいて、PBS22Xで−X方向に分岐されたS偏光のX軸の計測光MXは、光路変更部材24Xに入射し、ハーフミラー面25Aでほぼ+Y方向に向かう第1の計測光MX1と−X方向に向かう第2の計測光MX2とに分割され、第2の計測光MX2は反射面25Bでほぼ+Y方向に反射される。計測光MX1及びMX2はそれぞれ1/2波長板27を介してP偏光(ここでは偏光方向がX方向)に変換されてPBS28A及び28Bに入射する。入射した計測光MX1,MX2は、それぞれPBS28A,28Bを透過し、1/4波長板30を介して傾斜ミラー32XA,34XAの平面の反射面に入射する。   In the detection head 14X, the S-polarized X-axis measurement light MX branched in the −X direction by the PBS 22X is incident on the optical path changing member 24X, and the first measurement light MX1 that substantially goes in the + Y direction at the half mirror surface 25A. The second measurement light MX2 is divided into the second measurement light MX2 directed in the −X direction, and the second measurement light MX2 is reflected almost in the + Y direction by the reflection surface 25B. The measurement lights MX1 and MX2 are converted into P-polarized light (here, the polarization direction is the X direction) via the half-wave plate 27 and enter the PBSs 28A and 28B. The incident measurement lights MX1 and MX2 pass through the PBSs 28A and 28B, respectively, and enter the plane reflecting surfaces of the inclined mirrors 32XA and 34XA via the quarter-wave plate 30.

図1(B)は図1(A)中の傾斜ミラー32XA,34XAの反射面等を示す図である。図1(B)において、傾斜ミラー32XAの反射面に入射した計測光MX1は、その反射面で反射されて、回折格子12Xの格子パターン面12Xbに、θy方向(X方向)の入射角φ1が、次のように格子パターン12Xaに対する+1次回折光のリトロー角(Littrow角)φLIよりも所定の角度βだけ大きくなる状態で入射する。   FIG. 1B is a diagram showing the reflecting surfaces and the like of the inclined mirrors 32XA and 34XA in FIG. In FIG. 1B, the measurement light MX1 incident on the reflecting surface of the inclined mirror 32XA is reflected by the reflecting surface, and the incident angle φ1 in the θy direction (X direction) is reflected on the grating pattern surface 12Xb of the diffraction grating 12X. Then, the light enters the grating pattern 12Xa in a state of being larger than the Littrow angle (Littrow angle) φLI of the + 1st order diffracted light by a predetermined angle β.

φ1=φLI+β …(1)
格子パターン面12Xbに入射する計測光MX1のθx方向(Y方向)の入射角は0でもよいが、計測光MX1のY方向の入射角は例えば0〜β程度(例えばβ/2程度)に傾斜していることが好ましい。角度βは、一例として0.5°から数deg程度であり、例えば0.5°〜1.5°(目標値で1°程度)に設定される。
φ1 = φLI + β (1)
The incident angle in the θx direction (Y direction) of the measurement light MX1 incident on the grating pattern surface 12Xb may be 0, but the incident angle in the Y direction of the measurement light MX1 is inclined to, for example, about 0 to β (for example, about β / 2). It is preferable. The angle β is about 0.5 ° to several degrees as an example, and is set to, for example, 0.5 ° to 1.5 ° (target value is about 1 °).

+1次回折光のリトロー角φLIは、点線の光ビームLAで示すように、入射する光ビームLAとこの+1次回折光LA1とが平行になるときの光ビームLAの入射角である。このように光ビームLAがリトロー角φLIで入射すると、格子パターン面の高さが変化しても+1次回折光LA1の横シフトが発生しないため、干渉光の強度が変化しないという利点がある一方で、後述のように0次光によるノイズ光の問題が生じる。格子パターン12XaのX方向の周期をp、計測光MX1,MX2の平均的な波長をλとすると、リトロー角φLIは次の関係を満たす。   The Littrow angle φLI of the + 1st order diffracted light is an incident angle of the light beam LA when the incident light beam LA and the + 1st order diffracted light LA1 are parallel, as indicated by the dotted light beam LA. When the light beam LA is incident at the Littrow angle φLI as described above, there is an advantage that the intensity of the interference light does not change because the lateral shift of the + 1st order diffracted light LA1 does not occur even if the height of the grating pattern surface changes. As described later, a problem of noise light due to zero-order light occurs. When the period in the X direction of the grating pattern 12Xa is p and the average wavelength of the measurement lights MX1 and MX2 is λ, the Littrow angle φLI satisfies the following relationship.

2・sin φLI=λ …(2)
リトロー角φLIで入射する光ビームLAの格子パターン12Xaによる0次光(正反射光)LA0は+1次回折光LA1と対称になる。この場合、光ビームLAと対称に格子パターン12Xaに入射する光ビームの−1次回折光と、0次光LA0とはほぼ平行になるため、その−1次回折光と0次光LA0とが合流すると、周期の大きい干渉縞(ノイズ光)が形成され、計測誤差の要因になる恐れがある。
2 ・ sin φLI = λ (2)
The 0th order light (regular reflection light) LA0 by the grating pattern 12Xa of the light beam LA incident at the Littrow angle φLI is symmetric with the + 1st order diffracted light LA1. In this case, since the −1st order diffracted light of the light beam incident on the grating pattern 12Xa symmetrically with the light beam LA and the 0th order light LA0 are substantially parallel, the −1st order diffracted light and the 0th order light LA0 merge. Interference fringes (noise light) with a large period are formed, which may cause measurement errors.

また、傾斜ミラー32XAから入射角φ1で格子パターン12Xaに入射した計測光MX1による回折格子12Xからの+1次回折光DX1の回折角φ2は、次のようにほぼリトロー角φLIよりも角度βだけ小さくなる。
φ2≒φLI−β …(3)
また、傾斜ミラー34XAの反射面に入射した計測光MX2は、その反射面で反射されて格子パターン面12Xbに、θy方向(X方向)の入射角が、計測光MX1と対称になるように角度(−φ1)で入射する。計測光MX2のX方向の入射角は、格子パターン12Xaに対する−1次回折光のリトロー角(−φLI)よりも絶対値が角度βだけ大きくなる。計測光MX2のθx方向(Y方向)の入射角は、例えば計測光MX1のY方向の入射角と同じ程度である。傾斜ミラー34XAから入射角(−φ1)で格子パターン12Xaに入射した計測光MX2による回折格子12Xからの−1次回折光EX1の回折角は、回折光DX1の回折角φ2と符号が逆である。また、計測光MX1,MX2による格子パターン12Xaからの0次光(正反射光)M10,M20の反射角はそれぞれ−φ1及びφ1である。
Further, the diffraction angle φ2 of the + 1st order diffracted light DX1 from the diffraction grating 12X by the measurement light MX1 incident on the grating pattern 12Xa from the inclined mirror 32XA at the incident angle φ1 is substantially smaller than the Littrow angle φLI by an angle β as follows. .
φ2 ≒ φLI-β (3)
Further, the measurement light MX2 incident on the reflection surface of the inclined mirror 34XA is reflected by the reflection surface, and is incident on the grating pattern surface 12Xb so that the incident angle in the θy direction (X direction) is symmetric with the measurement light MX1. Incident at (−φ1). The incident angle in the X direction of the measurement light MX2 has an absolute value larger by an angle β than the Littrow angle (−φLI) of the −1st order diffracted light with respect to the grating pattern 12Xa. The incident angle of the measurement light MX2 in the θx direction (Y direction) is, for example, about the same as the incident angle of the measurement light MX1 in the Y direction. The diffraction angle of the minus first-order diffracted light EX1 from the diffraction grating 12X by the measurement light MX2 incident on the grating pattern 12Xa from the inclined mirror 34XA at the incident angle (−φ1) is opposite in sign to the diffraction angle φ2 of the diffracted light DX1. Further, the reflection angles of the zero-order light (regular reflection light) M10 and M20 from the lattice pattern 12Xa by the measurement lights MX1 and MX2 are −φ1 and φ1, respectively.

このため、本実施形態では、計測光MX1の0次光M10と−1次回折光EX1とのθy方向の角度(交差角)はほぼ2・βとなる。従って、仮に0次光M10と−1次回折光EX1とが合流しても、周期の小さい干渉縞が形成されるのみで、計測誤差は極めて小さくなる。
格子パターン12Xaからの回折光DX1及びEX1は、それぞれ傾斜ミラー32XA,34XAの反射面でほぼ−Y方向に反射されて、図1(A)の1/4波長板30を介してS偏光になってPBS28A,28Bに入射し、偏光ビームスプリッタ面で反射される。
For this reason, in the present embodiment, the angle (crossing angle) in the θy direction between the 0th-order light M10 and the −1st-order diffracted light EX1 of the measurement light MX1 is approximately 2 · β. Accordingly, even if the 0th-order light M10 and the −1st-order diffracted light EX1 are merged, an interference fringe with a short period is only formed, and the measurement error becomes extremely small.
The diffracted lights DX1 and EX1 from the grating pattern 12Xa are reflected substantially in the −Y direction by the reflecting surfaces of the inclined mirrors 32XA and 34XA, respectively, and become S-polarized light through the quarter-wave plate 30 in FIG. Then, the light enters the PBSs 28A and 28B and is reflected by the polarization beam splitter surface.

図2に示すように、PBS28A,28Bの偏光ビームスプリッタ面で反射された回折光DX1及びEX1は、それぞれコーナキューブ29A,29Bで反射されてから、その偏光ビームスプリッタ面の2階部分で再度反射された後、1/4波長板30を介して第2の傾斜ミラー32XB,34XBの平面の反射面に入射する。
図1(B)において、2階部分の傾斜ミラー32XBの反射面に入射した回折光DX1は、その反射面で反射されて、回折格子12Xに、計測光MX1とほぼ平行に入射する。従って、回折光DX1のX方向の入射角φ1も、リトロー角φLIよりもほぼ角度βだけ大きくなる。また、回折光DX1による格子パターン12Xaからの+1次回折光DX2(計測光MX1に対する+2次回折光)の回折角φ2は、回折光DX1の回折角とほぼ同じである。
As shown in FIG. 2, the diffracted beams DX1 and EX1 reflected by the polarization beam splitter surfaces of the PBSs 28A and 28B are reflected by the corner cubes 29A and 29B, respectively, and then reflected again by the second floor portion of the polarization beam splitter surface. Then, the light is incident on the reflecting surfaces of the second inclined mirrors 32XB and 34XB through the quarter-wave plate 30.
In FIG. 1B, the diffracted light DX1 incident on the reflecting surface of the inclined mirror 32XB on the second floor is reflected by the reflecting surface and enters the diffraction grating 12X substantially parallel to the measuring light MX1. Accordingly, the incident angle φ1 of the diffracted light DX1 in the X direction is also substantially larger by the angle β than the Littrow angle φLI. The diffraction angle φ2 of the + 1st order diffracted light DX2 (+ 2nd order diffracted light with respect to the measurement light MX1) from the grating pattern 12Xa by the diffracted light DX1 is substantially the same as the diffraction angle of the diffracted light DX1.

また、2階部分の傾斜ミラー34XBの反射面に入射した回折光EX1は、その反射面で反射されて回折格子12Xに、計測光MX2とほぼ平行に入射する。従って、回折光EX1のX方向の入射角はほぼ−φ1である。傾斜ミラー34XBから入射した回折光EX1による格子パターン12Xaからの−1次回折光EX2(計測光MX2に対する−2次回折光)の回折角は、ほぼ−φ2である。また、回折光DX1,EX1による格子パターン12Xaからの0次光(正反射光)D10,E10の反射角はそれぞれほぼ−φ1及びφ1である。なお、図1(B)において、実際には、傾斜ミラー32XA,34XBからの計測光(回折光)が入射する回折格子12X上のX方向の位置はほぼ等しく、傾斜ミラー32XB,34XAからの回折光(計測光)が入射する回折格子12X上のX方向の位置はほぼ等しい。   Further, the diffracted light EX1 incident on the reflecting surface of the inclined mirror 34XB on the second floor is reflected by the reflecting surface and enters the diffraction grating 12X substantially parallel to the measuring light MX2. Therefore, the incident angle in the X direction of the diffracted light EX1 is approximately −φ1. The diffraction angle of the −1st order diffracted light EX2 (−2nd order diffracted light with respect to the measurement light MX2) from the grating pattern 12Xa by the diffracted light EX1 incident from the inclined mirror 34XB is approximately −φ2. The reflection angles of the 0th-order light (regular reflection light) D10 and E10 from the grating pattern 12Xa by the diffracted light DX1 and EX1 are approximately −φ1 and φ1, respectively. In FIG. 1B, actually, the positions in the X direction on the diffraction grating 12X where the measurement light (diffracted light) from the inclined mirrors 32XA and 34XB is incident are substantially equal, and the diffraction from the inclined mirrors 32XB and 34XA is performed. The positions in the X direction on the diffraction grating 12X where light (measurement light) enters are substantially equal.

このため、回折光DX1(EX1)の0次光D10(E10)と回折光EX2(回折光DX2)とのθy方向の角度(交差角)はほぼ2・βとなる。従って、仮に0次光D10等と回折光EX2等とが合流しても、周期の小さい干渉縞が形成されるのみで、計測誤差は極めて小さくなる。ここで、計測光MX1,MX2(平均波長λ)のビーム径をdとして、0次光D10等と回折光EX2等とが合流して形成される干渉縞の周期がそのビーム径dの1/50以下程度であれば(干渉縞が50本以上形成される程度であれば)、得られる干渉縞を光電変換して得られる検出信号の0次光に起因する変動成分(ノイズ成分)はほぼ2%以下になり、計測誤差は極めて小さくなる。この際の条件は以下のようになる。ただし、角度βをradで表している。   Therefore, the angle (crossing angle) in the θy direction between the 0th-order light D10 (E10) and the diffracted light EX2 (diffracted light DX2) of the diffracted light DX1 (EX1) is approximately 2 · β. Therefore, even if the 0th-order light D10 and the like and the diffracted light EX2 and the like merge, only an interference fringe with a short period is formed, and the measurement error becomes extremely small. Here, assuming that the beam diameters of the measurement lights MX1 and MX2 (average wavelength λ) are d, the period of interference fringes formed by the merge of the 0th-order light D10 and the diffracted light EX2 is 1 / of the beam diameter d. If it is about 50 or less (if 50 or more interference fringes are formed), the fluctuation component (noise component) caused by the 0th-order light of the detection signal obtained by photoelectrically converting the obtained interference fringes is almost the same. It becomes 2% or less, and the measurement error becomes extremely small. The conditions at this time are as follows. However, the angle β is represented by rad.

d・2・β≧50λ …(4)
ここで、一例としてビーム径dを1mm、波長λを0.633μmとすると、式(4)を満たす角度βは以下のようになる。
β≧0.0158(rad)=0.91° …(5)
従って、計測光MX1,MX2のビーム径が1mm程度であれば、計測光MX1,MX2のX方向の入射角のリトロー角に対するずれの角度βは、0.91°以上、例えば1°程度であることが好ましい。なお、計測光MX1,MX2の入射角のリトロー角に対するずれβが大きくなると、格子パターン面12XaのZ方向の位置の変化に対して、回折光DX1,EX1の横シフト量が大きくなり、相対位置情報を含む干渉光の強度が小さくなるため、式(5)を満たす範囲内で角度βはあまり大きくしない方がよい。
d · 2 · β ≧ 50λ (4)
Here, as an example, when the beam diameter d is 1 mm and the wavelength λ is 0.633 μm, the angle β satisfying the equation (4) is as follows.
β ≧ 0.0158 (rad) = 0.91 ° (5)
Accordingly, if the beam diameters of the measurement lights MX1 and MX2 are about 1 mm, the deviation angle β of the incident angle in the X direction of the measurement lights MX1 and MX2 with respect to the Littrow angle is 0.91 ° or more, for example, about 1 °. It is preferable. Note that when the shift β of the incident angles of the measurement beams MX1 and MX2 with respect to the Littrow angle increases, the lateral shift amount of the diffracted beams DX1 and EX1 increases with respect to the change in the position of the grating pattern surface 12Xa in the Z direction, and the relative position. Since the intensity of the interference light including information becomes small, it is better not to make the angle β too large within the range satisfying Expression (5).

