JP2012194007A - Atr mapping method and atr mapping apparatus - Google Patents

Atr mapping method and atr mapping apparatus Download PDF

Info

Publication number
JP2012194007A
JP2012194007A JP2011057113A JP2011057113A JP2012194007A JP 2012194007 A JP2012194007 A JP 2012194007A JP 2011057113 A JP2011057113 A JP 2011057113A JP 2011057113 A JP2011057113 A JP 2011057113A JP 2012194007 A JP2012194007 A JP 2012194007A
Authority
JP
Japan
Prior art keywords
image
atr
contact surface
optical system
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011057113A
Other languages
Japanese (ja)
Inventor
Shuhei Okuyama
修平 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2011057113A priority Critical patent/JP2012194007A/en
Publication of JP2012194007A publication Critical patent/JP2012194007A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ATR mapping method and an ATR mapping apparatus in which ATR mapping analysis can be performed at low costs without iteratively crimping and separating a sample and an ATR prism.SOLUTION: An infrared detection unit 9 in an embodiment comprises an infrared detector 15 with which a photo detection section 151 is disposed on an image forming plane of an image forming optical system, and a detector moving mechanism 16 which moves the photo detection section 151 on the image forming plane by moving the infrared detector 15 in parallel with the image forming plane. On the image forming plane where the photo detection section 151 is present, an image of a contact face between a sample and an ATR prism is magnified and formed in accordance with a magnification ratio of the image forming optical system. The photo detection section 151 is moved to cover the overall magnified image and by scanning the image of the contact face on the image forming plane, mapping measurement is performed.

Description

本発明は、全反射測定法によるマッピング分析の方法及び該方法を用いた装置に関する。   The present invention relates to a mapping analysis method by a total reflection measurement method and an apparatus using the method.

フーリエ変換赤外分光光度計(FTIR)や赤外顕微鏡で行なわれる表面分析方法の一つに、全反射測定法(Attenuated Total Reflectance=ATR法)がある。ATR法では図5(a)に示すように、試料Sよりも屈折率の高い物質で作成されたプリズム(ATRプリズム)20を試料Sの表面に圧着し、ATRプリズム20と試料Sとの境界面21でATRプリズム20側から全反射臨界角以上の入射角で赤外光を入射する。この条件の下で赤外光は境界面21で全反射するが、一部は境界面21を越えて試料S側にまで浸透し(図5(b))、試料Sの表面部分により固有の吸収を受ける。このように試料表面で反射された赤外光の吸収スペクトルを測定することにより、試料表面の分析を行なうことができる(例えば特許文献1を参照)。   One of the surface analysis methods performed with a Fourier transform infrared spectrophotometer (FTIR) or an infrared microscope is the total reflection measurement method (Attenuated Total Reflectance = ATR method). In the ATR method, as shown in FIG. 5A, a prism (ATR prism) 20 made of a material having a refractive index higher than that of the sample S is pressure-bonded to the surface of the sample S, and the boundary between the ATR prism 20 and the sample S Infrared light is incident on the surface 21 from the ATR prism 20 side at an incident angle greater than the total reflection critical angle. Under this condition, the infrared light is totally reflected at the boundary surface 21, but a part of the infrared light penetrates to the side of the sample S beyond the boundary surface 21 (FIG. 5B), and is more specific to the surface portion of the sample S. Get absorbed. Thus, the sample surface can be analyzed by measuring the absorption spectrum of infrared light reflected on the sample surface (see, for example, Patent Document 1).

ATR法の応用の1つにATRマッピング分析がある。ATRマッピング分析では、試料表面の所定の領域の複数のポイント(以下、「分析点」とする)でATR法による測定を行い、該領域における測定結果のマッピングを行う。ATRマッピング分析を行う場合、従来の方法では、試料とプリズムの相対位置を変えつつ、試料とプリズムの圧着と離間を分析点毎に繰り返し行う。   One application of the ATR method is ATR mapping analysis. In the ATR mapping analysis, measurement is performed by the ATR method at a plurality of points (hereinafter referred to as “analysis points”) in a predetermined region on the sample surface, and the measurement results in the region are mapped. When performing ATR mapping analysis, in the conventional method, the sample and the prism are repeatedly pressed and separated for each analysis point while changing the relative position of the sample and the prism.

特開平4−348254号公報JP-A-4-348254 米国特許第6141100号公報US Pat. No. 6,141,100

しかしながら、このような圧着と離間の繰り返しには時間が掛かる。また、圧着と離間を繰り返すことにより、プリズムが破損したり測定中に不純物が介在したりする可能性が高くなる。さらに、分析点間の距離を近くすると、プリズムの位置決めに高い精度が要求される。   However, it takes time to repeat such crimping and separation. Further, by repeating the pressure bonding and separation, there is a high possibility that the prism is damaged or impurities are interposed during measurement. Furthermore, when the distance between the analysis points is reduced, high accuracy is required for positioning the prism.

また、ATRプリズムと試料との接触面(境界面)の大きさは、試料の硬さに依存するが、直径100μm以下である。従って、接触面の大きさ以下の間隔でマッピングを行うと、同じ場所を繰り返し押圧することになり、未測定の部位が傷ついたり変形したりするなどして、測定結果に悪影響を及ぼすおそれがある。   Further, the size of the contact surface (boundary surface) between the ATR prism and the sample is 100 μm or less in diameter although it depends on the hardness of the sample. Therefore, if mapping is performed at intervals less than the size of the contact surface, the same location will be repeatedly pressed, and unmeasured parts may be damaged or deformed, which may adversely affect measurement results. .

これに対し、特許文献2では、接触面で全反射させた光を結像させることによって得られる接触面の像を2次元アレイ検出器により測定する方法を示している。この特許文献2の方法では、2次元アレイ検出器の各受光素子における測定データは、対応する接触面の全反射位置からのデータになる。   On the other hand, Patent Document 2 shows a method of measuring an image of a contact surface obtained by forming an image of light totally reflected on the contact surface using a two-dimensional array detector. In the method of Patent Document 2, the measurement data in each light receiving element of the two-dimensional array detector is data from the total reflection position of the corresponding contact surface.

しかしながら、特許文献2の方法には赤外分析を行う上で、次の問題がある。安価に入手可能なシリコンのアレイ検出器は、可視域には高い感度を有するものの、赤外光を検出することができない。一方、シリコン以外の赤外光用のアレイ検出器は、入手可能ではあるものの非常に高価である。さらに、受光素子の数が固定されているため、変化の少ない試料に対して不必要に多くのデータを取得したり、変化の著しい試料に対して十分な数のデータが得られなかったりすることがある。   However, the method of Patent Document 2 has the following problems in performing infrared analysis. A silicon array detector available at low cost has high sensitivity in the visible range, but cannot detect infrared light. On the other hand, array detectors for infrared light other than silicon, although available, are very expensive. Furthermore, since the number of light receiving elements is fixed, an excessive amount of data must be obtained for samples with little change, or a sufficient number of data cannot be obtained for samples with significant changes. There is.

本発明が解決しようとする課題は、試料とプリズムの圧着と離間を繰り返すことなく、しかも安価にATRマッピング分析を行うことができるATRマッピング方法及びATRマッピング装置を提供することである。   The problem to be solved by the present invention is to provide an ATR mapping method and an ATR mapping apparatus capable of performing ATR mapping analysis at low cost without repeating the pressing and separation of a sample and a prism.

上記課題を解決するために成された本発明に係るATRマッピング方法は、
試料とATRプリズムとの接触面に測定光を導入し、
前記接触面で全反射した測定光を所定の結像光学系に導くことにより、該接触面の像を該結像光学系の結像面に結像させ、
前記結像面に沿って検出器の受光部を移動させることにより、該結像面に結像された前記接触面の像の各位置における光強度を測定し、
前記接触面の像の各位置における光強度の測定結果に基づいて、マッピングデータを作成する、
ことを特徴とする。
An ATR mapping method according to the present invention made to solve the above problems is as follows:
Measuring light is introduced into the contact surface between the sample and the ATR prism,
By guiding the measurement light totally reflected by the contact surface to a predetermined imaging optical system, an image of the contact surface is formed on the imaging surface of the imaging optical system,
By measuring the light intensity at each position of the image of the contact surface imaged on the imaging surface by moving the light receiving portion of the detector along the imaging surface,
Based on the measurement result of the light intensity at each position of the image of the contact surface, mapping data is created.
It is characterized by that.

また、上記課題を解決するために成された本発明に係るATRマッピング装置は、
試料とATRプリズムとの接触面に測定光を導入する導入光学系と、
前記接触面で全反射した測定光により、該接触面の像を所定の結像面に結像させる結像光学系と、
前記結像面上で、前記接触面の像の各位置における光強度を測定する検出器と、
前記検出器の受光部を前記試料像上で移動させる移動手段と、
前記接触面の像の各位置における光強度の測定結果に基づいて、マッピングデータを作成するマッピングデータ作成手段と、
を有することを特徴とする。
Further, an ATR mapping apparatus according to the present invention, which has been made to solve the above problems,
An introduction optical system for introducing measurement light into the contact surface between the sample and the ATR prism;
An imaging optical system that forms an image of the contact surface on a predetermined image formation surface with the measurement light totally reflected by the contact surface;
A detector for measuring light intensity at each position of the image of the contact surface on the imaging plane;
Moving means for moving the light receiving part of the detector on the sample image;
Mapping data creating means for creating mapping data based on the measurement result of the light intensity at each position of the image of the contact surface;
It is characterized by having.

本発明は、試料とATRプリズムとの接触面で全反射された測定光を所定の結像光学系に導き、この結像光学系の結像面に結像される接触面の像を検出器の受光部に走査させることにより、マッピング分析を行うものである。本発明の構成では、2次元アレイ検出器を用いなくとも良いため、検出器に要するコストが削減される。また、試料とATRプリズムの圧着と離間を繰り返さずに、接触面のマッピング分析を行うことができる。さらに拡大された接触面の像を走査するため、像上の走査間隔を試料上よりも広く設定することが可能となり、精度の高い高価な移動機構を用いる必要がなくなる。   The present invention guides measurement light totally reflected by a contact surface between a sample and an ATR prism to a predetermined imaging optical system, and detects an image of the contact surface formed on the imaging surface of the imaging optical system as a detector. The mapping analysis is performed by scanning the light receiving unit. In the configuration of the present invention, since it is not necessary to use a two-dimensional array detector, the cost required for the detector is reduced. In addition, mapping analysis of the contact surface can be performed without repeating the pressing and separation of the sample and the ATR prism. Further, since the image of the enlarged contact surface is scanned, the scanning interval on the image can be set wider than on the sample, and it is not necessary to use an expensive moving mechanism with high accuracy.

なお、本発明に係るATRマッピング方法及びATRマッピング装置では、結像光学系が接触面の像の倍率を変更させることが可能であり、倍率の変化に伴う光軸上の結像面の位置の変化に対応して、光軸に沿って検出器を移動させることが可能である、という構成を有することが望ましい。これにより、検出器の受光部に導入される測定光の光強度を調整したり、像上の走査間隔を一定にしたままでより詳細なマッピングデータを作成したりすることができるため、測定の自由度がより高くなる。   In the ATR mapping method and the ATR mapping apparatus according to the present invention, the imaging optical system can change the magnification of the image on the contact surface, and the position of the imaging surface on the optical axis accompanying the change in magnification can be changed. It is desirable to have a configuration in which the detector can be moved along the optical axis in response to the change. As a result, it is possible to adjust the light intensity of the measurement light introduced into the light receiving part of the detector and to create more detailed mapping data while keeping the scanning interval on the image constant. The degree of freedom is higher.

本発明に係るATRマッピング方法及びATRマッピング装置では、試料にプリズムを圧着したまま、接触面のマッピング分析を行うことができるため、分析時間を短くすることができる。また、圧着と離間の繰り返しの回数が減るため、プリズムが破損したり測定中に不純物が介在したりする可能性が低くなる。さらに、拡大された接触面の像を走査するため、検出器や移動機構に掛かるコストを削減することができる。   In the ATR mapping method and the ATR mapping apparatus according to the present invention, the contact surface mapping analysis can be performed while the prism is pressure-bonded to the sample, so that the analysis time can be shortened. In addition, since the number of repeated pressing and separation is reduced, the possibility that the prism is broken or impurities are interposed during the measurement is reduced. Furthermore, since the image of the enlarged contact surface is scanned, the cost for the detector and the moving mechanism can be reduced.

本発明に係るATRマッピング装置の一実施例である赤外顕微鏡の概略構成図。The schematic block diagram of the infrared microscope which is one Example of the ATR mapping apparatus which concerns on this invention. 本実施例の赤外顕微鏡の赤外線検出部の斜視図。The perspective view of the infrared detection part of the infrared microscope of a present Example. 本実施例の赤外顕微鏡によるATRマッピング分析の説明図。Explanatory drawing of the ATR mapping analysis by the infrared microscope of a present Example. 本実施例の赤外顕微鏡の変形例の概略構成図。The schematic block diagram of the modification of the infrared microscope of a present Example. ATR法の原理の説明図。Explanatory drawing of the principle of ATR method.

本発明に係るATRマッピング装置の一実施例である赤外顕微鏡を、図面を参照しながら説明する。図1は本実施例の赤外顕微鏡の概略構成図、図2は本実施例の赤外顕微鏡の赤外検出部の斜視図、図3は本実施例の赤外顕微鏡によるATRマッピング分析の説明図である。   An infrared microscope as an embodiment of the ATR mapping apparatus according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of the infrared microscope of the present embodiment, FIG. 2 is a perspective view of an infrared detection unit of the infrared microscope of the present embodiment, and FIG. 3 is an explanation of ATR mapping analysis by the infrared microscope of the present embodiment. FIG.

図1に示す本実施例の赤外顕微鏡は、赤外光を出射する赤外光源1と、赤外光源1から入射した赤外光を干渉光(以下、「測定光」とする)として出射する干渉計2と、試料表面を観察するための可視光(以下、「観察光」とする)を出射する可視光源3と、可動ステージ4上に載置された試料Sと圧着させるATRプリズム5と、試料とATRプリズム5の接触面に測定光及び観察光を集光すると共に、試料S上の接触面で反射した測定光及び観察光を集光するカセグレン式対物鏡6と、試料S上の特定の部位以外で反射した測定光及び観察光を遮光するアパーチャ7と、アパーチャ7を通過した観察光により形成される接触面の像を観察するための観察光学系8と、アパーチャ7を通過した測定光により形成される接触面の像のマッピング測定を行う赤外線検出部9と、可動ステージ4と赤外線検出部9の制御、及び赤外線検出部9による測定結果に基づいてマッピングデータの作成を行うパーソナルコンピュータ(PC)10と、光路上の各位置に設置された、測定光と観察光の両方を反射するミラー11、12、測定光を反射し、観察光を透過するハーフミラー13、14と、を備える。   The infrared microscope of the present embodiment shown in FIG. 1 emits infrared light that emits infrared light and infrared light incident from the infrared light source 1 as interference light (hereinafter referred to as “measurement light”). Interferometer 2, visible light source 3 that emits visible light (hereinafter referred to as “observation light”) for observing the sample surface, and ATR prism 5 that is pressure-bonded to sample S placed on movable stage 4. And a Cassegrain objective mirror 6 for condensing the measurement light and the observation light on the contact surface between the sample and the ATR prism 5 and condensing the measurement light and the observation light reflected by the contact surface on the sample S; An aperture 7 that shields the measurement light and the observation light reflected from other than the specific part, an observation optical system 8 for observing an image of the contact surface formed by the observation light that has passed through the aperture 7, and the aperture 7 Of image of contact surface formed by measured measuring light Infrared detector 9 that performs measurement, control of movable stage 4 and infrared detector 9, and personal computer (PC) 10 that creates mapping data based on the measurement result of infrared detector 9, and each position on the optical path And mirrors 11 and 12 that reflect both the measurement light and the observation light, and half mirrors 13 and 14 that reflect the measurement light and transmit the observation light.

本実施例の赤外顕微鏡では、赤外光源1、干渉計2、ミラー11、ハーフミラー13、ミラー12、ATRプリズム5、カセグレン式対物鏡6が導入光学系に、ATRプリズム5、カセグレン式対物鏡6、アパーチャ7、ハーフミラー14が結像光学系に、それぞれ相当する。   In the infrared microscope of the present embodiment, the infrared light source 1, the interferometer 2, the mirror 11, the half mirror 13, the mirror 12, the ATR prism 5, and the Cassegrain type objective mirror 6 are used as the introduction optical system, the ATR prism 5 and the Cassegrain type objective. The mirror 6, the aperture 7, and the half mirror 14 correspond to the imaging optical system.

本実施例の赤外線検出部9は、図2に示すように、上記結像光学系の結像面に受光部151が配置された赤外線検出器15と、結像面に平行に(すなわち、光軸に垂直な方向に)赤外線検出器15を移動させることにより、結像面上で受光部151を移動させる検出器移動機構16と、を備える。   As shown in FIG. 2, the infrared detection unit 9 of the present embodiment is in parallel with the infrared detector 15 in which the light receiving unit 151 is disposed on the imaging surface of the imaging optical system (that is, light And a detector moving mechanism 16 that moves the light receiving unit 151 on the imaging plane by moving the infrared detector 15 in a direction perpendicular to the axis.

PC10は、専用のプログラムをインストールすることにより、可動ステージ4による試料Sの位置制御と検出器移動機構16による赤外線検出器15(より具体的には受光部151)の位置制御とを行う制御部、接触面の像の各位置における光強度を測定した結果に基づいてマッピングデータを作成する演算部、として機能する。なお、本実施例では、赤外顕微鏡とPC10とを別体としたが、これらは一体であっても構わない。   The PC 10 installs a dedicated program to control the position of the sample S by the movable stage 4 and the position control of the infrared detector 15 (more specifically, the light receiving unit 151) by the detector moving mechanism 16. It functions as an arithmetic unit that creates mapping data based on the result of measuring the light intensity at each position of the image of the contact surface. In this embodiment, the infrared microscope and the PC 10 are separated from each other, but they may be integrated.

図1に示すように、本実施例の赤外顕微鏡では、赤外光源1及び干渉計2から得られる赤外干渉光(測定光)と可視光源3から得られる観察光は、ハーフミラー13において混合され、ミラー12を経てカセグレン式対物鏡6へと入射する。可動ステージ4上に載置された試料SはATRプリズム5と圧着した状態で静止しており、カセグレン式対物鏡6に入射した測定光及び観察光は集光されて、ATRプリズム5と試料Sの接触面に導入される。   As shown in FIG. 1, in the infrared microscope of this embodiment, infrared interference light (measurement light) obtained from the infrared light source 1 and the interferometer 2 and observation light obtained from the visible light source 3 are transmitted in the half mirror 13. After being mixed, the light enters the Cassegrain type objective mirror 6 through the mirror 12. The sample S placed on the movable stage 4 is stationary with the ATR prism 5 being crimped, and the measurement light and observation light incident on the Cassegrain type objective mirror 6 are condensed, and the ATR prism 5 and the sample S are collected. Introduced on the contact surface.

この接触面で測定光及び観察光は反射し、カセグレン式対物鏡6を経てアパーチャ7に導かれる。アパーチャ7では特定の部位で反射した光のみが通過し、ハーフミラー14によって観察光が観察光学系8へ、測定光が赤外線検出部9へと振り分けられる。   The measurement light and the observation light are reflected by the contact surface and guided to the aperture 7 through the Cassegrain objective mirror 6. In the aperture 7, only the light reflected by a specific part passes, and the half-mirror 14 distributes the observation light to the observation optical system 8 and the measurement light to the infrared detection unit 9.

受光部151がある結像面では、接触面の像は結像光学系の倍率に従い、拡大されて結像する。PC10は、受光部151がこの拡大された像全体を網羅するように検出器移動機構16を制御し、結像面上の接触面の像の走査を行う(図3)。   On the imaging surface where the light receiving unit 151 is located, the image on the contact surface is enlarged and imaged according to the magnification of the imaging optical system. The PC 10 controls the detector moving mechanism 16 so that the light receiving unit 151 covers the entire enlarged image, and scans the image of the contact surface on the imaging surface (FIG. 3).

受光部151の各位置における光強度の測定データは、所定の信号処理を経てPC10に送られ、受光部151の位置情報と測定データとを対応づけて保存される。最後にPC10は、結像光学系の倍率に基づいて、受光部151の位置情報を試料S上の位置情報に対応させて、マッピングデータを作成する。   The measurement data of the light intensity at each position of the light receiving unit 151 is sent to the PC 10 through predetermined signal processing, and the position information of the light receiving unit 151 and the measurement data are stored in association with each other. Finally, the PC 10 creates mapping data by associating the position information of the light receiving unit 151 with the position information on the sample S based on the magnification of the imaging optical system.

本実施例の赤外顕微鏡では、例えば結像光学系により接触面が10倍に拡大されて結像していた場合、結像面上で受光部151を100μm間隔で移動させれば、試料S側でATRプリズムとの相対位置を10μm間隔で変更した場合と同様の結果が得られる。このように拡大された像に対して走査を行うため、検出器移動機構16の位置精度が低くても、マッピング分析自体は高い精度で行うことができる。   In the infrared microscope of this embodiment, for example, when the contact surface is magnified 10 times by the imaging optical system, the sample S can be obtained by moving the light receiving portions 151 at intervals of 100 μm on the imaging surface. The same result as when the relative position with the ATR prism is changed at intervals of 10 μm on the side is obtained. Since the image thus enlarged is scanned, even if the position accuracy of the detector moving mechanism 16 is low, the mapping analysis itself can be performed with high accuracy.

以上のように、ある接触面におけるマッピングデータを作成した後は、可動ステージ4を動かし、試料SとATRプリズム5との相対位置を変えた上で、新たな接触面において上記の方法によりマッピング測定を開始する。PC10は、新たな接触面の位置情報と、その接触面に対して作成されるマッピングデータに基づいて、試料Sの表面全体のマッピングデータを作成していく。   As described above, after creating mapping data on a certain contact surface, the movable stage 4 is moved, the relative position between the sample S and the ATR prism 5 is changed, and mapping measurement is performed on the new contact surface by the above method. To start. The PC 10 creates mapping data for the entire surface of the sample S based on the position information of the new contact surface and the mapping data created for the contact surface.

次に、上記実施例の赤外顕微鏡の変形例を図4に示す。本変形例の赤外顕微鏡は、PC10の制御に従って光軸に沿って移動可能な結像レンズ17を、カセグレン式対物鏡6と赤外線検出部9との間の光路上に配置したものである。また、赤外線検出部9で用いる検出器移動機構16には、光軸に平行な方向に対しても赤外線検出器15を移動させることが可能であるものを用いる。   Next, a modification of the infrared microscope of the above embodiment is shown in FIG. In the infrared microscope of this modification, an imaging lens 17 that can move along the optical axis according to the control of the PC 10 is disposed on the optical path between the Cassegrain objective mirror 6 and the infrared detector 9. In addition, as the detector moving mechanism 16 used in the infrared detector 9, a mechanism capable of moving the infrared detector 15 in a direction parallel to the optical axis is used.

本変形例の赤外顕微鏡では、カセグレン式対物鏡6、アパーチャ7、ハーフミラー14、結像レンズ17が結像光学系になる。この結像光学系では、像倍率を変更することができるため、例えば像倍率を大きくすれば、結像面上での検出器移動機構16の位置精度が同じでも、試料S上の対応する分析点間の距離をより小さくした、より詳細なマッピングデータを作成することができるようになる。   In the infrared microscope of this modification, the Cassegrain objective mirror 6, the aperture 7, the half mirror 14, and the imaging lens 17 serve as an imaging optical system. In this imaging optical system, the image magnification can be changed. For example, if the image magnification is increased, the corresponding analysis on the sample S can be performed even if the position accuracy of the detector moving mechanism 16 on the imaging surface is the same. It becomes possible to create more detailed mapping data with a smaller distance between points.

なお、像倍率を変更すると結像面の位置が変わるため、PC10は、結像レンズ17の位置制御と同時に、検出器移動機構16による光軸方向の赤外線検出器15(又は受光部151)の位置制御を行い、新しい結像面に受光部151が配置されるようにする。光軸方向の赤外線検出器15の位置は、結像レンズ17の位置を変えるたびにPC10に計算させても良いが、PC10の記憶部に、結像レンズ17の位置情報と赤外線検出器15の位置情報が対応付けされたテーブルを保存しておき、結像レンズ17を移動させる毎にテーブルを参照して赤外線検出器15を移動させるようにしても良い。   Since the position of the imaging plane changes when the image magnification is changed, the PC 10 controls the position of the imaging lens 17 and at the same time the infrared detector 15 (or the light receiving unit 151) in the optical axis direction by the detector moving mechanism 16. Position control is performed so that the light receiving unit 151 is arranged on a new imaging plane. The position of the infrared detector 15 in the optical axis direction may be calculated by the PC 10 every time the position of the imaging lens 17 is changed. However, the position information of the imaging lens 17 and the position of the infrared detector 15 are stored in the storage unit of the PC 10. A table associated with the position information may be stored, and the infrared detector 15 may be moved with reference to the table each time the imaging lens 17 is moved.

以上、本発明に係るATRマッピング装置及びATRマッピング方法について実施例を用いて説明したが、上記は例に過ぎないことは明らかであり、本発明の趣旨の範囲内で適宜に変更や修正、又は追加を行っても構わない。   As described above, the ATR mapping apparatus and the ATR mapping method according to the present invention have been described using the embodiments. However, it is obvious that the above is only an example, and appropriate changes or modifications within the scope of the present invention, or You may add.

1…赤外光源
2…干渉計
3…可視光源
4…可動ステージ
5…ATRプリズム
6…カセグレン式対物鏡
7…アパーチャ
8…観察光学系
9…赤外線検出部
10…パーソナルコンピュータ(PC)
11、12…ミラー
13、14…ハーフミラー
15…赤外線検出器
151…受光部
16…検出器移動機構
17…結像レンズ
20…ATRプリズム
21…境界面
S…試料
DESCRIPTION OF SYMBOLS 1 ... Infrared light source 2 ... Interferometer 3 ... Visible light source 4 ... Movable stage 5 ... ATR prism 6 ... Cassegrain type objective mirror 7 ... Aperture 8 ... Observation optical system 9 ... Infrared detector 10 ... Personal computer (PC)
DESCRIPTION OF SYMBOLS 11, 12 ... Mirror 13, 14 ... Half mirror 15 ... Infrared detector 151 ... Light receiving part 16 ... Detector moving mechanism 17 ... Imaging lens 20 ... ATR prism 21 ... Boundary surface S ... Sample

Claims (6)

試料とATRプリズムとの接触面に測定光を導入し、
前記接触面で全反射した測定光を所定の結像光学系に導くことにより、該接触面の像を該結像光学系の結像面に結像させ、
前記結像面に沿って検出器の受光部を移動させることにより、該結像面に結像された前記接触面の像の各位置における光強度を測定し、
前記接触面の像の各位置における光強度の測定結果に基づいて、マッピングデータを作成する、
ことを特徴とするATRマッピング方法。
Measuring light is introduced into the contact surface between the sample and the ATR prism,
By guiding the measurement light totally reflected by the contact surface to a predetermined imaging optical system, an image of the contact surface is formed on the imaging surface of the imaging optical system,
By measuring the light intensity at each position of the image of the contact surface imaged on the imaging surface by moving the light receiving portion of the detector along the imaging surface,
Based on the measurement result of the light intensity at each position of the image of the contact surface, mapping data is created.
An ATR mapping method characterized by the above.
前記マッピングデータを作成する際、前記結像光学系の倍率に基づいて、前記像上の各位置と、前記試料とATRプリズムとの接触面上の各位置と、を対応させることを特徴とする請求項1に記載のATRマッピング方法。   When creating the mapping data, each position on the image is made to correspond to each position on the contact surface between the sample and the ATR prism based on the magnification of the imaging optical system. The ATR mapping method according to claim 1. 前記結像光学系が像倍率を変更可能であり、該倍率の変化に伴う光軸上の結像面の位置の変化に対応して、前記受光部を光軸に沿って移動させることを特徴とする請求項1又は2に記載のATRマッピング方法。   The imaging optical system can change the image magnification, and the light receiving unit is moved along the optical axis in response to a change in the position of the imaging surface on the optical axis accompanying the change in the magnification. The ATR mapping method according to claim 1 or 2. 試料とATRプリズムとの接触面に測定光を導入する導入光学系と、
前記接触面で全反射した測定光により、該接触面の像を所定の結像面に結像させる結像光学系と、
前記結像面上で、前記接触面の像の各位置における光強度を測定する検出器と、
前記検出器の受光部を前記試料像上で移動させる移動手段と、
前記接触面の像の各位置における光強度の測定結果に基づいて、マッピングデータを作成するマッピングデータ作成手段と、
を有することを特徴とするATRマッピング装置。
An introduction optical system for introducing measurement light into the contact surface between the sample and the ATR prism;
An imaging optical system that forms an image of the contact surface on a predetermined image formation surface with the measurement light totally reflected by the contact surface;
A detector for measuring light intensity at each position of the image of the contact surface on the imaging plane;
Moving means for moving the light receiving part of the detector on the sample image;
Mapping data creating means for creating mapping data based on the measurement result of the light intensity at each position of the image of the contact surface;
An ATR mapping apparatus comprising:
前記マッピングデータを作成する際、前記結像光学系の倍率に基づいて、前記像上の各位置と、前記試料とATRプリズムとの接触面上の各位置と、を対応させることを特徴とする請求項4に記載のATRマッピング装置。   When creating the mapping data, each position on the image is made to correspond to each position on the contact surface between the sample and the ATR prism based on the magnification of the imaging optical system. The ATR mapping apparatus according to claim 4. 前記結像光学系の像倍率を変更する像倍率変更手段をさらに備えると共に、前記移動手段が、前記受光部を光軸方向にも移動させることが可能であることを特徴とする請求項4又は5に記載のATRマッピング装置。
The image magnification change means for changing the image magnification of the imaging optical system is further provided, and the moving means is capable of moving the light receiving section also in the optical axis direction. 5. The ATR mapping apparatus according to 5.
JP2011057113A 2011-03-15 2011-03-15 Atr mapping method and atr mapping apparatus Withdrawn JP2012194007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011057113A JP2012194007A (en) 2011-03-15 2011-03-15 Atr mapping method and atr mapping apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011057113A JP2012194007A (en) 2011-03-15 2011-03-15 Atr mapping method and atr mapping apparatus

Publications (1)

Publication Number Publication Date
JP2012194007A true JP2012194007A (en) 2012-10-11

Family

ID=47086047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011057113A Withdrawn JP2012194007A (en) 2011-03-15 2011-03-15 Atr mapping method and atr mapping apparatus

Country Status (1)

Country Link
JP (1) JP2012194007A (en)

Similar Documents

Publication Publication Date Title
JP4382098B2 (en) Analysis method and analyzer
EP2499480B1 (en) Optical sensor system based on attenuated total reflection
US7864317B2 (en) Compact catadioptric spectrometer
US10156488B2 (en) Prism-coupling systems and methods for characterizing curved parts
JP5309359B2 (en) Film thickness measuring apparatus and film thickness measuring method
TWI292030B (en) High density multi-channel detecting device
US9830501B2 (en) High throughput partial wave spectroscopic microscopy and associated systems and methods
TW201205114A (en) Linear chromatic confocal microscope system
TWI245114B (en) Apparatus for measuring imaging spectrograph
TWI756306B (en) Optical characteristic measuring apparatus and optical characteristic measuring method
KR20090132538A (en) Apparatus for measuring thickness of film
KR101233941B1 (en) Shape measuring apparatus and method thereof
JP2017156245A (en) Spectroscopic apparatus
JPH11173946A (en) Optical characteristic measuring apparatus
JP4455362B2 (en) Measuring device using total reflection attenuation
CN107037005A (en) For the apparatus and method for the turbidity that sheeting or other materials are measured using off-axis detector
JP5356804B2 (en) Raman scattered light measurement system
JP2004117298A (en) Measuring method and apparatus using total reflection attenuation
KR100404071B1 (en) Apparatus for protein chip analysis using a white-light SPR
JP2012194007A (en) Atr mapping method and atr mapping apparatus
EP2198253A1 (en) System and method for microplate image analysis
JPWO2013124909A1 (en) Objective optical system and ATR measurement apparatus for ATR measurement
JP6588055B2 (en) Bacteria detection device
WO2002012950A1 (en) Method of analyzing spectrum using multi-slit member and multi-channel spectrograph using the same
KR102465675B1 (en) Imaging spectrometer with area scan function

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603