JP2013020846A - Transparent conductive film - Google Patents

Transparent conductive film Download PDF

Info

Publication number
JP2013020846A
JP2013020846A JP2011153959A JP2011153959A JP2013020846A JP 2013020846 A JP2013020846 A JP 2013020846A JP 2011153959 A JP2011153959 A JP 2011153959A JP 2011153959 A JP2011153959 A JP 2011153959A JP 2013020846 A JP2013020846 A JP 2013020846A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
atomic ratio
light transmittance
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011153959A
Other languages
Japanese (ja)
Other versions
JP5689378B2 (en
Inventor
Shigekazu Tomai
重和 笘井
Kazuaki Ebata
一晃 江端
Shigeo Matsuzaki
滋夫 松崎
Kiminori Yano
公規 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2011153959A priority Critical patent/JP5689378B2/en
Publication of JP2013020846A publication Critical patent/JP2013020846A/en
Application granted granted Critical
Publication of JP5689378B2 publication Critical patent/JP5689378B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a transparent conductive film including carriers stably existing at high concentration therein and low in infrared light transmittance, while reducing high-cost indium content.SOLUTION: The transparent conductive film contains at least indium, tin and zinc. In the transparent conductive film, an atomic ratio represented as In/(In+Sn+Zn) is 0.25-0.6, an atomic ratio represented as Sn/(In+Sn+Zn) is 0.15-0.3, an atomic ratio represented as Zn/(In+Sn+Zn) is 0.15-0.5, a light transmittance in a visible range is 70% or more, and a light transmittance in an infrared range is 65% or less.

Description

本発明は、透明導電膜及びその製造方法に関する。   The present invention relates to a transparent conductive film and a method for producing the same.

無機・有機エレクトロルミネッセンス素子、液晶素子等における透明電極基板、電磁波遮蔽シート、透明フィルム基板等として、透明導電基板が用いられている。該透明導電膜は、ガラスや石英等の無機透明基板や、PET、PES、PC等からなる基材フィルムの表面に、スパッタリング法、イオンプレーティング法、又は蒸着法によって成膜されるインジウム錫酸化物(ITO)が主流を占めている。   Transparent conductive substrates are used as transparent electrode substrates, electromagnetic wave shielding sheets, transparent film substrates and the like in inorganic / organic electroluminescent elements, liquid crystal elements and the like. The transparent conductive film is an indium tin oxide film formed on the surface of an inorganic transparent substrate such as glass or quartz, or a substrate film made of PET, PES, PC, or the like by sputtering, ion plating, or vapor deposition. Objects (ITO) dominate.

しかしながら、上記従来の透明導電酸化物は、ITOやインジウム亜鉛酸化物が代表的であり、いずれも酸化インジウムを90モル%以上含むため、原材料費が高いという課題があった。酸化インジウムを用いない透明導電酸化物としては、ZnOにAlやGaを添加したAZOやGZOがあるが、これらは耐候性や薬液耐性に劣り、用途が著しく限定されている。   However, representative transparent conductive oxides such as ITO and indium zinc oxide are representative, and both contain 90 mol% or more of indium oxide, which causes a problem of high raw material costs. As transparent conductive oxides that do not use indium oxide, there are AZO and GZO in which Al or Ga is added to ZnO, but these are inferior in weather resistance and chemical resistance, and their uses are extremely limited.

酸化インジウムの含有量を減らした材料としては、In,Sn,Znを同時に含む透明導電材料が開示されている(特許文献1)。
特許文献1は、原子比In/(In+Sn+Zn)が0.25〜0.6、原子比Sn/(In+Sn+Zn)が0.15〜0.3、原子比Zn/(In+Sn+Zn)が0.15〜0.5であるスパッタリングターゲットを用い、比抵抗が400μΩcm〜900μΩcmであるインジウム錫亜鉛酸化物(ITZO)透明電極をスパッタリング法により得る。
しかしながら、このITZOを透明電極や熱線反射膜として使用すると、キャリア濃度が低下して抵抗が上昇したり、熱線反射能が低いという課題があった。
As a material in which the content of indium oxide is reduced, a transparent conductive material containing In, Sn, and Zn at the same time is disclosed (Patent Document 1).
In Patent Document 1, the atomic ratio In / (In + Sn + Zn) is 0.25 to 0.6, the atomic ratio Sn / (In + Sn + Zn) is 0.15 to 0.3, and the atomic ratio Zn / (In + Sn + Zn) is 0.15 to 0. An indium tin zinc oxide (ITZO) transparent electrode having a specific resistance of 400 μΩcm to 900 μΩcm is obtained by a sputtering method using a sputtering target of 0.5.
However, when this ITZO is used as a transparent electrode or a heat ray reflective film, there are problems that the carrier concentration is lowered and the resistance is increased or the heat ray reflectivity is low.

特開2007−63649号公報JP 2007-63649 A

本発明の目的は、高コストのインジウムの含有量を抑制しつつ、キャリアが高濃度、安定に存在し、赤外光透過率が低い透明導電膜を提供することである。   An object of the present invention is to provide a transparent conductive film in which the carrier is present stably at a high concentration and the infrared light transmittance is low while suppressing the high-cost indium content.