格子パターン12Xaからの回折光DX2及びEX2は、それぞれ傾斜ミラー32XB,34XBの反射面でほぼ−Y方向に反射されて、図2の1/4波長板30を介してP偏光になってPBS28A,28Bに入射し、偏光ビームスプリッタ面を透過する。
図2に示すように、回折光発生部26XのPBS28A,28Bを透過した回折光DX2及びEX2は、それぞれ1/2波長板27を介してS偏光に変換された後、光路変更部材24Xの反射面25C及びミラー36Xでほぼ+X方向に反射される。そして、反射された回折光DX2及びEX2は、それぞれPBS38XA,38XBに入射して参照光RX1,RX2と同軸に合成された後、偏光板(不図示)を介して干渉光(ヘテロダインビーム)として光電センサ40XA,40XBに入射する。
The diffracted beams DX2 and EX2 from the grating pattern 12Xa are reflected in the substantially −Y direction by the reflecting surfaces of the inclined mirrors 32XB and 34XB, respectively, and become P-polarized light via the quarter-wave plate 30 in FIG. It enters 28B and passes through the polarization beam splitter surface.
As shown in FIG. 2, the diffracted lights DX2 and EX2 transmitted through the PBSs 28A and 28B of the diffracted light generator 26X are converted into S-polarized light through the half-wave plates 27, respectively, and then reflected by the optical path changing member 24X. The light is reflected substantially in the + X direction by the surface 25C and the mirror 36X. Then, the reflected diffracted lights DX2 and EX2 are incident on PBSs 38XA and 38XB and synthesized coaxially with the reference lights RX1 and RX2, respectively, and then photoelectrically converted into interference light (heterodyne beam) via a polarizing plate (not shown). The light enters the sensors 40XA and 40XB.

図1(A)において、光電センサ40XA,40XBはそれぞれ入射する干渉光を光電変換して得られる検出信号SXA,SXB(ヘテロダイン信号)を計測演算部42Xに供給する。一例として、計測演算部42Xは、検出信号SXAとレーザ光源16から供給される基準信号とから、第1部材6に対する第2部材7のZ方向への相対移動量とX方向への相対移動量との和(Z+X)を求める。さらに、計測演算部42Xは、検出信号SXBとその基準信号とから、第1部材6に対する第2部材7のZ方向への相対移動量とX方向への相対移動量との差(Z−X)を求める。そして、計測演算部42Xは、その和と差との差分を平均化することで、第1部材6に対する第2部材7のX方向への相対移動量(X)を求めることができ、その和と差とを平均化することで、第1部材6に対する第2部材7のZ方向への相対移動量(Z)を求めることができる。X方向、Z方向の相対移動量の検出分解能は例えば0.5〜0.1nm程度である。   In FIG. 1A, photoelectric sensors 40XA and 40XB supply detection signals SXA and SXB (heterodyne signals) obtained by photoelectrically converting incident interference light to the measurement calculation unit 42X. As an example, the measurement calculation unit 42X uses the detection signal SXA and the reference signal supplied from the laser light source 16, and the relative movement amount in the Z direction and the relative movement amount in the X direction of the second member 7 with respect to the first member 6. Is obtained (Z + X). Further, the measurement calculation unit 42X determines, based on the detection signal SXB and its reference signal, the difference (Z−X) between the relative movement amount in the Z direction and the relative movement amount in the X direction of the second member 7 with respect to the first member 6. ) And the measurement calculating part 42X can obtain | require the relative movement amount (X) to the X direction of the 2nd member 7 with respect to the 1st member 6 by averaging the difference of the sum and difference, The sum And the difference are averaged, the relative movement amount (Z) of the second member 7 with respect to the first member 6 in the Z direction can be obtained. The detection resolution of the relative movement amount in the X direction and the Z direction is, for example, about 0.5 to 0.1 nm.

本実施形態では、最終的に2回目の+1次回折光DX2と参照光RX1との干渉光、及び2回目の+1次回折光EX2と参照光RX2との干渉光を検出しているため、相対移動量の検出分解能(検出精度)を1/2に向上(微細化)できる。また、2回目の回折光を用い、かつ±1次回折光を用いることによって、第1部材6と第2部材7とのθz方向の相対回転角による計測誤差を低減できる。   In the present embodiment, the interference light between the second + 1st order diffracted light DX2 and the reference light RX1 and the interference light between the second + 1st order diffracted light EX2 and the reference light RX2 are finally detected. Detection resolution (detection accuracy) can be improved to 1/2 (miniaturization). Further, by using the second diffracted light and using the ± first-order diffracted light, the measurement error due to the relative rotation angle in the θz direction between the first member 6 and the second member 7 can be reduced.

次に、例えば傾斜ミラー32XAから回折格子12Xの格子パターン面12Xbに入射する計測光MX1の入射角をφ1(=φLI+β)に設定する複数の方法につき、図3(A)〜(C)、及び図4(A)、(B)を参照して説明する。これらの方法は他の傾斜ミラー32XB,34XA,34XBの角度調整にも適用可能である。
まず、傾斜角の設定準備として、図3(A)中の斜視図で示すように、傾斜ミラー32XAの反射面をXZ面に平行な状態からX軸に平行な軸の回りに45°傾斜させる。このとき、Y軸に平行に傾斜ミラー32XAの反射面に入射する光ビームLAは、その反射面で−Z方向に反射されて、図3(A)内のA方向から視た図(矢視A)で示すように、回折格子12Xの格子パターン面12Xbに垂直に入射する。この状態で、光ビームLAを計測光MX1として、図3(B)中の斜視図で示すように、計測光MX1及び傾斜ミラー32XAを、Y軸に平行な軸(入射する計測光MX1)の回りに一体的にリトロー角φLIだけ回転する。このとき、図3(B)中の矢視Bで示すように、傾斜ミラー32XAで反射された計測光MX1は、回折格子12Xにθy方向(X方向)に入射角φLIで入射する。さらに、第1の方法として、その計測光MX1及び傾斜ミラー32XAの一体としての回転角をφ1(=φLI+β)に設定することで、計測光MX1の回折格子12Xに対する入射角をφ1に設定できる。この状態で傾斜ミラー32XAを不図示のフレームに固定することで、計測光MX1のX方向の入射角はφ1になる。
Next, with respect to a plurality of methods for setting the incident angle of the measurement light MX1 incident on the grating pattern surface 12Xb of the diffraction grating 12X from the inclined mirror 32XA to φ1 (= φLI + β), for example, FIGS. This will be described with reference to FIGS. These methods can also be applied to angle adjustment of the other tilt mirrors 32XB, 34XA, 34XB.
First, as preparation for setting the tilt angle, as shown in the perspective view in FIG. 3A, the reflecting surface of the tilted mirror 32XA is tilted 45 ° around the axis parallel to the X axis from the state parallel to the XZ plane. . At this time, the light beam LA incident on the reflecting surface of the inclined mirror 32XA parallel to the Y-axis is reflected in the −Z direction by the reflecting surface, and is a diagram viewed from the A direction in FIG. As shown in A), the light is incident perpendicular to the grating pattern surface 12Xb of the diffraction grating 12X. In this state, the light beam LA is used as the measurement light MX1, and as shown in the perspective view in FIG. 3B, the measurement light MX1 and the inclined mirror 32XA are arranged on an axis parallel to the Y axis (incident measurement light MX1). Rotates integrally around the Littrow angle φLI. At this time, as indicated by an arrow B in FIG. 3B, the measurement light MX1 reflected by the inclined mirror 32XA is incident on the diffraction grating 12X at an incident angle φLI in the θy direction (X direction). Furthermore, as a first method, the incident angle of the measurement light MX1 with respect to the diffraction grating 12X can be set to φ1 by setting the rotation angle of the measurement light MX1 and the tilt mirror 32XA as an integral unit to φ1 (= φLI + β). By fixing the tilting mirror 32XA to a frame (not shown) in this state, the incident angle in the X direction of the measuring light MX1 becomes φ1.

次に、第2の方法として、図3(B)に示すように、計測光MX1及び傾斜ミラー32XAを、Y軸に平行な軸の回りに一体的にリトロー角φLIだけ回転した状態で、傾斜ミラー32XAを不図示のフレームに固定してもよい。この場合、図3(C)の斜視図で示すように、入射する計測光MX1をY軸に平行な状態からθz方向に角度αだけ傾斜させる。点線の光路MX0は、計測光MX1を角度αだけ傾斜させる前の光路である。このとき、傾斜ミラー32XAで反射される計測光MX1の回折格子12Xに対するX方向の入射角は、図3(C)中の矢視CXで示すように、角度(φLI+β)となる。また、計測光MX1のY方向の入射角は、図3(C)中の矢視CYで示すように、角度γとなる。角度α、β、γの関係は次のようになる。   Next, as a second method, as shown in FIG. 3B, the measurement light MX1 and the tilt mirror 32XA are tilted in a state where the measurement light MX1 and the tilt mirror 32XA are integrally rotated around the axis parallel to the Y axis by the Littrow angle φLI. The mirror 32XA may be fixed to a frame (not shown). In this case, as shown in the perspective view of FIG. 3C, the incident measurement light MX1 is inclined from the state parallel to the Y axis by an angle α in the θz direction. The dotted optical path MX0 is an optical path before the measurement light MX1 is inclined by the angle α. At this time, the incident angle in the X direction with respect to the diffraction grating 12X of the measurement light MX1 reflected by the inclined mirror 32XA is an angle (φLI + β) as indicated by an arrow CX in FIG. Further, the incident angle of the measurement light MX1 in the Y direction is an angle γ as shown by an arrow CY in FIG. The relationship between the angles α, β, and γ is as follows.

β=α cos φLI …(6A)、 γ=α sin φLI …(6B)
そこで、式(6A)の角度βが例えば1°程度になるように、角度αを定めることによって、回折格子12Xに対する計測光MX1のX方向の入射角をリトロー角から所定の角度ずらすことができる。このときには、計測光MX1のY方向の入射角は式(6B)で定まる値に設定される。その角度αは、例えば図1(A)の光路変更部材24Xのハーフミラー面25A及び反射面25Bの角度で調整可能である。
β = α cos φLI (6A), γ = α sin φLI (6B)
Therefore, by determining the angle α so that the angle β in the equation (6A) is, for example, about 1 °, the incident angle in the X direction of the measuring light MX1 with respect to the diffraction grating 12X can be shifted from the Littrow angle by a predetermined angle. . At this time, the incident angle of the measurement light MX1 in the Y direction is set to a value determined by Expression (6B). The angle α can be adjusted by, for example, the angles of the half mirror surface 25A and the reflection surface 25B of the optical path changing member 24X in FIG.

次に、第3の方法では、図4(A)に示すように、計測光MX1及び傾斜ミラー32XAを、Y軸に平行な軸の回りに一体的に角度(φLI+3・β)だけ回転した状態で、傾斜ミラー32XAを不図示のフレームに固定し、かつ傾斜ミラー32XAと回折格子12Xとの間にθz方向に所定の開き角δを持つ楔形プリズム62を配置する。このとき、図4(A)中のB方向から視た図である図4(B)に示すように、楔形プリズム62による入射光の振れ角が2・βになるように開き角δが設定されている。この結果、傾斜ミラー32XAで反射されて、格子パターン面12Xbの法線方向に対して角度(φLI+3・β)で楔形プリズム62に入射した計測光MX1は、楔形プリズム62により方向がθy方向に2・β変化した後、格子パターン面12XbにX方向の入射角(φLI+β)で入射する。従って、計測光MX1の回折格子12Xに対する入射角はリトロー角からβだけずれた角度に設定される。   Next, in the third method, as shown in FIG. 4A, the measurement light MX1 and the tilt mirror 32XA are integrally rotated by an angle (φLI + 3 · β) around an axis parallel to the Y axis. Thus, the inclined mirror 32XA is fixed to a frame (not shown), and a wedge-shaped prism 62 having a predetermined opening angle δ in the θz direction is disposed between the inclined mirror 32XA and the diffraction grating 12X. At this time, as shown in FIG. 4B, which is a view seen from the B direction in FIG. 4A, the opening angle δ is set so that the deflection angle of incident light by the wedge prism 62 becomes 2 · β. Has been. As a result, the measurement light MX1 reflected by the inclined mirror 32XA and incident on the wedge-shaped prism 62 at an angle (φLI + 3 · β) with respect to the normal direction of the lattice pattern surface 12Xb is 2 in the θy direction by the wedge-shaped prism 62. After β change, the light enters the grating pattern surface 12Xb at an incident angle (φLI + β) in the X direction. Accordingly, the incident angle of the measurement light MX1 with respect to the diffraction grating 12X is set to an angle shifted by β from the Littrow angle.

さらに、格子パターン面12Xbからの+1次回折光DX1の回折角はほぼ(φLI−β)であり、回折光DX1は楔形プリズム62を通過すると、θy方向の角度が2・β変化して、格子パターン面12Xbの法線方向に対して角度(φLI+β)で傾斜ミラー32XAの反射面に入射する。従って、この回折光DX1をその反射面から図1のコーナキューブ29A等を介してその反射面(又は他の傾斜ミラー32XB)に戻すことによって、その回折光DX1は、今度は楔形プリズム62が無い状態で格子パターン面12Xbに対してX方向に入射角(φLI+β)で入射する。従って、楔形プリズム62を用いる方法は、特に回折格子12Xで計測光MX1による1回目の回折光DX1を発生させた後、その回折格子12Xから回折光DX1による2回目の回折光DX2を発生させるときに有効である。すなわち、2回目の回折光DX2を発生させるときには楔形プリズム62を使用する必要がない。   Further, the diffraction angle of the + 1st order diffracted light DX1 from the grating pattern surface 12Xb is substantially (φLI−β), and when the diffracted light DX1 passes through the wedge prism 62, the angle in the θy direction changes by 2 · β, and the grating pattern The light enters the reflecting surface of the inclined mirror 32XA at an angle (φLI + β) with respect to the normal direction of the surface 12Xb. Accordingly, by returning the diffracted light DX1 from the reflecting surface to the reflecting surface (or another tilted mirror 32XB) via the corner cube 29A of FIG. 1, the diffracted light DX1 is now free from the wedge prism 62. In this state, the light is incident on the lattice pattern surface 12Xb in the X direction at an incident angle (φLI + β). Therefore, the method using the wedge-shaped prism 62 is particularly when the first diffraction light DX1 by the measurement light MX1 is generated by the diffraction grating 12X and then the second diffraction light DX2 by the diffraction light DX1 is generated from the diffraction grating 12X. It is effective for. That is, it is not necessary to use the wedge-shaped prism 62 when generating the second diffraction light DX2.

本実施形態の効果等は以下の通りである。本実施形態のX軸のエンコーダ10Xは、第1部材6と第2部材7とのX方向の相対移動量を計測するエンコーダである。そして、エンコーダ10Xは、第1部材6に設けられ、X方向(第1方向)を周期方向とする格子パターン12Xaが形成された回折格子12Xと、互いに可干渉性のある計測光MX1及び参照光RX1を供給するレーザ光源16等と、を有する。また、エンコーダ10Xは、第2部材7に設けられ、計測光MX1を回折格子12Xに向けてX方向にリトロー角から所定の角度βずれた角度φ1で反射する傾斜ミラー32XAと、回折格子12Xからの回折光DX1を回折格子12Xに向けてX方向に角度φで反射する傾斜ミラー32XBと、回折格子12Xからの回折光DX2と参照光RX1との干渉光を検出する光電センサ40XAと、光電センサ40XAの検出信号SXAを用いて第1部材6に対する第2部材7のX方向の相対移動量を求める計測演算部42Xと、を備える。   The effects and the like of this embodiment are as follows. The X-axis encoder 10 </ b> X of the present embodiment is an encoder that measures the relative movement amount of the first member 6 and the second member 7 in the X direction. The encoder 10X is provided on the first member 6 and has a diffraction grating 12X in which a grating pattern 12Xa having a periodic direction in the X direction (first direction) is formed. The measurement light MX1 and the reference light that are coherent with each other. And a laser light source 16 for supplying RX1. The encoder 10X is provided on the second member 7, and reflects the measurement light MX1 toward the diffraction grating 12X at an angle φ1 that is shifted from the Littrow angle by a predetermined angle β in the X direction, and the diffraction grating 12X. Of the diffracted light DX1 toward the diffraction grating 12X at an angle φ in the X direction, a photoelectric sensor 40XA for detecting interference light between the diffracted light DX2 from the diffraction grating 12X and the reference light RX1, and a photoelectric sensor A measurement calculation unit 42X that obtains a relative movement amount of the second member 7 in the X direction with respect to the first member 6 using a detection signal SXA of 40XA.

なお、検出信号SXAからは、正確にはX方向及びZ方向の相対移動量の和が求められるが、仮に第1部材6と第2部材7とがZ方向にはほとんど静止している場合には、その検出信号SXAからX方向の相対移動量を求めることができる。
本実施形態によれば、計測光MX1及び回折光DX1を格子パターン面12Xaに向けて反射する傾斜ミラー32XA,32XBを設けているため、エンコーダ10Xの光学系のZ方向の高さ(格子パターン面12Xaの法線方向の高さ)を低くできる。従って、エンコーダ10Xの検出ヘッド14Xを第2部材7上にコンパクトに容易に設置できる。
The detection signal SXA accurately calculates the sum of the relative movement amounts in the X direction and the Z direction. However, if the first member 6 and the second member 7 are almost stationary in the Z direction. Can determine the relative movement amount in the X direction from the detection signal SXA.
According to the present embodiment, since the inclined mirrors 32XA and 32XB that reflect the measurement light MX1 and the diffracted light DX1 toward the grating pattern surface 12Xa are provided, the height of the optical system of the encoder 10X in the Z direction (grating pattern surface) The height in the normal direction of 12Xa can be reduced. Therefore, the detection head 14X of the encoder 10X can be easily and compactly installed on the second member 7.

さらに、傾斜ミラー32XA,32XBから格子パターン面12Xaに向かう計測光MX1及び回折光DX1のX方向の入射角を、ほぼ回折格子12Xの+1次回折光のリトロー角φLIの近傍に設定しているため、格子パターン面12XaのZ方向の位置(高さ)の変化に対して、回折光DX1の横シフト量が小さく、干渉光の強度変化が小さいため、常に安定に相対移動量が計測できる。また、格子パターン面12Xaに向かう計測光MX1及び回折光DX1のX方向の入射角を、そのリトロー角φLIに対して角度βだけ変化した角度に設定しているため、回折格子12Xからの0次光の影響を低減して計測精度を向上できる。なお、リトロー角としては、±2次以上の回折光のリトロー角を使用してもよい。
また、従来のエンコーダ装置では、回折格子の回折効率が低いときに、計測光を回折格子で二回回折させると、参照光と計測光との強度差が大きいが、本実施形態では、参照光と計測光との強度さが極めて小さい。
また、従来のエンコーダ装置では、検出ヘッドと回折格子との距離の変化によって、計測光の光路長が変化する。この場合に、レーザ光源16の波長誤差によって計測誤差が生じるが、本実施形態では、そのような計測誤差は極めて小さい。
Further, since the incident angles in the X direction of the measurement light MX1 and the diffracted light DX1 from the inclined mirrors 32XA and 32XB toward the grating pattern surface 12Xa are set to be approximately in the vicinity of the Littrow angle φLI of the + 1st order diffracted light of the diffraction grating 12X. Since the lateral shift amount of the diffracted light DX1 is small and the intensity change of the interference light is small with respect to the change in the position (height) of the lattice pattern surface 12Xa in the Z direction, the relative movement amount can always be measured stably. Further, since the incident angles in the X direction of the measurement light MX1 and the diffracted light DX1 toward the grating pattern surface 12Xa are set to an angle changed by an angle β with respect to the Littrow angle φLI, the zeroth order from the diffraction grating 12X. Measurement accuracy can be improved by reducing the influence of light. As the Littrow angle, a Littrow angle of diffracted light of ± 2nd order or higher may be used.
Further, in the conventional encoder device, when the diffraction light is diffracted twice by the diffraction grating when the diffraction efficiency of the diffraction grating is low, there is a large difference in intensity between the reference light and the measurement light. And the intensity of measurement light is extremely small.
In the conventional encoder device, the optical path length of the measurement light changes due to the change in the distance between the detection head and the diffraction grating. In this case, a measurement error occurs due to the wavelength error of the laser light source 16, but in the present embodiment, such a measurement error is extremely small.

また、本実施形態では、2つの傾斜ミラー32XA,32XBを用いて計測光MX1を回折格子12Xで実質的に2回回折させているため、検出分解能が向上できる。なお、1つの傾斜ミラー32XAのみを用いて、1回目の回折光DX1と参照光RX1との干渉光を検出するようにしてもよい。
さらに、本実施形態では、第2の計測光MX2によって傾斜ミラー34XA,34XBを介して回折格子12Xから発生する−1次回折光EX2と参照光RX2との干渉光を検出している。しかしながら、例えば傾斜ミラー32XBからの2回目の+1次回折光DX2(又は1回目の回折光DX1)と傾斜ミラー34XBからの2回目の−1次回折光EX2(又は1回目の回折光EX1)との干渉光を検出し、この検出信号から第1部材6と第2部材7とのX方向の相対移動量を求めてもよい。
In the present embodiment, the measurement light MX1 is diffracted substantially twice by the diffraction grating 12X using the two inclined mirrors 32XA and 32XB, so that the detection resolution can be improved. Note that the interference light between the first-time diffracted light DX1 and the reference light RX1 may be detected using only one inclined mirror 32XA.
Furthermore, in the present embodiment, the second measurement light MX2 detects interference light between the −1st order diffracted light EX2 and the reference light RX2 generated from the diffraction grating 12X via the tilt mirrors 34XA and 34XB. However, for example, interference between the second + 1st order diffracted light DX2 (or first diffracted light DX1) from the tilt mirror 32XB and the second -1st order diffracted light EX2 (or first diffracted light EX1) from the tilted mirror 34XB. Light may be detected, and the relative movement amount in the X direction between the first member 6 and the second member 7 may be obtained from this detection signal.

なお、図4(C)に示すように、2次元の回折格子12XYに2つの波長λ1及びλ2の第1及び第2の計測光MXY1及びMXY2を例えばほぼ垂直に入射させ、回折格子12XYからX方向及びY方向への±1次の回折光を発生させ、これらの回折光と参照光との干渉光を検出する場合にも本実施形態の方法が適用可能である。すなわち、第1の計測光MXY1から分離した参照光RXY2と第2の計測光MXY2との干渉光を検出し、第2の計測光MXY2から分離した参照光RXY1と第1の計測光MXY1との干渉光を検出してもよい。   As shown in FIG. 4C, the first and second measurement beams MXY1 and MXY2 having two wavelengths λ1 and λ2 are incident on the two-dimensional diffraction grating 12XY almost vertically, for example. The method of this embodiment can also be applied to the case where ± 1st-order diffracted light in the direction and the Y direction is generated and interference light between these diffracted light and reference light is detected. That is, interference light between the reference light RXY2 separated from the first measurement light MXY1 and the second measurement light MXY2 is detected, and the reference light RXY1 separated from the second measurement light MXY2 and the first measurement light MXY1 are detected. Interference light may be detected.

[第1実施例]
第1実施例につき図5を参照して説明する。図5において、図1(A)に対応する部分には同一の符号を付してその詳細な説明を省略する。図5は、第1実施例に係る2次元のエンコーダ装置8の概略構成を示す。エンコーダ装置8は、不図示の第1部材と不図示の第2部材との間の少なくとも直交する2つの軸(X軸及びY軸とする)の方向の相対移動量を求めるために、X軸のエンコーダ10XとY軸のエンコーダ10Yとを有する。エンコーダ10X及び10Yは、それぞれ不図示の第1部材に固定されたX方向を周期方向とする回折格子12X及びY方向を周期方向とする回折格子12Yと、不図示の第2部材に固定されたX軸の検出ヘッド14X及びY軸の検出ヘッド14Yと、を有する。エンコーダ10X及び10Yは、共通のレーザ光源16及び計測演算部42を有する。
[First embodiment]
The first embodiment will be described with reference to FIG. 5, parts corresponding to those in FIG. 1A are denoted by the same reference numerals and detailed description thereof is omitted. FIG. 5 shows a schematic configuration of the two-dimensional encoder device 8 according to the first embodiment. The encoder device 8 determines the relative movement amount in the direction of at least two orthogonal axes (X and Y axes) between a first member (not shown) and a second member (not shown). Encoder 10X and Y-axis encoder 10Y. The encoders 10X and 10Y are fixed to a diffraction grating 12X whose periodic direction is the X direction fixed to a first member (not shown) and a diffraction grating 12Y whose periodic direction is the Y direction, and a second member (not shown). An X-axis detection head 14X and a Y-axis detection head 14Y. The encoders 10X and 10Y have a common laser light source 16 and a measurement calculation unit 42.

X軸の検出ヘッド14Xにおいて、レーザ光源16から射出されてPBS(偏光ビームスプリッタ)18で分岐されたP偏光のレーザ光は、1/2波長板20A及び方向調整用の1対の偏角プリズム56を介してPBS22Xに入射する。PBS22Xを透過したP偏光の参照光は、ハーフミラー58AでY軸の参照光RY及びローカル干渉信号生成用の光ビームMXLに分割される。光ビームMXLは、ミラー52B、偏角プリズム56、及び偏光方向調整用の1/2波長板54(ここでは省略可)を介してP偏光でPBS38Lに入射する。   In the X-axis detection head 14X, the P-polarized laser light emitted from the laser light source 16 and branched by the PBS (polarization beam splitter) 18 is a half-wave plate 20A and a pair of declination prisms for direction adjustment. Then, the light enters the PBS 22X. The P-polarized reference light transmitted through the PBS 22X is split by the half mirror 58A into a Y-axis reference light RY and a local interference signal generating light beam MXL. The light beam MXL is incident on the PBS 38L as P-polarized light through the mirror 52B, the deflection prism 56, and the polarization adjusting half-wave plate 54 (which may be omitted here).

また、Y軸の検出ヘッド14Yにおいて、PBS18で分岐されてミラー52Aを介して供給されたS偏光のレーザ光は、1/2波長板20B及び偏角プリズム56を介してPBS22Yに入射する。PBS22Yを透過したP偏光(図1(A)の例とは偏光方向が逆である)の参照光は、ハーフミラー58BでX軸の参照光RX及びローカル干渉信号生成用の光ビームMYLに分割される。光ビームMYLは、1/2波長板54Aを介してS偏光でPBS38Lに入射する。なお、検出ヘッド14X,14Yは2階建て構造であり、ハーフミラー58B、PBS38L等は1階部分にあり、後述のPBS38YA等は2階部分にあり、光ビームMYLは、PBS38YAの底面を通過している。   In the Y-axis detection head 14Y, the S-polarized laser beam branched by the PBS 18 and supplied via the mirror 52A is incident on the PBS 22Y via the half-wave plate 20B and the deflection prism 56. Reference light of P-polarized light (polarization direction opposite to that in the example of FIG. 1A) transmitted through the PBS 22Y is split by the half mirror 58B into an X-axis reference light RX and a light beam MYL for generating a local interference signal. Is done. The light beam MYL is incident on the PBS 38L as S-polarized light through the half-wave plate 54A. The detection heads 14X and 14Y have a two-story structure, the half mirror 58B, PBS 38L, etc. are on the first floor, the later-described PBS 38YA, etc. are on the second floor, and the light beam MYL passes through the bottom of the PBS 38YA. ing.

PBS38Lに入射した光ビームMXL及びMYLは同軸に合成された後、偏角プリズム56及び偏光板60を介してローカル干渉光として光電センサ40XAと同じ光電センサ40Lに入射する。光電センサ40Lは、そのローカル干渉光の検出信号を計測演算部42に出力する。その検出信号は、例えばレーザ光源16から計測演算部42に供給される基準信号の代わりに使用することも可能である。   The light beams MXL and MYL incident on the PBS 38L are combined coaxially, and then enter the photoelectric sensor 40L that is the same as the photoelectric sensor 40XA as local interference light via the deflection prism 56 and the polarizing plate 60. The photoelectric sensor 40L outputs the detection signal of the local interference light to the measurement calculation unit 42. The detection signal can be used instead of a reference signal supplied from the laser light source 16 to the measurement calculation unit 42, for example.

