JP2012138347A - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
JP2012138347A
JP2012138347A JP2011263396A JP2011263396A JP2012138347A JP 2012138347 A JP2012138347 A JP 2012138347A JP 2011263396 A JP2011263396 A JP 2011263396A JP 2011263396 A JP2011263396 A JP 2011263396A JP 2012138347 A JP2012138347 A JP 2012138347A
Authority
JP
Japan
Prior art keywords
active material
storage device
power storage
material layer
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011263396A
Other languages
Japanese (ja)
Other versions
JP5806097B2 (en
Inventor
Kazuki Kurishiro
和貴 栗城
Nobuhiro Inoue
信洋 井上
Kiyofumi Ogino
清文 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2011263396A priority Critical patent/JP5806097B2/en
Publication of JP2012138347A publication Critical patent/JP2012138347A/en
Application granted granted Critical
Publication of JP5806097B2 publication Critical patent/JP5806097B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/72Current collectors specially adapted for integration in multiple or stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power storage device capable of improving performance such as higher discharge capacity and hardly causing deterioration due to peeling or the like of an active material layer.SOLUTION: In an electrode for a power storage device, phosphorus-doped amorphous silicon is used for an active material layer over a collector as a material that can be alloyed with lithium, and a niobium oxide is formed over the active material layer as a layer containing niobium. Accordingly, the capacity of the power storage device can be increased. Furthermore, the cycle characteristics and charge/discharge efficiency of the power storage device can be improved.

Description

本発明は、蓄電装置に関する。 The present invention relates to a power storage device.

なお、蓄電装置とは、蓄電機能を有する素子および装置全般を指すものである。 Note that the power storage device refers to all elements and devices having a power storage function.

近年、リチウム二次電池、リチウムイオンキャパシタ、および空気電池など、種々の蓄電装置の開発が行われている。特に高出力および高エネルギー密度の二次電池として、リチウムイオンを正極と負極との間で移動させて、充放電を行うリチウム二次電池が注目されている。 In recent years, various power storage devices such as lithium secondary batteries, lithium ion capacitors, and air batteries have been developed. In particular, lithium secondary batteries that charge and discharge by moving lithium ions between a positive electrode and a negative electrode have attracted attention as secondary batteries with high output and high energy density.

蓄電装置用の電極は、集電体の一表面に活物質層を形成することにより作製される。活物質層は、キャリアとなるイオンの貯蔵および放出が可能な、炭素またはシリコンなどの活物質により形成される。例えば、シリコンまたはリンが添加されたシリコンにより活物質層を形成すると、炭素により活物質層を形成するのに比べて理論容量が大きく、蓄電装置の大容量化という点において優れている(例えば特許文献1。)。 An electrode for a power storage device is manufactured by forming an active material layer on one surface of a current collector. The active material layer is formed of an active material such as carbon or silicon capable of storing and releasing ions serving as carriers. For example, when an active material layer is formed of silicon or silicon to which phosphorus is added, the theoretical capacity is larger than that of forming an active material layer of carbon, which is superior in terms of increasing the capacity of a power storage device (for example, patents). Literature 1.).

しかし、活物質であるシリコンは、リチウムイオンを吸蔵または放出する際に、シリコンの体積が膨張または収縮することが知られている。そのため電池の充放電に伴い、活物質層が微粉化し、集電体から脱離するなどの問題が生じる。その結果、電極内の集電性が低下し、充放電サイクル特性が悪くなる。この対策として、活物質層表面への炭素、銅、ニッケルなどのコーティングを行うことにより、シリコンの崩れを抑制する方法があるが、これらコーティングを行うと、リチウムとシリコンの反応性を低下させてしまい、充放電容量を低下させてしまう欠点がある。 However, it is known that silicon as an active material expands or contracts when the lithium ions are occluded or released. Therefore, with the charging / discharging of the battery, the active material layer is pulverized and detaches from the current collector. As a result, the current collecting property in the electrode is lowered, and the charge / discharge cycle characteristics are deteriorated. As a countermeasure against this, there is a method of suppressing the collapse of silicon by coating the surface of the active material layer with carbon, copper, nickel, etc. However, when these coatings are performed, the reactivity between lithium and silicon is reduced. Therefore, there is a drawback that the charge / discharge capacity is reduced.

特開2001−210315号公報Japanese Patent Laid-Open No. 2001-210315

本発明の一態様は、充放電容量を高め、かつサイクル特性等の蓄電装置の性能を向上させることが可能な蓄電装置を提供することを課題の一とする。 An object of one embodiment of the present invention is to provide a power storage device that can increase charge / discharge capacity and improve performance of the power storage device such as cycle characteristics.

蓄電装置用の電極において、集電体上に活物質層としてリチウムと合金化する材料を用い、該活物質層上にニオブを含む層を形成することにより、蓄電装置の高容量化ができ、さらにサイクル特性および充放電効率を改善することができる。 In an electrode for a power storage device, a material that is alloyed with lithium as an active material layer on a current collector, and by forming a layer containing niobium on the active material layer, the capacity of the power storage device can be increased. Furthermore, cycle characteristics and charge / discharge efficiency can be improved.

該ニオブを含む層としては、酸化ニオブまたは窒化ニオブで形成されることが好ましい。また、ニオブリチウム合金を含んでいてもよく、例えばLiNbを含んでいてもよい。また、該ニオブを含む層は、非晶質でもよく、結晶性を有していてもよい。 The layer containing niobium is preferably formed of niobium oxide or niobium nitride. Further, it may contain a niobium lithium alloy, for example, Li 2 Nb 2 O 5 . The layer containing niobium may be amorphous or may have crystallinity.

また、該LiNbは、電池反応によってNbとLiが反応して形成される。さらにこのLiNbは、その後の充放電において保持されていてもよく、LiNbからLiが脱離し、Nbとなってもよい。このように、LiNbが活物質層上に形成されることにより、LiNbは有機SEI(Solid Electrolyte Interface)の代わりに、安定な無機SEIとして作用し、それによって低抵抗化、リチウム拡散性の向上、活物質層の体積膨張を緩和させる、などの効果を奏する。 The Li 2 Nb 2 O 5 is formed by reaction of Nb 2 O 5 and Li by a battery reaction. Furthermore the Li 2 Nb 2 O 5 may be retained in the subsequent charge and discharge, Li 2 Nb 2 O 5 Li is desorbed from the, may serve as Nb 2 O 5. Thus, Li 2 Nb 2 O 5 is formed on the active material layer, so that Li 2 Nb 2 O 5 acts as a stable inorganic SEI instead of organic SEI (Solid Electrolyte Interface), thereby There are effects such as lowering resistance, improving lithium diffusibility, and relaxing volume expansion of the active material layer.

該活物質は、リチウムと合金化する材料が好ましく、例えばシリコン、スズ、アルミニウムまたはゲルマニウムを含む材料を用いることができる。さらに、該活物質にリンまたはボロンが添加されていることが好ましい。これら材料を用いることにより、蓄電装置の高容量化が可能となる。 The active material is preferably a material that can be alloyed with lithium. For example, a material containing silicon, tin, aluminum, or germanium can be used. Furthermore, it is preferable that phosphorus or boron is added to the active material. By using these materials, the capacity of the power storage device can be increased.

また該活物質は、非晶質、微結晶、多結晶または単結晶のいずれの結晶性であってもよい。さらに、例えば活物質としてシリコンを用いる場合、結晶性シリコン領域と、結晶性シリコン領域上に突出する複数の突起を有するウィスカー状の結晶性シリコン領域とを有することができる。さらに、結晶性シリコンの周りに非晶質シリコンを有する構造でもよい。ウィスカー状の結晶性シリコン領域は、屈曲または枝分かれした部位を有する突起を有していてもよい。 The active material may be amorphous, microcrystalline, polycrystalline, or single crystalline. Further, for example, in the case where silicon is used as the active material, a crystalline silicon region and a whisker-like crystalline silicon region having a plurality of protrusions protruding on the crystalline silicon region can be provided. Furthermore, a structure having amorphous silicon around crystalline silicon may be used. The whisker-like crystalline silicon region may have a protrusion having a bent or branched portion.

上記において、ウィスカー状の結晶性シリコン領域を有する結晶性シリコン層は、集電体上に、シリコンを含む堆積性ガスを用いて堆積させる熱CVD(CVD:Chemical vapor deposition)法、または低圧化学蒸着(LPCVD:Low pressure chemical vapor deposition)法、プラズマCVD法により形成することができる。 In the above, the crystalline silicon layer having the whisker-like crystalline silicon region is formed by a thermal CVD (CVD: Chemical Vapor Deposition) method or low pressure chemical vapor deposition on a current collector using a deposition gas containing silicon. It can be formed by (LPCVD: Low pressure chemical vapor deposition) method or plasma CVD method.

このように、活物質層として結晶性シリコン領域と、結晶性シリコン領域上に突出する複数の突起を有するウィスカー状の結晶性シリコン領域と、を有することにより、活物質の表面積が増大する。活物質の表面積が大きくなることで、蓄電装置におけるリチウムイオン等のキャリアイオンが単位時間に活物質に吸蔵される量、またはキャリアイオンが単位時間に活物質から放出される量が、単位質量当たりで増大する。単位時間あたりのキャリアイオンの吸蔵量又は放出量が増大し、高電流密度でのキャリアイオンの吸蔵量又は放出量が増大するため、蓄電装置の放電容量又は充電容量を高めることができる。 As described above, the surface area of the active material is increased by including the crystalline silicon region and the whisker-like crystalline silicon region having a plurality of protrusions protruding on the crystalline silicon region as the active material layer. By increasing the surface area of the active material, the amount of carrier ions such as lithium ions in the power storage device stored in the active material per unit time or the amount of carrier ions released from the active material per unit time Increase with. Since the amount of occlusion or release of carrier ions per unit time increases and the amount of occlusion or release of carrier ions at a high current density increases, the discharge capacity or charge capacity of the power storage device can be increased.

集電体は、白金、アルミニウム、銅に代表される金属元素等の導電性の高い材料を用いることができる。また、集電体は、シリコンと反応してシリサイドを形成する金属元素で形成してもよい。 As the current collector, a highly conductive material such as a metal element typified by platinum, aluminum, or copper can be used. The current collector may be formed using a metal element that forms silicide by reacting with silicon.

蓄電装置における負極と、該負極と対向する正極との間に形成される電解質層は、液体または固体によって形成することができ、さらに該電解質層にニオブを含んでいてもよい。 The electrolyte layer formed between the negative electrode in the power storage device and the positive electrode facing the negative electrode can be formed of a liquid or a solid, and the electrolyte layer may contain niobium.

本発明の一態様では、集電体、活物質層およびニオブを含む層などの多層構造を用いることができ、それによって集電体、活物質層およびニオブを含む層において、それぞれの層を構成する物質同士が結合することによって構造を強固なものにすることができる。そのため、充放電に伴う活物質層の体積変化による構造の破壊を生じにくい。その結果、充放電サイクルを経た場合でも、上記活物質層の破壊は抑制されるため、電池内部の抵抗上昇および、容量減少の発生を抑制することができる。 In one embodiment of the present invention, a multilayer structure such as a current collector, an active material layer, and a layer containing niobium can be used, whereby each layer is formed using the current collector, the active material layer, and the layer containing niobium. When the substances to be bonded are bonded, the structure can be strengthened. For this reason, it is difficult for the structure to be destroyed due to the volume change of the active material layer accompanying charge / discharge. As a result, even when a charge / discharge cycle is passed, the destruction of the active material layer is suppressed, so that an increase in resistance inside the battery and a decrease in capacity can be suppressed.

さらに、本発明の一態様では、蓄電装置の電極を塗布法により形成することができる。例えば、集電体上に活物質としてシリコン粒子を混合したスラリーを塗布したのち焼成して塗布電極を形成し、該塗布電極上にニオブを含む層を形成することによって、高容量かつ良好なサイクル特性を有する塗布電極を形成できる。 Further, in one embodiment of the present invention, the electrode of the power storage device can be formed by a coating method. For example, by applying a slurry in which silicon particles are mixed as an active material on a current collector, followed by firing to form a coated electrode, and forming a layer containing niobium on the coated electrode, a high capacity and good cycle A coated electrode having characteristics can be formed.

本発明の一態様では、蓄電装置に用いられる塗布電極の添加剤として、ニオブを含む材料を用いることができる。 In one embodiment of the present invention, a material containing niobium can be used as an additive for a coating electrode used in a power storage device.

また、本発明の一態様により充放電効率が改善し、CV(定電圧)充電が不要になる。そのため、充電時間の短縮にもなり、さらに負極材料のサイクル特性を改善することができる。 Further, according to one embodiment of the present invention, charge and discharge efficiency is improved, and CV (constant voltage) charging is not necessary. Therefore, the charging time can be shortened, and the cycle characteristics of the negative electrode material can be further improved.

本発明の一態様により、放電容量又は充電容量の増大等、電池性能が向上した蓄電装置を提供することができる。また、電極における活物質層の剥がれ等による蓄電装置の劣化を低減した蓄電装置を提供することができる。 According to one embodiment of the present invention, a power storage device with improved battery performance such as an increase in discharge capacity or charge capacity can be provided. Further, it is possible to provide a power storage device in which deterioration of the power storage device due to peeling of the active material layer or the like in the electrode is reduced.

蓄電装置の電極を示す図である。It is a figure which shows the electrode of an electrical storage apparatus. 蓄電装置の電極の作製工程を示す図である。It is a figure which shows the preparation process of the electrode of an electrical storage apparatus. 蓄電装置の電極を示す図である。It is a figure which shows the electrode of an electrical storage apparatus. 蓄電装置の電極の作製工程を示す図である。It is a figure which shows the preparation process of the electrode of an electrical storage apparatus. 蓄電装置の一形態の平面図及び断面図である。2A and 2B are a plan view and a cross-sectional view of one embodiment of a power storage device. 蓄電装置の応用の一形態の斜視図である。It is a perspective view of one form of application of a power storage device. 無線給電システムの構成の例を示す図である。It is a figure which shows the example of a structure of a radio | wireless electric power feeding system. 無線給電システムの構成の例を示す図である。It is a figure which shows the example of a structure of a radio | wireless electric power feeding system. 蓄電装置の作製工程を示す図である。FIG. 11 illustrates a manufacturing process of a power storage device. 蓄電装置の電池特性を示す図である。It is a figure which shows the battery characteristic of an electrical storage apparatus.

本発明の実施の形態の一例について、図面を用いて以下に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではないとする。なお、説明中に図面を参照するにあたり、同じものを指す符号は異なる図面間でも共通して用いる場合がある。また、同様のものを指す際には同じハッチパターンを使用し、特に符号を付さない場合がある。 An example of an embodiment of the present invention will be described below with reference to the drawings. However, the present invention is not limited to the following description, and it is easily understood by those skilled in the art that modes and details can be variously changed without departing from the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited to the description of the embodiments below. Note that in the description of the drawings, the same reference numerals may be used in common in different drawings. In addition, the same hatch pattern is used when referring to the same thing, and there is a case where no reference numeral is given.

(実施の形態1)
本実施の形態では、本発明の一態様である蓄電装置の電極およびその作製方法について、図1および図2を用いて説明する。
(Embodiment 1)
In this embodiment, an electrode of a power storage device which is one embodiment of the present invention and a manufacturing method thereof will be described with reference to FIGS.

図1は、蓄電装置の電極の一形態を示す図である。図1に示す蓄電装置の電極は、集電体101と、集電体101の一表面上に設けられた活物質層103と、活物質層103上に設けられたニオブを含む層109とを有する。 FIG. 1 is a diagram illustrating one embodiment of an electrode of a power storage device. An electrode of the power storage device illustrated in FIG. 1 includes a current collector 101, an active material layer 103 provided over one surface of the current collector 101, and a layer 109 containing niobium provided over the active material layer 103. Have.

集電体101は、負極の集電体として用いることが可能な導電性を有し、且つ後の加熱処理に対する耐熱性を有する材料を適宜用いて形成する。集電体として用いることが可能な導電性材料としては、銅、白金、アルミニウム、ニッケル、タングステン、モリブデン、チタン、鉄等があるが、これに限定されない。なお、集電体としてアルミニウムを用いる場合は、シリコン、チタン、ネオジム、スカンジウム、モリブデンなどの耐熱性を向上させる元素が添加されたアルミニウム合金を用いることが好ましい。また、上記導電性材料の合金を用いてもよい。 The current collector 101 is formed using a material having conductivity that can be used as a current collector for a negative electrode and heat resistance for a subsequent heat treatment as appropriate. Examples of the conductive material that can be used as the current collector include, but are not limited to, copper, platinum, aluminum, nickel, tungsten, molybdenum, titanium, and iron. Note that when aluminum is used for the current collector, an aluminum alloy to which an element for improving heat resistance such as silicon, titanium, neodymium, scandium, or molybdenum is added is preferably used. Alternatively, an alloy of the above conductive material may be used.

また、集電体101として、シリコンと反応してシリサイドを形成する金属元素を用いてもよい。シリコンと反応してシリサイドを形成する金属元素としては、ジルコニウム、チタン、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、コバルト、ニッケル等がある。 Alternatively, the current collector 101 may be formed using a metal element that forms silicide by reacting with silicon. Examples of metal elements that react with silicon to form silicide include zirconium, titanium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, cobalt, nickel, and the like.

また、集電体101として、酸化物導電材料を用いることが可能であり、酸化物導電材料の代表例としては、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム錫酸化物、インジウム亜鉛酸化物、または酸化シリコンを添加したインジウム錫酸化物等がある。なお、集電体101は箔状、板状、網状であってもよい。このような形状の場合、集電体101単独で形状保持できるため、支持基板などを用いる必要はない。 An oxide conductive material can be used as the current collector 101. Typical examples of the oxide conductive material include indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, and titanium oxide. Indium oxide containing, indium tin oxide containing titanium oxide, indium tin oxide, indium zinc oxide, indium tin oxide added with silicon oxide, or the like can be given. Note that the current collector 101 may have a foil shape, a plate shape, or a net shape. In the case of such a shape, since the shape can be maintained by the current collector 101 alone, it is not necessary to use a support substrate or the like.

活物質層103は、電荷の担い手であるイオンと合金化する材料を用いることが好ましい。電荷の担い手であるイオンは、リチウム、ナトリウム等のアルカリ金属イオン、カルシウム、ストロンチウム、バリウム等のアルカリ土類金属イオン、ベリリウムイオン、またはマグネシウムイオンなどであればよく、好ましくはリチウムを用いる。活物質層103は、例えばリチウムと合金化することができる材料として、シリコン、スズ、アルミニウム、ゲルマニウムなどを用いることができる。 The active material layer 103 is preferably formed using a material that is alloyed with ions that are carriers of charge. The ions that are charge carriers may be alkali metal ions such as lithium and sodium, alkaline earth metal ions such as calcium, strontium, and barium, beryllium ions, or magnesium ions, and lithium is preferably used. For the active material layer 103, silicon, tin, aluminum, germanium, or the like can be used as a material that can be alloyed with lithium, for example.

活物質層にシリコンを用いる場合、集電体101上にプラズマCVD法などによりシリコン層を形成することができる。このとき、シリコン層の形成に際し、材料ガス中に水素が極力含まれないことが好ましい。それによって、シリコン中に形成されるダングリングボンドなどの欠陥が増加し、リチウムイオンの挿入・脱離反応を起こりやすくすることができる。 In the case where silicon is used for the active material layer, a silicon layer can be formed over the current collector 101 by a plasma CVD method or the like. At this time, when forming the silicon layer, it is preferable that hydrogen is not contained in the material gas as much as possible. As a result, defects such as dangling bonds formed in silicon increase, and lithium ion insertion / extraction reactions can easily occur.

活物質層103上に設けられたニオブを含む層109は、酸化ニオブまたは窒化ニオブにより形成することができる。また、ニオブの代わりに、バナジウム、タンタル、タングステン、ジルコニウム、モリブデン、ハフニウム、クロムもしくはチタンの酸化物、または窒化物を用いることができる。さらに結晶性は、非晶質、多結晶または単結晶のいずれでもよい。 The layer 109 containing niobium provided over the active material layer 103 can be formed using niobium oxide or niobium nitride. Instead of niobium, vanadium, tantalum, tungsten, zirconium, molybdenum, hafnium, chromium, titanium oxide, or nitride can be used. Further, the crystallinity may be any of amorphous, polycrystalline or single crystal.

次に、上記電極を形成する方法について、図2を参照して説明する。 Next, a method for forming the electrode will be described with reference to FIG.

まず、図2(A)に示すように、集電体101上に活物質層103を形成する。例えば、集電体101としてチタンシートを用い、集電体101上に活物質層103としてシリコン層をプラズマCVD法により形成すればよい。該シリコン層には、リンまたはボロンなどのキャリアを生成する不純物元素が含まれていてもよい。例えば、シリコン層にリンを含ませるためには、材料ガスにホスフィンを含ませればよい。なお、シリコン層の結晶性は特に限定されず、シリコン層は、非晶質であってもよいし、結晶性を有していてもよい。例えば、非晶質シリコン、微結晶シリコンまたは多結晶シリコンを用いることができる。ここで、シリコン層に対して結晶化を行ってもよい。シリコン層に対して結晶化を行う場合には、あらかじめシリコン層中の水素濃度を十分に低減させた後に、該シリコン層に熱処理を行ってもよいし、該シリコン層にレーザ光を照射して結晶化させてもよい。 First, as illustrated in FIG. 2A, the active material layer 103 is formed over the current collector 101. For example, a titanium sheet may be used as the current collector 101, and a silicon layer may be formed as the active material layer 103 over the current collector 101 by a plasma CVD method. The silicon layer may contain an impurity element that generates carriers, such as phosphorus or boron. For example, in order to include phosphorus in the silicon layer, phosphine may be included in the material gas. Note that the crystallinity of the silicon layer is not particularly limited, and the silicon layer may be amorphous or may have crystallinity. For example, amorphous silicon, microcrystalline silicon, or polycrystalline silicon can be used. Here, crystallization may be performed on the silicon layer. When crystallization is performed on the silicon layer, the silicon layer may be subjected to heat treatment after sufficiently reducing the hydrogen concentration in the silicon layer in advance, or the silicon layer may be irradiated with laser light. It may be crystallized.

シリコンは黒鉛に比べて理論容量が大きいため、活物質層にシリコンを用いることにより、活物質層に黒鉛を用いる場合と比較して、厚さを1/10程度まで薄く形成しても、同程度の容量を有することができる。そのため軽量化および小型化が可能であるが、過度に薄く形成すると、二次電池の容量が小さくなってしまう。そのため、活物質層103の厚さは50nm以上10μm以下とし、好ましくは100nm以上5μm以下とする。また、薄く形成しない場合であっても二次電池の容量を大きくすることができるため好ましい。 Since silicon has a larger theoretical capacity than graphite, the use of silicon for the active material layer can reduce the thickness to about 1/10 compared to the case of using graphite for the active material layer. It can have a capacity of about. For this reason, it is possible to reduce the weight and size, but if it is formed too thin, the capacity of the secondary battery is reduced. Therefore, the thickness of the active material layer 103 is 50 nm to 10 μm, preferably 100 nm to 5 μm. Further, it is preferable that the capacity of the secondary battery can be increased even when it is not formed thin.

次に、図2(B)に示すように、活物質層103上に、ニオブを含む層109を形成する。例えばニオブを含む層109として、酸化ニオブ層を形成すればよい。酸化ニオブ層の形成には、Nbターゲットを用い、蒸着法などによって形成することができる。また、メッキ法、溶射法、CVD法、スパッタリング法などにより形成してもよい。 Next, as illustrated in FIG. 2B, a layer 109 containing niobium is formed over the active material layer 103. For example, a niobium oxide layer may be formed as the layer 109 containing niobium. The niobium oxide layer can be formed by vapor deposition using an Nb 2 O 5 target. Further, it may be formed by plating, thermal spraying, CVD, sputtering, or the like.

形成する酸化ニオブ層は、膜厚が1nm以上1000nm以下であることが好ましく、より好ましくは80nm以上500nm以下である。また、形成した酸化ニオブ層の組成はNb(xおよびyは正の整数)で表すことができる。 The niobium oxide layer to be formed preferably has a thickness of 1 nm to 1000 nm, more preferably 80 nm to 500 nm. The composition of the formed niobium oxide layer can be represented by Nb x O y (x and y are positive integers).

以上の工程により、蓄電装置の電極を形成することができる。 Through the above steps, an electrode of the power storage device can be formed.

(実施の形態2)
本実施の形態では、本発明の一態様である蓄電装置の電極およびその作製方法について、図3および図4を用いて説明する。
(Embodiment 2)
In this embodiment, an electrode of a power storage device which is one embodiment of the present invention and a manufacturing method thereof will be described with reference to FIGS.

図3は、蓄電装置の電極の一形態を示す図である。図3に示す蓄電装置の電極は、集電体201と、集電体201の一表面上に設けられた活物質層203と、活物質層203上に設けられたニオブを含む層209とを有する。なお、活物質層203は結晶性シリコン領域と、当該領域上に形成されるウィスカー状の結晶性シリコン領域とを有する。 FIG. 3 is a diagram illustrating one embodiment of an electrode of a power storage device. 3 includes a current collector 201, an active material layer 203 provided over one surface of the current collector 201, and a layer 209 containing niobium provided over the active material layer 203. Have. Note that the active material layer 203 includes a crystalline silicon region and a whisker-like crystalline silicon region formed over the region.

次に、上記電極を形成する方法について、図4を参照して説明する。 Next, a method for forming the electrode will be described with reference to FIG.

まず、図4(A)に示すように、集電体201上に、活物質層203として結晶性シリコン層をLPCVD法により形成する。LPCVD法による結晶性シリコンの形成は550℃以上、LPCVD装置および集電体201の耐熱温度以下で行うことが好ましく、より好ましくは580℃以上650℃以下で行う。また、原料ガスとしては、シリコンを含む堆積性ガスを用いることができる。シリコンを含む堆積性ガスとしては、水素化シリコン、フッ化シリコン、または塩化シリコン等があり、代表的には、SiH、Si、SiF、SiCl、SiCl等がある。なお、原料ガスに、ヘリウム、ネオン、アルゴン、キセノン等の希ガス、窒素、および水素の一以上を混合させてもよい。 First, as illustrated in FIG. 4A, a crystalline silicon layer is formed as an active material layer 203 over the current collector 201 by an LPCVD method. The formation of crystalline silicon by the LPCVD method is preferably performed at 550 ° C. or more and below the heat resistant temperature of the LPCVD apparatus and the current collector 201, more preferably 580 ° C. or more and 650 ° C. or less. As the source gas, a deposition gas containing silicon can be used. Examples of the deposition gas containing silicon include silicon hydride, silicon fluoride, or silicon chloride. Typically, there are SiH 4 , Si 2 H 6 , SiF 4 , SiCl 4 , Si 2 Cl 6, and the like. . Note that the source gas may be mixed with one or more of rare gases such as helium, neon, argon, and xenon, nitrogen, and hydrogen.

集電体201としては、集電体101の材料として列挙した上述の材料を適宜用いることができる。 As the current collector 201, the above-described materials listed as materials of the current collector 101 can be used as appropriate.

なお、活物質層203に不純物として酸素が含まれている場合がある。これは、活物質層203として、LPCVD法で結晶性シリコン層を形成する際の加熱により、LPCVD装置の石英製のチャンバーから酸素が脱離し、結晶性シリコン層に拡散するためである。 Note that the active material layer 203 may contain oxygen as an impurity. This is because oxygen is released from the quartz chamber of the LPCVD apparatus and diffuses into the crystalline silicon layer by heating when the crystalline silicon layer is formed as the active material layer 203 by the LPCVD method.

なお、結晶性シリコン層に、リン、ボロン等のキャリアを生成する不純物元素が添加されていてもよい。リン、ボロン等のキャリアを生成する不純物元素が添加された結晶性シリコン層は、導電性が高くなるため、電極の導電性を高めることができる。このため、放電容量又は充電容量をさらに高めることができる。 Note that an impurity element that generates carriers, such as phosphorus or boron, may be added to the crystalline silicon layer. Since the crystalline silicon layer to which an impurity element that generates carriers such as phosphorus and boron is added has high conductivity, the conductivity of the electrode can be increased. For this reason, the discharge capacity or the charge capacity can be further increased.

活物質層203は、結晶性シリコン領域203aと、該領域上に形成されるウィスカー状の結晶性シリコン領域203bとを有する。なお、結晶性シリコン領域203aおよびウィスカー状の結晶性シリコン領域203bは、界面が明確ではない。このため、ウィスカー状の結晶性シリコン領域203bが有する複数の突起の間に形成される谷のうち最も深い谷の底を通り、かつ集電体の表面と平行な平面を、結晶性シリコン領域203aとウィスカー状の結晶性シリコン領域203bとの界面とする。 The active material layer 203 includes a crystalline silicon region 203a and a whisker-like crystalline silicon region 203b formed over the region. Note that the interface between the crystalline silicon region 203a and the whisker-like crystalline silicon region 203b is not clear. Therefore, the crystalline silicon region 203a passes through the bottom of the deepest valley among the plurality of protrusions formed between the plurality of protrusions of the whisker-like crystalline silicon region 203b and is parallel to the surface of the current collector. And a whisker-like crystalline silicon region 203b.

結晶性シリコン領域203aは、集電体201を覆うように設けられる。また、ウィスカー状の結晶性シリコン領域203bは、結晶性シリコン領域203aの不特定領域から不特定方向に向けて設けられた複数の突起を有する。 The crystalline silicon region 203 a is provided so as to cover the current collector 201. In addition, the whisker-like crystalline silicon region 203b includes a plurality of protrusions provided in an unspecified direction from an unspecified region of the crystalline silicon region 203a.

なお、ウィスカー状の結晶性シリコン領域203bが有する複数の突起は、円柱状、角柱状等の柱状でもよいし、円錐状または角錐状の針状でもよい。突起は、頂部が湾曲していてもよい。複数の突起は、柱状の突起と針状の突起とが混在していてもよい。また、突起は表面に凹凸を有していてもよい。表面に凹凸を有することにより、活物質層の表面積を増大させることができる。 Note that the plurality of protrusions included in the whisker-like crystalline silicon region 203b may have a columnar shape such as a columnar shape or a prismatic shape, or may have a needle shape such as a cone shape or a pyramid shape. The protrusion may be curved at the top. The plurality of protrusions may be a mixture of columnar protrusions and needle-like protrusions. Further, the protrusions may have irregularities on the surface. By having irregularities on the surface, the surface area of the active material layer can be increased.

本実施の形態に示す蓄電装置の電極は、活物質層203として機能する結晶性シリコン層がウィスカー状の結晶性シリコン領域203bを有するため、表面積が増大し、高電流密度での蓄電装置の放電容量又は充電容量を高めることができる。 In the electrode of the power storage device described in this embodiment, the crystalline silicon layer functioning as the active material layer 203 includes the whisker-like crystalline silicon region 203b; thus, the surface area is increased and the power storage device is discharged at high current density. Capacity or charge capacity can be increased.

次に、図4(B)に示すように、活物質層203上に、ニオブを含む層209を形成する。ニオブを含む層209は、実施の形態1におけるニオブを含む層109と同様に形成することができる。 Next, as illustrated in FIG. 4B, a layer 209 containing niobium is formed over the active material layer 203. The layer 209 containing niobium can be formed in a manner similar to that of the layer 109 containing niobium in Embodiment 1.

以上の工程により、蓄電装置の電極を形成することができる。 Through the above steps, an electrode of the power storage device can be formed.

(実施の形態3)
本実施の形態では、本発明の一態様である蓄電装置の電極およびその作製方法について、以下に説明する。
(Embodiment 3)
In this embodiment, an electrode of a power storage device that is one embodiment of the present invention and a manufacturing method thereof will be described below.

まず、活物質、導電助剤、バインダおよび溶媒を混ぜてスラリーを形成する。スラリーの調製は、バインダを含ませた溶媒に導電助剤を分散させ、そこに活物質を混ぜる。このとき分散性向上のために、溶媒の量を抑え固練りを行うことが好ましい。その後、溶媒を追加し、スラリーを作製する。活物質、導電助剤、バインダおよび溶媒の割合は適宜調整することができるが、導電助剤とバインダの比率が高いほうが、活物質量当たりの電池性能を上げることができる。 First, an active material, a conductive additive, a binder and a solvent are mixed to form a slurry. In the preparation of the slurry, the conductive assistant is dispersed in a solvent containing a binder, and the active material is mixed there. At this time, in order to improve dispersibility, it is preferable that the amount of the solvent is suppressed and kneading is performed. Then, a solvent is added and a slurry is produced. The ratios of the active material, the conductive auxiliary agent, the binder and the solvent can be adjusted as appropriate. However, the higher the ratio of the conductive auxiliary agent and the binder, the higher the battery performance per active material amount.

活物質は、リチウムと合金化する材料が好ましく、例えばシリコン、スズ、アルミニウムまたはゲルマニウムを含む材料を用いることができる。本実施の形態では、粒状のシリコンを用いる。なお、活物質である粒状シリコンの粒径は小さいほうが容量、サイクル特性ともに良好であり、粒径は100nm以下が好ましい。 The active material is preferably a material alloyed with lithium, and for example, a material containing silicon, tin, aluminum, or germanium can be used. In this embodiment, granular silicon is used. Note that the smaller the particle size of the granular silicon as the active material, the better the capacity and cycle characteristics, and the particle size is preferably 100 nm or less.

導電助剤は、その材料自身が電子伝導体であり、電池装置内で他の物質と化学変化を起こさないものであればよい。例えば、黒鉛、炭素繊維、カーボンブラック、アセチレンブラック、ケッチェンブラック、VGCF(商標登録)などの炭素系材料、銅、ニッケル、アルミニウムもしくは銀など金属材料またはこれらの混合物の粉末や繊維などがそれに該当する。導電助剤とは、活物質間の導電性を助ける物質であり、離れている活物質の間に充填され、活物質同士の導通をとる材料である。 The conductive auxiliary agent is not limited as long as the material itself is an electronic conductor and does not cause a chemical change with other substances in the battery device. For example, carbon materials such as graphite, carbon fiber, carbon black, acetylene black, ketjen black, VGCF (registered trademark), metal materials such as copper, nickel, aluminum or silver, or powders and fibers of these mixtures are applicable. To do. The conductive assistant is a substance that helps conductivity between the active materials, and is a material that is filled between the active materials that are separated from each other to establish conduction between the active materials.

バインダとしては、澱粉、ポリイミド、ポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、再生セルロース、ジアセチルセルロース、ポリビニルクロリド、ポリビニルピロリドン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン、EPDM(Ethylene Propylene Diene Monomer)、スルホン化EPDM、SBR(Styrene Butadiene Rubber)、ブタジエンゴム、フッ素ゴムもしくはポリエチレンオキシドなどの多糖類、熱可塑性樹脂またはゴム弾性を有するポリマーなどがある。 Examples of the binder include starch, polyimide, polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, regenerated cellulose, diacetyl cellulose, polyvinyl chloride, polyvinyl pyrrolidone, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, and EPDM (Ethylene Propylene Diene Monomer). , Sulfonated EPDM, SBR (Styrene Butadiene Rubber), butadiene rubber, fluororubber, polyethylene oxide and other polysaccharides, thermoplastic resin or rubber elastic polymer.

溶媒としては、水、Nメチル−2ピロリドンまたは乳酸エステルなどがある。 Examples of the solvent include water, N-methyl-2-pyrrolidone, and lactic acid ester.

次に、上記作製したスラリーを、集電体上に塗布し、ホットプレートまたはオーブンなどを用いて、乾燥させる。乾燥は、SBR等の水系バインダを用いる場合は、50℃程度で行うことができる。また、ポリフッ化ビニリデン、ポリイミド等の有機系バインダを用いる場合は、120℃程度で乾燥させることが好ましい。その後、所望の形状に打ち抜きを行い、本乾燥を行う。本乾燥は170℃で10時間程度行うことが好ましい。 Next, the prepared slurry is applied onto a current collector and dried using a hot plate or an oven. Drying can be performed at about 50 ° C. when an aqueous binder such as SBR is used. Moreover, when using organic binders, such as a polyvinylidene fluoride and a polyimide, it is preferable to make it dry at about 120 degreeC. Then, it punches into a desired shape and performs this drying. The main drying is preferably performed at 170 ° C. for about 10 hours.

該集電体は、例えば、銅箔、チタン箔、ステンレス箔などを用いることができる。また、箔状、板状、網状等の形状を適宜用いることができる。 As the current collector, for example, a copper foil, a titanium foil, a stainless steel foil, or the like can be used. Moreover, shapes, such as foil shape, plate shape, and net shape, can be used suitably.

以上の工程によって作製した塗布電極上に、ニオブを含む層を形成する。ニオブを含む層とは、例えば蒸着法により形成することができ、さらに酸化ニオブまたは窒化ニオブによって形成されることが好ましい。 A layer containing niobium is formed on the coated electrode manufactured by the above steps. The layer containing niobium can be formed by vapor deposition, for example, and is preferably formed by niobium oxide or niobium nitride.

以上の工程により、蓄電装置の電極を形成することができる。 Through the above steps, an electrode of the power storage device can be formed.

(実施の形態4)
本実施の形態では、蓄電装置の構造について、図5を用いて説明する。
(Embodiment 4)
In this embodiment, the structure of the power storage device will be described with reference to FIGS.

はじめに、蓄電装置として、二次電池の構造について、以下に説明する。ここでは、二次電池の代表例であるリチウムイオン電池の構造について、説明する。 First, a structure of a secondary battery as a power storage device will be described below. Here, the structure of a lithium ion battery, which is a typical example of a secondary battery, will be described.

図5(A)は、蓄電装置151の平面図であり、図5(A)の一点鎖線A−Bの断面図を図5(B)に示す。本実施の形態では、蓄電装置151として、パウチされた薄型蓄電装置を示す。 FIG. 5A is a plan view of the power storage device 151, and FIG. 5B is a cross-sectional view taken along dashed-dotted line AB in FIG. In this embodiment mode, a pouched thin power storage device is shown as the power storage device 151.

図5(A)に示す蓄電装置151は、外装部材153の内部に蓄電セル155を有する。また、蓄電セル155に接続する端子部157、159を有する。外装部材153は、ラミネートフィルム、高分子フィルム、金属フィルム、金属ケース、プラスチックケース等を用いることができる。 A power storage device 151 illustrated in FIG. 5A includes a power storage cell 155 inside an exterior member 153. In addition, terminal portions 157 and 159 connected to the storage cell 155 are provided. As the exterior member 153, a laminate film, a polymer film, a metal film, a metal case, a plastic case, or the like can be used.

図5(B)に示すように、蓄電セル155は、負極163と、正極165と、負極163および正極165の間に設けられるセパレータ167と、電解質169とで構成される。 As shown in FIG. 5B, the power storage cell 155 includes a negative electrode 163, a positive electrode 165, a separator 167 provided between the negative electrode 163 and the positive electrode 165, and an electrolyte 169.

負極163は、負極集電体171および負極活物質層173で構成される。また、負極活物質層173は、負極集電体171の一方または両方の面に形成される。 The negative electrode 163 includes a negative electrode current collector 171 and a negative electrode active material layer 173. The negative electrode active material layer 173 is formed on one or both surfaces of the negative electrode current collector 171.

正極165は、正極集電体175および正極活物質層177で構成される。また、正極活物質層177は、正極集電体175の一方または両方の面に形成される。 The positive electrode 165 includes a positive electrode current collector 175 and a positive electrode active material layer 177. The positive electrode active material layer 177 is formed on one or both surfaces of the positive electrode current collector 175.

また、負極集電体171は、端子部159と接続する。正極集電体175は、端子部157と接続する。また、端子部157、159は、それぞれ一部が外装部材153の外側に導出されている。 Further, the negative electrode current collector 171 is connected to the terminal portion 159. The positive electrode current collector 175 is connected to the terminal portion 157. Further, a part of each of the terminal portions 157 and 159 is led out of the exterior member 153.

なお、本実施の形態では、蓄電装置151として、パウチされた薄型蓄電装置を示したが、ボタン型蓄電装置、円筒型蓄電装置、角型蓄電装置等様々な形状の蓄電装置を用いることができる。また、本実施の形態では、正極、負極、およびセパレータが積層された構造を示したが、正極、負極、およびセパレータが捲回された構造であってもよい。 Note that in this embodiment, a thin pouched power storage device is shown as the power storage device 151; however, various shapes of power storage devices such as a button power storage device, a cylindrical power storage device, and a rectangular power storage device can be used. . Further, although a structure in which the positive electrode, the negative electrode, and the separator are stacked is shown in this embodiment mode, a structure in which the positive electrode, the negative electrode, and the separator are wound may be used.

負極集電体171としては、実施の形態1に示す集電体101を用いることができる。 As the negative electrode current collector 171, the current collector 101 described in Embodiment 1 can be used.

負極活物質層173としては、実施の形態1に示す活物質層103と同様に、リンを添加したアモルファスシリコンを用いることができる。なお、シリコンにリチウムをプリドープしてもよい。また、LPCVD装置において、負極集電体171を枠状のサセプターで保持しながらシリコンにより形成される活物質層103を形成することで、負極集電体171の両面に同時に活物質層103を形成することが可能であるため、工程数を削減することができる。 As the negative electrode active material layer 173, similarly to the active material layer 103 described in Embodiment 1, amorphous silicon to which phosphorus is added can be used. Note that silicon may be predoped with lithium. In the LPCVD apparatus, the active material layer 103 formed of silicon is formed while holding the negative electrode current collector 171 with a frame-shaped susceptor, so that the active material layer 103 is simultaneously formed on both surfaces of the negative electrode current collector 171. Therefore, the number of steps can be reduced.

さらに、実施の形態1と同様に、負極活物質層173上に、ニオブを含む層179を形成する。ニオブを含む層179は、酸化ニオブまたは窒化ニオブにより形成することができる。 Further, as in Embodiment 1, a layer 179 containing niobium is formed over the negative electrode active material layer 173. The layer 179 containing niobium can be formed using niobium oxide or niobium nitride.

正極集電体175としては、アルミニウム、ステンレス等を用いる。正極集電体175は、箔状、板状、網状、膜状等の形状を適宜用いることができる。 As the positive electrode current collector 175, aluminum, stainless steel, or the like is used. The positive electrode current collector 175 can have a foil shape, a plate shape, a net shape, a film shape, or the like as appropriate.

正極活物質層177としては、電荷の担い手であるイオンを吸蔵及び放出する材料を用いることができる。例えば、LiFeO、LiCoO、LiNiO、LiMn、LiFePO、LiCoPO、LiNiPO、LiMnPO、V、Cr、MnO、その他のリチウム化合物を材料として用いることができる。なお、キャリアイオンが、リチウム以外のアルカリ金属イオンまたはアルカリ土類金属イオンの場合、正極活物質層177として、上記リチウム化合物においてリチウムの代わりに、アルカリ金属(例えば、ナトリウムやカリウム等)、またはアルカリ土類金属(例えばカルシウム、ストロンチウム、バリウム等)を用いることもできる。 The positive electrode active material layer 177 can be formed using a material that occludes and releases ions that are carriers of electric charges. For example, LiFeO 2 , LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFePO 4 , LiCoPO 4 , LiNiPO 4 , LiMn 2 PO 4 , V 2 O 5 , Cr 2 O 5 , MnO 2 , and other lithium compounds are used as materials. Can be used. Note that in the case where the carrier ions are alkali metal ions or alkaline earth metal ions other than lithium, as the positive electrode active material layer 177, an alkali metal (for example, sodium or potassium) or an alkali instead of lithium in the lithium compound is used. An earth metal (eg, calcium, strontium, barium, etc.) can also be used.

電解質169の溶質は、キャリアイオンであるリチウムイオンを移送可能で、且つリチウムイオンが安定に存在する材料を用いる。電解質の溶質の代表例としては、LiClO、LiAsF、LiBF、LiPF、Li(CSON等のリチウム塩がある。なお、キャリアイオンが、リチウム以外のアルカリ金属イオンまたはアルカリ土類金属イオンの場合、電解質169の溶質として、ナトリウム塩、カリウム塩等のアルカリ金属塩、カルシウム塩、ストロンチウム塩、バリウム塩等のアルカリ土類金属塩、ベリリウム塩、またはマグネシウム塩等を適宜用いることができる。 The solute of the electrolyte 169 is made of a material that can transport lithium ions that are carrier ions and stably exist. Typical examples of the electrolyte solute include lithium salts such as LiClO 4 , LiAsF 6 , LiBF 4 , LiPF 6 , and Li (C 2 F 5 SO 2 ) 2 N. When the carrier ion is an alkali metal ion or alkaline earth metal ion other than lithium, an alkaline earth salt such as a sodium salt or potassium salt, a calcium salt, a strontium salt, or a barium salt is used as the solute of the electrolyte 169. A metal salt, beryllium salt, magnesium salt, or the like can be used as appropriate.

また、電解質169の溶媒としては、リチウムイオン(または他のキャリアイオン)の移送が可能な材料を用いる。電解質169の溶媒としては、非プロトン性有機溶媒が好ましい。非プロトン性有機溶媒の代表例としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γーブチロラクトン、アセトニトリル、ジメトキシエタン、テトラヒドロフラン等があり、これらの一つまたは複数を用いることができる。また、電解質169の溶媒としてゲル化される高分子材料を用いることで、漏液性を含めた安全性が高まる。また、蓄電装置151の薄型化および軽量化が可能である。ゲル化される高分子材料の代表例としては、シリコンゲル、アクリルゲル、アクリロニトリルゲル、ポリエチレンオキサイド、ポリプロピレンオキサイド、フッ素系ポリマー等がある。 As a solvent for the electrolyte 169, a material that can transfer lithium ions (or other carrier ions) is used. The solvent for the electrolyte 169 is preferably an aprotic organic solvent. Typical examples of the aprotic organic solvent include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, acetonitrile, dimethoxyethane, tetrahydrofuran and the like, and one or more of these can be used. In addition, the use of a polymer material that is gelled as a solvent for the electrolyte 169 increases safety including liquid leakage. Further, the power storage device 151 can be reduced in thickness and weight. Typical examples of the polymer material to be gelated include silicon gel, acrylic gel, acrylonitrile gel, polyethylene oxide, polypropylene oxide, and fluorine-based polymer.

また、電解質169として、LiPO等の固体電解質を用いることができる。さらに、電解質169の中に、ニオブを含んでいてもよい。また、ビニレンカーボネートなどを含んでいても良い。 Further, a solid electrolyte such as Li 3 PO 4 can be used as the electrolyte 169. Further, niobium may be included in the electrolyte 169. Moreover, vinylene carbonate etc. may be included.

セパレータ167は、絶縁性の多孔体を用いる。セパレータ167の代表例としては、セルロース(紙)、ポリエチレン、ポリプロピレン、硝子繊維等がある。さらにこれら材料の単層または積層させて、用いることができる。 The separator 167 uses an insulating porous body. Typical examples of the separator 167 include cellulose (paper), polyethylene, polypropylene, glass fiber, and the like. Further, these materials can be used in a single layer or laminated.

リチウムイオン電池は、メモリー効果が小さく、エネルギー密度が高く、放電容量が大きい。また、出力電圧が高い。これらのため、小型化および軽量化が可能である。また、充放電の繰り返しによる劣化が少なく、長期間の使用が可能であり、コスト削減が可能である。 Lithium ion batteries have a small memory effect, a high energy density, and a large discharge capacity. Also, the output voltage is high. For these reasons, it is possible to reduce the size and weight. In addition, there is little deterioration due to repeated charging and discharging, long-term use is possible, and cost reduction is possible.

次に、蓄電装置として、キャパシタについて、説明する。キャパシタの代表例としては、電気二重層キャパシタ、リチウムイオンキャパシタ等がある。 Next, a capacitor will be described as the power storage device. Typical examples of the capacitor include an electric double layer capacitor and a lithium ion capacitor.

キャパシタの場合は、図5(B)に示す二次電池の正極活物質層177として、代わりに、リチウムイオン(または他のキャリアイオン)およびアニオンの少なくとも一つを可逆的に吸蔵できる材料を用いればよい。正極活物質層177の代表例としては、活性炭、導電性高分子、ポリアセン有機半導体(PAS)がある。 In the case of a capacitor, a material capable of reversibly occluding at least one of lithium ions (or other carrier ions) and anions is used as the positive electrode active material layer 177 of the secondary battery illustrated in FIG. That's fine. Typical examples of the positive electrode active material layer 177 include activated carbon, a conductive polymer, and a polyacene organic semiconductor (PAS).

リチウムイオンキャパシタは、充放電の効率が高く、急速充放電が可能であり、繰り返し利用による寿命も長い。 Lithium ion capacitors have high charge / discharge efficiency, can be rapidly charged / discharged, and have a long life due to repeated use.

負極163に実施の形態1に示す負極を用いることで、放電容量又は充電容量が高く、さらにサイクル特性を向上させた蓄電装置を作製することができる。 When the negative electrode described in Embodiment 1 is used for the negative electrode 163, a power storage device with high discharge capacity or charge capacity and further improved cycle characteristics can be manufactured.

また、蓄電装置の一形態である空気電池の負極に、実施の形態1に示す集電体および活物質層を用いることで、放電容量又は充電容量が高く、さらにサイクル特性を向上させた蓄電装置を作製することができる。 Further, by using the current collector and the active material layer described in Embodiment 1 for the negative electrode of an air battery which is one form of the power storage device, the power storage device has high discharge capacity or charge capacity and further improved cycle characteristics. Can be produced.

以上のように、本発明の一態様では、集電体層、活物質層およびニオブを含む層などの多層構造を用いることができ、それによって集電体層、活物質層およびニオブを含む層における、それぞれの層を構成する物質同士が結合することによって構造を強固なものにすることができる。そのため、充放電に伴う活物質層の体積変化による構造の破壊を生じにくい。その結果、充放電サイクルを経た場合でも、上記活物質層の破壊が抑制されるため、電池内部の抵抗上昇および、容量減少の発生を抑制することができる。 As described above, in one embodiment of the present invention, a multilayer structure such as a current collector layer, an active material layer, and a layer containing niobium can be used, whereby the current collector layer, the active material layer, and the layer containing niobium are used. The materials constituting each layer can be bonded to each other to make the structure strong. For this reason, it is difficult for the structure to be destroyed due to the volume change of the active material layer accompanying charge / discharge. As a result, even when a charge / discharge cycle is performed, the active material layer is prevented from being destroyed, so that an increase in resistance inside the battery and a decrease in capacity can be suppressed.

(実施の形態5)
本実施の形態では、実施の形態4で説明した蓄電装置の応用形態について図6を用いて説明する。
(Embodiment 5)
In this embodiment, application modes of the power storage device described in Embodiment 4 will be described with reference to FIGS.

実施の形態4で説明した蓄電装置は、デジタルカメラやビデオカメラ等のカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置等の電子機器に用いることができる。また、電気自動車、ハイブリッド自動車、鉄道用電気車両、作業車、カート、電動車椅子等の電気推進車両に用いることができる。ここでは、電気推進車両の例を説明する。 The power storage device described in Embodiment 4 includes a camera such as a digital camera or a video camera, a digital photo frame, a mobile phone (also referred to as a mobile phone or a mobile phone device), a portable game machine, a portable information terminal, a sound reproduction device, or the like. It can be used for electronic equipment. Further, it can be used for electric propulsion vehicles such as electric vehicles, hybrid vehicles, railway electric vehicles, work vehicles, carts, and electric wheelchairs. Here, an example of an electric propulsion vehicle will be described.

図6(A)に、電気推進車両の一つである四輪の自動車300の構成を示す。自動車300は、電気自動車またはハイブリッド自動車である。自動車300は、その底部に蓄電装置302が設けられている例を示している。自動車300における蓄電装置302の位置を明確にするために、図6(B)に、輪郭だけ示した自動車300と、自動車300の底部に設けられた蓄電装置302とを示す。実施の形態4で説明した蓄電装置を、蓄電装置302に用いることができる。蓄電装置302は、プラグイン技術や無線給電システムによる外部からの電力供給により充電をすることができる。 FIG. 6A shows a configuration of a four-wheeled automobile 300 that is one of electric propulsion vehicles. The car 300 is an electric car or a hybrid car. An automobile 300 shows an example in which a power storage device 302 is provided at the bottom. In order to clarify the position of the power storage device 302 in the car 300, FIG. 6B shows the car 300 in which only the outline is shown, and the power storage device 302 provided at the bottom of the car 300. The power storage device described in Embodiment 4 can be used for the power storage device 302. The power storage device 302 can be charged by external power supply using a plug-in technology or a wireless power feeding system.

図6(C)に、電気推進車両の一つであるモーターボート1301の構成を示す。図6(C)では、モーターボート1301が、蓄電装置1302を、その船体の側部に備えている場合を例示している。実施の形態4で説明した蓄電装置を、蓄電装置1302に用いることができる。蓄電装置1302は、プラグイン技術や無線給電システムによる外部からの電力供給により充電をすることができる。モーターボート1301の充電(すなわち、蓄電装置1302の充電)を行うための給電装置は、例えば、港湾において船舶を係留させるための係留施設に設けることができる。 FIG. 6C illustrates a configuration of a motor boat 1301 that is one of the electric propulsion vehicles. FIG. 6C illustrates the case where the motor boat 1301 includes the power storage device 1302 on the side of the hull. The power storage device described in Embodiment 4 can be used for the power storage device 1302. The power storage device 1302 can be charged by external power supply using plug-in technology or a wireless power feeding system. A power supply device for charging the motor boat 1301 (that is, charging the power storage device 1302) can be provided, for example, in a mooring facility for mooring a ship in a harbor.

図6(D)に、電気推進車両の一つである電動車椅子1311の構成を示す。図6(D)では、電動車椅子1311が、蓄電装置1312を、その底部に備えている場合を例示している。実施の形態4で説明した蓄電装置を、蓄電装置1312に用いることができる。蓄電装置1312は、プラグイン技術や無線給電システムによる外部からの電力供給により充電をすることができる。 FIG. 6D illustrates a structure of an electric wheelchair 1311 that is one of the electric propulsion vehicles. FIG. 6D illustrates the case where the electric wheelchair 1311 includes the power storage device 1312 at the bottom thereof. The power storage device described in Embodiment 4 can be used for the power storage device 1312. The power storage device 1312 can be charged by external power supply using plug-in technology or a wireless power feeding system.

(実施の形態6)
本実施の形態では、本発明の一態様に係る蓄電装置の一例である二次電池を、無線給電システム(以下、RF給電システムと呼ぶ。)に用いた場合の一例を、図7および図8のブロック図を用いて説明する。なお、各ブロック図では、受電装置および給電装置内の構成要素を機能ごとに分類し、互いに独立したブロックとして示しているが、実際の構成要素は機能ごとに完全に切り分けることが困難であり、一つの構成要素が複数の機能に係わることもあり得る。
(Embodiment 6)
In this embodiment, an example in which a secondary battery, which is an example of a power storage device according to one embodiment of the present invention, is used in a wireless power feeding system (hereinafter referred to as an RF power feeding system) is described with reference to FIGS. This will be described with reference to the block diagram. In each block diagram, the components in the power receiving device and the power feeding device are classified by function and shown as blocks independent of each other, but the actual components are difficult to completely separate for each function, One component may be related to a plurality of functions.

はじめに、図7を用いてRF給電システムについて説明する。 First, the RF power feeding system will be described with reference to FIG.

受電装置600は、給電装置700から供給された電力で駆動する電子機器または電気推進車両であるが、この他電力で駆動する装置に適宜適用することができる。電子機器の代表的としては、デジタルカメラやビデオカメラ等のカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、表示装置、コンピュータ等がある。また、電気推進車両の代表例としては、電気自動車、ハイブリッド自動車、鉄道用電気車両、作業車、カート、電動車椅子等がある。また、給電装置700は、受電装置600に電力を供給する機能を有する。 The power receiving device 600 is an electronic device or an electric propulsion vehicle that is driven by power supplied from the power feeding device 700, but can be appropriately applied to other devices that are driven by power. Representative examples of electronic devices include cameras such as digital cameras and video cameras, digital photo frames, mobile phones (also referred to as mobile phones and mobile phone devices), portable game machines, portable information terminals, sound playback devices, display devices, There are computers. Typical examples of the electric propulsion vehicle include an electric vehicle, a hybrid vehicle, a railway electric vehicle, a work vehicle, a cart, and an electric wheelchair. In addition, the power feeding device 700 has a function of supplying power to the power receiving device 600.

図7において、受電装置600は、受電装置部601と、電源負荷部610とを有する。受電装置部601は、受電装置用アンテナ回路602と、信号処理回路603と、二次電池604とを少なくとも有する。また、給電装置700は、給電装置用アンテナ回路701と、信号処理回路702とを少なくとも有する。 In FIG. 7, the power receiving device 600 includes a power receiving device unit 601 and a power load unit 610. The power receiving device portion 601 includes at least a power receiving device antenna circuit 602, a signal processing circuit 603, and a secondary battery 604. The power feeding device 700 includes at least a power feeding device antenna circuit 701 and a signal processing circuit 702.

受電装置用アンテナ回路602は、給電装置用アンテナ回路701が発信する信号を受け取る、あるいは、給電装置用アンテナ回路701に信号を発信する役割を有する。信号処理回路603は、受電装置用アンテナ回路602が受信した信号を処理し、二次電池604の充電、二次電池604から電源負荷部610への電力の供給を制御する。また、信号処理回路603は、受電装置用アンテナ回路602の動作を制御する。すなわち、受電装置用アンテナ回路602から発信する信号の強度、周波数などを制御することができる。電源負荷部610は、二次電池604から電力を受け取り、受電装置600を駆動する駆動部である。電源負荷部610の代表例としては、モータ、駆動回路等があるが、その他の電力を受け取って受電装置を駆動する装置を適宜用いることができる。また、給電装置用アンテナ回路701は、受電装置用アンテナ回路602に信号を送る、あるいは、受電装置用アンテナ回路602からの信号を受け取る役割を有する。信号処理回路702は、給電装置用アンテナ回路701が受信した信号を処理する。また、信号処理回路702は、給電装置用アンテナ回路701の動作を制御する。すなわち、給電装置用アンテナ回路701から発信する信号の強度、周波数などを制御することができる。 The power receiving device antenna circuit 602 has a function of receiving a signal transmitted from the power feeding device antenna circuit 701 or transmitting a signal to the power feeding device antenna circuit 701. The signal processing circuit 603 processes a signal received by the power receiving device antenna circuit 602 and controls charging of the secondary battery 604 and supply of power from the secondary battery 604 to the power load portion 610. The signal processing circuit 603 controls the operation of the power receiving device antenna circuit 602. That is, the intensity, frequency, and the like of a signal transmitted from the power receiving device antenna circuit 602 can be controlled. The power load unit 610 is a drive unit that receives power from the secondary battery 604 and drives the power receiving device 600. Typical examples of the power load unit 610 include a motor, a drive circuit, and the like, but a device that receives other power and drives the power receiving device can be used as appropriate. The power feeding device antenna circuit 701 has a function of transmitting a signal to the power receiving device antenna circuit 602 or receiving a signal from the power receiving device antenna circuit 602. The signal processing circuit 702 processes a signal received by the power feeding device antenna circuit 701. The signal processing circuit 702 controls the operation of the power feeding device antenna circuit 701. That is, the intensity, frequency, and the like of a signal transmitted from the power feeding device antenna circuit 701 can be controlled.

本発明の一態様に係る二次電池は、図7で説明したRF給電システムにおける受電装置600が有する二次電池604として利用される。 The secondary battery according to one embodiment of the present invention is used as the secondary battery 604 included in the power receiving device 600 in the RF power feeding system described with reference to FIG.

RF給電システムに本発明の一態様に係る二次電池を利用することで、従来の二次電池に比べて放電容量又は充電容量(蓄電量ともいう)を増やすことができる。よって、無線給電の時間間隔を延ばすことができる(何度も給電する手間を省くことができる)。 By using the secondary battery according to one embodiment of the present invention for the RF power feeding system, a discharge capacity or a charge capacity (also referred to as an amount of stored electricity) can be increased as compared with a conventional secondary battery. Therefore, the time interval of wireless power feeding can be extended (the trouble of repeatedly feeding power can be saved).

また、RF給電システムに本発明の一態様に係る二次電池を利用することで、電源負荷部610を駆動することができる放電容量又は充電容量が従来と同じであれば、受電装置600の小型化および軽量化が可能である。従って、トータルコストを減らすことができる。 Further, by using the secondary battery according to one embodiment of the present invention for the RF power feeding system, if the discharge capacity or the charge capacity capable of driving the power load portion 610 is the same as the conventional one, the power receiving device 600 can be reduced in size. And weight reduction is possible. Therefore, the total cost can be reduced.

次に、RF給電システムの他の例について図8を用いて説明する。 Next, another example of the RF power feeding system will be described with reference to FIG.

図8において、受電装置600は、受電装置部601と、電源負荷部610とを有する。受電装置部601は、受電装置用アンテナ回路602と、信号処理回路603と、二次電池604と、整流回路605と、変調回路606と、電源回路607とを、少なくとも有する。また、給電装置700は、給電装置用アンテナ回路701と、信号処理回路702と、整流回路703と、変調回路704と、復調回路705と、発振回路706とを、少なくとも有する。 In FIG. 8, the power receiving device 600 includes a power receiving device unit 601 and a power load unit 610. The power receiving device portion 601 includes at least a power receiving device antenna circuit 602, a signal processing circuit 603, a secondary battery 604, a rectifier circuit 605, a modulation circuit 606, and a power supply circuit 607. The power feeding device 700 includes at least a power feeding device antenna circuit 701, a signal processing circuit 702, a rectifier circuit 703, a modulation circuit 704, a demodulation circuit 705, and an oscillation circuit 706.

受電装置用アンテナ回路602は、給電装置用アンテナ回路701が発信する信号を受け取る、あるいは、給電装置用アンテナ回路701に信号を発信する役割を有する。給電装置用アンテナ回路701が発信する信号を受け取る場合、整流回路605は受電装置用アンテナ回路602が受信した信号から直流電圧を生成する役割を有する。信号処理回路603は受電装置用アンテナ回路602が受信した信号を処理し、二次電池604の充電、二次電池604から電源回路607への電力の供給を制御する役割を有する。電源回路607は、二次電池604が蓄電している電圧を電源負荷部610に必要な電圧に変換する役割を有する。変調回路606は受電装置600から給電装置700へ何らかの応答を送信する場合に使用される。 The power receiving device antenna circuit 602 has a function of receiving a signal transmitted from the power feeding device antenna circuit 701 or transmitting a signal to the power feeding device antenna circuit 701. When a signal transmitted from the power feeding device antenna circuit 701 is received, the rectifier circuit 605 has a role of generating a DC voltage from the signal received by the power receiving device antenna circuit 602. The signal processing circuit 603 has a function of processing a signal received by the power receiving device antenna circuit 602 and controlling charging of the secondary battery 604 and supply of power from the secondary battery 604 to the power supply circuit 607. The power supply circuit 607 has a role of converting a voltage stored in the secondary battery 604 into a voltage necessary for the power load portion 610. The modulation circuit 606 is used when a certain response is transmitted from the power receiving apparatus 600 to the power feeding apparatus 700.

電源回路607を有することで、電源負荷部610に供給する電力を制御することができる。このため、電源負荷部610に過電圧が印加されることを低減することが可能であり、受電装置600の劣化や破壊を低減することができる。 By including the power supply circuit 607, the power supplied to the power load portion 610 can be controlled. For this reason, it is possible to reduce that an overvoltage is applied to the power load part 610, and deterioration and destruction of the power receiving apparatus 600 can be reduced.

また、変調回路606を有することで、受電装置600から給電装置700へ信号を送信することが可能である。このため、受電装置600の充電量を判断し、一定量の充電が行われた場合に、受電装置600から給電装置700に信号を送信し、給電装置700から受電装置600への給電を停止させることができる。この結果、二次電池604の充電量を100%としないことで、二次電池604の最大充電回数を増加させることが可能である。 In addition, by including the modulation circuit 606, a signal can be transmitted from the power receiving device 600 to the power feeding device 700. Therefore, the charging amount of the power receiving device 600 is determined, and when a certain amount of charging is performed, a signal is transmitted from the power receiving device 600 to the power feeding device 700, and power feeding from the power feeding device 700 to the power receiving device 600 is stopped. be able to. As a result, the maximum charge count of the secondary battery 604 can be increased by not setting the charge amount of the secondary battery 604 to 100%.

また、給電装置用アンテナ回路701は、受電装置用アンテナ回路602に信号を送る、あるいは、受電装置用アンテナ回路602から信号を受け取る役割を有する。受電装置用アンテナ回路602に信号を送る場合、信号処理回路702は、受電装置に送信する信号を生成する回路である。発振回路706は一定の周波数の信号を生成する回路である。変調回路704は、信号処理回路702が生成した信号と発振回路706で生成された一定の周波数の信号に従って、給電装置用アンテナ回路701に電圧を印加する役割を有する。そうすることで、給電装置用アンテナ回路701から信号が出力される。一方、受電装置用アンテナ回路602から信号を受け取る場合、整流回路703は受け取った信号を整流する役割を有する。復調回路705は、整流回路703が整流した信号から受電装置600が給電装置700に送った信号を抽出する。信号処理回路702は復調回路705によって抽出された信号を解析する役割を有する。 The power feeding device antenna circuit 701 has a function of transmitting a signal to the power receiving device antenna circuit 602 or receiving a signal from the power receiving device antenna circuit 602. When a signal is transmitted to the power receiving device antenna circuit 602, the signal processing circuit 702 is a circuit that generates a signal to be transmitted to the power receiving device. The oscillation circuit 706 is a circuit that generates a signal having a constant frequency. The modulation circuit 704 has a role of applying a voltage to the power feeding device antenna circuit 701 in accordance with the signal generated by the signal processing circuit 702 and the signal of a certain frequency generated by the oscillation circuit 706. By doing so, a signal is output from the power feeding device antenna circuit 701. On the other hand, when a signal is received from the power receiving device antenna circuit 602, the rectifier circuit 703 has a role of rectifying the received signal. The demodulation circuit 705 extracts a signal sent from the power receiving device 600 to the power feeding device 700 from the signal rectified by the rectifying circuit 703. The signal processing circuit 702 has a role of analyzing the signal extracted by the demodulation circuit 705.

なお、RF給電を行うことができれば、各回路の間にどんな回路を設けてもよい。例えば、受電装置600が信号を受信し整流回路605で直流電圧を生成したあとに、後段に設けられたDC−DCコンバータやレギュレータといった回路によって、定電圧を生成してもよい。そうすることで、受電装置600内部に過電圧が印加されることを抑制することができる。 Note that any circuit may be provided between the circuits as long as RF power feeding can be performed. For example, after the power receiving apparatus 600 receives a signal and generates a DC voltage by the rectifier circuit 605, the constant voltage may be generated by a circuit such as a DC-DC converter or a regulator provided in a subsequent stage. By doing so, it is possible to suppress application of an overvoltage inside the power receiving device 600.

本発明の一態様に係る二次電池は、図8で説明したRF給電システムにおける受電装置600が有する二次電池604として利用される。 The secondary battery according to one embodiment of the present invention is used as the secondary battery 604 included in the power receiving device 600 in the RF power feeding system described in FIG.

RF給電システムに本発明の一態様に係る二次電池を利用することで、従来の二次電池に比べて放電容量又は充電容量を増やすことができるので、無線給電の時間間隔を延ばすことができる(何度も給電する手間を省くことができる)。 By using the secondary battery according to one embodiment of the present invention for the RF power feeding system, the discharge capacity or the charging capacity can be increased as compared with the conventional secondary battery, so that the time interval of wireless power feeding can be extended. (It can save the trouble of supplying power many times).

また、RF給電システムに本発明の一態様に係る二次電池を利用することで、電源負荷部610を駆動することができる放電容量又は充電容量が従来と同じであれば、受電装置600の小型化および軽量化が可能である。従って、トータルコストを減らすことができる。 Further, by using the secondary battery according to one embodiment of the present invention for the RF power feeding system, if the discharge capacity or the charge capacity capable of driving the power load portion 610 is the same as the conventional one, the power receiving device 600 can be reduced in size. And weight reduction is possible. Therefore, the total cost can be reduced.

なお、RF給電システムに本発明の一態様に係る二次電池を利用し、受電装置用アンテナ回路602と二次電池604を重ねる場合は、二次電池604の充放電による二次電池604の変形と、当該変形に伴うアンテナの形状の変化によって、受電装置用アンテナ回路602のインピーダンスが変化しないようにすることが好ましい。アンテナのインピーダンスが変化してしまうと、十分な電力供給がなされない可能性があるためである。例えば、二次電池604を金属製あるいはセラミックス製の電池パックに装填するようにすればよい。なお、その際、受電装置用アンテナ回路602と電池パックは数十μm以上離れていることが望ましい。 Note that when the secondary battery according to one embodiment of the present invention is used for the RF power feeding system and the antenna circuit 602 for the power receiving device and the secondary battery 604 are stacked, the secondary battery 604 is deformed by charging and discharging of the secondary battery 604 It is preferable that the impedance of the power receiving device antenna circuit 602 is not changed by the change in the shape of the antenna accompanying the deformation. This is because if the impedance of the antenna changes, there is a possibility that sufficient power is not supplied. For example, the secondary battery 604 may be loaded into a metal or ceramic battery pack. At that time, it is desirable that the power receiving device antenna circuit 602 and the battery pack be separated from each other by several tens of μm or more.

また、本実施の形態では、充電用の信号の周波数に特に限定はなく、電力が伝送できる周波数であれば、どの帯域であっても構わない。充電用の信号の周波数は、例えば、135kHzのLF帯でも良いし、13.56MHzのHF帯でも良いし、900MHz〜1GHzのUHF帯でも良いし、2.45GHzのSHF帯でもよい。 In this embodiment, the frequency of the charging signal is not particularly limited, and any band may be used as long as power can be transmitted. The frequency of the charging signal may be, for example, a 135 kHz LF band, a 13.56 MHz HF band, a 900 MHz to 1 GHz UHF band, or a 2.45 GHz SHF band.

また、信号の伝送方式としては電磁界結合方式、電磁誘導方式、電磁共鳴方式、マイクロ波方式など様々な種類があるが、適宜選択すればよい。ただし、雨や泥などの、水分を含んだ異物によるエネルギーの損失を抑えるためには、周波数が低い帯域、具体的には、HF帯である3MHz〜30MHz、MF帯である300kHz〜3MHz、LF帯である30kHz〜300kHz、およびVLF帯である3kHz〜30kHzの周波数を利用した電磁誘導方式や共鳴方式を用いることが望ましい。 There are various signal transmission methods such as an electromagnetic coupling method, an electromagnetic induction method, an electromagnetic resonance method, and a microwave method, which may be selected as appropriate. However, in order to suppress energy loss due to moisture or other foreign matter such as rain or mud, a low frequency band, specifically, a HF band of 3 MHz to 30 MHz, a MF band of 300 kHz to 3 MHz, LF It is desirable to use an electromagnetic induction method or a resonance method using a frequency of 30 kHz to 300 kHz which is a band and a frequency of 3 kHz to 30 kHz which is a VLF band.

本実施の形態は、上記実施の形態と組み合わせて実施することが可能である。 This embodiment can be implemented in combination with the above embodiment.

本実施例では、本発明の一態様である二次電池について説明する。本実施例では、本発明の一態様である二次電池と、比較用の二次電池(以下、比較二次電池という。)と、を作製し、電池特性を比較した。 In this example, a secondary battery which is one embodiment of the present invention will be described. In this example, a secondary battery which is one embodiment of the present invention and a comparative secondary battery (hereinafter referred to as a comparative secondary battery) were manufactured, and the battery characteristics were compared.

<二次電池の電極の作製工程>
まず、二次電池の電極の作製工程を説明する。
<Production process of secondary battery electrode>
First, a process for manufacturing an electrode of a secondary battery will be described.

集電体上に活物質層を形成することにより、二次電池の電極を形成した。 By forming an active material layer on the current collector, a secondary battery electrode was formed.

集電体の材料としては、チタンを用いた。集電体として、厚さ100μmのシート状のチタン箔(チタンシートともいう。)を用いた。 Titanium was used as a material for the current collector. As the current collector, a sheet-shaped titanium foil (also referred to as a titanium sheet) having a thickness of 100 μm was used.

活物質層としては、リンが添加されたアモルファスシリコン層を用いた。 As the active material layer, an amorphous silicon layer to which phosphorus was added was used.

集電体であるチタン箔上にプラズマCVD法により活物質層であるリンが添加されたアモルファスシリコン層を形成した。プラズマCVD法によるリンが添加されたアモルファスシリコン層の形成は、材料ガスとしてシランおよびホスフィンを用い、シランの流量を60sccm、ホスフィンの流量を110sccmとして反応室内に導入し、反応室内の圧力を133Paとし、反応室内の温度を、上部ヒーター設定を400℃、下部ヒーター設定を500℃として調節して、成膜を行った。 An amorphous silicon layer to which phosphorus as an active material layer was added was formed by plasma CVD on a titanium foil as a current collector. The formation of an amorphous silicon layer to which phosphorus is added by plasma CVD is performed using silane and phosphine as material gases, introducing a silane flow rate of 60 sccm and a phosphine flow rate of 110 sccm, and setting the pressure in the reaction chamber to 133 Pa. Then, the temperature in the reaction chamber was adjusted to 400 ° C. for the upper heater setting and 500 ° C. for the lower heater setting to form a film.

上記工程により得られた、リンが添加されたアモルファスシリコン層を二次電池の活物質層として用いた。 The amorphous silicon layer to which phosphorus was added obtained by the above process was used as the active material layer of the secondary battery.

次に、形成した活物質層上に、蒸着法により酸化ニオブ層を形成した。蒸着源には、組成がNbである酸化ニオブを用い、真空中にて蒸着を行った。さらに、酸化ニオブ層の組成について、X線光電子分光法(XPS:X−ray Photoelectron Spectroscopy)を用いて測定した。その結果、形成された酸化ニオブ層は、蒸着源であるNbとほぼ同じ組成で形成されていることが確認された。 Next, a niobium oxide layer was formed on the formed active material layer by an evaporation method. Niobium oxide having a composition of Nb 2 O 5 was used as a vapor deposition source, and vapor deposition was performed in a vacuum. Further, the composition of the niobium oxide layer was measured using X-ray photoelectron spectroscopy (XPS). As a result, it was confirmed that the formed niobium oxide layer was formed with substantially the same composition as Nb 2 O 5 which is the vapor deposition source.

以上の工程により、二次電池の電極を作製した。 Through the above steps, an electrode of a secondary battery was produced.

<二次電池の作製工程>
次に、本実施例の二次電池の作製工程を示す。
<Production process of secondary battery>
Next, a manufacturing process of the secondary battery of this example will be described.

上記のような工程により作製して得られた電極を用いて、二次電池を作製した。ここではコイン型の二次電池を作製した。以下に、コイン型の二次電池の作製方法について、図9を参照して説明する。 A secondary battery was fabricated using the electrode obtained by the above process. Here, a coin-type secondary battery was manufactured. A method for manufacturing a coin-type secondary battery will be described below with reference to FIGS.

図9に示すように、コイン型の二次電池は、電極204、参照電極232、セパレータ210、電解液(図示せず)、筐体206及び筐体244を有する。このほかにはリング状絶縁体220、スペーサー240及びワッシャー242を有する。電極204は、上記工程により作製され、集電体上に、活物質層およびニオブを含む層が設けられたものを用いた。本実施例では、集電体としてチタン箔を用い、活物質層を実施の形態1に示すリンが添加されたアモルファスシリコン層および酸化ニオブ層からなる、積層構造により形成した。参照電極232は、リチウム金属(リチウム箔)を用いた。セパレータ210には、ポリプロピレンを用いた。筐体206、筐体244、スペーサー240及びワッシャー242は、ステンレス製のものを用いた。筐体206及び筐体244は、電極204及び参照電極232を外部と電気的に接続する機能を有している。 As shown in FIG. 9, the coin-type secondary battery includes an electrode 204, a reference electrode 232, a separator 210, an electrolytic solution (not shown), a housing 206, and a housing 244. In addition, a ring-shaped insulator 220, a spacer 240, and a washer 242 are provided. The electrode 204 was manufactured by the above process, and an electrode in which an active material layer and a layer containing niobium were provided over a current collector was used. In this example, titanium foil was used as a current collector, and the active material layer was formed using a laminated structure including the amorphous silicon layer to which phosphorus described in Embodiment 1 was added and a niobium oxide layer. As the reference electrode 232, lithium metal (lithium foil) was used. Polypropylene was used for the separator 210. The housing 206, the housing 244, the spacer 240, and the washer 242 were made of stainless steel. The housing 206 and the housing 244 have a function of electrically connecting the electrode 204 and the reference electrode 232 to the outside.

これら電極204、参照電極232及びセパレータ210を電解液に含浸させた。そして、図9に示すように、筐体206の底を下にして電極204、セパレータ210、リング状絶縁体220、参照電極232、スペーサー240、ワッシャー242、筐体244をこの順で積層し、「コインかしめ機」で筐体206と筐体244と、をかしめてコイン型の二次電池を作製した。 The electrode 204, the reference electrode 232, and the separator 210 were impregnated with an electrolytic solution. Then, as shown in FIG. 9, the electrode 204, the separator 210, the ring insulator 220, the reference electrode 232, the spacer 240, the washer 242, and the housing 244 are laminated in this order with the bottom of the housing 206 facing down. A coin-type secondary battery was manufactured by caulking the housing 206 and the housing 244 with a “coin crimping machine”.

電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合溶媒にLiPFを溶解させたものを用いた。 As the electrolytic solution, a solution obtained by dissolving LiPF 6 in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) was used.

<比較二次電池の電極の作製工程>
次に、比較二次電池の電極の作製工程を説明する。本発明の一態様である二次電池と比較二次電池とは、活物質層の作製工程が異なる。それ以外の構成は共通しているため、基板、集電体等の構成は省略する。
<Production process of comparative secondary battery electrode>
Next, a process for manufacturing an electrode of the comparative secondary battery will be described. The secondary battery which is one embodiment of the present invention and the comparative secondary battery are different in the manufacturing process of the active material layer. Since other configurations are common, configurations of a substrate, a current collector, and the like are omitted.

比較二次電池の活物質層としては、リンが添加されたアモルファスシリコン層を単層構造で用いた。 As an active material layer of the comparative secondary battery, an amorphous silicon layer to which phosphorus was added was used in a single layer structure.

<比較二次電池の作製工程>
次に、比較二次電池の作製工程を示す。
<Production process of comparative secondary battery>
Next, a manufacturing process of the comparative secondary battery will be described.

上記のようにして集電体上に活物質層を形成し、比較二次電池の電極を形成した。得られた電極を用いて比較二次電池を作製した。比較二次電池の作製は、電極形成方法以外は、上記二次電池の作製と同様にして行った。 As described above, an active material layer was formed on the current collector, and an electrode of a comparative secondary battery was formed. A comparative secondary battery was produced using the obtained electrode. The production of the comparative secondary battery was performed in the same manner as the production of the secondary battery except for the electrode forming method.

<二次電池、比較二次電池の特性比較>
上記のようにして作製した二次電池および比較二次電池について、充放電測定機を用いて電池特性の比較を行った。充放電の測定には定電流方式を採用し、初回充電のみ0.05mAで、その後の充電からは0.15mAの電流で充放電し、上限電圧を1.0V、下限電圧を0.03Vとして行った。容量制限を2000(mAh/g)とし、また、測定は室温で行った。その結果を表1および図10に示す。
<Characteristic comparison of secondary battery and comparative secondary battery>
About the secondary battery produced as mentioned above and a comparison secondary battery, the battery characteristic was compared using the charging / discharging measuring machine. The constant current method is adopted for the measurement of charging / discharging, only 0.05 mA is charged for the first time, and charging and discharging is performed with a current of 0.15 mA after the charging, and the upper limit voltage is 1.0 V and the lower limit voltage is 0.03 V. went. The capacity limit was 2000 (mAh / g), and the measurement was performed at room temperature. The results are shown in Table 1 and FIG.

表1は、種々の充放電サイクル数における、リチウム吸蔵量に対するリチウム放出量の割合を表しており、つまり充放電効率の評価を行った結果である。この結果より、活物質層上に酸化ニオブを形成して作製した電極を用いた二次電池は、活物質層上に酸化ニオブを形成せずに作製した電極を用いた比較二次電池と比べて、非常に高い充放電効率であることがわかり、さらに、不可逆容量がほぼ0であることがわかった。なお、二次電池および比較二次電池の活物質層の重さは0.255mgとして放電容量(mAh/g)を算出した。 Table 1 shows the ratio of the lithium release amount to the lithium storage amount in various charge / discharge cycle numbers, that is, the results of the evaluation of the charge / discharge efficiency. From this result, the secondary battery using the electrode formed by forming niobium oxide on the active material layer is compared with the comparative secondary battery using the electrode manufactured without forming niobium oxide on the active material layer. Thus, it was found that the charge / discharge efficiency was very high, and that the irreversible capacity was almost zero. The discharge capacity (mAh / g) was calculated assuming that the weight of the active material layer of the secondary battery and the comparative secondary battery was 0.255 mg.

図10は、充放電サイクルに対するリチウム放出量を示した結果である。この結果より、活物質層上に酸化ニオブを形成して作製した電極を用いた二次電池は、活物質層上に酸化ニオブを形成せずに作製した電極を用いた比較二次電池と比べて、充放電サイクル数が増加しても、リチウム放出容量の低下が見られていないことがわかった。 FIG. 10 shows the result of the lithium release amount with respect to the charge / discharge cycle. From this result, the secondary battery using the electrode formed by forming niobium oxide on the active material layer is compared with the comparative secondary battery using the electrode manufactured without forming niobium oxide on the active material layer. Thus, it was found that even when the number of charge / discharge cycles was increased, no decrease in lithium release capacity was observed.

表1および図10の結果より、活物質層上に酸化ニオブを形成して作製した電極を用いた二次電池は、活物質層上に酸化ニオブを形成せずに作製した電極を用いた比較二次電池と比べて、充放電効率およびサイクル特性が向上していることがわかった。 From the results shown in Table 1 and FIG. 10, the secondary battery using the electrode formed by forming niobium oxide on the active material layer was compared using the electrode manufactured without forming niobium oxide on the active material layer. It was found that the charge / discharge efficiency and cycle characteristics were improved as compared with the secondary battery.

101 集電体
103 活物質層
109 ニオブを含む層
151 蓄電装置
153 外装部材
155 蓄電セル
157 端子部
159 端子部
163 負極
165 正極
167 セパレータ
169 電解質
171 負極集電体
173 負極活物質層
175 正極集電体
177 正極活物質層
179 ニオブを含む層
201 集電体
203 活物質層
203a 結晶性シリコン領域
203b 結晶性シリコン領域
204 電極
206 筐体
209 ニオブを含む層
210 セパレータ
220 リング状絶縁体
232 参照電極
240 スペーサー
242 ワッシャー
244 筐体
300 自動車
302 蓄電装置
600 受電装置
601 受電装置部
602 受電装置用アンテナ回路
603 信号処理回路
604 二次電池
605 整流回路
606 変調回路
607 電源回路
610 電源負荷部
700 給電装置
701 給電装置用アンテナ回路
702 信号処理回路
703 整流回路
704 変調回路
705 復調回路
706 発振回路
1301 モーターボート
1302 蓄電装置
1311 電動車椅子
1312 蓄電装置
DESCRIPTION OF SYMBOLS 101 Current collector 103 Active material layer 109 Niobium containing layer 151 Power storage device 153 Exterior member 155 Power storage cell 157 Terminal portion 159 Terminal portion 163 Negative electrode 165 Positive electrode 167 Separator 169 Electrode 171 Negative electrode current collector 173 Negative electrode active material layer 175 Positive electrode current collector Body 177 Positive electrode active material layer 179 Layer 201 containing niobium Current collector 203 Active material layer 203a Crystalline silicon region 203b Crystalline silicon region 204 Electrode 206 Housing 209 Layer containing niobium 210 Separator 220 Ring insulator 232 Reference electrode 240 Spacer 242 Washer 244 Case 300 Car 302 Power storage device 600 Power receiving device 601 Power receiving device unit 602 Power receiving device antenna circuit 603 Signal processing circuit 604 Secondary battery 605 Rectifier circuit 606 Modulating circuit 607 Power source circuit 610 Power source load unit 700 Collector 701 power feeding device antenna circuit 702 a signal processing circuit 703 rectifying circuit 704 modulation circuit 705 demodulation circuit 706 oscillation circuit 1301 motorboat 1302 power storage device 1311 electric wheelchair 1312 power storage device

Claims (4)

集電体と、
前記集電体上に形成され、且つリチウムと合金化する材料からなる活物質層と、
前記活物質層上に形成され、且つニオブを含む層と、を有する電極を用いることを特徴とする蓄電装置。
A current collector,
An active material layer formed on the current collector and made of a material alloyed with lithium;
A power storage device using an electrode formed on the active material layer and including a layer containing niobium.
請求項1において、前記ニオブを含む層は、酸化ニオブまたは窒化ニオブで形成されることを特徴とする蓄電装置。   2. The power storage device according to claim 1, wherein the layer containing niobium is formed of niobium oxide or niobium nitride. 請求項1または2において、前記リチウムと合金化する材料は、シリコン、スズ、アルミニウムまたはゲルマニウムであることを特徴とする蓄電装置。   3. The power storage device according to claim 1, wherein the material alloyed with lithium is silicon, tin, aluminum, or germanium. 集電体と、
前記集電体上に、リチウムと合金化する材料で形成される活物質層と、
前記活物質層上に形成されるニオブを含む層と、を有する負極と、
前記負極と接して形成される電解質と、
前記電解質を介して、前記負極と対向する正極と、を有することを特徴とする蓄電装置。
A current collector,
An active material layer formed of a material alloyed with lithium on the current collector;
A negative electrode having a layer containing niobium formed on the active material layer,
An electrolyte formed in contact with the negative electrode;
A power storage device comprising: a positive electrode facing the negative electrode with the electrolyte interposed therebetween.
JP2011263396A 2010-12-07 2011-12-01 Power storage device Expired - Fee Related JP5806097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011263396A JP5806097B2 (en) 2010-12-07 2011-12-01 Power storage device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010272903 2010-12-07
JP2010272903 2010-12-07
JP2011263396A JP5806097B2 (en) 2010-12-07 2011-12-01 Power storage device

Publications (2)

Publication Number Publication Date
JP2012138347A true JP2012138347A (en) 2012-07-19
JP5806097B2 JP5806097B2 (en) 2015-11-10

Family

ID=46162544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011263396A Expired - Fee Related JP5806097B2 (en) 2010-12-07 2011-12-01 Power storage device

Country Status (6)

Country Link
US (2) US9362556B2 (en)
JP (1) JP5806097B2 (en)
KR (1) KR101884040B1 (en)
CN (1) CN103238240B (en)
TW (1) TWI521780B (en)
WO (1) WO2012077692A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015118924A (en) * 2013-11-13 2015-06-25 株式会社半導体エネルギー研究所 Negative electrode for power storage device, power storage device, and electrical machine

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103238240B (en) * 2010-12-07 2016-05-18 株式会社半导体能源研究所 Electrical storage device
JP6035013B2 (en) 2011-08-30 2016-11-30 株式会社半導体エネルギー研究所 Electrode fabrication method
JP6204004B2 (en) 2011-08-31 2017-09-27 株式会社半導体エネルギー研究所 Manufacturing method of secondary battery
JP2013054878A (en) 2011-09-02 2013-03-21 Semiconductor Energy Lab Co Ltd Method of manufacturing electrode and power storage device
US9384904B2 (en) 2012-04-06 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device, method for forming the same, and power storage device
JP6216154B2 (en) 2012-06-01 2017-10-18 株式会社半導体エネルギー研究所 Negative electrode for power storage device and power storage device
WO2014069548A1 (en) 2012-11-02 2014-05-08 Semiconductor Energy Laboratory Co., Ltd. Power storage device electrode, method for forming the same, power storage device, and electrical device
WO2014073461A1 (en) 2012-11-07 2014-05-15 Semiconductor Energy Laboratory Co., Ltd. Electrode for power storage device, power storage device, and manufacturing method of electrode for power storage device
KR102297634B1 (en) 2013-04-19 2021-09-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Secondary battery and a method for fabricating the same
WO2015136417A1 (en) 2014-03-13 2015-09-17 Semiconductor Energy Laboratory Co., Ltd. Electrode, power storage device, electronic device, and method for fabricating electrode
JP6664184B2 (en) 2014-10-15 2020-03-13 株式会社半導体エネルギー研究所 Electrode and method for manufacturing electrode
US9865871B2 (en) 2014-12-26 2018-01-09 Semiconductor Energy Laboratory Co., Ltd. Silicon oxide and storage battery
CN106033807B (en) * 2015-03-17 2019-08-13 石东益 Silicon based electrode manufacture craft and its energy storage device
CN106033808B (en) * 2015-03-17 2019-08-13 石东益 Silicon based electrode and its manufacture craft
WO2016160703A1 (en) 2015-03-27 2016-10-06 Harrup Mason K All-inorganic solvents for electrolytes
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
US11774376B2 (en) * 2019-12-26 2023-10-03 Canon Kabushiki Kaisha Power supply unit and radiation imaging apparatus including the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213008A (en) * 1994-12-01 1996-08-20 Canon Inc Lithium secondary battery and manufacture of negative electrode thereof
JPH11213987A (en) * 1998-01-23 1999-08-06 Asahi Chem Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2005141995A (en) * 2003-11-05 2005-06-02 Sony Corp Negative electrode and battery
WO2006043470A1 (en) * 2004-10-21 2006-04-27 Matsushita Electric Industrial Co., Ltd. Negative electrode for battery and battery using same
JP2007520867A (en) * 2004-02-07 2007-07-26 エルジー・ケム・リミテッド Electrode with presence / absence composite porous coating layer and electrochemical device including the same
JP2008234988A (en) * 2007-03-20 2008-10-02 Sony Corp Anode and its manufacturing method as well as battery and its manufacturing method
JP2009164014A (en) * 2008-01-08 2009-07-23 Mitsui Mining & Smelting Co Ltd Positive electrode for nonaqueous electrolyte secondary battery
JP2010262752A (en) * 2009-04-30 2010-11-18 Furukawa Electric Co Ltd:The Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the same, and method of manufacturing negative electrode for lithium ion secondary battery
JP2011249207A (en) * 2010-05-28 2011-12-08 Konica Minolta Holdings Inc Secondary battery electrode plate

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5338625A (en) 1992-07-29 1994-08-16 Martin Marietta Energy Systems, Inc. Thin film battery and method for making same
US20020168574A1 (en) 1997-06-27 2002-11-14 Soon-Ho Ahn Lithium ion secondary battery and manufacturing method of the same
JP3524762B2 (en) * 1998-03-19 2004-05-10 三洋電機株式会社 Lithium secondary battery
US6235427B1 (en) * 1998-05-13 2001-05-22 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery containing silicic material
CA2387909C (en) 1999-10-22 2012-12-18 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and reghargeable lithium battery
CA2388713C (en) 1999-10-22 2012-10-02 Sanyo Electric Co., Ltd. Electrode for use in lithium battery and rechargeable lithium battery
WO2001029913A1 (en) 1999-10-22 2001-04-26 Sanyo Electric Co., Ltd. Method for producing material for electrode for lithium cell
US6685804B1 (en) 1999-10-22 2004-02-03 Sanyo Electric Co., Ltd. Method for fabricating electrode for rechargeable lithium battery
CN1257569C (en) 1999-10-22 2006-05-24 三洋电机株式会社 Electrode for lithium secondary cell and lithium secondary cell
CN1257567C (en) 1999-10-22 2006-05-24 三洋电机株式会社 Electrode for lithium cell and lithium secondary cell
JP2002083594A (en) 1999-10-22 2002-03-22 Sanyo Electric Co Ltd Electrode for lithium battery, lithium battery using it and lithium secondary battery
US6733924B1 (en) 1999-11-23 2004-05-11 Moltech Corporation Lithium anodes for electrochemical cells
US7771870B2 (en) 2006-03-22 2010-08-10 Sion Power Corporation Electrode protection in both aqueous and non-aqueous electrochemical cells, including rechargeable lithium batteries
US20110165471A9 (en) 1999-11-23 2011-07-07 Sion Power Corporation Protection of anodes for electrochemical cells
US7247408B2 (en) 1999-11-23 2007-07-24 Sion Power Corporation Lithium anodes for electrochemical cells
US6797428B1 (en) 1999-11-23 2004-09-28 Moltech Corporation Lithium anodes for electrochemical cells
JP5106732B2 (en) 1999-11-23 2012-12-26 シオン・パワー・コーポレーション Lithium negative electrode for electrochemical cells
JP2001210315A (en) 2000-01-25 2001-08-03 Sanyo Electric Co Ltd Electrode for lithium secondary battery and lithium secondary battery using it
DE60129196T2 (en) * 2000-11-18 2007-10-11 Samsung SDI Co., Ltd., Suwon Thin-film anode for lithium-containing secondary battery
JP2002237294A (en) * 2001-02-08 2002-08-23 Tokuyama Corp Negative electrode for lithium secondary battery
JP2003246700A (en) 2002-02-22 2003-09-02 Japan Science & Technology Corp Method of producing silicon nanoneedle
WO2004025757A2 (en) * 2002-09-10 2004-03-25 California Institute Of Technology High-capacity nanostructured silicon and lithium alloys thereof
JP4140765B2 (en) 2002-09-19 2008-08-27 コバレントマテリアル株式会社 Acicular silicon crystal and method for producing the same
KR100682883B1 (en) * 2002-11-27 2007-02-15 삼성전자주식회사 Solid electrolyte and battery employing the same
US7015496B2 (en) 2002-12-27 2006-03-21 Semiconductor Energy Laboratory Co., Ltd. Field emission device and manufacturing method thereof
JP2004281317A (en) 2003-03-18 2004-10-07 Matsushita Electric Ind Co Ltd Electrode material for nonaqueous electrolyte secondary battery, its manufacturing method and nonaqueous electrolyte secondary battery using it
WO2004086539A1 (en) * 2003-03-26 2004-10-07 Canon Kabushiki Kaisha Electrode material for lithium secondary battery and electrode structure having the electrode material
JP4007228B2 (en) * 2003-03-31 2007-11-14 三菱マテリアル株式会社 Negative electrode material for lithium secondary battery and method for producing the same
US7432014B2 (en) 2003-11-05 2008-10-07 Sony Corporation Anode and battery
US9614214B2 (en) 2004-12-16 2017-04-04 Lg Chem, Ltd. Method for improvement of performance of si thin film anode for lithium rechargeable battery
DE602006017515D1 (en) * 2005-02-02 2010-11-25 Geomatec Co Ltd THIN FILM SOLID-SECONDARY CELL
CN101346835B (en) * 2005-12-27 2011-06-15 松下电器产业株式会社 Electrode for lithium secondary battery and lithium secondary battery using same
JP5043338B2 (en) 2006-01-19 2012-10-10 パナソニック株式会社 Lithium secondary battery
US7781101B2 (en) 2006-02-14 2010-08-24 Panasonic Corporation Electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery comprising such electrode for nonaqueous electrolyte secondary battery
WO2007111901A2 (en) 2006-03-22 2007-10-04 Sion Power Corporation Electrode protection in both aqueous and non-aqueous electrochemical cells, including rechargeable lithium batteries
US8080335B2 (en) 2006-06-09 2011-12-20 Canon Kabushiki Kaisha Powder material, electrode structure using the powder material, and energy storage device having the electrode structure
JP2008016446A (en) 2006-06-09 2008-01-24 Canon Inc Powder material, electrode structure using powder material, power storage device having the electrode structure, and manufacturing method of powder material
KR100898293B1 (en) 2007-11-27 2009-05-18 삼성에스디아이 주식회사 Negative active material for lithium secondary battery, and method of preparing same
US9564629B2 (en) * 2008-01-02 2017-02-07 Nanotek Instruments, Inc. Hybrid nano-filament anode compositions for lithium ion batteries
KR101430617B1 (en) * 2008-02-26 2014-08-18 삼성에스디아이 주식회사 Electrode comprising niobium oxide and lithium battery using the same
JP4957657B2 (en) 2008-06-13 2012-06-20 ソニー株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
US8927156B2 (en) 2009-02-19 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Power storage device
JP2010250968A (en) * 2009-04-10 2010-11-04 Panasonic Corp Lithium ion secondary battery
JP5287739B2 (en) 2009-05-01 2013-09-11 トヨタ自動車株式会社 Solid electrolyte material
US20140370380A9 (en) 2009-05-07 2014-12-18 Yi Cui Core-shell high capacity nanowires for battery electrodes
US9061902B2 (en) 2009-12-18 2015-06-23 The Board Of Trustees Of The Leland Stanford Junior University Crystalline-amorphous nanowires for battery electrodes
JP5659696B2 (en) * 2009-12-24 2015-01-28 ソニー株式会社 Lithium ion secondary battery, negative electrode for lithium ion secondary battery, electric tool, electric vehicle and power storage system
JP2011159534A (en) 2010-02-02 2011-08-18 Toyota Motor Corp Lithium battery
WO2011136028A1 (en) 2010-04-28 2011-11-03 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
CN103238240B (en) * 2010-12-07 2016-05-18 株式会社半导体能源研究所 Electrical storage device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213008A (en) * 1994-12-01 1996-08-20 Canon Inc Lithium secondary battery and manufacture of negative electrode thereof
JPH11213987A (en) * 1998-01-23 1999-08-06 Asahi Chem Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2005141995A (en) * 2003-11-05 2005-06-02 Sony Corp Negative electrode and battery
JP2007520867A (en) * 2004-02-07 2007-07-26 エルジー・ケム・リミテッド Electrode with presence / absence composite porous coating layer and electrochemical device including the same
WO2006043470A1 (en) * 2004-10-21 2006-04-27 Matsushita Electric Industrial Co., Ltd. Negative electrode for battery and battery using same
JP2008234988A (en) * 2007-03-20 2008-10-02 Sony Corp Anode and its manufacturing method as well as battery and its manufacturing method
JP2009164014A (en) * 2008-01-08 2009-07-23 Mitsui Mining & Smelting Co Ltd Positive electrode for nonaqueous electrolyte secondary battery
JP2010262752A (en) * 2009-04-30 2010-11-18 Furukawa Electric Co Ltd:The Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the same, and method of manufacturing negative electrode for lithium ion secondary battery
JP2011249207A (en) * 2010-05-28 2011-12-08 Konica Minolta Holdings Inc Secondary battery electrode plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015118924A (en) * 2013-11-13 2015-06-25 株式会社半導体エネルギー研究所 Negative electrode for power storage device, power storage device, and electrical machine
US10593940B2 (en) 2013-11-13 2020-03-17 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device, power storage, device and electrical device

Also Published As

Publication number Publication date
US9362556B2 (en) 2016-06-07
US20160268598A1 (en) 2016-09-15
US10128498B2 (en) 2018-11-13
JP5806097B2 (en) 2015-11-10
CN103238240A (en) 2013-08-07
CN103238240B (en) 2016-05-18
KR101884040B1 (en) 2018-07-31
WO2012077692A1 (en) 2012-06-14
US20120141866A1 (en) 2012-06-07
KR20130124337A (en) 2013-11-13
TW201232902A (en) 2012-08-01
TWI521780B (en) 2016-02-11

Similar Documents

Publication Publication Date Title
JP5806097B2 (en) Power storage device
JP6208786B2 (en) Method for manufacturing power storage device
JP6035013B2 (en) Electrode fabrication method
KR101921337B1 (en) Power storage device and method for manufacturing electrode
US8846530B2 (en) Method for forming semiconductor region and method for manufacturing power storage device
JP2017084797A (en) Power storage device and manufacturing method of power storage device
US9136530B2 (en) Energy storage device and manufacturing method thereof
JP2017033941A (en) Power storage device and manufacturing method of the same
JP2012009414A (en) Power storage device and its manufacturing method
JP5932256B2 (en) Power storage device
JP2021168303A (en) Lithium ion secondary battery
JP6363268B2 (en) Method for producing active material layer
JP6266729B2 (en) Production method of active material
JP6167147B2 (en) Method for producing lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150903

R150 Certificate of patent or registration of utility model

Ref document number: 5806097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees