JP2012228123A - Non-contact power supply device - Google Patents

Non-contact power supply device Download PDF

Info

Publication number
JP2012228123A
JP2012228123A JP2011095350A JP2011095350A JP2012228123A JP 2012228123 A JP2012228123 A JP 2012228123A JP 2011095350 A JP2011095350 A JP 2011095350A JP 2011095350 A JP2011095350 A JP 2011095350A JP 2012228123 A JP2012228123 A JP 2012228123A
Authority
JP
Japan
Prior art keywords
coil
power
power transmission
power supply
transmission coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011095350A
Other languages
Japanese (ja)
Other versions
JP5768465B2 (en
Inventor
Hiroshi Tanaka
広志 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2011095350A priority Critical patent/JP5768465B2/en
Publication of JP2012228123A publication Critical patent/JP2012228123A/en
Application granted granted Critical
Publication of JP5768465B2 publication Critical patent/JP5768465B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact power supply device which suppresses the temperature rise of a coil.SOLUTION: A non-contact power supply device includes: a second coil which conducts power transmission or power reception with a first coil through at least magnetic coupling in a non-contact manner and a passage 171 through which liquid cooling the second coil flows. The second coil is formed in a planar shape and is provided at a position facing the first coil. The passage 171 is provided at the facing surface side of the second coil which faces the first coil.

Description

本発明は、非接触給電装置に関するものである。   The present invention relates to a non-contact power feeding device.

所定の距離を隔てて形成される空隙を介して、互いに対向して配置され、且つそれぞれ所定の口径と形状であり、給電時に上下等で対称の同一構造をなす給電コイルと受電コイルとを有する非接触給電装置において、受電側である電気自動車に、充電用コントローラと、バッテリーとを備え、当該給電コイルから受電コイルへの給電よりバッテリーを充電するものが知られている(特許文献1)。   A power supply coil and a power reception coil are disposed opposite to each other through a gap formed at a predetermined distance, and each have a predetermined aperture and shape, and have the same symmetrical structure in the vertical direction during power supply. As a non-contact power supply device, a device that includes a charging controller and a battery in an electric vehicle on the power receiving side and charges the battery by supplying power from the power supply coil to the power reception coil is known (Patent Document 1).

特開2008−288889号公報JP 2008-288889 A

しかしながら、長時間の給電を行った場合には、コイルが発熱し、コイルの温度が上昇するという問題があった。   However, when power is supplied for a long time, the coil generates heat and the temperature of the coil rises.

本発明が解決しようとする課題は、コイルの温度上昇を抑制する非接触給電装置を提供することである。   The problem to be solved by the present invention is to provide a non-contact power feeding device that suppresses the temperature rise of the coil.

本発明は、第1のコイルと対向する第2のコイルの対向面側に流路を設けることによって、上記課題を解決する。   This invention solves the said subject by providing a flow path in the opposing surface side of the 2nd coil which opposes a 1st coil.

本発明によれば、コイルから発せられる熱が、流路を通る液体によって吸収されるため、コイルの温度上昇を抑制することができる。   According to the present invention, since the heat generated from the coil is absorbed by the liquid passing through the flow path, the temperature rise of the coil can be suppressed.

本発明の実施形態に係る非接触充電システムのブロック図である。1 is a block diagram of a non-contact charging system according to an embodiment of the present invention. 図1の非接触充電システムに含まれる送電ユニット及び冷却装置の平面図である。It is a top view of the power transmission unit and cooling device which are included in the non-contact charge system of FIG. 図2のIII線に沿う断面図である。It is sectional drawing which follows the III line of FIG. 送電コイルと受電コイルとの間に異物が存在する状態を説明するための図であり、非接触充電システムに含まれる送電ユニット及び冷却装置の平面図である。It is a figure for demonstrating the state in which a foreign material exists between a power transmission coil and a receiving coil, and is a top view of the power transmission unit and cooling device which are included in a non-contact charging system. 図1の非接触充電システムに含まれる非接触給電装置の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of the non-contact electric power feeder included in the non-contact charging system of FIG.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

《第1実施形態》
図1は、本発明の一実施形態に係る非接触給電装置を含む車両200及び充電装置100を備えた非接触充電システムのブロック図である。なお、本例の非接触給電装置の車両側のユニットは電気自動車に搭載されるが、ハイブリッド車両等の車両でもよい。
<< First Embodiment >>
FIG. 1 is a block diagram of a contactless charging system including a vehicle 200 including a contactless power feeding device and a charging device 100 according to an embodiment of the present invention. In addition, although the vehicle side unit of the non-contact electric power feeder of this example is mounted in an electric vehicle, vehicles, such as a hybrid vehicle, may be sufficient.

図1に示すように、本例の非接触充電システムは、車両側のユニットを含む車両200と、地上側ユニットである充電装置100とを備え、給電スタンドなどに設置される充電装置100から、非接触で電力を供給し、車両200に設けられるバッテリ22を充電するシステムである。   As shown in FIG. 1, the non-contact charging system of this example includes a vehicle 200 including a vehicle-side unit and a charging device 100 that is a ground-side unit. From the charging device 100 installed in a power supply stand or the like, In this system, electric power is supplied in a non-contact manner and a battery 22 provided in the vehicle 200 is charged.

充電装置100は、交流電源11と、送電回路部12と、通信部13と、位置検出部14と、給電制御部15と、送電コイル16と、冷却装置17とを備えている。充電装置100は、車両200を駐車する駐車スペースに設けられており、車両200が所定の駐車位置に駐車されるとコイル間の非接触給電により電力を供給する地上側のユニットである。   The charging device 100 includes an AC power supply 11, a power transmission circuit unit 12, a communication unit 13, a position detection unit 14, a power supply control unit 15, a power transmission coil 16, and a cooling device 17. The charging device 100 is provided in a parking space where the vehicle 200 is parked, and is a ground-side unit that supplies power by non-contact power feeding between coils when the vehicle 200 is parked at a predetermined parking position.

送電回路部12は、交流電源11から送電される交流電力を、高周波の交流電力に変換し、送電コイル16に送電するための回路であり、給電制御部15の制御により、送電コイル16から送電される電力を制御する制御回路である。通信部13は、車両200側の通信部23との間で、無線により通信を行い、情報の送受信を行う。通信部13は、例えば、充電装置100からの電力供給を開始する旨の信号を通信部23に送信したり、あるいは、車両200側から充電装置100から電力を受給したい旨の信号を通信部23を介して受信したりする。位置検出部14は、充電装置100に設けられる送電コイル16の設置位置に対して、所定の駐車位置に駐車しようとする車両200の受電コイル26の位置を周期的に検出する。位置検出部14は、例えば、赤外線信号又は超音波信号等の信号を発信し、当該信号の変化から位置を検出する。   The power transmission circuit unit 12 is a circuit for converting AC power transmitted from the AC power source 11 into high-frequency AC power and transmitting the power to the power transmission coil 16. Power transmission from the power transmission coil 16 is controlled by the power supply control unit 15. It is the control circuit which controls the electric power which is done. The communication unit 13 communicates wirelessly with the communication unit 23 on the vehicle 200 side to transmit and receive information. For example, the communication unit 13 transmits a signal indicating that power supply from the charging device 100 is started to the communication unit 23 or a signal indicating that power is to be received from the charging device 100 from the vehicle 200 side. Or receive via. The position detection unit 14 periodically detects the position of the power reception coil 26 of the vehicle 200 that is to be parked at a predetermined parking position with respect to the installation position of the power transmission coil 16 provided in the charging device 100. For example, the position detection unit 14 transmits a signal such as an infrared signal or an ultrasonic signal, and detects the position from the change of the signal.

給電制御部15は、送電回路部12、位置検出部14及び通信部13を制御することで、充電装置100を制御する。給電制御部15は、送電回路部12を制御して、送電コイル16から受電コイル26に出力される電力等を制御する。給電制御部15は、充電に関する制御信号を、通信部13から通信部23に送信し、位置検出部14を制御して、送電コイル16に対する受電コイル26の相対的な位置を検出する。また、給電制御部15には、異物検出部151が含まれている。なお、異物検出部151については後述する。   The power supply control unit 15 controls the charging device 100 by controlling the power transmission circuit unit 12, the position detection unit 14, and the communication unit 13. The power supply control unit 15 controls the power transmission circuit unit 12 to control the power output from the power transmission coil 16 to the power reception coil 26. The power supply control unit 15 transmits a control signal related to charging from the communication unit 13 to the communication unit 23 and controls the position detection unit 14 to detect the relative position of the power reception coil 26 with respect to the power transmission coil 16. Further, the power supply control unit 15 includes a foreign object detection unit 151. The foreign object detection unit 151 will be described later.

送電コイル16は、本例の非接触給電装置を設けた駐車スペースに設けられている。非接触充電システムのうち車両200側ユニットを備えた車両200が所定の駐車位置に駐車されると、送電コイル16は、受電コイル26の下部であり、受電コイル26と距離を保って、位置づけられる。送電コイル16は、駐車スペースの表面と平行な円形形状のコイルである。冷却装置17は、送電コイル16を冷却するための装置である。   The power transmission coil 16 is provided in a parking space where the non-contact power feeding device of this example is provided. When the vehicle 200 provided with the vehicle 200 side unit in the non-contact charging system is parked at a predetermined parking position, the power transmission coil 16 is positioned below the power reception coil 26 and is positioned at a distance from the power reception coil 26. . The power transmission coil 16 is a circular coil parallel to the surface of the parking space. The cooling device 17 is a device for cooling the power transmission coil 16.

車両200は、受電回路部21と、バッテリ22と、通信部23と、インバータ24と、充電制御部25と、受電コイル26と、モータ27と、EVコントローラ28とを備えている。受電コイル26は、車両200の底面(シャシ)等で、後方の車輪の間に設けられている。そして当該車両200が、所定の駐車位置に駐車されると、受電コイル26は、送電コイル16の上部であり、送電コイル16と距離を保って、位置づけられる。受電コイル26は、駐車スペースの表面と平行な円形形状のコイルである。受電回路部21は、受電コイル26により受電された交流電力を直流電力に整流する整流回路と、当該整流回路で整流された直流電力をバッテリ22の充電に適した直流電力に変換するDC−DC変換回路とを含んでいる。また受電回路部21には、バッテリ22と、受電コイル26とを切り離すためのスイッチを有するジャンクションボックス(図示しない)が含まれており、当該ジャンクションボックスは、充電制御部25により制御される。   The vehicle 200 includes a power receiving circuit unit 21, a battery 22, a communication unit 23, an inverter 24, a charging control unit 25, a power receiving coil 26, a motor 27, and an EV controller 28. The power receiving coil 26 is provided between the rear wheels on the bottom surface (chassis) of the vehicle 200. When the vehicle 200 is parked at a predetermined parking position, the power receiving coil 26 is located above the power transmission coil 16 and is positioned at a distance from the power transmission coil 16. The power receiving coil 26 is a circular coil parallel to the surface of the parking space. The power receiving circuit unit 21 rectifies the AC power received by the power receiving coil 26 into DC power, and DC-DC that converts the DC power rectified by the rectifying circuit into DC power suitable for charging the battery 22. Conversion circuit. The power receiving circuit unit 21 includes a junction box (not shown) having a switch for disconnecting the battery 22 and the power receiving coil 26, and the junction box is controlled by the charge control unit 25.

バッテリ22は、複数の二次電池を接続することで構成され、車両200の電力源となる。インバータ24は、IGBT等のスイッチング素子を有したPWM制御回路等の制御回路であって、コントローラ28によるスイッチング制御信号に基づいて、バッテリ22から出力される直流電力を交流電力にし、モータ27に供給する。モータ27は、例えば三相の交流電動機により構成され、車両200を駆動させるための駆動源となる。   The battery 22 is configured by connecting a plurality of secondary batteries, and serves as a power source for the vehicle 200. The inverter 24 is a control circuit such as a PWM control circuit having a switching element such as an IGBT. The inverter 24 converts the DC power output from the battery 22 into AC power based on a switching control signal from the controller 28 and supplies the AC power to the motor 27. To do. The motor 27 is composed of, for example, a three-phase AC motor and serves as a drive source for driving the vehicle 200.

通信部23は、地上側の通信部13と、無線により通信を行い、情報の送受信を行う。充電制御部25は、充電時に、受電回路部21、バッテリ22及び通信部23を制御する。また充電制御部25は、コントローラ28とCAN通信網で接続され、制御信号の送受信を行う。また充電制御部25は、通信部13及び通信部23を介して、給電制御部15と充電に関する制御信号の送受信を行い、本例の非接触給電装置を制御する。充電制御部25は、充電する際には、受電回路部21に含まれるジャンクションボックスを制御し、受電コイル26から受電回路部21を通りバッテリ22まで導通させて、送電コイル16から送電される電力をバッテリ22に供給することで、バッテリ22を充電する。   The communication unit 23 communicates with the communication unit 13 on the ground side wirelessly to transmit and receive information. The charging control unit 25 controls the power receiving circuit unit 21, the battery 22, and the communication unit 23 during charging. The charging control unit 25 is connected to the controller 28 via a CAN communication network, and transmits and receives control signals. In addition, the charging control unit 25 transmits and receives a control signal related to charging with the power supply control unit 15 via the communication unit 13 and the communication unit 23, and controls the non-contact power supply apparatus of this example. When charging, the charging control unit 25 controls the junction box included in the power receiving circuit unit 21, conducts electricity from the power receiving coil 26 through the power receiving circuit unit 21 to the battery 22, and is transmitted from the power transmitting coil 16. Is supplied to the battery 22 to charge the battery 22.

コントローラ28は、車両200全体を制御する制御部である。コントローラ28は、運転手のアクセル操作に基づくアクセル開度及び車速等に基づいてトルク指令値を設定し、インバータ24のスイッチング制御を行うことで、バッテリ22の電力でモータ27を駆動させる。またコントローラ28は、充電を開始するための信号を充電制御部25に送信し、充電制御部25を制御する。コントローラ28は、バッテリ22の充電状態(SOC)を管理する。そして、コントローラ28は、バッテリ22の充電中、バッテリ22のSOCに基づいて満充電に達した場合には、充電ための制御信号を充電制御部25に送信し、当該制御信号を通信部23を介して給電制御部15に送信し、充電を終了させる。   The controller 28 is a control unit that controls the entire vehicle 200. The controller 28 sets the torque command value based on the accelerator opening and the vehicle speed based on the driver's accelerator operation, and controls the inverter 24 to drive the motor 27 with the electric power of the battery 22. Further, the controller 28 transmits a signal for starting charging to the charging control unit 25 to control the charging control unit 25. The controller 28 manages the state of charge (SOC) of the battery 22. When the battery 28 is fully charged based on the SOC of the battery 22 during charging of the battery 22, the controller 28 transmits a control signal for charging to the charge control unit 25, and sends the control signal to the communication unit 23. To the power supply control unit 15 to terminate the charging.

そして、本例の非接触給電装置では、送電コイル16と受電コイル26との間で、電磁誘導作用により非接触状態で高周波電力の送電及び受電を行う。言い換えると、送電コイル16に電圧が加わると、送電コイル16と受電コイル26との間には磁気的な結合が生じ、送電コイル16から受電コイル26へ電力が供給される。   And in the non-contact electric power feeder of this example, between the power transmission coil 16 and the receiving coil 26, high frequency electric power transmission and reception are performed in a non-contact state by electromagnetic induction action. In other words, when a voltage is applied to the power transmission coil 16, magnetic coupling occurs between the power transmission coil 16 and the power reception coil 26, and power is supplied from the power transmission coil 16 to the power reception coil 26.

次に、図2及び図3を用いて、送電ユニット30及び冷却装置17の構成を説明する。図2は本例の非接触給電装置の送電ユニット30及び冷却装置17の平面図であり、図3は図2のIII線に沿う断面図である。なお図2の矢印は、後述する流路171を流れる液体の流れる向きである。   Next, the structure of the power transmission unit 30 and the cooling device 17 is demonstrated using FIG.2 and FIG.3. FIG. 2 is a plan view of the power transmission unit 30 and the cooling device 17 of the non-contact power feeding device of this example, and FIG. 3 is a cross-sectional view taken along line III of FIG. In addition, the arrow of FIG. 2 is the direction through which the liquid which flows through the flow path 171 mentioned later flows.

本例の非接触給電装置は、送電ユニット30を備え、送電ユニット30は、所定の駐車スペースの地上に設けられている。車両200が、本例の非接触給電装置による充電に適した位置である、所定の駐車スペースに駐車されると、送電ユニット30が車両200の後輪の間に位置づけられる。送電ユニット30は、送電コイル16と、冷却装置17の一部である流路171と、フェライトコア31と、磁気遮蔽板32と、保護部材33とを備えている。冷却装置17は、流路171と、サーミスタ172と、サーミスタ173と、流量計174と、ポンプ175と、熱交換器176とを備えている。   The non-contact power feeding device of this example includes a power transmission unit 30, and the power transmission unit 30 is provided on the ground of a predetermined parking space. When the vehicle 200 is parked in a predetermined parking space, which is a position suitable for charging by the contactless power supply device of this example, the power transmission unit 30 is positioned between the rear wheels of the vehicle 200. The power transmission unit 30 includes a power transmission coil 16, a flow path 171 that is a part of the cooling device 17, a ferrite core 31, a magnetic shielding plate 32, and a protection member 33. The cooling device 17 includes a flow path 171, a thermistor 172, a thermistor 173, a flow meter 174, a pump 175, and a heat exchanger 176.

送電コイル16は、高周波電力を通すように、リッツ線で構成されており、送電コイル16のコイル面が、地面と平行になるように配置されている。車両200が所定の駐車スペースに駐車されると、受電コイル26は送電コイル16と臨む位置に配置され、送電コイル16と受電コイル26とが対向する。言い換えると、送電コイル16の上面が、受電コイル26と対向する送電コイル16の対向面となり、受電コイル26の下面が、送電コイル16と対向する受電コイル26の対向面となる。   The power transmission coil 16 is composed of a litz wire so as to pass high-frequency power, and the coil surface of the power transmission coil 16 is arranged in parallel with the ground. When the vehicle 200 is parked in a predetermined parking space, the power reception coil 26 is disposed at a position facing the power transmission coil 16, and the power transmission coil 16 and the power reception coil 26 face each other. In other words, the upper surface of the power transmission coil 16 is the facing surface of the power transmission coil 16 facing the power receiving coil 26, and the lower surface of the power receiving coil 26 is the facing surface of the power receiving coil 26 facing the power transmission coil 16.

フェライトコア31は、送電コイル16の下面に配置されている。フェライトコア31は、例えば、送電コイル16の中心線から放射状に複数の磁性体の部材を配置することで構成される。磁気遮蔽板32は、地上の表面に沿って設けられ、ファライトコア31の下面に設けられ、送電ユニット30の底面となる。磁気遮蔽板32は、送電コイル16と受電コイル26間の非接触球給電により漏れる磁束を遮蔽し、磁束を外部に漏洩させないようにする板状の部材である。磁気遮蔽板32は、例えばアルミ板により構成される。   The ferrite core 31 is disposed on the lower surface of the power transmission coil 16. The ferrite core 31 is configured by, for example, arranging a plurality of magnetic members radially from the center line of the power transmission coil 16. The magnetic shielding plate 32 is provided along the surface of the ground, is provided on the lower surface of the farite core 31, and serves as the bottom surface of the power transmission unit 30. The magnetic shielding plate 32 is a plate-like member that shields the magnetic flux that leaks due to non-contact sphere power feeding between the power transmission coil 16 and the power receiving coil 26 and prevents the magnetic flux from leaking to the outside. The magnetic shielding plate 32 is made of, for example, an aluminum plate.

保護部材33は、送電コイル16及びフェライトコア31を収容するための筐体であり、板状の天板部331と、側壁部332とにより形成されている。側壁部332は、磁気遮蔽板32の一端及び他端から、地面に対して鉛直方向に設けられ、天板部331は、送電コイル16のコイル面に沿って、送電コイル16の上側に設けられている。これにより、天板部331は受電コイル26と対向する送電コイル16の対向面に沿って配置されている。保護部材33は、ポリプロピレン、ポリアミド等の熱可塑性樹脂で形成されている。   The protection member 33 is a housing for housing the power transmission coil 16 and the ferrite core 31, and is formed by a plate-shaped top plate portion 331 and a side wall portion 332. The side wall portion 332 is provided in a direction perpendicular to the ground from one end and the other end of the magnetic shielding plate 32, and the top plate portion 331 is provided above the power transmission coil 16 along the coil surface of the power transmission coil 16. ing. Thereby, the top plate portion 331 is disposed along the facing surface of the power transmission coil 16 facing the power receiving coil 26. The protection member 33 is made of a thermoplastic resin such as polypropylene or polyamide.

また保護部材33の天板部331の内部には、流路171が形成されている。流路171は、天板部331の内部に管状の通路を設けることで形成されている。流路171は、図2に示すように、U字状に湾曲して形成されることで、送電コイル16の上面を往復する直線状の管を備えている。流路171内には、送電コイル16を冷却するために、水やLLC(ロングライフクーラント)等の液体が流れる。   A flow path 171 is formed inside the top plate portion 331 of the protection member 33. The channel 171 is formed by providing a tubular passage inside the top plate portion 331. As shown in FIG. 2, the flow path 171 includes a linear tube that reciprocates on the upper surface of the power transmission coil 16 by being curved in a U shape. In the flow path 171, liquid such as water or LLC (long life coolant) flows to cool the power transmission coil 16.

本例の非接触給電装置において、送電コイル16と受電コイル26との間で、電力を給電すると、送電コイル16又は受電コイル26の発熱により、送電コイル16の温度が高くなる。特に、本例の非接触給電装置により車両200のバッテリ22を充電する場合には、送電コイル16による給電が長時間、行われることがあるため、送電コイル16の温度が高くなる。そのため、本例では、受電コイル26と対向する送電コイル16の対面側に流路171を設け、流路171に液体を流すことで、受電コイル26を冷却させる。   In the non-contact power feeding device of this example, when power is fed between the power transmission coil 16 and the power receiving coil 26, the temperature of the power transmitting coil 16 increases due to heat generation of the power transmitting coil 16 or the power receiving coil 26. In particular, when the battery 22 of the vehicle 200 is charged by the non-contact power feeding device of this example, since the power feeding by the power transmission coil 16 may be performed for a long time, the temperature of the power transmission coil 16 becomes high. Therefore, in this example, the power receiving coil 26 is cooled by providing the flow path 171 on the opposite side of the power transmission coil 16 facing the power receiving coil 26 and flowing a liquid through the flow path 171.

図2及び図3に戻り、流路171の入口及び流路171の出口には、サーミスタ172及びサーミスタ173がそれぞれ設けられ、サーミスタ172は保護部材33内の流路171に入る液体の温度を検出し、サーミスタ173は保護部材33内の流路171から排出される液体の温度を検出する。流路171の入口には、流量計174が設けられ、流路171内の流量を計測する。また流路171の出口には、ポンプ175が設けられ、流路171を流れる液体の流速などを制御する。熱交換機176は、流路171の入口及び出口に接続され、流路171の出口から流れ込む液体の熱を奪い、液体の温度を下げて、流路171の入口に排出することで、流路171を循環させつつ液体の温度を下げる。熱交換器176は、例えばラジエータなどを備えている。なお、図2に示すように、本例では、サーミスタ172、サーミスタ173、流量計174、ポンプ175及び熱交換器176を、送電ユニット30外に設けたが、送電ユニット30内に設けてもよい。   2 and 3, a thermistor 172 and a thermistor 173 are provided at the inlet of the channel 171 and the outlet of the channel 171, respectively, and the thermistor 172 detects the temperature of the liquid entering the channel 171 in the protection member 33. The thermistor 173 detects the temperature of the liquid discharged from the flow path 171 in the protection member 33. A flow meter 174 is provided at the inlet of the flow channel 171 and measures the flow rate in the flow channel 171. A pump 175 is provided at the outlet of the channel 171 to control the flow rate of the liquid flowing through the channel 171. The heat exchanger 176 is connected to the inlet and outlet of the flow path 171, deprives the heat of the liquid flowing in from the outlet of the flow path 171, lowers the temperature of the liquid, and discharges it to the inlet of the flow path 171. The temperature of the liquid is lowered while circulating. The heat exchanger 176 includes, for example, a radiator. As shown in FIG. 2, in this example, the thermistor 172, the thermistor 173, the flow meter 174, the pump 175, and the heat exchanger 176 are provided outside the power transmission unit 30, but may be provided inside the power transmission unit 30. .

次に、送電コイル16と受電コイル26との間の異物について、図4を用いて説明する。図4は、送電コイル16と受電コイル26との間に異物が存在する状態を説明するための図であり、図2のIII線に沿う断面図に相当する。図4に示すように、送電コイル16と受電コイル26との間であって、保護部材33の天板部331の上面に、金属片などの異物40が存在する。異物40が存在する状態で、本例の非接触給電装置を駆動させると、送電コイル16から受電コイル26に向けて磁束が発生する。当該磁束は異物40を通るため渦電流が異物40で発生し、異物40が発熱する。そして、非接触給電を継続させると、異物40の温度がさらに高くなり、異物40の熱が保護部材33を介して流路171内の液体に伝わる。そのため、液体の温度には、送電コイル16からの熱吸収による温度に加えて、異物40からの発熱による温度が加わる。一方、送電コイル16と受電コイル26との間に、異物40が存在しない場合には、液体の温度は、送電コイル16からの発熱により上昇し、異物40からの発熱による温度上昇はなくなる。   Next, foreign matter between the power transmission coil 16 and the power reception coil 26 will be described with reference to FIG. FIG. 4 is a diagram for explaining a state in which foreign matter exists between the power transmission coil 16 and the power reception coil 26, and corresponds to a cross-sectional view taken along line III in FIG. As shown in FIG. 4, a foreign object 40 such as a metal piece exists between the power transmission coil 16 and the power reception coil 26 and on the top surface of the top plate portion 331 of the protection member 33. When the contactless power supply device of this example is driven in the state where the foreign object 40 is present, a magnetic flux is generated from the power transmission coil 16 toward the power reception coil 26. Since the magnetic flux passes through the foreign matter 40, an eddy current is generated in the foreign matter 40, and the foreign matter 40 generates heat. And if non-contact electric power feeding is continued, the temperature of the foreign material 40 will become still higher and the heat | fever of the foreign material 40 will be transmitted to the liquid in the flow path 171 via the protective member 33. FIG. Therefore, in addition to the temperature due to heat absorption from the power transmission coil 16, the temperature due to heat generation from the foreign material 40 is added to the temperature of the liquid. On the other hand, when there is no foreign object 40 between the power transmission coil 16 and the power receiving coil 26, the temperature of the liquid rises due to the heat generated from the power transmission coil 16, and the temperature rise due to the heat generated from the foreign object 40 is eliminated.

次に、異物検出部151による、サーミスタ172及びサーミスタ173の検出温度から異物を検出方法について説明する。流路171内の液体を冷却水とし、冷却水の比熱をCp、流路171内に流れる液体の流量をGwとする。流量(G)は、流量計174から計測される。 Next, a method for detecting foreign matter from the detection temperatures of the thermistor 172 and the thermistor 173 by the foreign matter detection unit 151 will be described. The liquid in the channel 171 is cooling water, the specific heat of the cooling water is Cp, and the flow rate of the liquid flowing in the channel 171 is Gw. The flow rate (G w ) is measured from the flow meter 174.

送電コイル16と受電コイル26との間で非接触で電力が給電され、送電コイル16が発熱すると、サーミスタ173の検出温度がサーミスタ172の検出温度より高くなる。この時、冷却水の熱量(Q)は、サーミスタ172の検出温度(T)と、サーミスタ173の検出温度(T)と、冷却水の比熱(C)と、流量計174の計測流量(G)とを用いて、下記の式(1)により演算される。 When power is supplied in a non-contact manner between the power transmission coil 16 and the power reception coil 26 and the power transmission coil 16 generates heat, the temperature detected by the thermistor 173 becomes higher than the temperature detected by the thermistor 172. At this time, the heat quantity (Q) of the cooling water is determined based on the detected temperature (T i ) of the thermistor 172, the detected temperature (T o ) of the thermistor 173, the specific heat (C p ) of the cooling water, and the measured flow rate of the flow meter 174. Using (G w ), the following equation (1) is used.

Figure 2012228123
そして、異物が存在しない場合には、冷却水へ加われる熱は、主に送電コイル16からの発熱によるものであるため、冷却水の熱量(Q)が、送電コイル16による発熱量(Q)となる。
Figure 2012228123
When no foreign matter is present, the heat applied to the cooling water is mainly due to the heat generated from the power transmission coil 16, so the heat quantity (Q) of the cooling water is the heat value (Q i ) generated by the power transmission coil 16. )

一方、送電コイル16と受電コイル26との間に異物が存在する場合に、非接触で電力が供給されると、冷却水の熱量には、異物の発熱量(QWe)が加わる。異物の発熱量(QWe)は、異物に流れる渦電流の電流損に相当する。ここで、異物を長さ(L)、幅(W)及び厚さ(D)の金属板とし、異物の導電率をσ、異物における表皮深さをδ、異物の透磁率をμ、非接触給電により発生する磁束密度をBとすると、渦電流損(W)は、下記の式(2)により求められる。

Figure 2012228123
そして、異物が存在する場合は、冷却水の熱量(Q)は、式(3)で示されるように、コイルの発熱量(Q)に、式2で算出される渦電流損と等価な異物の発熱量(QWe)を加えた熱量となる。
Figure 2012228123
すなわち、異物が存在しない場合には、冷却水の熱量は、送電コイル16の発熱量となり、異物が存在する場合には、冷却水の熱量は、送電コイル16の発熱量より高くなる。 On the other hand, when there is a foreign object between the power transmission coil 16 and the power receiving coil 26, if power is supplied in a non-contact manner, the heat generation amount (Q We ) of the foreign object is added to the heat quantity of the cooling water. The amount of heat generated by the foreign matter (Q We ) corresponds to the current loss of the eddy current flowing through the foreign matter. Here, the foreign material is a metal plate of length (L), width (W) and thickness (D), the electrical conductivity of the foreign material is σ, the skin depth of the foreign material is δ, the magnetic permeability of the foreign material is μ, and non-contact Assuming that the magnetic flux density generated by power feeding is B, the eddy current loss (W e ) is obtained by the following equation (2).
Figure 2012228123
When foreign matter is present, the amount of heat (Q) of the cooling water is equivalent to the amount of heat generated by the coil (Q i ), which is equivalent to the eddy current loss calculated by Equation 2, as shown by Equation (3). The amount of heat is the sum of the heat generation amount (Q We ) of the foreign matter.
Figure 2012228123
That is, when there is no foreign matter, the amount of heat of the cooling water is the amount of heat generated by the power transmission coil 16, and when there is a foreign matter, the amount of heat of the cooling water is higher than the amount of heat generated by the power transmission coil 16.

比熱は予め決まり、流量もポンプ175の出力を設定することで決定されるため、サーミスタ172及びサーミスタ173の検出温度から、冷却水の熱量が決まる。そして、送電コイル16からの発熱量は、コイルに使用される導電の長さ及び抵抗と、送電電力の電力量から算出され、当該導電の長さ及び抵抗は予め決まるため、送電コイル16からの発熱量は、給電制御部15により設定される送電電力の電力量によって決まる。   Since the specific heat is determined in advance and the flow rate is also determined by setting the output of the pump 175, the heat quantity of the cooling water is determined from the detected temperatures of the thermistor 172 and the thermistor 173. The amount of heat generated from the power transmission coil 16 is calculated from the length and resistance of the conductive used in the coil and the amount of power of the transmitted power. Since the length and resistance of the conductive are determined in advance, The amount of generated heat is determined by the amount of transmitted power set by the power supply control unit 15.

異物検出部151は、電力量に基づくコイルの発熱量に、異物の発熱量に相当する熱量を加えた熱量を、閾値熱量(Q)として、設定する。また異物検出部151は、サーミスタ172及びサーミスタ173の検出温度と、流量計174の計測流量とから冷却水の熱量(Q)を算出し、当該熱量(Q)と、閾値熱量(Q)とを比較する。そして、異物検出部151は、冷却水の熱量(Q)が閾値熱量(Q)より低い場合には、異物が存在しないと判定し、冷却水の熱量(Q)が閾値熱量(Q)以上である場合には、異物が存在すると判定する。 The foreign object detection unit 151 sets, as a threshold heat quantity (Q c ), a heat quantity obtained by adding a heat quantity corresponding to the heat generation quantity of the foreign substance to the heat generation quantity of the coil based on the electric energy. The foreign matter detection unit 151 calculates the heat quantity (Q) of the cooling water from the detected temperature of the thermistor 172 and the thermistor 173 and the flow rate measured by the flow meter 174, and the heat quantity (Q) and the threshold heat quantity (Q c ). Compare When the heat quantity (Q) of the cooling water is lower than the threshold heat quantity (Q c ), the foreign object detection unit 151 determines that there is no foreign object, and the heat quantity (Q) of the cooling water is the threshold heat quantity (Q c ). If it is above, it is determined that there is a foreign object.

これにより、異物検出部151は、サーミスタ172及びサーミスタ173の検出温度に基づいて、送電コイル16と受電コイル26との間の異物を検出する。   As a result, the foreign matter detection unit 151 detects foreign matter between the power transmission coil 16 and the power reception coil 26 based on the detected temperatures of the thermistor 172 and the thermistor 173.

次に、給電制御部15の制御について説明する。車両が所定の駐車スペースに駐車され、コントローラ28から、バッテリ22を充電する旨の制御信号が通信部13により受信されると、給電制御部15は、送電回路部12を制御し、送電コイル16から送電される電力を設定する。給電制御部15は、給電を開始すると、冷却装置17に含まれるポンプ175を制御して、冷却水を流路171に流す。また給電制御部15に含まれる異物検出部151は、給電中、所定の周期で、サーミスタ172及びサーミスタ173により流路171の入口及び出口を流れる冷却水の温度をそれぞれ検出し、上記の異物検出方法で、異物の有無を検出する。給電制御部15は、異物検出部151により異物が存在しないと判断した場合には、送電電力を下げることなく、給電を継続する。   Next, control of the power supply control unit 15 will be described. When the vehicle is parked in a predetermined parking space and a control signal indicating that the battery 22 is charged is received from the controller 28 by the communication unit 13, the power supply control unit 15 controls the power transmission circuit unit 12, and the power transmission coil 16. Set the power transmitted from the. When the power supply control unit 15 starts power supply, the power supply control unit 15 controls the pump 175 included in the cooling device 17 to flow the cooling water through the flow path 171. In addition, the foreign matter detection unit 151 included in the power supply control unit 15 detects the temperature of the cooling water flowing through the inlet and outlet of the flow path 171 by the thermistor 172 and the thermistor 173 at predetermined intervals during power supply, and detects the foreign matter described above. The method detects the presence or absence of foreign matter. When the power supply control unit 15 determines that no foreign object is present by the foreign object detection unit 151, the power supply control unit 15 continues power supply without reducing the transmission power.

一方、給電制御部15は、異物検出部151により異物が存在すると判断した場合には、送電電力を下げて、給電を行う。異物が存在する状態で、送電電力を維持したまま、継続して給電させると、異物の温度が高くなり、熱可塑性樹脂である保護部材33が溶けて破損するおそれがある。また、異物の存在を検出した場合に、送電電力をゼロにした場合には、送電コイル16と受電コイル26との間に異物があると、給電を継続することができなくなってしまう。そのため、本例は、異物の存在を検出した場合には、送電電力を下げた上で給電を継続させることで、異物の過度な温度上昇を防ぎつつ、給電を継続させる。   On the other hand, when the power supply control unit 15 determines that the foreign object is present by the foreign object detection unit 151, the power supply control unit 15 performs power supply by reducing the transmission power. If power is continuously supplied while the transmitted power is maintained in the presence of foreign matter, the temperature of the foreign matter increases and the protective member 33, which is a thermoplastic resin, may melt and break. In addition, when the presence of a foreign object is detected and the transmitted power is set to zero, if there is a foreign object between the power transmission coil 16 and the power receiving coil 26, power supply cannot be continued. Therefore, in this example, when the presence of a foreign object is detected, the power supply is continued after lowering the transmission power, thereby continuing the power supply while preventing an excessive temperature rise of the foreign object.

次に、図5を用いて、本例の非接触給電装置の制御手順を説明する。図5は、本例の非接触給電装置の制御手順を示すフローチャートである。   Next, the control procedure of the non-contact power feeding device of this example will be described with reference to FIG. FIG. 5 is a flowchart showing a control procedure of the non-contact power feeding apparatus of this example.

ステップS1にて、コントローラ28は、本例の非接触給電装置によりバッテリ22を充電するために、給電開始する旨の制御信号を送信し、給電制御部15は、当該制御信号に基づいて、給電を開始する。ステップS2にて、給電制御部15は、送電回路部12を制御し、送電コイル16から受電コイル26へ電力を送電する。ステップS3にて、給電制御部15は、送電電力及び給電開始からの送電時間から、送電電力の電力量を算出する。   In step S1, the controller 28 transmits a control signal for starting power supply in order to charge the battery 22 by the non-contact power supply device of this example, and the power supply control unit 15 supplies power based on the control signal. To start. In step S <b> 2, the power supply control unit 15 controls the power transmission circuit unit 12 to transmit power from the power transmission coil 16 to the power reception coil 26. In step S3, the power supply control unit 15 calculates the amount of transmitted power from the transmitted power and the power transmission time from the start of power supply.

ステップS4にて、給電制御部15は、ステップS3で算出された電力量から送電コイル16からの発熱量(Q)を算出し、当該発熱量(Q)に、異物の発熱量(QWe)に相当する熱量を加え、閾値熱量(Q)を算出する。ステップS5にて、給電制御部15は、サーミスタ172及びサーミスタ173の検出温度から、流路171内を通る液体(冷却水)の熱量(Q)を算出する。ステップS6にて、異物検出部151は、当該熱量(Q)と閾値熱量(Q)とを比較する。熱量(Q)が閾値熱量(Q)未満である場合には、異物検出部151は、送電コイル16と受電コイル26との間に異物が存在しない、と判定する(ステップS7)。異物が存在しない場合には、給電制御部15は、送電電力を維持し、給電を継続させ、ステップS8に遷移する。ステップS8にて、給電制御部13は、コントローラ28からの制御信号から、バッテリ22の充電が終了したか否かを判断する。バッテリ22の充電が終了していない場合には、ステップS3に戻り、バッテリ22の充電が終了した場合には、本例の制御処理を終了する。 In step S4, the power supply control unit 15 calculates a heat generation amount (Q i ) from the power transmission coil 16 from the power amount calculated in step S3, and the heat generation amount (Q i ) of the foreign object is calculated as the heat generation amount (Q i ). The amount of heat corresponding to We ) is added, and the threshold amount of heat ( Qc ) is calculated. In step S <b> 5, the power supply control unit 15 calculates the amount of heat (Q) of the liquid (cooling water) passing through the flow path 171 from the detected temperatures of the thermistor 172 and the thermistor 173. In step S6, the foreign matter detection unit 151 compares the heat quantity (Q) with the threshold heat quantity (Q c ). When the amount of heat (Q) is less than the threshold amount of heat (Q c ), the foreign object detector 151 determines that there is no foreign object between the power transmission coil 16 and the power reception coil 26 (step S7). When there is no foreign object, the power supply control unit 15 maintains the transmission power, continues the power supply, and proceeds to step S8. In step S <b> 8, the power supply control unit 13 determines from the control signal from the controller 28 whether or not the charging of the battery 22 has been completed. If the charging of the battery 22 has not ended, the process returns to step S3, and if the charging of the battery 22 has ended, the control process of this example is ended.

ステップS6に戻り、熱量(Q)が閾値熱量(Q)以上である場合には、異物検出部151は、送電コイル16と受電コイル26との間に異物が存在する、と判定する(ステップS9)。ステップS10にて、給電制御部15は、送電回路部12を制御し、送電電力を下げて、給電を行い、ステップS8に遷移する。 Returning to step S6, if the heat quantity (Q) is equal to or greater than the threshold heat quantity (Q c ), the foreign object detector 151 determines that there is a foreign object between the power transmission coil 16 and the power receiving coil 26 (step). S9). In step S10, the power supply control unit 15 controls the power transmission circuit unit 12, lowers the transmitted power, performs power supply, and transitions to step S8.

上記のように、本例は、受電コイル26と対向する送電コイル16の対向面側に、送電コイル16を冷却する液体を流す流路171を備える。これにより、送電コイル16と受電コイル26との間で給電を行うことにより、送電コイル16が発熱した場合に、送電コイル16を冷却させることができるため、送電コイル16の温度上昇を抑制し、非接触給電装置の保護を図ることができる。   As described above, the present example includes the flow path 171 through which the liquid that cools the power transmission coil 16 flows on the opposite surface side of the power transmission coil 16 that faces the power reception coil 26. As a result, by feeding power between the power transmission coil 16 and the power reception coil 26, when the power transmission coil 16 generates heat, the power transmission coil 16 can be cooled. The contactless power feeding device can be protected.

また本例は、天板部331を有した保護部材31で送電コイル16を保護し、天板部331の内部に流路171を設けている。これにより、異物が天板部331の表面に存在し、非接触給電により異物が発熱する場合に、流路171内を流れる液体により異物を冷却させることができる。また、送電コイル16の発熱、あるいは、外部からの障害物等によって、保護部材31が破損し、流路171内の液体が漏れ出た場合に、保護部材31の破損を検知することができる。また異物が、天板部331の表面に存在し、当該異物の発熱により保護部材31の内部の流路171が破損した場合には、流路171から漏れ出た液体により異物を急速に冷却させることができ、異物からの発熱による、送電コイル16または他の電子部品への影響を防ぐことができる。   In this example, the power transmission coil 16 is protected by the protection member 31 having the top plate portion 331, and the flow path 171 is provided inside the top plate portion 331. Thereby, when a foreign substance exists in the surface of the top-plate part 331 and a foreign substance heat | fever-generates by non-contact electric power feeding, a foreign substance can be cooled with the liquid which flows through the flow path 171. Further, when the protective member 31 is damaged due to heat generation of the power transmission coil 16 or an obstacle from the outside, and the liquid in the flow path 171 leaks, the breakage of the protective member 31 can be detected. Further, when foreign matter exists on the surface of the top plate portion 331 and the flow path 171 inside the protective member 31 is damaged due to heat generation of the foreign matter, the foreign matter is rapidly cooled by the liquid leaking from the flow path 171. It is possible to prevent the heat generation from the foreign matter from affecting the power transmission coil 16 or other electronic components.

また、本例は、流路171を、地上より上側に設けられた送電コイル16のさらに上側に設けている。これにより、異物が、送電コイル16の上側に存在し、当該異物の発熱により流路171が破損した場合には、流路171から漏れ出た液体により異物を急速に冷却させることができ、異物からの発熱による、送電コイル16または他の電子部品への影響を防ぐことができる。また、車両200の車輪が流路171を乗り上げる等により、流路171が破損した場合に、流路171からの液体の漏れを検出することで、流路171の破損を検知することができる。   Further, in this example, the flow path 171 is provided further above the power transmission coil 16 provided above the ground. Thereby, when a foreign substance exists on the upper side of the power transmission coil 16 and the channel 171 is damaged due to heat generation of the foreign substance, the foreign substance can be rapidly cooled by the liquid leaking from the channel 171. It is possible to prevent the power transmission coil 16 or other electronic components from being affected by heat generated from the. In addition, when the flow path 171 is damaged due to the wheels of the vehicle 200 riding on the flow path 171 or the like, the breakage of the flow path 171 can be detected by detecting leakage of liquid from the flow path 171.

なお本例は、異物検出部151により検出される異物は、金属板に限らず他の導体又は半導体を含む部材であればよい。   In this example, the foreign matter detected by the foreign matter detection unit 151 is not limited to a metal plate, but may be a member including another conductor or semiconductor.

また本例は、異物を検出し、送電電力を下げる場合には、送電電力を段階的に下げてもよく、閾値熱量(Q)と熱量(Q)との差が大きいほど、送電電力を小さくするように制御してもよい。 Further, in this example, when detecting a foreign object and lowering the transmission power, the transmission power may be reduced stepwise. The larger the difference between the threshold heat quantity (Q c ) and the heat quantity (Q), the lower the transmission power. You may control to make it small.

また本例は、液体の熱量を算出し、算出した熱量に基づいて異物を検出するが、熱量を算出することなく、サーミスタ172及びサーミスタ173の温度から異物を検出すればよい。すなわち、送電コイル16の抵抗等は予め決まっているため、給電による電力量が把握できれば、異物が存在しない時の、給電による液体の上昇温度を、予め算出することができる。そのため、給電制御部15は、サーミスタ173の検出温度と、給電による、液体の上昇温度と比較し、検出温度が当該上昇温度を超えて高温になっている場合には、異物が存在していると判定すればよい。   In this example, the amount of heat of the liquid is calculated, and the foreign matter is detected based on the calculated amount of heat. However, the foreign matter may be detected from the temperatures of the thermistor 172 and the thermistor 173 without calculating the amount of heat. That is, since the resistance and the like of the power transmission coil 16 are determined in advance, if the amount of power by power supply can be grasped, the rising temperature of the liquid by power supply when no foreign matter is present can be calculated in advance. Therefore, the power supply control unit 15 compares the detected temperature of the thermistor 173 with the rising temperature of the liquid due to power supply. If the detected temperature is higher than the increased temperature, foreign matter is present. Can be determined.

また本例において、給電制御部15は、図5に示す制御フローの最中に、冷却水が切れた場合には、非常停止するように、送電回路部12を制御し、給電を止める。すなわち、送電コイル16と受電コイル26との間の異物が発熱し、異物が高温になり、熱可塑性樹脂の保護部材33に含まれる流路171が破損した場合には、冷却水が流路171外に漏れ出てしまう。そのため、給電制御部15は、流量計174等の検出値に基づいて、冷却水切れを検出した場合には、非常停止させる。これにより、本例は、フェルセーフ制御を実現し、安全性を高めることができる。   Further, in this example, the power supply control unit 15 stops the power supply by controlling the power transmission circuit unit 12 to perform an emergency stop when the cooling water is cut off during the control flow shown in FIG. That is, when the foreign matter between the power transmission coil 16 and the power receiving coil 26 generates heat, the foreign matter becomes high temperature, and the flow path 171 included in the protection member 33 made of thermoplastic resin is damaged, the cooling water flows into the flow path 171. Leak out. For this reason, the power supply control unit 15 performs an emergency stop when detecting the lack of cooling water based on the detection value of the flow meter 174 or the like. Thereby, this example can implement | achieve fel safe control and can improve safety | security.

なお本例は、地上側のコイルを送電側のコイルとするが、受電コイル26を送電側のコイルとし、送電コイル16を受電側のコイルとして用いてもよい。   In this example, the ground side coil is used as the power transmission side coil, but the power reception coil 26 may be used as the power transmission side coil, and the power transmission coil 16 may be used as the power reception side coil.

上記受電コイル26は本発明に係る第1のコイルに相当し、送電コイル16は本発明に係る第2のコイルに相当する。   The power receiving coil 26 corresponds to a first coil according to the present invention, and the power transmitting coil 16 corresponds to a second coil according to the present invention.

100…充電装置
11…交流電源
12…送電回路部
13…通信部
14…位置検出部
15…給電制御部
151…異物検出部
16…送電コイル
17…冷却装置
171…流路
172、173…サーミスタ
174…流量計
175…ポンプ
176…熱交換器
200…車両
21…受電回路部
22…バッテリ
23…通信部
24…インバータ(INV)
25…充電制御部
26…受電コイル
27…モータ
28…コントローラ
30…給電ユニット
31…フェライトコア
32…磁気遮蔽板
33…保護部材
331…天板部
332…側壁部
40…異物
DESCRIPTION OF SYMBOLS 100 ... Charging apparatus 11 ... AC power supply 12 ... Power transmission circuit part 13 ... Communication part 14 ... Position detection part 15 ... Power supply control part 151 ... Foreign substance detection part 16 ... Power transmission coil 17 ... Cooling device 171 ... Channel 172,173 ... Thermistor 174 ... Flow meter 175 ... Pump 176 ... Heat exchanger 200 ... Vehicle 21 ... Power receiving circuit unit 22 ... Battery 23 ... Communication unit 24 ... Inverter (INV)
DESCRIPTION OF SYMBOLS 25 ... Charge control part 26 ... Power receiving coil 27 ... Motor 28 ... Controller 30 ... Power feeding unit 31 ... Ferrite core 32 ... Magnetic shielding board 33 ... Protection member 331 ... Top plate part 332 ... Side wall part 40 ... Foreign material

Claims (4)

少なくとも磁気的結合によって第1のコイルとの間で、非接触で電力を送電又は受電する第2のコイルと、
前記第2のコイルを冷却する液体を流す流路とを備え、
前記第2のコイルは、平面状に形成され、前記第1のコイルと対向する位置に設けられ、
前記流路は、前記第1のコイルと対向する前記第2のコイルの対向面側に設けられている
ことを特徴とする非接触給電装置。
A second coil that transmits or receives power in a contactless manner with respect to the first coil at least by magnetic coupling;
A flow path for flowing a liquid for cooling the second coil,
The second coil is formed in a planar shape and provided at a position facing the first coil,
The non-contact power feeding device according to claim 1, wherein the flow path is provided on a facing surface side of the second coil facing the first coil.
前記第2のコイルを保護する保護部材をさらに備え、
前記保護部材は、前記第2のコイルの対向面に沿う板状の板部材を有し、
前記流路は、前記板部材の内部に設けられている
ことを特徴とする請求項1記載の非接触給電装置。
A protective member for protecting the second coil;
The protective member has a plate-like plate member along the facing surface of the second coil,
The contactless power supply device according to claim 1, wherein the flow path is provided inside the plate member.
前記保護部材は、熱可塑性樹脂により形成されている
ことを特徴とする請求項2記載の非接触給電装置。
The contactless power supply device according to claim 2, wherein the protection member is made of a thermoplastic resin.
前記第2のコイルは、地上より上側に設けられ、
前記流路は、前記第2のコイルより上側に設けられている
ことを特徴とする請求項1〜3のいずれか一項に記載の非接触給電装置。
The second coil is provided above the ground,
The contactless power feeding device according to claim 1, wherein the flow path is provided above the second coil.
JP2011095350A 2011-04-21 2011-04-21 Non-contact power feeding device Active JP5768465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011095350A JP5768465B2 (en) 2011-04-21 2011-04-21 Non-contact power feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011095350A JP5768465B2 (en) 2011-04-21 2011-04-21 Non-contact power feeding device

Publications (2)

Publication Number Publication Date
JP2012228123A true JP2012228123A (en) 2012-11-15
JP5768465B2 JP5768465B2 (en) 2015-08-26

Family

ID=47277709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011095350A Active JP5768465B2 (en) 2011-04-21 2011-04-21 Non-contact power feeding device

Country Status (1)

Country Link
JP (1) JP5768465B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185095A1 (en) * 2013-05-14 2014-11-20 株式会社村田製作所 Power feeding device and power receiving device for contactless power transmission
WO2014185096A1 (en) * 2013-05-14 2014-11-20 株式会社村田製作所 Power feeding device and power receiving device for contactless power transmission
WO2014185094A1 (en) * 2013-05-14 2014-11-20 株式会社村田製作所 Power feeding device and power receiving device for contactless power transmission
JP2014226015A (en) * 2013-04-15 2014-12-04 日産自動車株式会社 Non-contact power supply device
US9725004B2 (en) 2013-09-27 2017-08-08 Nissan Motor Co., Ltd. Vehicle mounting structure of contactless power reception device
DE112016003866T5 (en) 2015-08-25 2018-05-17 Ihi Corporation Coil device and coil system
WO2018235898A1 (en) 2017-06-22 2018-12-27 株式会社Ihi Coil device
US10367378B2 (en) 2014-06-06 2019-07-30 Ihi Corporation Power-transmitting device, power-receiving device, and wireless power supply system for underwater mobile object
FR3103623A1 (en) * 2019-11-26 2021-05-28 Renault S.A.S Charger for electric or hybrid vehicle.
US20210391751A1 (en) * 2020-06-15 2021-12-16 Nokia Technologies Oy Tuning radio frequency elements
JP2022551278A (en) * 2019-10-29 2022-12-08 エスケイシー・カンパニー・リミテッド Wireless charging device and means of transportation including the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994025304A1 (en) * 1993-05-03 1994-11-10 Cadac Holdings Limited Power collector for inductive power transfer
JP2000133537A (en) * 1998-10-27 2000-05-12 Toyota Autom Loom Works Ltd Power supplying-side coupler
WO2011006884A2 (en) * 2009-07-15 2011-01-20 Conductix-Wampfler Ag System for inductively charging vehicles, comprising an electronic positioning aid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994025304A1 (en) * 1993-05-03 1994-11-10 Cadac Holdings Limited Power collector for inductive power transfer
JP2000133537A (en) * 1998-10-27 2000-05-12 Toyota Autom Loom Works Ltd Power supplying-side coupler
WO2011006884A2 (en) * 2009-07-15 2011-01-20 Conductix-Wampfler Ag System for inductively charging vehicles, comprising an electronic positioning aid

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014226015A (en) * 2013-04-15 2014-12-04 日産自動車株式会社 Non-contact power supply device
CN105264742B (en) * 2013-05-14 2018-04-10 株式会社村田制作所 Electric supply installation and current-collecting device for non-contact power transmission
WO2014185096A1 (en) * 2013-05-14 2014-11-20 株式会社村田製作所 Power feeding device and power receiving device for contactless power transmission
CN105264742A (en) * 2013-05-14 2016-01-20 株式会社村田制作所 Power feeding device and power receiving device for contactless power transmission
CN105264347A (en) * 2013-05-14 2016-01-20 株式会社村田制作所 Power feeding device and power receiving device for contactless power transmission
CN105264347B (en) * 2013-05-14 2018-01-09 株式会社村田制作所 Electric supply installation and current-collecting device for non-contact power transmission
US9887559B2 (en) 2013-05-14 2018-02-06 Murata Manufacturing Co., Ltd. Power feeding device and power receiving device for contactless power transmission
WO2014185095A1 (en) * 2013-05-14 2014-11-20 株式会社村田製作所 Power feeding device and power receiving device for contactless power transmission
US9871385B2 (en) 2013-05-14 2018-01-16 Murata Manufacturing Co., Ltd. Power feeding device and power receiving device for contactless power transmission
WO2014185094A1 (en) * 2013-05-14 2014-11-20 株式会社村田製作所 Power feeding device and power receiving device for contactless power transmission
US9725004B2 (en) 2013-09-27 2017-08-08 Nissan Motor Co., Ltd. Vehicle mounting structure of contactless power reception device
US10367378B2 (en) 2014-06-06 2019-07-30 Ihi Corporation Power-transmitting device, power-receiving device, and wireless power supply system for underwater mobile object
US11075544B2 (en) 2014-06-06 2021-07-27 Ihi Corporation Power-transmitting device, power-receiving device, and wireless power supply system
US10784035B2 (en) 2015-08-25 2020-09-22 Ihi Corporation Coil device and coil system
DE112016003866T5 (en) 2015-08-25 2018-05-17 Ihi Corporation Coil device and coil system
WO2018235898A1 (en) 2017-06-22 2018-12-27 株式会社Ihi Coil device
US11456110B2 (en) 2017-06-22 2022-09-27 Ihi Corporation Coil device
JP7329139B2 (en) 2019-10-29 2023-08-17 エスケイシー・カンパニー・リミテッド Wireless charging device and means of transportation including the same
JP2022551278A (en) * 2019-10-29 2022-12-08 エスケイシー・カンパニー・リミテッド Wireless charging device and means of transportation including the same
FR3103623A1 (en) * 2019-11-26 2021-05-28 Renault S.A.S Charger for electric or hybrid vehicle.
US20210391751A1 (en) * 2020-06-15 2021-12-16 Nokia Technologies Oy Tuning radio frequency elements

Also Published As

Publication number Publication date
JP5768465B2 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
JP5768465B2 (en) Non-contact power feeding device
JP5768464B2 (en) Non-contact power feeding device
JP5708251B2 (en) Non-contact power feeding device
US9287720B2 (en) Non-contact charging system
JP6294831B2 (en) Inductive power transmission system and method
JP6067211B2 (en) Non-contact power feeding device
EP2755301B1 (en) Non-contact power supply method used to recharge a vehicle
CN107546862B (en) Power receiving device, transmission apparatus, and detection method
EP2410631B1 (en) Contactless power receiving device, contactless power transmitting device, contactless power supply system, and vehicle
JP5768463B2 (en) Non-contact power feeding device
WO2013001810A1 (en) Power supply device and power receiving device used in contactless power transmission
WO2014005470A1 (en) Power system of electric vehicle, electric vehicle comprising the same and method for heating battery group of electric vehicle
JP2015008547A (en) Non-contact power charger
EP2853000A1 (en) Power system of electric vehicle, electric vehicle comprising the same and method for heating battery group of electric vehicle
US9973043B2 (en) Contactless power supply device and contactless power receiving device
JP2015008552A (en) Non-contact power charger
JP6764803B2 (en) Temperature control device for electric vehicles
WO2013174269A1 (en) Power system of electric vehicle, electric vehicle comprising the same and method for heating battery group of electric vehicle
JP2015008549A (en) Non-contact power transmission device
KR20230041804A (en) Efficiency enhancements through magnetic field management
US10340710B2 (en) Charging device for the inductive transmission of electrical energy and method for operating the charging device
CN108952272A (en) A kind of intelligent parking platform with wireless charging type AGV trolley
CN110573371B (en) Device, system and method for charging an electrochemical energy store and vehicle
JP2016106512A (en) Non-contact power feeding device
JP2014121126A (en) Non-contact power supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150608

R151 Written notification of patent or utility model registration

Ref document number: 5768465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151