また、ハーフミラー58Aを通過したY軸の参照光RYは、2面ミラー部材52Cの第1の反射面で+X方向に反射された後、コーナキューブ46Aで反射されて2階部分に移動する。2階部分で−X方向に進む参照光RYは、Y軸の計測光MYの光路上にある光学部材とほぼ同じ光路長を設定するための複数枚のガラス板47Aを透過して、ダハプリズム48で+X方向に反射される。+X方向に反射された参照光RYは、ハーフミラー58Cで第1及び第2のP偏光のY軸の参照光RY1,RY2に分割される。参照光RY1は偏角プリズム56を介して−Y方向にPBS38YAに入射し、参照光RY2はミラー52Eで反射された後、偏角プリズム56を介して−Y方向にPBS38YBに入射する。   The Y-axis reference light RY that has passed through the half mirror 58A is reflected in the + X direction by the first reflecting surface of the two-surface mirror member 52C, and then reflected by the corner cube 46A and moves to the second floor. The reference light RY traveling in the −X direction in the second floor portion is transmitted through the plurality of glass plates 47A for setting the optical path length substantially the same as the optical member on the optical path of the Y-axis measurement light MY, and the roof prism 48 Is reflected in the + X direction. The reference light RY reflected in the + X direction is split by the half mirror 58C into first and second P-polarized Y-axis reference lights RY1 and RY2. The reference light RY1 enters the PBS 38YA in the −Y direction via the deflection prism 56, and the reference light RY2 is reflected by the mirror 52E and then enters the PBS 38YB in the −Y direction via the deflection prism 56.

一方、ハーフミラー58Bを通過したX軸の参照光RXは、1階部分にあるミラー52で−X方向に反射され、複数枚のガラス板47Aを透過した後、コーナキューブ46Bで反射されて2階部分に移動する。2階部分で+X方向に進む参照光RXは、光路長調整用の複数枚のガラス板47Bを透過して、ハーフミラー58Dで第1及び第2のP偏光のX軸の参照光RX1,RX2に分割される。参照光RX1は偏角プリズム56を介して−Y方向にPBS38XAに入射し、参照光RX2は2面ミラー部材52Cの第2の反射面で反射された後、偏角プリズム56を介して−Y方向にPBS38XBに入射する。2面ミラー部材52C、コーナキューブ46A,46B、ダハプリズム48、及びガラス板47A,47B等から、検出ヘッド14X及び14Yについて共通の参照光用の光学系44XYが構成されている。   On the other hand, the X-axis reference light RX that has passed through the half mirror 58B is reflected in the −X direction by the mirror 52 on the first floor, passes through the plurality of glass plates 47A, and then is reflected by the corner cube 46B. Move to the floor. The reference light RX traveling in the + X direction at the second floor portion is transmitted through a plurality of glass plates 47B for optical path length adjustment, and the first and second P-polarized X-axis reference lights RX1, RX2 are transmitted by the half mirror 58D. It is divided into. The reference light RX1 is incident on the PBS 38XA in the −Y direction via the deflection prism 56, and the reference light RX2 is reflected by the second reflecting surface of the two-surface mirror member 52C, and then −Y via the deflection prism 56. Incident in PBS38XB in the direction. An optical system 44XY for reference light common to the detection heads 14X and 14Y is constituted by the two-surface mirror member 52C, the corner cubes 46A and 46B, the roof prism 48, the glass plates 47A and 47B, and the like.

X軸の検出ヘッド14Xにおいて、PBS22Xで反射された計測光MXは、光路変更部材24Xを介して回折光発生部26Xに入射し、回折光発生部26Xによって回折格子12Xから2回目の+1次回折光DX2及び−1次回折光EX2が発生する。なお、図5の回折光発生部26Xにおいては、1/4波長板30の表面に、回折格子12Xにおける計測光の位相変化を補正するための位相補正板31が設けられている。回折光DX2は、光路変更部材24Xを経て+X方向にS偏光でPBS38XAに入射し、PBS38XAで−Y方向に同軸に合成された回折光DX2及び参照光RX1は、偏光板60及び偏角プリズム56を介して干渉光として光電センサ40XAで受光される。回折光EX2は、ミラー36Xを経て+X方向にS偏光でPBS38XBに入射し、PBS38XBで−Y方向に同軸に合成された回折光EX2及び参照光RX2は、偏光板60及び偏角プリズム56を介して干渉光として光電センサ40XBで受光される。この際に、複数対の偏角プリズム56の調整によって、その回折光DX2,EX2及び参照光RX1,RX2から形成される干渉縞がそれぞれ例えば全体で1本以内になるように調整される。   In the X-axis detection head 14X, the measurement light MX reflected by the PBS 22X is incident on the diffracted light generator 26X via the optical path changing member 24X, and the + 1st order diffracted light from the diffraction grating 12X by the diffracted light generator 26X. DX2 and -1st order diffracted light EX2 are generated. In the diffracted light generator 26X of FIG. 5, a phase correction plate 31 for correcting a phase change of the measurement light in the diffraction grating 12X is provided on the surface of the quarter wavelength plate 30. The diffracted light DX2 passes through the optical path changing member 24X and enters the PBS 38XA as S-polarized light in the + X direction. The diffracted light DX2 and the reference light RX1 synthesized coaxially in the −Y direction by the PBS 38XA are the polarizing plate 60 and the deflection prism 56. Is received by the photoelectric sensor 40XA as interference light. The diffracted light EX2 passes through the mirror 36X and enters the PBS 38XB as S-polarized light in the + X direction. The diffracted light EX2 and the reference light RX2 synthesized coaxially in the −Y direction by the PBS 38XB pass through the polarizing plate 60 and the deflection prism 56. The interference light is received by the photoelectric sensor 40XB. At this time, by adjusting the plurality of pairs of declination prisms 56, the interference fringes formed from the diffracted beams DX2 and EX2 and the reference beams RX1 and RX2 are adjusted to be, for example, one or less as a whole.

また、Y軸の検出ヘッド14Yは、基本的にX軸の検出ヘッド14Xを90°回転した構成である。Y軸の検出ヘッド14Yにおいて、PBS22Yで反射されたS偏光の計測光MYは、ミラー37Y及び光路変更部材24Yを介して、Y方向に離れた2本の計測光MY1,MY2としてY軸の回折光発生部26Yに入射する。回折光発生部26Yは、X軸の回折光発生部26Xを90°回転した構成である。なお、回折光発生部26Yにおける回折格子12Yの上方の2対の傾斜ミラーが傾斜ミラー32YA,32YB及び34YA,34YBである。回折光発生部26Yによって回折格子12Yから2回目の+1次回折光DY2及び−1次回折光EY2が発生する。回折光DY2,EY2は、光路変更部材24Yの上方の空間(2階部分)を+X方向に通過し、回折光DY2は、S偏光でPBS38YAに入射し、PBS38YAで−Y方向に同軸に合成された回折光DY2及び参照光RY1は、偏光板60及び偏角プリズム56を介して干渉光として光電センサ40YAで受光される。回折光EY2は、S偏光でPBS38YBに入射し、PBS38YBで−Y方向に同軸に合成された回折光EY2及び参照光RY2は、偏光板60及び偏角プリズム56を介して干渉光として光電センサ40YBで受光される。   The Y-axis detection head 14Y is basically configured by rotating the X-axis detection head 14X by 90 °. In the Y-axis detection head 14Y, the S-polarized measurement light MY reflected by the PBS 22Y is diffracted in the Y-axis as two measurement lights MY1 and MY2 separated in the Y direction via the mirror 37Y and the optical path changing member 24Y. It enters the light generator 26Y. The diffracted light generator 26Y is configured by rotating the X-axis diffracted light generator 26X by 90 °. Note that the two pairs of inclined mirrors above the diffraction grating 12Y in the diffracted light generator 26Y are the inclined mirrors 32YA, 32YB and 34YA, 34YB. The diffracted light generator 26Y generates second + 1st order diffracted light DY2 and −1st order diffracted light EY2 from the diffraction grating 12Y. The diffracted beams DY2 and EY2 pass through the space (second floor portion) above the optical path changing member 24Y in the + X direction, and the diffracted beam DY2 is incident on the PBS 38YA as S-polarized light and is coaxially combined in the −Y direction by the PBS 38YA. The diffracted light DY2 and the reference light RY1 are received by the photoelectric sensor 40YA as interference light through the polarizing plate 60 and the deflection prism 56. The diffracted light EY2 is incident on the PBS 38YB as S-polarized light, and the diffracted light EY2 and the reference light RY2 synthesized coaxially in the −Y direction by the PBS 38YB are supplied to the photoelectric sensor 40YB as interference light through the polarizing plate 60 and the deflection prism 56. Is received.

この際に、複数対の偏角プリズム56の調整によって、その回折光DY2,EY2及び参照光RY1,RY2から形成される干渉縞が例えば全体で1本以内になるように調整される。
光電センサ40XA,40XB,40YA,40YBの検出信号は計測演算部42に供給される。計測演算部42では、X軸の光電センサ40XA,40XBの検出信号及びレーザ光源16からの基準信号(又は光電センサ40Lからの検出信号)より、第1部材と第2部材とのX方向及びZ方向の相対移動量を求める。さらに、計測演算部42では、Y軸の光電センサ40YA,40YBの検出信号及びレーザ光源16からの基準信号(又は光電センサ40Lからの検出信号)より、第1部材と第2部材とのY方向及びZ方向の相対移動量を求める。
At this time, by adjusting the plural pairs of declination prisms 56, the interference fringes formed from the diffracted beams DY2 and EY2 and the reference beams RY1 and RY2 are adjusted, for example, to be within one as a whole.
Detection signals of the photoelectric sensors 40XA, 40XB, 40YA, and 40YB are supplied to the measurement calculation unit 42. In the measurement calculation unit 42, the X direction and the Z direction of the first member and the second member are determined based on the detection signals of the X-axis photoelectric sensors 40XA and 40XB and the reference signal from the laser light source 16 (or the detection signal from the photoelectric sensor 40L). Find the relative displacement in the direction. Further, in the measurement calculation unit 42, the Y direction of the first member and the second member is detected from the detection signals of the Y-axis photoelectric sensors 40YA and 40YB and the reference signal from the laser light source 16 (or the detection signal from the photoelectric sensor 40L). And the relative movement amount in the Z direction is obtained.

この際に、検出ヘッド14X,14Yをコンパクトに配置できる。さらに、傾斜ミラー32XA,32YA等から回折格子12X,12Yの格子パターン面に向かう計測光のX方向、Y方向の入射角を、回折格子12X,12Yのリトロー角に対して角度βだけ変化した角度に設定しているため、格子パターン面の高さの変化に対して回折光の横シフト量が小さく、干渉光の強度変化が小さいとともに、回折格子12X,12Yからの0次光の影響を低減して計測精度を向上できる。   At this time, the detection heads 14X and 14Y can be arranged in a compact manner. Further, the angle at which the incident angles in the X and Y directions of the measurement light directed from the inclined mirrors 32XA and 32YA to the grating pattern surfaces of the diffraction gratings 12X and 12Y are changed by an angle β with respect to the Littrow angles of the diffraction gratings 12X and 12Y. Therefore, the amount of lateral shift of the diffracted light is small with respect to the change in the height of the grating pattern surface, the change in the intensity of the interference light is small, and the influence of the 0th order light from the diffraction gratings 12X and 12Y is reduced. Measurement accuracy can be improved.

[第2実施例]
第2実施例につき図6〜図8を参照して説明する。図6〜図8において、図1(A)に対応する部分には同一の符号を付してその詳細な説明を省略する。図6及び図8は、第2実施例に係るX軸のエンコーダ10XAの概略構成を示す。図7(A)は図6のAA線に沿う断面図であり、図7(B)、(C)はそれぞれ図6のBB線に沿う断面図である。エンコーダ10XAは、不図示の第1部材に固定されたX方向を周期方向とする回折格子12Xと、第2部材64の上面に固定された検出ヘッド14XAと、レーザ光源16及び計測演算部42XAとを有する。なお、検出ヘッド14XAも2階建て構造である。
[Second Embodiment]
A second embodiment will be described with reference to FIGS. 6 to 8, parts corresponding to those in FIG. 1A are denoted by the same reference numerals, and detailed description thereof is omitted. 6 and 8 show a schematic configuration of an X-axis encoder 10XA according to the second embodiment. 7A is a cross-sectional view taken along line AA in FIG. 6, and FIGS. 7B and 7C are cross-sectional views taken along line BB in FIG. 6, respectively. The encoder 10XA includes a diffraction grating 12X whose periodic direction is the X direction fixed to a first member (not shown), a detection head 14XA fixed to the upper surface of the second member 64, a laser light source 16, and a measurement calculation unit 42XA. Have The detection head 14XA also has a two-story structure.

検出ヘッド14XAにおいて、レーザ光源16から射出されてPBS18を透過したP偏光の計測光MXは、1/2波長板54を介して2階部分のPBS18Cに入射し、PBS18Cを透過したP偏光成分(計測光MX)の一部がビームスプリッタ70で反射され、ミラー72Aを介してローカル干渉光生成用のPBS18Bに入射する。ビームスプリッタ70を透過した第1の計測光MX1は、1対の偏角プリズム56を介してP偏光で−Y方向にPBS(偏光ビームスプリッタ)28に入射する。PBS18Cで反射されたS偏光の第2の計測光MX2は、ミラー72C、1対の偏角プリズム56、及び1/2波長板54Bを介して−Y方向にP偏光でPBS28に入射する。   In the detection head 14XA, the P-polarized measurement light MX emitted from the laser light source 16 and transmitted through the PBS 18 is incident on the second-layer PBS 18C via the half-wave plate 54 and transmitted through the PBS 18C ( Part of the measurement light MX) is reflected by the beam splitter 70 and enters the local interference light generation PBS 18B via the mirror 72A. The first measurement light MX1 that has passed through the beam splitter 70 enters the PBS (polarization beam splitter) 28 in the -Y direction as P-polarized light through a pair of deflection prisms 56. The S-polarized second measurement light MX2 reflected by the PBS 18C enters the PBS 28 as P-polarized light in the −Y direction via the mirror 72C, the pair of declination prisms 56, and the half-wave plate 54B.

また、PBS18で反射されたS偏光の参照光RXは、ミラー52A等、1/2波長板54、及び偏角プリズム56を介して2階部分のPBS18Aに入射する。なお、実際には、PBS18から1/2波長板54までの計測光MXの光路長と、PBS18から1/2波長板54までの参照光RXの光路長とはほぼ等しくなるように、計測光MX及び参照光RXの光路は設定されている。PBS18Aで反射された参照光RXの一部がS偏光でPBS18Bに入射する。PBS18Bで−Y方向に同軸に合成された計測光MXの一部及び参照光RXの一部は、偏光板60を介してローカル干渉光として光電センサ40Lで受光される。光電センサ40Lの検出信号は計測演算部42XAに供給される。   The S-polarized reference light RX reflected by the PBS 18 is incident on the second-floor PBS 18A via the mirror 52A and the like, the half-wave plate 54, and the deflection prism 56. Actually, the optical path length of the measurement light MX from the PBS 18 to the half-wave plate 54 is substantially equal to the optical path length of the reference light RX from the PBS 18 to the half-wave plate 54. The optical paths of MX and reference light RX are set. Part of the reference light RX reflected by the PBS 18A enters the PBS 18B as S-polarized light. Part of the measurement light MX and part of the reference light RX synthesized coaxially in the −Y direction by the PBS 18B are received by the photoelectric sensor 40L through the polarizing plate 60 as local interference light. The detection signal of the photoelectric sensor 40L is supplied to the measurement calculation unit 42XA.

図7(A)に示すように、PBS18Aを透過したP偏光の参照光RXは、ZX面を45°傾斜させた2つの偏光ビームスプリッタ面(PBS面)68Aa,68Abを持つ光路変更部材68Aに入射する。参照光RXは、PBS面68Aa,68Abに対してはS偏光となるため、PBS面68Aa,68Abで反射された後、1階部分に移動して1/2波長板54を介して−Y方向にミラー72Bに入射する。図8に示すように、ミラー72Bで−X方向に反射された参照光RXは、ハーフミラー58Cで参照光RX1,RX2に分割され、参照光RX1は−Y方向にS偏光でPBS28に入射し、参照光RX2は、ミラー72Cを介して−Y方向にS偏光でPBS28に入射する。図7(B)、(C)に示すように、計測光MX1,MX2はハーフミラー58C及びミラー72Cの上方を通過してPBS28に入射する。   As shown in FIG. 7A, the P-polarized reference light RX transmitted through the PBS 18A is applied to an optical path changing member 68A having two polarization beam splitter surfaces (PBS surfaces) 68Aa and 68Ab whose ZX surfaces are inclined by 45 °. Incident. Since the reference light RX is S-polarized with respect to the PBS surfaces 68Aa and 68Ab, it is reflected by the PBS surfaces 68Aa and 68Ab, then moves to the first floor portion, and passes through the half-wave plate 54 to the −Y direction. Is incident on the mirror 72B. As shown in FIG. 8, the reference light RX reflected in the −X direction by the mirror 72B is divided into the reference lights RX1 and RX2 by the half mirror 58C, and the reference light RX1 enters the PBS 28 as S-polarized light in the −Y direction. The reference light RX2 enters the PBS 28 as S-polarized light in the −Y direction via the mirror 72C. As shown in FIGS. 7B and 7C, the measurement beams MX1 and MX2 pass above the half mirror 58C and the mirror 72C and enter the PBS 28.

図6において、PBS28に入射したP偏光の計測光MX1は、PBS面28aを透過して傾斜ミラー32XAの反射面で反射され、回折格子12Xの格子パターン12XaにX方向の入射角がリトロー角より角度βだけ大きい角度φ1で入射し、格子パターン12Xaからの+1次回折光DX1が発生する。図7(B)に示すように、回折光DX1(計測光MX1)の光路には図4(A)の楔形プリズム62と同じ楔形プリズム62A、1/4波長板30B、及び位相補正板31Bが配置されている。回折光DX1は、反射面の2階部分で反射されてPBS28にS偏光で入射する。   In FIG. 6, the P-polarized measurement light MX1 incident on the PBS 28 is transmitted through the PBS surface 28a and reflected by the reflecting surface of the inclined mirror 32XA, and the incident angle in the X direction on the grating pattern 12Xa of the diffraction grating 12X is smaller than the Littrow angle. Incident light is incident at an angle φ1 that is larger by the angle β, and + 1st order diffracted light DX1 is generated from the grating pattern 12Xa. As shown in FIG. 7B, a wedge-shaped prism 62A, a quarter-wave plate 30B, and a phase correction plate 31B that are the same as the wedge-shaped prism 62 in FIG. 4A are provided in the optical path of the diffracted light DX1 (measurement light MX1). Has been placed. The diffracted light DX1 is reflected by the second floor portion of the reflecting surface and enters the PBS 28 with S-polarized light.

図6に示すように、PBS面28aで反射された回折光DX1は、コーナキューブ29Aで反射され、PBS面28aで反射された後、図7(B)に示すように、傾斜ミラー32XAの反射面の1階部分に入射する。その反射面で反射された回折光DX1は、1/4波長板30B及び位相補正板31Bを介して格子パターン12XaにX方向の入射角φ1で入射し、格子パターン12Xaからの2回目の+1次回折光DX2が発生する。回折光DX2は傾斜ミラー32XAで反射されてPBS28にP偏光で入射し、図6に示すように、PBS面28aを透過した回折光DX2は、ミラー72D,72Eで反射され、1対のハービング66を介して光路合成部材68Bの1階部分に入射する。   As shown in FIG. 6, the diffracted light DX1 reflected by the PBS surface 28a is reflected by the corner cube 29A, reflected by the PBS surface 28a, and then reflected by the inclined mirror 32XA as shown in FIG. 7B. Incident on the first floor of the surface. The diffracted light DX1 reflected by the reflecting surface is incident on the grating pattern 12Xa through the quarter-wave plate 30B and the phase correction plate 31B at an incident angle φ1 in the X direction, and the second plus first time from the grating pattern 12Xa. The folded light DX2 is generated. The diffracted light DX2 is reflected by the inclined mirror 32XA and incident on the PBS 28 with P-polarized light. As shown in FIG. 6, the diffracted light DX2 transmitted through the PBS surface 28a is reflected by the mirrors 72D and 72E, and a pair of hervings 66 And enters the first floor portion of the optical path combining member 68B.

図7(B)に示すように、光路合成部材68Bは、光路変更部材68AのPBS面と平行な2つのPBS面68Ba,68Bbを有し、回折光DX2はPBS面68Ba,68Bbに対してはS偏光である。そのため、回折光DX2はPBS面68Ba,68Bbで反射されて2階部分で+Y方向に射出される。
同様に、図6において、PBS28に入射したP偏光の計測光MX2は、PBS面28aを透過して傾斜ミラー34XAの反射面で反射され、格子パターン12XaにX方向の入射角(−φ1)で入射し、格子パターン12Xaからの−1次回折光EX1が発生する。図7(C)に示すように、回折光EX1(計測光MX2)の光路には図4(A)の楔形プリズム62と同じ楔形プリズム62B、1/4波長板30B、及び位相補正板31Bが配置されている。回折光EX1は、反射面の2階部分で反射されてPBS28にS偏光で入射する。PBS面28aで反射された回折光EX1は、コーナキューブ29Bで反射され、PBS面28aで反射された後、傾斜ミラー34XAの反射面の1階部分に入射する。その反射面で反射された回折光EX1は、1/4波長板30B及び位相補正板31Bを介して格子パターン12XaにX方向の入射角(−φ1)で入射し、格子パターン12Xaからの2回目の−1次回折光EX2が発生する。回折光EX2は傾斜ミラー34XAで反射されてPBS28にP偏光で入射し、図6に示すように、PBS面28aを透過した回折光EX2は、ミラー72F,72Gで反射され、ハービング66を介して光路合成部材68Cの1階部分に入射する。図7(C)に示すように、回折光EX2は、光路合成部材68Bと同じ構成の光路合成部材68Cの2階部分で+Y方向に射出される。
As shown in FIG. 7B, the optical path combining member 68B has two PBS surfaces 68Ba and 68Bb parallel to the PBS surface of the optical path changing member 68A, and the diffracted light DX2 is not applied to the PBS surfaces 68Ba and 68Bb. S-polarized light. Therefore, the diffracted light DX2 is reflected by the PBS surfaces 68Ba and 68Bb and emitted in the + Y direction at the second floor portion.
Similarly, in FIG. 6, the P-polarized measurement light MX2 incident on the PBS 28 is transmitted through the PBS surface 28a and reflected by the reflecting surface of the inclined mirror 34XA, and is incident on the grating pattern 12Xa at an incident angle (−φ1) in the X direction. Incident light and −1st order diffracted light EX1 from the grating pattern 12Xa are generated. As shown in FIG. 7C, a wedge-shaped prism 62B, a quarter-wave plate 30B, and a phase correction plate 31B, which are the same as the wedge-shaped prism 62 in FIG. 4A, are provided in the optical path of the diffracted light EX1 (measurement light MX2). Has been placed. The diffracted light EX1 is reflected by the second floor portion of the reflecting surface and enters the PBS 28 with S-polarized light. The diffracted light EX1 reflected by the PBS surface 28a is reflected by the corner cube 29B, reflected by the PBS surface 28a, and then enters the first floor portion of the reflecting surface of the inclined mirror 34XA. The diffracted light EX1 reflected by the reflecting surface is incident on the grating pattern 12Xa through the quarter-wave plate 30B and the phase correction plate 31B at an incident angle (−φ1) in the X direction, and the second time from the grating pattern 12Xa. -1st order diffracted light EX2 is generated. The diffracted light EX2 is reflected by the inclined mirror 34XA and enters the PBS 28 with P-polarized light. As shown in FIG. 6, the diffracted light EX2 transmitted through the PBS surface 28a is reflected by the mirrors 72F and 72G and passes through the herving 66. It enters the first floor portion of the optical path combining member 68C. As shown in FIG. 7C, the diffracted light EX2 is emitted in the + Y direction at the second floor portion of the optical path combining member 68C having the same configuration as the optical path combining member 68B.

一方、図8において、PBS28に入射したS偏光の第1の参照光RX1は、PBS面28aで+X方向に反射された後、1/4波長板30Aを介してミラー74AのYZ面に平行な反射面で反射された後、1/4波長板30Aを介してP偏光でPBS面28aに入射する。PBS面28aを透過した参照光RX1は、コーナキューブ29Aで2階部分に反射された後(図7(B)参照)、1/4波長板30Aを介してミラー74Aで反射され、1/4波長板30Aを介してPBS面28aで反射される。反射された参照光RX1は、ミラー72H,72Eを介してP偏光で光路合成部材68BのPBS面に入射する。このPBS面で同軸に合成された回折光DX2及び参照光RX1は、偏光板60を介して干渉光として光電センサ40XAで受光される。   On the other hand, in FIG. 8, the S-polarized first reference light RX1 incident on the PBS 28 is reflected in the + X direction by the PBS surface 28a and then parallel to the YZ surface of the mirror 74A via the quarter-wave plate 30A. After being reflected by the reflecting surface, it is incident on the PBS surface 28a as P-polarized light through the quarter-wave plate 30A. The reference light RX1 transmitted through the PBS surface 28a is reflected by the corner cube 29A on the second floor (see FIG. 7B), then reflected by the mirror 74A via the quarter-wave plate 30A, and is ¼. Reflected by the PBS surface 28a through the wave plate 30A. The reflected reference light RX1 is incident on the PBS surface of the optical path combining member 68B as P-polarized light via the mirrors 72H and 72E. The diffracted light DX2 and the reference light RX1 synthesized coaxially on the PBS surface are received by the photoelectric sensor 40XA as interference light through the polarizing plate 60.

また、PBS28に入射したS偏光の第2の参照光RX2は、PBS面28aで+X方向に反射された後、1/4波長板30Aを介してミラー74BのYZ面に平行な反射面で反射された後、1/4波長板30Aを介してP偏光でPBS面28aに入射する。PBS面28aを透過した参照光RX2は、コーナキューブ29Bで2階部分に反射された後(図7(C)参照)、1/4波長板30Aを介してミラー74Bで反射され、1/4波長板30Aを介してPBS面28aで反射される。反射された参照光RX2は、ミラー72I,72Gを介してP偏光で光路合成部材68CのPBS面に入射する。このPBS面で同軸に合成された回折光EX2及び参照光RX2は、偏光板60を介して干渉光として光電センサ40XBで受光される。   The S-polarized second reference light RX2 incident on the PBS 28 is reflected in the + X direction by the PBS surface 28a, and then reflected by the reflective surface parallel to the YZ surface of the mirror 74B via the quarter-wave plate 30A. Then, the light is incident on the PBS surface 28a as P-polarized light through the quarter-wave plate 30A. The reference light RX2 transmitted through the PBS surface 28a is reflected to the second floor portion by the corner cube 29B (see FIG. 7C), then reflected by the mirror 74B through the quarter-wave plate 30A, and ¼ Reflected by the PBS surface 28a through the wave plate 30A. The reflected reference light RX2 enters the PBS surface of the optical path combining member 68C as P-polarized light via the mirrors 72I and 72G. The diffracted light EX2 and the reference light RX2 synthesized coaxially on the PBS surface are received by the photoelectric sensor 40XB through the polarizing plate 60 as interference light.

また、PBS面28aからミラー74A,74Bの反射面までの光路長は、PBS面28aからそれぞれ傾斜ミラー32XA,34XAを介して回折格子12Xに至る光路長とほぼ同じ長さに設定されている。さらに、参照光RX1,RX2と回折光DX2,EX2とは、PBS28及びコーナキューブ29A,29B内でほぼ同じ光路を通過している。従って、参照光RX1,RX2と回折光DX2,EX2とは、ほぼ等価な光路を通過しているため、環境の僅かな温度変化及び/又は雰囲気の温度変化等があっても、高い計測精度が得られる。   The optical path length from the PBS surface 28a to the reflecting surfaces of the mirrors 74A and 74B is set to be substantially the same as the optical path length from the PBS surface 28a to the diffraction grating 12X via the inclined mirrors 32XA and 34XA, respectively. Further, the reference beams RX1 and RX2 and the diffracted beams DX2 and EX2 pass through substantially the same optical path in the PBS 28 and the corner cubes 29A and 29B. Accordingly, since the reference beams RX1, RX2 and the diffracted beams DX2, EX2 pass through substantially equivalent optical paths, high measurement accuracy can be obtained even if there is a slight temperature change in the environment and / or a temperature change in the atmosphere. can get.

この際に、複数対の偏角プリズム56及びハービング66の調整によって、その回折光DX2,EX2及び参照光RX1,RX2から形成される干渉縞が例えば全体で1本以内になるように調整される。光電センサ40XA,40XBの検出信号は計測演算部42XAに供給される。計測演算部42XAでは、光電センサ40XA,40XBの検出信号及びレーザ光源16からの基準信号(又は光電センサ40Lからの検出信号)より、第1部材と第2部材64とのX方向及びZ方向の相対移動量を求めることができる。   At this time, by adjusting the plurality of pairs of declination prisms 56 and the herving 66, the interference fringes formed from the diffracted beams DX2 and EX2 and the reference beams RX1 and RX2 are adjusted to be within one overall, for example. . Detection signals of the photoelectric sensors 40XA and 40XB are supplied to the measurement calculation unit 42XA. In the measurement calculation unit 42XA, the X and Z directions of the first member and the second member 64 are determined based on the detection signals of the photoelectric sensors 40XA and 40XB and the reference signal from the laser light source 16 (or the detection signal from the photoelectric sensor 40L). The relative movement amount can be obtained.

この際に、検出ヘッド14XAをコンパクトに配置できる。さらに、傾斜ミラー32XA,34XAから回折格子12Xの格子パターン面に向かう計測光のX方向の入射角を、回折格子12Xのリトロー角に対して角度βだけ変化した角度に設定しているため、格子パターン面の高さの変化に対して回折光の横シフト量が小さく、干渉光の強度変化が小さいとともに、回折格子12Xからの0次光の影響を低減して計測精度を向上できる。   At this time, the detection head 14XA can be compactly arranged. Further, since the incident angle in the X direction of the measurement light from the inclined mirrors 32XA and 34XA toward the grating pattern surface of the diffraction grating 12X is set to an angle changed by an angle β with respect to the Littrow angle of the diffraction grating 12X, The lateral shift amount of the diffracted light is small with respect to the change in the height of the pattern surface, the change in the intensity of the interference light is small, and the influence of the zero-order light from the diffraction grating 12X can be reduced to improve the measurement accuracy.

[第3実施例]
第3実施例につき図9〜図11を参照して説明する。図9は、第3実施例に係るエンコーダ装置を備えた露光装置EXの概略構成を示す。露光装置EXは、スキャニングステッパーよりなる走査露光型の投影露光装置である。露光装置EXは、投影光学系PL(投影ユニットPU)を備えており、以下、投影光学系PLの光軸AXと平行にZ軸を取り、これに直交する面(ほぼ水平面に平行な面)内でレチクルRとウエハWとが相対走査される方向にY軸を、Z軸及びY軸に直交する方向にX軸を取って説明する。
[Third embodiment]
A third embodiment will be described with reference to FIGS. FIG. 9 shows a schematic configuration of an exposure apparatus EX provided with an encoder apparatus according to the third embodiment. The exposure apparatus EX is a scanning exposure type projection exposure apparatus composed of a scanning stepper. The exposure apparatus EX includes a projection optical system PL (projection unit PU). Hereinafter, the Z-axis is parallel to the optical axis AX of the projection optical system PL, and a plane orthogonal to the Z-axis (a plane substantially parallel to the horizontal plane). In the following description, the Y axis is taken in the direction in which the reticle R and the wafer W are relatively scanned, and the X axis is taken in the direction perpendicular to the Z axis and the Y axis.

露光装置EXは、例えば米国特許出願公開第2003/0025890号明細書などに開示される照明系110、及び照明系110からの露光用の照明光(露光光)IL(例えば波長193nmのArFエキシマレーザ光、固体レーザ(半導体レーザなど)の高調波など)により照明されるレチクルR(マスク)を保持するレチクルステージRSTを備えている。さらに、露光装置EXは、レチクルRから射出された照明光ILをウエハW(基板)に投射する投影光学系PLを含む投影ユニットPU、ウエハWを保持するウエハステージWSTを含むステージ装置195、及び制御系等(図11参照)を備えている。   The exposure apparatus EX includes an illumination system 110 disclosed in, for example, US Patent Application Publication No. 2003/0025890, and illumination light (exposure light) IL (for example, an ArF excimer laser having a wavelength of 193 nm) from the illumination system 110 A reticle stage RST that holds a reticle R (mask) illuminated by light, a harmonic of a solid-state laser (such as a semiconductor laser). Further, the exposure apparatus EX includes a projection unit PU including a projection optical system PL that projects the illumination light IL emitted from the reticle R onto the wafer W (substrate), a stage apparatus 195 including a wafer stage WST that holds the wafer W, and A control system or the like (see FIG. 11) is provided.

レチクルRはレチクルステージRSTの上面に真空吸着等により保持され、レチクルRのパターン面(下面)には、回路パターンなどが形成されている。レチクルステージRSTは、例えばリニアモータ等を含む図11のレチクルステージ駆動系111によって、XY平面内で微少駆動可能であると共に、走査方向(Y方向)に指定された走査速度で駆動可能である。   The reticle R is held on the upper surface of the reticle stage RST by vacuum suction or the like, and a circuit pattern or the like is formed on the pattern surface (lower surface) of the reticle R. The reticle stage RST can be driven minutely in the XY plane by the reticle stage drive system 111 of FIG. 11 including a linear motor, for example, and can be driven at a scanning speed specified in the scanning direction (Y direction).

レチクルステージRSTの移動面内の位置情報(X方向、Y方向の位置、及びθz方向の回転角を含む)は、レーザ干渉計よりなるレチクル干渉計116によって、移動鏡115(又は鏡面加工されたステージ端面)を介して例えば0.5〜0.1nm程度の分解能で常時検出される。レチクル干渉計116の計測値は、図11のコンピュータよりなる主制御装置120に送られる。主制御装置120は、その計測値に基づいてレチクルステージ駆動系111を制御することで、レチクルステージRSTの位置及び速度を制御する。   Position information in the moving plane of the reticle stage RST (including the position in the X direction, the Y direction, and the rotation angle in the θz direction) is transferred to the moving mirror 115 (or mirror-finished) by the reticle interferometer 116 including a laser interferometer. For example, it is always detected with a resolution of about 0.5 to 0.1 nm via the stage end face. The measurement value of reticle interferometer 116 is sent to main controller 120 formed of a computer shown in FIG. Main controller 120 controls reticle stage drive system 111 based on the measurement value, thereby controlling the position and speed of reticle stage RST.

図9において、レチクルステージRSTの下方に配置された投影ユニットPUは、鏡筒140と、鏡筒140内に所定の位置関係で保持された複数の光学素子を有する投影光学系PLとを含む。投影光学系PLは、例えば両側テレセントリックで所定の投影倍率β(例えば1/4倍、1/5倍などの縮小倍率)を有する。照明系110からの照明光ILによってレチクルRの照明領域IARが照明されると、レチクルRを通過した照明光ILにより、投影光学系PLを介して照明領域IAR内のレチクルRの回路パターンの像が、ウエハ(半導体ウエハ)Wの一つのショット領域の露光領域IA(照明領域IARと共役な領域)に形成される。   In FIG. 9, the projection unit PU arranged below the reticle stage RST includes a lens barrel 140 and a projection optical system PL having a plurality of optical elements held in a predetermined positional relationship within the lens barrel 140. The projection optical system PL is, for example, telecentric on both sides and has a predetermined projection magnification β (for example, a reduction magnification of 1/4 times, 1/5 times, etc.). When the illumination area IAR of the reticle R is illuminated by the illumination light IL from the illumination system 110, an image of the circuit pattern of the reticle R in the illumination area IAR via the projection optical system PL by the illumination light IL that has passed through the reticle R. Are formed in an exposure area IA (an area conjugate to the illumination area IAR) of one shot area of the wafer (semiconductor wafer) W.

また、露光装置EXは、液浸法を適用した露光を行うため、投影光学系PLを構成する最も像面側(ウエハW側)の光学素子である先端レンズ191を保持する鏡筒140の下端部の周囲を取り囲むように、局所液浸装置108の一部を構成するノズルユニット132が設けられている。ノズルユニット132は、露光用の液体Lq(例えば純水)を供給するための供給管131A及び回収管131Bを介して、液体供給装置186及び液体回収装置189(図11参照)に接続されている。なお、液浸タイプの露光装置としない場合には、上記の局所液浸装置108は設けなくともよい。   In addition, since the exposure apparatus EX performs exposure using the liquid immersion method, the lower end of the lens barrel 140 that holds the tip lens 191 that is an optical element on the most image plane side (wafer W side) constituting the projection optical system PL is used. A nozzle unit 132 constituting a part of the local liquid immersion device 108 is provided so as to surround the periphery of the part. The nozzle unit 132 is connected to a liquid supply device 186 and a liquid recovery device 189 (see FIG. 11) via a supply tube 131A and a recovery tube 131B for supplying an exposure liquid Lq (for example, pure water). . If the immersion type exposure apparatus is not used, the local immersion apparatus 108 may not be provided.

図9において、ウエハステージWSTは、不図示の複数の例えば真空予圧型空気静圧軸受(エアパッド)を介して、ベース盤112のXY面に平行な上面112aに非接触で支持されている。また、ウエハステージWSTは、例えば平面モータ、又は直交する2組のリニアモータを含むステージ駆動系124(図11参照)によってX方向及びY方向に駆動可能である。露光装置EXは、レチクルRのアライメントを行う空間像計測系(不図示)、ウエハWのアライメントを行うアライメント系AL(図11参照)、照射系90a及び受光系90bよりなりウエハWの表面の複数箇所のZ位置を計測する斜入射方式の多点のオートファオーカスセンサ90(図11参照)、及びウエハステージWSTの位置情報を計測するためのエンコーダ装置8Bを備えている。   In FIG. 9, wafer stage WST is supported in a non-contact manner on upper surface 112a parallel to the XY plane of base board 112 via a plurality of vacuum preload type static air bearings (air pads) (not shown). Wafer stage WST can be driven in the X and Y directions by a stage drive system 124 (see FIG. 11) including, for example, a planar motor or two sets of orthogonal linear motors. The exposure apparatus EX includes an aerial image measurement system (not shown) for aligning the reticle R, an alignment system AL (see FIG. 11) for aligning the wafer W, an irradiation system 90a, and a light receiving system 90b. An oblique incidence type multipoint autofocus sensor 90 (see FIG. 11) for measuring the Z position of the location, and an encoder device 8B for measuring position information of the wafer stage WST are provided.

ウエハステージWSTは、X方向、Y方向に駆動されるステージ本体191と、ステージ本体191上に搭載されたウエハテーブルWTBと、ステージ本体191内に設けられて、ステージ本体191に対するウエハテーブルWTB(ウエハW)のZ方向の位置、及びθx方向、θy方向のチルト角を相対的に微小駆動するZ・レベリング機構とを備えている。ウエハテーブルWTBの中央の上部には、ウエハWを真空吸着等によってほぼXY平面に平行な吸着面上に保持するウエハホルダ(不図示)が設けられている。   Wafer stage WST is provided in stage main body 191, stage main body 191 driven in X and Y directions, wafer table WTB mounted on stage main body 191, and wafer table WTB (wafer for stage main body 191). And a Z / leveling mechanism that relatively finely drives the position of W) in the Z direction and the tilt angle in the θx direction and the θy direction. A wafer holder (not shown) that holds the wafer W on a suction surface substantially parallel to the XY plane by vacuum suction or the like is provided at the upper center of the wafer table WTB.

また、ウエハテーブルWTBの上面には、ウエハホルダ上に載置されるウエハの表面とほぼ同一面となる、液体Lqに対して撥液化処理された表面(又は保護部材)を有し、かつ外形(輪郭)が矩形でその中央部にウエハホルダ(ウエハの載置領域)よりも一回り大きな円形の開口が形成された高平面度の平板状のプレート体128が設けられている。
なお、上述の局所液浸装置108を設けたいわゆる液浸型の露光装置の構成にあっては、さらにプレート体128は、図10のウエハテーブルWTB(ウエハステージWST)の平面図に示されるように、その円形の開口を囲む、外形(輪郭)が矩形の表面に撥液化処理が施されたプレート部(撥液板)128aと、プレート部128aを囲む周辺部128eとを有する。周辺部128eの上面に、プレート部128aをY方向に挟むようにX方向に細長い1対のY軸の第1及び第2の回折格子12Y1,12Y2が配置され、プレート部128aをX方向に挟むようにY方向に細長い1対のX軸の回折格子12X1,12X2が配置されている。X方向を周期方向とする反射型の回折格子12X1,12X2は図1の回折格子12Xと同じ構成であり、Y方向を周期方向とする回折格子12Y1,12Y2は回折格子12Xを90°回転した構成である。
In addition, the upper surface of wafer table WTB has a surface (or a protective member) that has been subjected to a liquid repellency treatment with respect to liquid Lq and is substantially flush with the surface of the wafer placed on the wafer holder. A flat plate member 128 having a high flatness is provided in which a circular opening is formed in the center of the rectangular shape and a circular opening that is slightly larger than the wafer holder (wafer mounting region).
In the configuration of the so-called immersion type exposure apparatus provided with the above-described local immersion apparatus 108, the plate body 128 is further shown in the plan view of wafer table WTB (wafer stage WST) in FIG. In addition, a plate portion (liquid repellent plate) 128a surrounding the circular opening and having a liquid repellent treatment on a surface having a rectangular outer shape (outline), and a peripheral portion 128e surrounding the plate portion 128a. A pair of Y-axis first and second diffraction gratings 12Y1 and 12Y2 elongated in the X direction are disposed on the upper surface of the peripheral portion 128e so as to sandwich the plate portion 128a in the Y direction, and the plate portion 128a is sandwiched in the X direction. In this way, a pair of X-axis diffraction gratings 12X1 and 12X2 elongated in the Y direction are arranged. The reflection type diffraction gratings 12X1 and 12X2 having the X direction as the periodic direction have the same configuration as the diffraction grating 12X in FIG. 1, and the diffraction gratings 12Y1 and 12Y2 having the Y direction as the periodic direction are configured by rotating the diffraction grating 12X by 90 °. It is.

また、図9において、投影ユニットPUを支持するフレーム(不図示)に連結部材(不図示)を介してXY面にほぼ平行な平板状の計測フレーム150が支持されている。計測フレーム150の底面に、投影光学系PLをX方向に挟むように、図5のX軸の検出ヘッド14Xと同じ構成の複数の検出ヘッド14Xが固定され、投影光学系PLをY方向に挟むように、図5のY軸の検出ヘッド14Yと同じ構成の複数の検出ヘッド14Yが固定されている(図10参照)。また、複数の検出ヘッド14X,14Yにレーザ光(計測光及び参照光)を供給するための複数のレーザ光源(不図示)も備えられている。なお、検出ヘッド14Xの代わりに図6の検出ヘッド14XAを使用してもよく、検出ヘッド14Yの代わりに検出ヘッド14XAを90°回転した構成の検出ヘッドを使用してもよい。   In FIG. 9, a flat measurement frame 150 substantially parallel to the XY plane is supported on a frame (not shown) that supports the projection unit PU via a connecting member (not shown). A plurality of detection heads 14X having the same configuration as the X-axis detection head 14X in FIG. 5 are fixed to the bottom surface of the measurement frame 150 so as to sandwich the projection optical system PL in the X direction, and the projection optical system PL is sandwiched in the Y direction. As described above, a plurality of detection heads 14Y having the same configuration as the Y-axis detection head 14Y in FIG. 5 are fixed (see FIG. 10). In addition, a plurality of laser light sources (not shown) for supplying laser light (measurement light and reference light) to the plurality of detection heads 14X and 14Y are also provided. The detection head 14XA of FIG. 6 may be used instead of the detection head 14X, or a detection head having a configuration in which the detection head 14XA is rotated by 90 ° may be used instead of the detection head 14Y.

図10において、投影光学系PLからの照明光でウエハWを露光している期間では、常に複数の検出ヘッド14Xのいずれか2つがX軸の回折格子12X1,12X2に対向し、複数の検出ヘッド14Yのいずれか2つがY軸の回折格子12Y1,12Y2に対向するように構成されている。各検出ヘッド14Xは、回折格子12X1又は12X2に計測光を照射し、回折格子12X1,12X2から発生する回折光と参照光との干渉光の検出信号を対応する計測演算部42X(図11)に供給する。計測演算部42Xでは、図1の計測演算部42と同様に、ウエハステージWSTと計測フレーム150とのX方向、Z方向の相対位置(相対移動量)を例えば0.5〜0.1nmの分解能で求めて計測値切り替え部80Xに供給する。計測値切り替え部80Xでは、回折格子12X1,12X2に対向している検出ヘッド14Xに対応する計測演算部42Xから供給される相対位置の情報を主制御装置120に供給する。   In FIG. 10, during the period in which the wafer W is exposed with illumination light from the projection optical system PL, any two of the plurality of detection heads 14X always face the X-axis diffraction gratings 12X1 and 12X2, and the plurality of detection heads. Any two of 14Y are configured to face Y-axis diffraction gratings 12Y1 and 12Y2. Each detection head 14X irradiates the diffraction grating 12X1 or 12X2 with measurement light, and outputs a detection signal of interference light between the diffraction light generated from the diffraction gratings 12X1 and 12X2 and the reference light to the corresponding measurement calculation unit 42X (FIG. 11). Supply. In the measurement calculation unit 42X, as in the measurement calculation unit 42 in FIG. 1, the relative position (relative movement amount) between the wafer stage WST and the measurement frame 150 in the X direction and Z direction is, for example, a resolution of 0.5 to 0.1 nm. And supplied to the measured value switching unit 80X. In the measurement value switching unit 80X, information on the relative position supplied from the measurement calculation unit 42X corresponding to the detection head 14X facing the diffraction gratings 12X1 and 12X2 is supplied to the main controller 120.

また、各検出ヘッド14Yは、回折格子12Y1又は12Y2に計測光を照射し、回折格子12Y1,12Y2から発生する回折光と参照光との干渉光の検出信号を対応する計測演算部42Y(図11)に供給する。計測演算部42Yでは、計測演算部42Xと同様に、ウエハステージWSTと計測フレーム150とのY方向、Z方向の相対位置(相対移動量)を例えば0.5〜0.1nmの分解能で求めて計測値切り替え部80Yに供給する。計測値切り替え部80Yでは、回折格子12Y1,12Y2に対向している検出ヘッド14Yに対応する計測演算部42Yから供給される相対位置の情報を主制御装置120に供給する。   In addition, each detection head 14Y irradiates the diffraction grating 12Y1 or 12Y2 with measurement light, and the measurement calculation unit 42Y corresponding to the detection signal of the interference light between the diffraction light generated from the diffraction gratings 12Y1 and 12Y2 and the reference light (FIG. 11). ). In the measurement calculation unit 42Y, as in the measurement calculation unit 42X, the relative positions (relative movement amounts) of the wafer stage WST and the measurement frame 150 in the Y direction and Z direction are obtained with a resolution of 0.5 to 0.1 nm, for example. The measured value switching unit 80Y is supplied. In the measurement value switching unit 80Y, information on the relative position supplied from the measurement calculation unit 42Y corresponding to the detection head 14Y facing the diffraction gratings 12Y1 and 12Y2 is supplied to the main controller 120.

複数の検出ヘッド14X、レーザ光源(不図示)、計測演算部42X、及びX軸の回折格子12X1,12X2からX軸のエンコーダ10XBが構成され、複数の検出ヘッド14Y、レーザ光源(不図示)、計測演算部42Y、及びY軸の回折格子12Y1,12Y2からY軸のエンコーダ10YBが構成されている。そして、X軸のエンコーダ10XB、Y軸のエンコーダ10YB、及び計測値切り替え部80X,80Yからエンコーダ装置8Bが構成されている。主制御装置120は、エンコーダ装置8Bから供給される相対位置の情報に基づいて、計測フレーム150(投影光学系PL)に対するウエハステージWSTのX方向、Y方向、Z方向の位置、及びθz方向の回転角等の情報を求め、この情報に基づいてステージ駆動系124を介してウエハステージWSTを駆動する。   A plurality of detection heads 14X, a laser light source (not shown), a measurement calculation unit 42X, and an X-axis diffraction grating 12X1, 12X2 constitute an X-axis encoder 10XB, and a plurality of detection heads 14Y, a laser light source (not shown), A Y-axis encoder 10YB is composed of the measurement calculation unit 42Y and the Y-axis diffraction gratings 12Y1 and 12Y2. An encoder device 8B is configured by the X-axis encoder 10XB, the Y-axis encoder 10YB, and the measurement value switching units 80X and 80Y. Based on the information on the relative position supplied from encoder device 8B, main controller 120 determines the position of wafer stage WST relative to measurement frame 150 (projection optical system PL) in the X, Y, and Z directions, and in the θz direction. Information such as the rotation angle is obtained, and wafer stage WST is driven via stage drive system 124 based on this information.

そして、露光装置EXの露光時には、先ずレチクルR及びウエハWのアライメントが行われる。その後、レチクルRへの照明光ILの照射を開始して、投影光学系PLを介してレチクルRのパターンの一部の像をウエハWの表面の一つのショット領域に投影しつつ、レチクルステージRSTとウエハステージWSTとを投影光学系PLの投影倍率βを速度比としてY方向に同期して移動(同期走査)する走査露光動作によって、そのショット領域にレチクルRのパターン像が転写される。その後、ウエハステージWSTを介してウエハWをX方向、Y方向にステップ移動する動作と、上記の走査露光動作とを繰り返すことによって、液浸法でかつステップ・アンド・スキャン方式でウエハWの全部のショット領域にレチクルRのパターン像が転写される。   Then, at the time of exposure by the exposure apparatus EX, alignment of the reticle R and the wafer W is first performed. Thereafter, irradiation of the reticle R with the illumination light IL is started, and an image of a part of the pattern of the reticle R is projected onto one shot area on the surface of the wafer W via the projection optical system PL, while the reticle stage RST. The pattern image of the reticle R is transferred to the shot area by a scanning exposure operation that moves the wafer stage WST in synchronization with the Y direction using the projection magnification β of the projection optical system PL as a speed ratio (synchronous scanning). Thereafter, by repeating the step movement of the wafer W in the X and Y directions via the wafer stage WST and the scanning exposure operation described above, the entire wafer W is immersed by the immersion method and the step-and-scan method. The pattern image of the reticle R is transferred to the shot area.

この際に、検出ヘッド14X,14Yにおいては、計測光及び回折光の光路長はレーザ干渉計に比べて短いため、検出ヘッド14X,14Yを用いた計測値に対する空気揺らぎの影響が非常に小さい。従って、本実施例のエンコーダ装置8Bは、レーザ干渉計と比較して、空気が揺らぐ程度の短い期間における計測安定性(短期安定性)が格段に優れているため、レチクルRのパターン像をウエハWに高精度に転写できる。さらに、検出ヘッド14X,14YはZ方向の高さを低くコンパクトに構成できるため、計測フレーム150の底面等に複数の検出ヘッド14X,14Yを容易に設置できる。   At this time, in the detection heads 14X and 14Y, since the optical path lengths of the measurement light and the diffracted light are shorter than those of the laser interferometer, the influence of air fluctuations on the measurement values using the detection heads 14X and 14Y is very small. Therefore, the encoder device 8B of the present embodiment has much better measurement stability (short-term stability) in a short period of time when the air fluctuates than the laser interferometer. Can be transferred to W with high accuracy. Furthermore, since the detection heads 14X and 14Y can be configured compactly with a low height in the Z direction, a plurality of detection heads 14X and 14Y can be easily installed on the bottom surface of the measurement frame 150 or the like.

なお、本実施例では、計測フレーム150側に検出ヘッド14X,14Y等を配置し、ウエハステージWST側に回折格子12X1,12Y1等を配置している。この他の構成として、計測フレーム150側に回折格子12X1,12Y1等を配置し、ウエハステージWST側に検出ヘッド14X,14Y等を配置してもよい。
また、上記の実施例の露光装置EX又は露光方法を用いて半導体デバイス等の電子デバイス(又はマイクロデバイス)を製造する場合、電子デバイスは、図12に示すように、電子デバイスの機能・性能設計を行うステップ221、この設計ステップに基づいたレチクル(マスク)を製作するステップ222、デバイスの基材である基板(ウエハ)を製造してレジストを塗布するステップ223、前述した実施形態の露光装置(露光方法)によりレチクルのパターンを基板(感光基板)に露光する工程、露光した基板を現像する工程、現像した基板の加熱(キュア)及びエッチング工程などを含む基板処理ステップ224、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程などの加工プロセスを含む)225、並びに検査ステップ226等を経て製造される。
In this embodiment, the detection heads 14X and 14Y and the like are arranged on the measurement frame 150 side, and the diffraction gratings 12X1 and 12Y1 and the like are arranged on the wafer stage WST side. As another configuration, the diffraction gratings 12X1, 12Y1, etc. may be arranged on the measurement frame 150 side, and the detection heads 14X, 14Y, etc. may be arranged on the wafer stage WST side.
When an electronic device (or microdevice) such as a semiconductor device is manufactured using the exposure apparatus EX or the exposure method of the above embodiment, the electronic device has a function / performance design of the electronic device as shown in FIG. Step 221 for performing a step, Step 222 for fabricating a reticle (mask) based on this design step, Step 223 for fabricating a substrate (wafer) as a base material of the device and applying a resist, and the exposure apparatus ( Substrate processing step 224 including a step of exposing a reticle pattern to a substrate (photosensitive substrate) by an exposure method), a step of developing the exposed substrate, a heating (curing) and etching step of the developed substrate, and a device assembly step (dicing) Process, bonding process, packaging process, etc.) 225 And an inspection step 226, and the like.

言い換えると、このデバイスの製造方法は、上記の実施例の露光装置EX(露光方法)を用いてレチクルのパターンの像を基板(ウエハ)に転写し、その基板を現像するリソグラフィ工程と、そのパターンの像が転写されたその基板をそのパターンの像に基づいて加工する工程(ステップ224のエッチング等)とを含んでいる。この際に、上記の実施例によれば、露光装置のウエハステージWSTの位置を高精度に制御できるため、電子デバイスを高精度に製造できる。   In other words, this device manufacturing method includes a lithography process in which an image of a reticle pattern is transferred to a substrate (wafer) using the exposure apparatus EX (exposure method) of the above embodiment, and the pattern is developed. And a step (such as etching in step 224) of processing the substrate on which the image is transferred on the basis of the image of the pattern. At this time, according to the above-described embodiment, the position of wafer stage WST of the exposure apparatus can be controlled with high accuracy, so that an electronic device can be manufactured with high accuracy.

なお、本発明は、上述の走査露光型の投影露光装置(スキャナ)の他に、ステップ・アンド・リピート方式の投影露光装置(ステッパ等)にも適用できる。さらに、本発明は、液浸型露光装置以外のドライ露光型の露光装置にも同様に適用することができる。
また、本発明は、半導体デバイス製造用の露光装置への適用に限定されることなく、例えば、角型のガラスプレートに形成される液晶表示素子、若しくはプラズマディスプレイ等のディスプレイ装置用の露光装置や、撮像素子(CCD等)、マイクロマシーン、薄膜磁気ヘッド、及びDNAチップ等の各種デバイスを製造するための露光装置にも広く適用できる。更に、本発明は、各種デバイスのマスクパターンが形成されたマスク(フォトマスク、レチクル等)をフォトリソグフィ工程を用いて製造する際の、露光装置にも適用することができる。
The present invention can be applied to a step-and-repeat type projection exposure apparatus (stepper or the like) in addition to the above-described scanning exposure type projection exposure apparatus (scanner). Furthermore, the present invention can be similarly applied to a dry exposure type exposure apparatus other than an immersion type exposure apparatus.
In addition, the present invention is not limited to application to an exposure apparatus for manufacturing a semiconductor device, for example, an exposure apparatus for a display device such as a liquid crystal display element formed on a square glass plate or a plasma display, It can also be widely applied to an exposure apparatus for manufacturing various devices such as an image sensor (CCD or the like), a micromachine, a thin film magnetic head, and a DNA chip. Furthermore, the present invention can also be applied to an exposure apparatus when manufacturing a mask (photomask, reticle, etc.) on which a mask pattern of various devices is formed using a photolithography process.

また、上記の実施形態又は実施例のエンコーダ10X、エンコーダ装置8,8Bは、露光装置以外の検査装置又は計測装置等の検査又は加工対象の物体用の光学系を備えた光学装置において、その物体の相対移動量を計測するために適用することができる。
なお、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得ることは勿論である。
In addition, the encoder 10X and the encoder devices 8 and 8B of the above-described embodiment or example are the objects in an optical apparatus including an optical system for an object to be inspected or processed, such as an inspection apparatus or a measurement apparatus other than the exposure apparatus. It can be applied to measure the relative movement amount.
In addition, this invention is not limited to the above-mentioned embodiment, Of course, a various structure can be taken in the range which does not deviate from the summary of this invention.

EX…露光装置、R…レチクル、W…ウエハ、MX1,MX2…計測光、RX1,RX2…参照光、10X…X軸のエンコーダ、12X…X軸の回折格子、14X…X軸の検出ヘッド、16…レーザ光源、27…1/2波長板、28A,28B…PBS(偏光ビームスプリッタ)、29A,29B…コーナキューブ、30…1/4波長板、32XA,32XB…+1次回折光用の傾斜ミラー、34XA,34XB…−1次回折光用の傾斜ミラー、40XA,40XB…光電センサ、42X…計測演算部   EX ... exposure apparatus, R ... reticle, W ... wafer, MX1, MX2 ... measurement light, RX1, RX2 ... reference light, 10X ... X-axis encoder, 12X ... X-axis diffraction grating, 14X ... X-axis detection head, 16 ... Laser light source, 27 ... 1/2 wavelength plate, 28A, 28B ... PBS (polarization beam splitter), 29A, 29B ... Corner cube, 30 ... ¼ wavelength plate, 32XA, 32XB ... + 1-order diffracted light mirror , 34XA, 34XB, tilt mirror for -1st order diffracted light, 40XA, 40XB, photoelectric sensor, 42X, measurement calculation unit

2・p・sin φLI=λ …(2)
リトロー角φLIで入射する光ビームLAの格子パターン12Xaによる0次光(正反射光)LA0は+1次回折光LA1と対称になる。この場合、光ビームLAと対称に格子パターン12Xaに入射する光ビームの−1次回折光と、0次光LA0とはほぼ平行になるため、その−1次回折光と0次光LA0とが合流すると、周期の大きい干渉縞(ノイズ光)が形成され、計測誤差の要因になる恐れがある。
2 ・p ・ sin φLI = λ (2)
The 0th order light (regular reflection light) LA0 by the grating pattern 12Xa of the light beam LA incident at the Littrow angle φLI is symmetric with the + 1st order diffracted light LA1. In this case, since the −1st order diffracted light of the light beam incident on the grating pattern 12Xa symmetrically with the light beam LA and the 0th order light LA0 are substantially parallel, the −1st order diffracted light and the 0th order light LA0 merge. Interference fringes (noise light) with a large period are formed, which may cause measurement errors.

Claims (14)

第1部材に対して少なくとも第1方向に相対移動する第2部材の相対移動量を計測するエンコーダ装置であって、
前記第1部材及び前記第2部材の一方に設けられ、前記第1方向を周期方向とする格子パターンを有する反射型の回折格子と、
互いに可干渉性のある第1計測光及び第2計測光を供給する光源部と、
前記第1部材及び前記第2部材の他方に設けられ、前記光源部から供給された前記第1計測光を前記格子パターン面に向けて反射する第1反射部材と、
前記回折格子からの回折光と他の回折光又は前記第2計測光との干渉光を検出する第1光電検出器と、
前記第1光電検出器の検出信号を用いて前記第2部材の相対移動量を求める計測部と、
を備え、
前記第1反射部材から前記格子パターン面に向かう前記第1計測光の前記第1方向の入射角を、前記回折格子のリトロー角に対して所定角度変化した角度に設定することを特徴とするエンコーダ装置。
An encoder device that measures a relative movement amount of a second member that moves relative to the first member in at least a first direction,
A reflective diffraction grating provided on one of the first member and the second member and having a grating pattern having the first direction as a periodic direction;
A light source unit that supplies first measurement light and second measurement light that are coherent with each other;
A first reflection member that is provided on the other of the first member and the second member and reflects the first measurement light supplied from the light source unit toward the lattice pattern surface;
A first photoelectric detector for detecting interference light between diffracted light from the diffraction grating and other diffracted light or the second measurement light;
A measurement unit for obtaining a relative movement amount of the second member using a detection signal of the first photoelectric detector;
With
An encoder characterized in that an incident angle in the first direction of the first measurement light traveling from the first reflecting member toward the grating pattern surface is set to an angle changed by a predetermined angle with respect to a Littrow angle of the diffraction grating. apparatus.
前記第1反射部材から前記格子パターン面に向かう前記第1計測光の前記第1方向の入射角を、前記リトロー角に対して前記所定角度変化した角度に設定する角度調整部材を備えることを特徴とする請求項1に記載のエンコーダ装置。   An angle adjusting member that sets an incident angle in the first direction of the first measurement light traveling from the first reflecting member toward the lattice pattern surface to an angle changed by the predetermined angle with respect to the Littrow angle is provided. The encoder device according to claim 1. 前記光源部から出力される前記第1計測光を前記回折格子の前記格子パターン面にほぼ平行にする光路折り曲げ部材を備え、
前記反射部材は、前記光路折り曲げ部材を介した前記第1計測光を前記格子パターン面に前記リトロー角で入射させる回転角に配置され、
前記光路折り曲げ部材は、前記第1計測光を、前記格子パターン面に平行な面内で前記第1方向に直交する第2方向に対して前記所定角度に対応した角度だけ傾斜させて反射することを特徴とする請求項1に記載のエンコーダ装置。
An optical path bending member that makes the first measurement light output from the light source unit substantially parallel to the grating pattern surface of the diffraction grating,
The reflection member is disposed at a rotation angle at which the first measurement light via the optical path bending member is incident on the lattice pattern surface at the Littrow angle.
The optical path bending member reflects the first measurement light by being inclined by an angle corresponding to the predetermined angle with respect to a second direction orthogonal to the first direction within a plane parallel to the lattice pattern surface. The encoder device according to claim 1.
前記角度調整部材は、前記第1反射部材と前記格子パターン面との間に設けられて、前記第1計測光の前記格子パターン面に対する入射面内の振れ角を前記所定角度に応じた角度に設定する楔型プリズムであることを特徴とする請求項2に記載のエンコーダ装置。   The angle adjusting member is provided between the first reflecting member and the grating pattern surface, and a deflection angle of the first measurement light in an incident surface with respect to the grating pattern surface is set to an angle corresponding to the predetermined angle. The encoder device according to claim 2, wherein the encoder device is a wedge-shaped prism to be set. 前記回折格子からの回折光を、前記格子パターン面に前記第1方向の入射角が前記リトロー角に対して変化した角度になるように反射する再反射部材を備え、
前記楔型プリズムの振れ角は前記所定角度の2倍であることを特徴とする請求項4に記載のエンコーダ装置。
A re-reflecting member that reflects the diffracted light from the diffraction grating so that the incident angle in the first direction changes to the Littrow angle on the grating pattern surface;
The encoder apparatus according to claim 4, wherein a deflection angle of the wedge-shaped prism is twice the predetermined angle.
前記第1計測光から第1部分計測光を分岐する第1分岐部材と、
前記第1部材及び前記第2部材の他方に設けられ、前記第1分岐部材で分岐された前記第1部分計測光を前記格子パターン面に向けて反射する第2反射部材と、
前記回折格子からの前記第1部分計測光による回折光と他の回折光又は前記第2計測光との干渉光を検出する第2光電検出器と、を備え、
前記第2反射部材から前記格子パターン面に向かう前記第1部分計測光の前記第1方向の入射角を、前記リトロー角と符号が逆のリトロー角に対して所定角度変化した角度に設定し、
前記計測部は、前記第1光電検出器及び前記第2光電検出器の検出信号を用いて前記第2部材の相対移動量を求めることを特徴とする請求項1〜5のいずれか一項に記載のエンコーダ装置。
A first branch member for branching the first partial measurement light from the first measurement light;
A second reflection member that is provided on the other of the first member and the second member and reflects the first partial measurement light branched by the first branch member toward the lattice pattern surface;
A second photoelectric detector for detecting interference light between the diffracted light by the first partial measurement light from the diffraction grating and other diffracted light or the second measurement light;
The incident angle in the first direction of the first partial measurement light traveling from the second reflecting member toward the lattice pattern surface is set to an angle changed by a predetermined angle with respect to the Littrow angle whose sign is opposite to the Littrow angle,
The said measurement part calculates | requires the relative moving amount | distance of a said 2nd member using the detection signal of a said 1st photoelectric detector and a said 2nd photoelectric detector, It is any one of Claims 1-5 characterized by the above-mentioned. The encoder device described.
前記第2計測光の光路長を前記第1計測光の光路長に合わせる光学系を備えることを特徴とする請求項1〜6のいずれか一項に記載のエンコーダ装置。   The encoder apparatus according to any one of claims 1 to 6, further comprising an optical system that matches an optical path length of the second measurement light with an optical path length of the first measurement light. 前記第1計測光と前記第2計測光とを分離する分離面を有する分離光学部材と、
前記分離面に関して前記格子パターン面までの光路長がほぼ等しい反射面を有し、該反射面で前記第2計測光を反射する参照用反射部材と、を備えることを特徴とする請求項1〜7のいずれか一項に記載のエンコーダ装置。
A separation optical member having a separation surface for separating the first measurement light and the second measurement light;
A reference reflecting member that has a reflecting surface that has substantially the same optical path length to the grating pattern surface with respect to the separation surface and reflects the second measurement light on the reflecting surface. The encoder device according to any one of 7.
前記計測部は、前記第1及び第2光電検出器の検出信号を用いて前記第2部材の前記第1方向の相対移動量及び前記格子パターン面の法線方向の相対移動量を求めることを特徴とする請求項6に記載のエンコーダ装置。   The measurement unit obtains a relative movement amount in the first direction of the second member and a relative movement amount in the normal direction of the lattice pattern surface using detection signals of the first and second photoelectric detectors. The encoder device according to claim 6, wherein 前記第1計測光及び前記第2計測光は互いに周波数の異なるヘテロダイン光であり、
前記第1部材及び前記第2部材の一方に設けられ、前記第1方向に直交する第2方向を周期方向とする他の格子パターンを有する反射型の他の回折格子と、
前記第2計測光から第1参照光を分岐する第2分岐部材と、
前記第1計測光から第2参照光を分岐する第3分岐部材と、
前記第1部材及び前記第2部材の他方に設けられ、前記第2計測光を前記他の格子パターン面に向けて反射する第3反射部材と、
前記他の回折格子からの前記第2計測光による回折光と前記第2参照光との干渉光を検出する第3光電検出器と、を備え、
前記第1光電検出器は、前記回折格子からの回折光と前記第1参照光との干渉光を検出し、
前記計測部は、前記第3光電検出器の検出信号を用いて前記第2部材の前記第2方向の相対移動量を求めることを特徴とする請求項1〜9のいずれか一項に記載のエンコーダ装置。
The first measurement light and the second measurement light are heterodyne lights having different frequencies from each other,
A reflection type other diffraction grating provided on one of the first member and the second member and having another grating pattern having a second direction orthogonal to the first direction as a periodic direction;
A second branch member for branching the first reference light from the second measurement light;
A third branch member for branching the second reference light from the first measurement light;
A third reflecting member that is provided on the other of the first member and the second member and reflects the second measurement light toward the other lattice pattern surface;
A third photoelectric detector for detecting interference light between the diffracted light by the second measurement light from the other diffraction grating and the second reference light;
The first photoelectric detector detects interference light between the diffracted light from the diffraction grating and the first reference light;
10. The measurement unit according to claim 1, wherein the measurement unit obtains a relative movement amount of the second member in the second direction using a detection signal of the third photoelectric detector. 11. Encoder device.
前記第2分岐部材で分岐される前記第2計測光の前記第1参照光に対する光量比、及び前記第3分岐部材で分岐される前記第1計測光の前記第2参照光に対する光量比を調整する第1及び第2調整部材を備えることを特徴とする請求項10に記載のエンコーダ装置。   A light amount ratio of the second measurement light branched by the second branch member to the first reference light and a light amount ratio of the first measurement light branched by the third branch member to the second reference light are adjusted. The encoder device according to claim 10, further comprising first and second adjustment members that perform the adjustment. 請求項1〜11のいずれか一項に記載のエンコーダ装置と、
対象物用の光学系と、を備えることを特徴とする光学装置。
The encoder device according to any one of claims 1 to 11,
And an optical system for an object.
パターンを被露光体に露光する露光装置であって、
フレームと、
前記被露光体を支持するとともに前記フレームに対して少なくとも前記第1方向に相対移動可能なステージと、
前記第1方向への前記ステージの相対移動量を計測するための請求項1〜11のいずれか一項に記載のエンコーダ装置と、を備えることを特徴とする露光装置。
An exposure apparatus that exposes a pattern onto an object to be exposed,
Frame,
A stage that supports the object to be exposed and is relatively movable in at least the first direction with respect to the frame;
An exposure apparatus comprising: the encoder device according to any one of claims 1 to 11 for measuring a relative movement amount of the stage in the first direction.
リソグラフィ工程を含むデバイス製造方法であって、
前記リソグラフィ工程で、請求項13に記載の露光装置を用いて物体を露光することを特徴とするデバイス製造方法。
A device manufacturing method including a lithography process,
14. A device manufacturing method, comprising: exposing an object using the exposure apparatus according to claim 13 in the lithography process.
JP2011156740A 2011-07-15 2011-07-15 Encoder device, optical device, and exposure device Active JP5862857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011156740A JP5862857B2 (en) 2011-07-15 2011-07-15 Encoder device, optical device, and exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011156740A JP5862857B2 (en) 2011-07-15 2011-07-15 Encoder device, optical device, and exposure device

Publications (3)

Publication Number Publication Date
JP2013026272A true JP2013026272A (en) 2013-02-04
JP2013026272A5 JP2013026272A5 (en) 2014-10-09
JP5862857B2 JP5862857B2 (en) 2016-02-16

Family

ID=47784306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011156740A Active JP5862857B2 (en) 2011-07-15 2011-07-15 Encoder device, optical device, and exposure device

Country Status (1)

Country Link
JP (1) JP5862857B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014006935A1 (en) * 2012-07-06 2014-01-09 株式会社ニコン Position measurement device, stage apparatus, exposure equipment, and device manufacturing method
CN112799162A (en) * 2021-02-02 2021-05-14 廊坊市莱格光电仪器有限公司 Laser direct-etching metal cylindrical grating photoetching machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338102A (en) * 1986-08-01 1988-02-18 Nippon Telegr & Teleph Corp <Ntt> Method and device for measuring fine displacement
JPH02298816A (en) * 1989-05-12 1990-12-11 Canon Inc Encoder
JPH032504A (en) * 1989-05-30 1991-01-08 Nikon Corp Aligning device
JPH085324A (en) * 1994-06-16 1996-01-12 Mitsutoyo Corp Lattice-interference type displacement detector
JP2000081308A (en) * 1998-07-02 2000-03-21 Sony Precision Technology Inc Optical type displacement measuring apparatus
JP2005026614A (en) * 2003-07-02 2005-01-27 Nikon Corp Exposure device
WO2008029757A1 (en) * 2006-09-01 2008-03-13 Nikon Corporation Mobile object driving method, mobile object driving system, pattern forming method and apparatus, exposure method and apparatus, device manufacturing method and calibration method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338102A (en) * 1986-08-01 1988-02-18 Nippon Telegr & Teleph Corp <Ntt> Method and device for measuring fine displacement
JPH02298816A (en) * 1989-05-12 1990-12-11 Canon Inc Encoder
JPH032504A (en) * 1989-05-30 1991-01-08 Nikon Corp Aligning device
JPH085324A (en) * 1994-06-16 1996-01-12 Mitsutoyo Corp Lattice-interference type displacement detector
JP2000081308A (en) * 1998-07-02 2000-03-21 Sony Precision Technology Inc Optical type displacement measuring apparatus
JP2005026614A (en) * 2003-07-02 2005-01-27 Nikon Corp Exposure device
WO2008029757A1 (en) * 2006-09-01 2008-03-13 Nikon Corporation Mobile object driving method, mobile object driving system, pattern forming method and apparatus, exposure method and apparatus, device manufacturing method and calibration method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014006935A1 (en) * 2012-07-06 2014-01-09 株式会社ニコン Position measurement device, stage apparatus, exposure equipment, and device manufacturing method
CN112799162A (en) * 2021-02-02 2021-05-14 廊坊市莱格光电仪器有限公司 Laser direct-etching metal cylindrical grating photoetching machine

Also Published As

Publication number Publication date
JP5862857B2 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
JP6156147B2 (en) Encoder apparatus, optical apparatus, exposure apparatus, and device manufacturing method
EP1865291B1 (en) Displacement measurement systems lithographic apparatus
KR101725529B1 (en) Interferometric encoder systems
JP6767682B2 (en) Encoder device and exposure device
JP6162137B2 (en) Low coherence interferometry using an encoder system
WO2003064977A2 (en) Multiple degree of freedom interferometer
JP6680997B2 (en) Encoder apparatus and method of using the same, optical apparatus, exposure apparatus, and device manufacturing method
JP2014029276A (en) Encoder device, optical device and exposure device
JP5862857B2 (en) Encoder device, optical device, and exposure device
JP2013101084A (en) Position detection method and device, encoder device and exposure device
JP6607350B2 (en) Encoder apparatus and method of using the same, optical apparatus, exposure apparatus, and device manufacturing method
JPH10261570A (en) Stage device and aligner with the device
JP2013026273A (en) Encoder device, optical device, and exposure device
JP2012008004A (en) Encoder device, optical device, exposing device, exposing method, and device manufacturing method
JP2011181850A (en) Displacement detection unit, stage unit, exposure apparatus, and device manufacturing method
JP2013234997A (en) Encoder device, optical device and exposure device
JP2013102099A (en) Encoder device, optical device, and exposure device
JP2016024049A (en) Measurement method and encoder device, as well as exposure method and device
JP2011181851A (en) Displacement detection unit, stage unit, exposure apparatus, and device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151215

R150 Certificate of patent or registration of utility model

Ref document number: 5862857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250