本発明によれば、以下の透明導電膜等が提供される。
1.少なくともインジウム、錫及び亜鉛を含有し、
In/(In+Sn+Zn)で表わされる原子比が0.25〜0.6であり、Sn/(In+Sn+Zn)で表わされる原子比が0.15〜0.3であり、かつZn/(In+Sn+Zn)で表わされる原子比が0.15〜0.5であり、
可視領域の光線透過率が70%以上であり、赤外領域の光線透過率が65%以下である透明導電膜。
2.アニール処理が施されている1に記載の透明導電膜。
3.耐熱試験後の赤外領域の光線透過率が65%以下である1又は2に記載の透明導電膜。
4.活性化エネルギーが1meV以上15meV以下である1〜3のいずれかに記載の透明導電膜。
5.少なくともインジウム、錫及び亜鉛を含有し、In/(In+Sn+Zn)で表わされる原子比が0.25〜0.6であり、Sn/(In+Sn+Zn)で表わされる原子比が0.15〜0.3であり、Zn/(In+Sn+Zn)で表わされる原子比が0.15〜0.5であるスパッタリングターゲットを用いて、基板上にスパッタリング法により膜を形成し、前記膜を基板温度〜700℃の範囲でアニールすることを含む透明導電膜の製造方法。
6.前記アニールを、酸素分圧50〜200hPaの雰囲気で行う5に記載の透明導電膜の製造方法。
According to the present invention, the following transparent conductive film and the like are provided.
1. Contains at least indium, tin and zinc,
The atomic ratio represented by In / (In + Sn + Zn) is 0.25-0.6, the atomic ratio represented by Sn / (In + Sn + Zn) is 0.15-0.3, and is represented by Zn / (In + Sn + Zn). The atomic ratio is 0.15 to 0.5,
A transparent conductive film having a light transmittance in a visible region of 70% or more and a light transmittance in an infrared region of 65% or less.
2. 2. The transparent conductive film according to 1, which has been subjected to an annealing treatment.
3. 3. The transparent conductive film according to 1 or 2, wherein the light transmittance in the infrared region after the heat resistance test is 65% or less.
4). The transparent conductive film in any one of 1-3 whose activation energy is 1 meV or more and 15 meV or less.
5. It contains at least indium, tin and zinc, the atomic ratio represented by In / (In + Sn + Zn) is 0.25 to 0.6, and the atomic ratio represented by Sn / (In + Sn + Zn) is 0.15 to 0.3. Yes, using a sputtering target having an atomic ratio represented by Zn / (In + Sn + Zn) of 0.15 to 0.5, a film is formed on the substrate by a sputtering method, and the film is formed at a substrate temperature of 700 ° C. A method for producing a transparent conductive film, comprising annealing.
6). 6. The method for producing a transparent conductive film according to 5, wherein the annealing is performed in an atmosphere having an oxygen partial pressure of 50 to 200 hPa.

本発明によれば、高コストのインジウムの含有量を抑制しつつ、キャリアが高濃度、安定に存在し、赤外光透過率が低い透明導電膜が提供できる。   According to the present invention, it is possible to provide a transparent conductive film in which carriers are stably present at a high concentration and the infrared light transmittance is low while suppressing the content of high-cost indium.

実施例1及び比較例2で得た透明導電膜の光線透過率を示す図である。It is a figure which shows the light transmittance of the transparent conductive film obtained in Example 1 and Comparative Example 2. 実施例1及び比較例2で得た透明導電膜のキャリア移動度と温度の依存性、及び活性化エネルギーを示す図である。It is a figure which shows the carrier mobility of the transparent conductive film obtained in Example 1 and Comparative Example 2, temperature dependence, and activation energy.

本発明の透明導電膜は、少なくともインジウム、錫及び亜鉛を含有し、以下の原子比を満たす。
In/(In+Sn+Zn)=0.25〜0.6
Sn/(In+Sn+Zn)=0.15〜0.3
Zn/(In+Sn+Zn)=0.15〜0.5
また、上記透明導電膜は、可視領域の光線透過率が70%以上であり、赤外領域の光線透過率が65%以下である。
上記原子比は、誘導結合プラズマ(ICP)発光分析によって測定することができる。
The transparent conductive film of the present invention contains at least indium, tin, and zinc and satisfies the following atomic ratio.
In / (In + Sn + Zn) = 0.25-0.6
Sn / (In + Sn + Zn) = 0.15-0.3
Zn / (In + Sn + Zn) = 0.15 to 0.5
The transparent conductive film has a light transmittance in the visible region of 70% or more and a light transmittance in the infrared region of 65% or less.
The atomic ratio can be measured by inductively coupled plasma (ICP) emission analysis.

原子比In/(In+Sn+Zn)が0.25より小さいと、スパッタリングによって得られる透明導電膜の抵抗が高くなる恐れがある。0.6より大きいとインジウム削減効果が得られない恐れがある。
原子比In/(In+Sn+Zn)は、好ましくは0.44〜0.55である。
If the atomic ratio In / (In + Sn + Zn) is smaller than 0.25, the resistance of the transparent conductive film obtained by sputtering may increase. If it exceeds 0.6, the indium reduction effect may not be obtained.
The atomic ratio In / (In + Sn + Zn) is preferably 0.44 to 0.55.

原子比Sn/(In+Sn+Zn)が0.15より小さいと、透明導電膜の大気下での耐熱性が低下する恐れがある。0.3より大きいと透明性が損なわれる恐れがある
原子比Sn/(In+Sn+Zn)は、好ましくは0.20〜0.25である。
If the atomic ratio Sn / (In + Sn + Zn) is smaller than 0.15, the heat resistance of the transparent conductive film in the atmosphere may be reduced. If it exceeds 0.3, the transparency may be impaired. The atomic ratio Sn / (In + Sn + Zn) is preferably 0.20 to 0.25.

原子比Zn/(In+Sn+Zn)が0.15より小さいと、透明導電膜を製品用に所望の形状に加工するにあたり、ウェットエッチングが困難となる恐れがある。0.5より大きいとスパッタリングによって得られる透明導電膜の耐熱性や導電性が低下する恐れがある。
原子比Zn/(In+Sn+Zn)は、好ましくは0.20〜0.40である。
If the atomic ratio Zn / (In + Sn + Zn) is smaller than 0.15, wet etching may be difficult in processing the transparent conductive film into a desired shape for a product. If it is larger than 0.5, the heat resistance and conductivity of the transparent conductive film obtained by sputtering may be lowered.
The atomic ratio Zn / (In + Sn + Zn) is preferably 0.20 to 0.40.

可視領域の光線透過率は、波長380〜780nmの電磁波の光線透過率の平均値であり、赤外領域の光線透過率とは波長1200〜2600nmの電磁波の光線透過率の平均値である。
光線透過率は、分光光度計により測定できる。
The light transmittance in the visible region is an average value of the light transmittance of electromagnetic waves having a wavelength of 380 to 780 nm, and the light transmittance in the infrared region is an average value of light transmittance of electromagnetic waves having a wavelength of 1200 to 2600 nm.
The light transmittance can be measured with a spectrophotometer.

可視領域の平均透過率が70%未満では、透明度が悪く、表示素子用透明電極や透明熱線反射膜の用途としては不適合である。
また、赤外領域の透過率が65%を超えると熱線反射率が低下し、建材においては、断熱効果の低下、防曇ガラスにおいては通電時の発熱不十分等の不具合が生ずる恐れがある。
可視領域の平均透過率は好ましくは80%以上であり、赤外領域の光線透過率は好ましくは60%以下である。
When the average transmittance in the visible region is less than 70%, the transparency is poor and it is unsuitable for use as a transparent electrode for a display element or a transparent heat ray reflective film.
Further, if the transmittance in the infrared region exceeds 65%, the heat ray reflectance is lowered, and there is a risk that the heat insulation effect is lowered in the building material and the heat generation is insufficient in the anti-fogging glass.
The average transmittance in the visible region is preferably 80% or more, and the light transmittance in the infrared region is preferably 60% or less.

また、本発明の透明導電膜は、好ましくは耐熱試験を行った後であっても赤外領域の光線透過率が65%以下である。耐熱試験は、実施例に記載の方法で行う。   The transparent conductive film of the present invention preferably has a light transmittance of 65% or less in the infrared region even after a heat resistance test. The heat resistance test is performed by the method described in the examples.

また、本発明の透明導電膜は、好ましくは活性化エネルギーが1〜15meVである。
活性化エネルギーはホール効果の温度依存性を測定して算出する。具体的には以下のように測定する。
ホール効果により得られたホール移動度の値を、それぞれ温度T1のときμ1、温度T2のときμ2とする。ここで、T1は室温近傍で270〜330K程度が好ましい。T2はT1よりも100K程度低温であることが好ましい。
μ1、μ2は以下のように表すことができる。
μ1=Aexp(−E/kT1)、μ2=Aexp(−E/kT2)
(式中、Aは定数、Eは活性化エネルギー、kはボルツマン定数である。)
μ1、μ2から以下のように活性化エネルギーEを求めることができる。
E=−{k×log(μ1/μ2)}/{(1/T1)−(1/T2)}
The transparent conductive film of the present invention preferably has an activation energy of 1 to 15 meV.
The activation energy is calculated by measuring the temperature dependence of the Hall effect. Specifically, the measurement is performed as follows.
The values of the hole mobility obtained by the Hall effect are μ1 at the temperature T1 and μ2 at the temperature T2. Here, T1 is preferably about 270 to 330 K around room temperature. T2 is preferably about 100K lower than T1.
μ1 and μ2 can be expressed as follows.
μ1 = Aexp (−E / kT1), μ2 = Aexp (−E / kT2)
(In the formula, A is a constant, E is an activation energy, and k is a Boltzmann constant.)
The activation energy E can be obtained from μ1 and μ2 as follows.
E = − {k × log (μ1 / μ2)} / {(1 / T1) − (1 / T2)}

活性化エネルギーは、電子の動きやすさの温度依存性を示す。
活性化エネルギーが15meVを超えると、特に低温時において電子の速度が落ちてしまい、熱線反射能が失われる恐れがある。活性化エネルギーは小さければ小さいほどよいが、1meVを下回ると半金属状態であることを意味し、透明性が失われる恐れがある。
活性化エネルギーは、好ましくは2〜10meVである。
The activation energy indicates the temperature dependence of the mobility of electrons.
When the activation energy exceeds 15 meV, the speed of electrons decreases particularly at low temperatures, and the heat ray reflectivity may be lost. The smaller the activation energy, the better. However, if the activation energy is less than 1 meV, it means that the metal is in a semi-metallic state, and the transparency may be lost.
The activation energy is preferably 2 to 10 meV.

本発明の透明導電膜は、本発明の効果を損ねない範囲において、上述したIn、Sn及びZn以外の他の金属元素を含有していてもよいし、実質的にIn、Sn及びZnのみからなっていてもよい。
本発明において「実質的」とは、透明導電膜としての効果が上記In、Sn、及びZnに起因すること、又は透明導電膜の金属元素の98重量%以上100重量%以下(好ましくは99重量%以上100重量%以下)がIn、Sn及びZnであることを意味する。
上記のように、透明導電膜に含有される金属元素は、実質的にIn、Sn及びZnからなっており、本発明の効果を損なわない範囲で他に不可避不純物を含んでいてもよい。
The transparent conductive film of the present invention may contain a metal element other than In, Sn, and Zn described above as long as the effects of the present invention are not impaired, or substantially only from In, Sn, and Zn. It may be.
In the present invention, “substantially” means that the effect as a transparent conductive film is attributed to the above In, Sn, and Zn, or 98 wt% to 100 wt% (preferably 99 wt%) of the metal element of the transparent conductive film. % Or more and 100% by weight or less) means In, Sn and Zn.
As described above, the metal element contained in the transparent conductive film is substantially composed of In, Sn, and Zn, and may contain other inevitable impurities as long as the effects of the present invention are not impaired.

本発明の透明導電膜の製造方法は、スパッタリングターゲットを用いて、基板上にスパッタリング法により成膜し、基板温度〜700℃の範囲でアニールすることを含む。
成膜に用いるスパッタリングターゲットは、少なくともインジウム、錫及び亜鉛を含有し、原子比In/(In+Sn+Zn)が0.25〜0.6であり、原子比Sn/(In+Sn+Zn)が0.15〜0.3であり、原子比Zn/(In+Sn+Zn)が0.15〜0.5である。
スパッタリングターゲットは公知の方法により製造することができる。
The manufacturing method of the transparent conductive film of this invention includes forming into a film by sputtering method on a board | substrate using a sputtering target, and annealing in the range of substrate temperature -700 degreeC.
A sputtering target used for film formation contains at least indium, tin, and zinc, an atomic ratio In / (In + Sn + Zn) is 0.25 to 0.6, and an atomic ratio Sn / (In + Sn + Zn) is 0.15 to 0.00. 3 and the atomic ratio Zn / (In + Sn + Zn) is 0.15 to 0.5.
The sputtering target can be manufactured by a known method.

アニール温度が成膜時の基板温度を下回ると、アニールの効果が得られず、キャリア濃度の安定性が欠しい透明導電膜となる可能性がある。アニール温度が700℃を超えると、キャリア濃度が減少し、導電膜としての機能を果たさなくなる恐れがある。
アニール温度は、通常100〜500℃、好ましくは300〜500℃である。
If the annealing temperature is lower than the substrate temperature at the time of film formation, the effect of annealing cannot be obtained, and there is a possibility that a transparent conductive film lacking the stability of the carrier concentration is obtained. When the annealing temperature exceeds 700 ° C., the carrier concentration decreases, and the function as a conductive film may not be achieved.
The annealing temperature is usually 100 to 500 ° C, preferably 300 to 500 ° C.

また、上記アニールを酸素分圧50〜200hPaの雰囲気で行うと好ましい。
酸素分圧が50hPa以上であると、還元による着色の耐性に優れる。酸素分圧が200hPa以下であると、導電度に優れる。
酸素分圧は、好ましくは100〜190hPaである。
The annealing is preferably performed in an atmosphere having an oxygen partial pressure of 50 to 200 hPa.
When the oxygen partial pressure is 50 hPa or more, the resistance to coloring due to reduction is excellent. When the oxygen partial pressure is 200 hPa or less, the conductivity is excellent.
The oxygen partial pressure is preferably 100 to 190 hPa.

アニール処理を行わない場合、透明電極としての使用過程で、キャリア濃度が低下して抵抗が上昇したり、熱線反射能が低下する。これは、スパッタリングで得られた透明電極が熱力学的に非平衡であり、キャリアを担う酸素欠損が安定に存在しないことに由来する。
アニール処理を施すことにより酸素欠損を安定化できるが、単にアニールしただけでは、キャリア濃度が減少したり、透過率が減少する場合がある。
上記特定温度のアニール処理により、キャリア濃度及び熱線反射能の低下を防ぐことができる。
When the annealing treatment is not performed, the carrier concentration decreases and the resistance increases or the heat ray reflectivity decreases during the use process as the transparent electrode. This is due to the fact that the transparent electrode obtained by sputtering is thermodynamically non-equilibrium and oxygen vacancies that carry carriers do not exist stably.
Although the oxygen deficiency can be stabilized by performing the annealing treatment, the carrier concentration may be decreased or the transmittance may be decreased simply by annealing.
The annealing treatment at the specific temperature can prevent the carrier concentration and the heat ray reflectivity from being lowered.

用いるスパッタリング法及びスパッタリング条件には特に制限はないが、直流(DC)マグネトロン法、交流(AC)マグネトロン法、高周波(RF)マグネトロン法が好ましい。液晶ディスプレイ(LCD)パネル用途では装置が大型化するためDCマグネトロン法、ACマグネトロン法が好ましく、安定成膜可能なACマグネトロン法が特に好ましい。   The sputtering method and sputtering conditions used are not particularly limited, but a direct current (DC) magnetron method, an alternating current (AC) magnetron method, and a radio frequency (RF) magnetron method are preferable. For liquid crystal display (LCD) panel applications, the DC magnetron method and the AC magnetron method are preferable because the apparatus becomes large, and the AC magnetron method capable of stable film formation is particularly preferable.

スパッタ圧力は通常0.05〜2Pa、到達圧力は通常10-3〜10-7Paである。基板温度は通常25〜500℃、好ましくは50〜300℃、より好ましくは100〜250℃である。 The sputtering pressure is usually 0.05 to 2 Pa, and the ultimate pressure is usually 10 −3 to 10 −7 Pa. The substrate temperature is usually 25 to 500 ° C, preferably 50 to 300 ° C, more preferably 100 to 250 ° C.

導入ガスとして、通常Ne、Ar、Kr、Xe等の不活性ガスを用いることができるが、これらのうち、成膜速度が速い点でArが好ましい。また、導入ガスに酸素を0.01〜5%含ませると、比抵抗が下がりやすく好ましい。また、導入ガスに水素を0.01〜5%含ませると、得られる透明導電膜の抵抗が下がりやすく好ましい。   As the introduction gas, an inert gas such as Ne, Ar, Kr, or Xe can be used. Of these, Ar is preferable in that the film forming speed is high. Moreover, when oxygen is included in the introduced gas in an amount of 0.01 to 5%, the specific resistance is preferably lowered. In addition, it is preferable that 0.01 to 5% of hydrogen is included in the introduced gas because the resistance of the obtained transparent conductive film tends to decrease.

本発明の透明導電膜は、非晶質あるいは微結晶のものが好ましく、非晶質のものが特に好ましい。本発明の透明導電膜が非晶質であるか否かは、X線回折法によって判定することができる。透明導電膜が非晶質であることにより、エッチングが容易になる、エッチングの残渣が発生し難い、また、大面積でも均一な膜が得られるという効果が得られる。   The transparent conductive film of the present invention is preferably amorphous or microcrystalline, and particularly preferably amorphous. Whether or not the transparent conductive film of the present invention is amorphous can be determined by an X-ray diffraction method. Since the transparent conductive film is amorphous, etching can be easily performed, etching residues are hardly generated, and a uniform film can be obtained even in a large area.

本発明の透明導電膜は、エッチング等の処理を施して、薄膜トランジスタの透明電極等として用いることができる。   The transparent conductive film of the present invention can be used as a transparent electrode of a thin film transistor by performing a treatment such as etching.

以下、実施例によって本発明をさらに具体的に説明するが、本発明はこれら実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to these Examples at all.

実施例1
(1)スパッタリングターゲットの製造及び評価
(i)ターゲットの製造
ターゲットの製造原料として、平均粒径3.4μm、純度4Nの酸化インジウム、平均粒径0.6μm、純度4Nの酸化亜鉛、及び平均粒径0.5μm、純度4Nの酸化錫を、原子比〔In/(In+Sn+Zn)〕が0.53、原子比〔Sn/(In+Sn+Zn)〕が0.17、原子比〔Zn/(In+Sn+Zn)〕が0.30となるように混合し、これを湿式ボールミルに供給し、72時間混合粉砕して原料微粉末を得た。
Example 1
(1) Production and evaluation of sputtering target (i) Production of target As raw materials for production of target, indium oxide having an average particle diameter of 3.4 μm, purity 4N, average particle diameter 0.6 μm, zinc oxide having purity 4N, and average grain Tin oxide having a diameter of 0.5 μm and a purity of 4N has an atomic ratio [In / (In + Sn + Zn)] of 0.53, an atomic ratio [Sn / (In + Sn + Zn)] of 0.17, and an atomic ratio [Zn / (In + Sn + Zn)]. It mixed so that it might become 0.30, this was supplied to the wet ball mill, and it mixed and ground for 72 hours, and obtained the raw material fine powder.

得られた原料微粉末を造粒した後、直径10cm、厚さ5mmの寸法にプレス成形して焼成炉に装入し、酸素ガス加圧下、1400℃で48時間焼成して焼結体(ターゲット)を得た。焼成時の昇温速度は3℃/分であった。   After granulating the obtained raw material fine powder, it is press-molded to a size of 10 cm in diameter and 5 mm in thickness, inserted into a firing furnace, fired at 1400 ° C. for 48 hours under oxygen gas pressure, and sintered (target ) The temperature rising rate during firing was 3 ° C./min.

(ii)ターゲットの評価
得られたターゲットの理論相対密度は97%であり、四探針法により測定したバルク抵抗値は1.3mΩ・cmであった。
ICP発光分析法で元素分析を行ったところ、In/(In+Sn+Zn)=0.53、Sn/(In+Sn+Zn)=0.17、Zn/(In+Sn+Zn)=0.30であった。
(Ii) Evaluation of target The theoretical relative density of the obtained target was 97%, and the bulk resistance value measured by the four-probe method was 1.3 mΩ · cm.
When elemental analysis was performed by ICP emission analysis, In / (In + Sn + Zn) = 0.53, Sn / (In + Sn + Zn) = 0.17, and Zn / (In + Sn + Zn) = 0.30.

(2)透明導電膜の成膜及び評価
(i)透明導電膜の成膜
得られたスパッタリングターゲットをDCマグネトロンスパッタリング装置に装着し、室温(RT)においてスパッタリングを行い、ガラス基板上に透明導電膜を成膜した。
このときのスパッタ条件は、スパッタ圧力1×10-1Pa、到達圧力5×10-4Pa、基板温度RT、投入電力120W、成膜時間45分間、導入ガスはアルゴンガス100%とした。
このようにして得られた透明導電基板を大気圧下、酸素分圧50hPa、300℃、1時間の条件でアニールを行い、膜厚が約300nmの透明導電性酸化物が形成された透明導電ガラスが得られた。
(2) Film formation and evaluation of transparent conductive film (i) Film formation of transparent conductive film The obtained sputtering target was mounted on a DC magnetron sputtering apparatus and sputtered at room temperature (RT), and the transparent conductive film was formed on the glass substrate. Was deposited.
The sputtering conditions at this time were a sputtering pressure of 1 × 10 −1 Pa, an ultimate pressure of 5 × 10 −4 Pa, a substrate temperature RT, an input power of 120 W, a film formation time of 45 minutes, and the introduced gas was 100% argon gas.
The transparent conductive glass obtained by annealing the transparent conductive substrate thus obtained under atmospheric pressure, oxygen partial pressure of 50 hPa, 300 ° C., and 1 hour to form a transparent conductive oxide having a film thickness of about 300 nm was gotten.

(ii)透明導電膜の物性の評価
(i)で得られた透明導電膜の導電性について、以下のように物性を評価した。結果を表1に示す。
四探針法により比抵抗を測定したところ、5×10-4Ω・cmであった。また、ホール効果によりキャリア濃度を測定したところ、2.0×1020cm-3であった。
また、この透明導電性酸化物は、平均の可視領域(波長380〜780nm)の光線透過率が72%であり、透明性においても優れたものであった。また、近赤外領域(波長1200〜2600nm)の平均透過率は63%であり、熱線反射効果にも優れたものであった。光線透過率は島津製作所のUV3600を用いて測定した。
(Ii) Evaluation of physical properties of transparent conductive film The physical properties of the transparent conductive film obtained in (i) were evaluated as follows. The results are shown in Table 1.
When the specific resistance was measured by a four-point probe method, it was 5 × 10 −4 Ω · cm. Further, the carrier concentration was measured by the Hall effect and found to be 2.0 × 10 20 cm −3 .
Further, this transparent conductive oxide had an average visible region (wavelength of 380 to 780 nm) light transmittance of 72%, and was excellent in transparency. Moreover, the average transmittance | permeability of the near-infrared area | region (wavelength 1200-2600nm) was 63%, and was excellent also in the heat ray reflective effect. The light transmittance was measured using UV3600 manufactured by Shimadzu Corporation.

この透明導電膜を蓚酸45℃でエッチングを行ったところ、エッチング速度は150nm/分であった。
また、PAN(リン酸−酢酸−硝酸系エッチング剤)によるエッチング速度は50℃で20nm/分以下であり、PAN耐性は良好であった。
When this transparent conductive film was etched at 45 ° C. of oxalic acid, the etching rate was 150 nm / min.
Moreover, the etching rate by PAN (phosphoric acid-acetic acid-nitric acid type etching agent) was 20 nm / min or less at 50 ° C., and the PAN resistance was good.

また、この透明導電膜について、空気中、120℃、1000時間の条件で耐久性試験(耐熱試験)を行い、抵抗及びキャリア濃度の変化を確認した。
その結果、抵抗は5.1×10-4Ω・cm、キャリア濃度は1.9×1020cm-3であり高耐久であることが確認された。
また、可視領域、近赤外領域の光線透過率はそれぞれ83%、56%となった。
耐熱試験後の熱線(赤外光)反射能は、可視域(380〜780nm)の平均透過率70%以上、及び赤外線領域(1200〜2600nm)の透過率65%以下を同時に満たす場合を○とし、それ以外を×とした。
The transparent conductive film was subjected to a durability test (heat resistance test) in air at 120 ° C. for 1000 hours to confirm changes in resistance and carrier concentration.
As a result, it was confirmed that the resistance was 5.1 × 10 −4 Ω · cm, the carrier concentration was 1.9 × 10 20 cm −3 , and the durability was high.
The light transmittances in the visible region and the near infrared region were 83% and 56%, respectively.
The heat ray (infrared light) reflectivity after the heat resistance test is ○ when the average transmittance in the visible region (380 to 780 nm) is 70% or more and the transmittance in the infrared region (1200 to 2600 nm) is 65% or less at the same time. Other than that, it was set as x.

また、この透明導電ガラスのホール移動度の温度依存性を測定し、活性化エネルギーを求めたところ、10.3meVとなった。結果を図2に示す。
このことは、低温で測定しても移動度の低下が抑制されるため、赤外光透過率の変化が小さいことを意味する。
Moreover, when the temperature dependence of the hole mobility of this transparent conductive glass was measured and the activation energy was calculated | required, it was 10.3 meV. The results are shown in FIG.
This means that the change in the infrared light transmittance is small because a decrease in mobility is suppressed even when measured at a low temperature.

実施例2〜6
ターゲットの組成、成膜時の基板温度、アニール酸素分圧、及びアニール温度を表1のように変更した他は、実施例1と同様にして薄膜を作製し、評価した。結果を表1に示す。
Examples 2-6
A thin film was prepared and evaluated in the same manner as in Example 1 except that the composition of the target, the substrate temperature during film formation, the annealing oxygen partial pressure, and the annealing temperature were changed as shown in Table 1. The results are shown in Table 1.

比較例1
ターゲットの組成、成膜時の基板温度、アニール酸素分圧、及びアニール温度を表1のように変更した他は、実施例1と同様にして薄膜を作製し、評価した。結果を表1に示す。
比較例1で作製した薄膜は、Inが少なすぎるため、赤外光遮閉能に劣った。
Comparative Example 1
A thin film was prepared and evaluated in the same manner as in Example 1 except that the composition of the target, the substrate temperature during film formation, the annealing oxygen partial pressure, and the annealing temperature were changed as shown in Table 1. The results are shown in Table 1.
The thin film produced in Comparative Example 1 was inferior in infrared light blocking ability because of too little In.

比較例2
ターゲットの組成をインジウム・ガリウム・亜鉛酸化物(IGZO)に変更し、成膜時の基板温度、アニール酸素分圧、及びアニール温度を表1のように変更した他は、実施例1と同様にして薄膜を作製し、評価した。結果を表1、図1、2に示す。
IGZO膜は赤外光遮蔽能に劣り、さらに活性化エネルギーが高いため、低温での赤外光遮蔽能がさらに大きく低下する。
Comparative Example 2
The target composition was changed to indium / gallium / zinc oxide (IGZO), and the substrate temperature, annealing oxygen partial pressure, and annealing temperature during film formation were changed as shown in Table 1, and the same as in Example 1. A thin film was prepared and evaluated. The results are shown in Table 1 and FIGS.
Since the IGZO film is inferior in the infrared light shielding ability and has higher activation energy, the infrared light shielding ability at a low temperature is further greatly reduced.

比較例3
ターゲットの組成、成膜時の基板温度、アニール酸素分圧、及びアニール温度を表1のように変更した他は、実施例1と同様にして薄膜を作製し、評価した。結果を表1に示す。
活性化エネルギーが大きいため、低温でのキャリア移動度が大きく低下し、赤外光吸収率が低下した。
Comparative Example 3
A thin film was prepared and evaluated in the same manner as in Example 1 except that the composition of the target, the substrate temperature during film formation, the annealing oxygen partial pressure, and the annealing temperature were changed as shown in Table 1. The results are shown in Table 1.
Since the activation energy is large, the carrier mobility at a low temperature is greatly lowered, and the infrared light absorption rate is lowered.

比較例4
成膜時間を15分とし、アニール処理を行わなかった他は、実施例1と同様にして薄膜を作製し、評価した。結果を表1に示す。
この結果、ガラス基板上に、膜厚が約100nmの透明導電性酸化物が形成された透明導電ガラスが得られた。
Comparative Example 4
A thin film was prepared and evaluated in the same manner as in Example 1 except that the film formation time was 15 minutes and the annealing treatment was not performed. The results are shown in Table 1.
As a result, a transparent conductive glass in which a transparent conductive oxide having a film thickness of about 100 nm was formed on the glass substrate was obtained.

参考例1
ターゲットにITOを用い、成膜時の基板温度、及びアニール酸素分圧を表1のように変更した他は、実施例1と同様にして薄膜を作製し、評価した。結果を表1に示す。
ITOは優れた性能を有するが、Inの含有量が90%以上であるため原材料コストに課題が残る。
Reference example 1
A thin film was prepared and evaluated in the same manner as in Example 1 except that ITO was used as a target and the substrate temperature during film formation and the annealing oxygen partial pressure were changed as shown in Table 1. The results are shown in Table 1.
ITO has excellent performance, but the problem of the raw material cost remains because the In content is 90% or more.

本発明の透明導電膜は薄膜トランジスタの透明電極等に用いることができる。   The transparent conductive film of the present invention can be used for a transparent electrode of a thin film transistor.

Claims (6)

少なくともインジウム、錫及び亜鉛を含有し、
In/(In+Sn+Zn)で表わされる原子比が0.25〜0.6であり、Sn/(In+Sn+Zn)で表わされる原子比が0.15〜0.3であり、かつZn/(In+Sn+Zn)で表わされる原子比が0.15〜0.5であり、
可視領域の光線透過率が70%以上であり、赤外領域の光線透過率が65%以下である透明導電膜。
Contains at least indium, tin and zinc,
The atomic ratio represented by In / (In + Sn + Zn) is 0.25-0.6, the atomic ratio represented by Sn / (In + Sn + Zn) is 0.15-0.3, and is represented by Zn / (In + Sn + Zn). The atomic ratio is 0.15 to 0.5,
A transparent conductive film having a light transmittance in a visible region of 70% or more and a light transmittance in an infrared region of 65% or less.
アニール処理が施されている請求項1に記載の透明導電膜。   The transparent conductive film according to claim 1, which has been annealed. 耐熱試験後の赤外領域の光線透過率が65%以下である請求項1又は2に記載の透明導電膜。   The transparent conductive film according to claim 1 or 2, wherein the light transmittance in the infrared region after the heat resistance test is 65% or less. 活性化エネルギーが1meV以上15meV以下である請求項1〜3のいずれかに記載の透明導電膜。   The transparent conductive film according to claim 1, wherein the activation energy is 1 meV or more and 15 meV or less. 少なくともインジウム、錫及び亜鉛を含有し、In/(In+Sn+Zn)で表わされる原子比が0.25〜0.6であり、Sn/(In+Sn+Zn)で表わされる原子比が0.15〜0.3であり、Zn/(In+Sn+Zn)で表わされる原子比が0.15〜0.5であるスパッタリングターゲットを用いて、基板上にスパッタリング法により膜を形成し、前記膜を基板温度〜700℃の範囲でアニールすることを含む透明導電膜の製造方法。   It contains at least indium, tin and zinc, the atomic ratio represented by In / (In + Sn + Zn) is 0.25 to 0.6, and the atomic ratio represented by Sn / (In + Sn + Zn) is 0.15 to 0.3. Yes, using a sputtering target having an atomic ratio represented by Zn / (In + Sn + Zn) of 0.15 to 0.5, a film is formed on the substrate by a sputtering method, and the film is formed at a substrate temperature of 700 ° C. A method for producing a transparent conductive film, comprising annealing. 前記アニールを、酸素分圧50〜200hPaの雰囲気で行う請求項5に記載の透明導電膜の製造方法。   The method for producing a transparent conductive film according to claim 5, wherein the annealing is performed in an atmosphere having an oxygen partial pressure of 50 to 200 hPa.
JP2011153959A 2011-07-12 2011-07-12 Transparent conductive film Expired - Fee Related JP5689378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011153959A JP5689378B2 (en) 2011-07-12 2011-07-12 Transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011153959A JP5689378B2 (en) 2011-07-12 2011-07-12 Transparent conductive film

Publications (2)

Publication Number Publication Date
JP2013020846A true JP2013020846A (en) 2013-01-31
JP5689378B2 JP5689378B2 (en) 2015-03-25

Family

ID=47692091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011153959A Expired - Fee Related JP5689378B2 (en) 2011-07-12 2011-07-12 Transparent conductive film

Country Status (1)

Country Link
JP (1) JP5689378B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017119626A1 (en) * 2016-01-06 2017-07-13 희성금속 주식회사 Transparent conductive thin film and manufacturing method therefor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001121641A (en) * 1999-10-27 2001-05-08 Teijin Ltd Transparent conductive laminate
JP2001135167A (en) * 1999-11-04 2001-05-18 Teijin Ltd Transparent conductive laminate and its production
JP2001155549A (en) * 1999-11-26 2001-06-08 Alps Electric Co Ltd Oxide transparent conductive film, target for forming the same, method of manufacturing substrate having oxide transparent conductive film, electronic equipment and liquid crystal display unit
JP2001306258A (en) * 2000-02-18 2001-11-02 Nippon Sheet Glass Co Ltd Substrate with transparent conductive film for touch panel
JP2002324431A (en) * 2001-04-24 2002-11-08 Mitsui Chemicals Inc Display filer and manufacturing method of the same
JP2007063649A (en) * 2005-09-01 2007-03-15 Idemitsu Kosan Co Ltd Sputtering target, and transparent electrically conductive film
JP2007084842A (en) * 2005-09-20 2007-04-05 Idemitsu Kosan Co Ltd Sputtering target and transparent conductive film
JP2007115431A (en) * 2005-10-18 2007-05-10 Idemitsu Kosan Co Ltd Transparent conductive film, transparent electrode, and electrode base plate and manufacturing method of the same
WO2010058533A1 (en) * 2008-11-20 2010-05-27 出光興産株式会社 ZnO-SnO2-In2O3 BASED SINTERED OXIDE AND AMORPHOUS TRANSPARENT CONDUCTIVE FILM

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001121641A (en) * 1999-10-27 2001-05-08 Teijin Ltd Transparent conductive laminate
JP2001135167A (en) * 1999-11-04 2001-05-18 Teijin Ltd Transparent conductive laminate and its production
JP2001155549A (en) * 1999-11-26 2001-06-08 Alps Electric Co Ltd Oxide transparent conductive film, target for forming the same, method of manufacturing substrate having oxide transparent conductive film, electronic equipment and liquid crystal display unit
JP2001306258A (en) * 2000-02-18 2001-11-02 Nippon Sheet Glass Co Ltd Substrate with transparent conductive film for touch panel
JP2002324431A (en) * 2001-04-24 2002-11-08 Mitsui Chemicals Inc Display filer and manufacturing method of the same
JP2007063649A (en) * 2005-09-01 2007-03-15 Idemitsu Kosan Co Ltd Sputtering target, and transparent electrically conductive film
JP2007084842A (en) * 2005-09-20 2007-04-05 Idemitsu Kosan Co Ltd Sputtering target and transparent conductive film
JP2007115431A (en) * 2005-10-18 2007-05-10 Idemitsu Kosan Co Ltd Transparent conductive film, transparent electrode, and electrode base plate and manufacturing method of the same
WO2010058533A1 (en) * 2008-11-20 2010-05-27 出光興産株式会社 ZnO-SnO2-In2O3 BASED SINTERED OXIDE AND AMORPHOUS TRANSPARENT CONDUCTIVE FILM

Also Published As

Publication number Publication date
JP5689378B2 (en) 2015-03-25

Similar Documents

Publication Publication Date Title
JP5339100B2 (en) Zn-Si-O-based oxide sintered body, method for producing the same, sputtering target, and tablet for vapor deposition
Zhu et al. Sputtering deposition of transparent conductive F-doped SnO2 (FTO) thin films in hydrogen-containing atmosphere
JP5561358B2 (en) Transparent conductive film
Yan et al. Impacts of preparation conditions on photoelectric properties of the ZnO: Ge transparent conductive thin films fabricated by pulsed laser deposition
JP2011184715A (en) Zinc oxide based transparent conductive film forming material, method for producing the same, target using the same, and method for forming zinc oxide based transparent conductive film
Chen et al. Fabrication of transparent conducting ATO films using the ATO sintered targets by pulsed laser deposition
JP5735190B1 (en) Oxide sintered body, sputtering target, and oxide thin film
Safeen et al. Influence of intrinsic defects on the electrical and optical properties of TiO2: Nb films sputtered at room temperature
JP2011074479A (en) Target for ion plating for producing zinc oxide-based transparent conductive thin film, and zinc oxide-based transparent conductive thin film
Zhu et al. Comparative study on effects of H2 flux on structure and properties of Al-doped ZnO films by RF sputtering in Ar+ H2 ambient at two substrate temperatures
JP5582530B2 (en) Ultraviolet region transmissive transparent conductive film and method for producing the same
JP5689378B2 (en) Transparent conductive film
JP5952031B2 (en) Oxide sintered body manufacturing method and target manufacturing method
WO2011152682A2 (en) Transparent conductive layer, target for transparent conductive layer and a process for producing the target for transparent conductive layer
JP2012106879A (en) Zinc oxide-based transparent conductive film-forming material, method for manufacturing the same, target using the same, and method for forming zinc oxide-based transparent conductive film
JP2012197216A (en) Oxide sintered compact, method for manufacturing the same and target using the same
KR102237339B1 (en) Sputtering target and method for producing same
JP4370868B2 (en) Oxide sintered body, sputtering target, and method for producing oxide transparent electrode film
Zhu et al. Structural, electrical, and optical properties of hydrogen and Cu codoped ZnO films prepared by magnetron sputtering at two substrate temperatures
JP2012148937A (en) Electrically conductive composite oxide, zinc oxide type sintered body, method for manufacturing it and target
JP6027844B2 (en) Method for producing zinc oxide-based sintered body
JP2014009150A (en) Method for producing zinc oxide sintered body
KR101283686B1 (en) Thermal Stability Transparent Conductive Thin Film and Method for Preparing Thermal Stability Transparent Conductive Thin Film
JP2008053118A (en) Heat treatment method for zinc oxide-based transparent conductive film
Kim et al. Non-Stoichiometric Indium Zinc Tin Oxide Thin Films Prepared by RF Magnetron Sputtering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150128

R150 Certificate of patent or registration of utility model

Ref document number: 5689378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees