JP2012101544A - Transparent conductive layered film, method for producing the same, and touch panel including the same - Google Patents

Transparent conductive layered film, method for producing the same, and touch panel including the same Download PDF

Info

Publication number
JP2012101544A
JP2012101544A JP2011247076A JP2011247076A JP2012101544A JP 2012101544 A JP2012101544 A JP 2012101544A JP 2011247076 A JP2011247076 A JP 2011247076A JP 2011247076 A JP2011247076 A JP 2011247076A JP 2012101544 A JP2012101544 A JP 2012101544A
Authority
JP
Japan
Prior art keywords
transparent conductive
thickness
laminated film
laminate
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011247076A
Other languages
Japanese (ja)
Other versions
JP5692859B2 (en
Inventor
Man Ho Lee
リ、マンホ
Charlie Hong
ホン、チャリー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BMC Co Ltd
Original Assignee
BMC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BMC Co Ltd filed Critical BMC Co Ltd
Publication of JP2012101544A publication Critical patent/JP2012101544A/en
Application granted granted Critical
Publication of JP5692859B2 publication Critical patent/JP5692859B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Laminated Bodies (AREA)
  • Position Input By Displaying (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a transparent conductive layered film which has high light transmission rate with less transmission coloring, a method for producing the same, and a touch panel including the same.SOLUTION: The transparent conductive layered film 100 is a laminate 100 including two layers 20 and 30 with adjusted refractive index and thickness which are formed on an optical transparent substrate 10 through a process including a plasma-enhanced chemical vapor deposition method, and has a precise and stable structure. This layered film has a high visible light transmission rate with less transmission coloring, a low change rate of surface resistance in high-temperature, high-humidity environments, and high thin film durability. The production cost thereof can be reduced while enhancing large-area productivity.

Description

本願は、互いに異なる屈折率を有する積層体を含む透明導電性積層フィルム、これの製造方法及びこれの用途に関する。   The present application relates to a transparent conductive laminated film including laminates having different refractive indexes, a method for producing the same, and uses thereof.

タッチパネルは、ディスプレイ装置の表面に取り付けられてユーザの指、タッチペンなどの物理的接触を電気的信号に変換して出力する装置であり、液晶表示装置(liquid crystal display)、プラズマディスプレイパネル(plasma display panel)、EL(electro−luminescence) 素子などに応用されている。   A touch panel is a device that is attached to the surface of a display device and converts a physical contact of a user's finger, a touch pen, or the like into an electrical signal and outputs the signal, and includes a liquid crystal display device and a plasma display panel. panel) and EL (electro-luminescence) elements.

このようなタッチパネルは、情報ディスプレイ機器の特殊な入力装置であり、具現方式によって抵抗膜方式、静電容量方式、超音波方式、赤外線方式、弾性波方式などに区分される。   Such a touch panel is a special input device for an information display device, and is classified into a resistance film method, a capacitance method, an ultrasonic method, an infrared method, an elastic wave method, and the like according to an implementation method.

最近、使用量と適用範囲が拡大されているモバイル機器やナビゲーションのような小型携帯用機器には、抵抗膜方式及びデジタル静電容量方式のタッチパネルが広く適用されている。特に、抵抗膜方式は、動作具現が容易であり、製造費用が少なく、一般的なタッチスクリーン式携帯電話とナビゲーション機器に多く使用されているが、既存のタッチパネルのタッチ方法であるタブ(Tab)及びドラッグ(Drag)しかできない単純動作から逸脱して多様な方式のマルチタッチ具現が容易な静電容量方式のタッチパネルが、最近スマートフォン及びプレミアム級モバイル機器のディスプレイに搭載されることが拡大されている。   Recently, resistive film type and digital capacitance type touch panels have been widely applied to mobile devices such as mobile devices and navigation devices whose usage and application range have been expanded. In particular, the resistive film method is easy to implement, has a low manufacturing cost, and is widely used in general touch screen mobile phones and navigation devices. In addition, capacitive touch panels that are easy to implement various types of multi-touch, deviating from simple operations that can only be dragged, have recently been increasingly installed in smartphones and premium-grade mobile device displays. .

静電容量方式のタッチパネルは、タッチパターン層を含んでおり、前記タッチパターン層は、外部の物理的接触に対応して電気的信号を発生させる役割をするが、静電容量方式のタッチパネルに用いられる透明導電性フィルムの場合、可視光透過率が高く、透過着色が低くて、透明電極パターンのエッチング工程後に生成される透明電極パターンの視認性が良好でなければならない。特に、静電容量方式のタッチパネルに用いられる透明導電性フィルムは、ディスプレイされる画面の色相を歪みなく表現するために透過着色が低くなければならず、タッチパネル製品の構造上、透明電極パターンのエッチング工程後に生成されたパターンの視認性が良くなければならない。低い透過着色性と高いパターンの視認性を得るためには、パターンが透過されて目に見えることを最小化しなければならず、このために反射される光の量を減らして透過量を増大させる積層構造が必要である。しかし、既存のタッチパネルに用いられる透明導電性フィルムは、一般的に電気抵抗膜方式に適合した可視光透過率を有している。これを克服するための多層構造のフィルムの場合、透過率を向上させ、高温、高湿(150℃、90%湿度)及び熱衝撃に対する耐久性及び抵抗安定性を確保した場合もあるが、多層膜の積層による生産時間の増加によって製造費用が多くかかるという問題点がある。   The capacitive touch panel includes a touch pattern layer, and the touch pattern layer serves to generate an electrical signal in response to an external physical contact, and is used for the capacitive touch panel. In the case of the transparent conductive film to be formed, the visible light transmittance must be high, the transmission coloring should be low, and the visibility of the transparent electrode pattern generated after the transparent electrode pattern etching step should be good. In particular, a transparent conductive film used for a capacitive touch panel must have low transmission coloring in order to express the hue of a screen to be displayed without distortion. Due to the structure of the touch panel product, the transparent electrode pattern is etched. The visibility of the pattern generated after the process must be good. In order to obtain low transmission colorability and high pattern visibility, the transmission of the pattern must be minimized so that the amount of reflected light is reduced and transmission is increased. A laminated structure is required. However, the transparent conductive film used for the existing touch panel generally has a visible light transmittance suitable for the electric resistance film system. In the case of a film having a multilayer structure to overcome this, the transmittance may be improved, and durability and resistance stability against high temperature, high humidity (150 ° C., 90% humidity) and thermal shock may be ensured. There is a problem that a manufacturing cost is increased due to an increase in production time due to film lamination.

前記問題を解決するために、従来は、透明基材の屈折率よりは大きく、透明導電層よりは小さい屈折率を有する中間層を形成して、透過光の色差計b*値を減らして透過色が黄色及び茶色に変わる問題は解決したが(大韓民国公開特許10−2005−0004165号)、静電容量方式に用いられる高透過率を有した導電性積層フィルムを製作することができなかった。   In order to solve the above problem, conventionally, an intermediate layer having a refractive index larger than the refractive index of the transparent substrate and smaller than that of the transparent conductive layer is formed, and the color difference meter b * value of the transmitted light is reduced and transmitted. Although the problem of changing the color to yellow and brown was solved (Korea Published Patent No. 10-2005-0004165), it was not possible to produce a conductive laminated film having a high transmittance used for the capacitance method.

また、高透過率を有する導電性積層フィルムを製作するためのまた他の従来技術は、高屈折率と低屈折率の酸化物膜を形成する導電性積層フィルムの中間層を形成する過程で、乾式プロセスとして、物理的蒸気蒸着法(PVD;physical vapor deposition)のうち、スパッタリング(Sputtering)で成膜する方法を提案して透過率を向上させて耐久性を向上させた。しかし、高屈折率と低屈折率を有した2層の金属及び無機酸化物をスパッタリング方法で形成して長時間の成膜時間が必要であり、ロールツーロール(roll−to−roll)方式の連続生産工程では、製造費用が多く必要な問題点も解決できずにいる。   Another conventional technique for producing a conductive laminated film having a high transmittance is a process of forming an intermediate layer of a conductive laminated film that forms an oxide film having a high refractive index and a low refractive index. As a dry process, among physical vapor deposition (PVD), a method of forming a film by sputtering was proposed to improve the transmittance and improve the durability. However, a two-layer metal and an inorganic oxide having a high refractive index and a low refractive index are formed by a sputtering method, and a long film formation time is required, and a roll-to-roll method is required. In the continuous production process, the manufacturing cost is high and the necessary problems cannot be solved.

本願は、光透過率が高く、透過着色性が低い透明導電性積層フィルムを提供し、高温・高湿の劣っている環境でも表面抵抗変化率が少なく耐久性に優れており、透明電極パターンの視認性を高めながらも製造費用を低くすることができる透明導電性積層フィルム及びこれの製造方法を提供し、前記透明導電性積層フィルムを含むタッチパネルを提供しようとする。   The present application provides a transparent conductive laminated film having a high light transmittance and a low transmission colorability, and has a low surface resistance change rate and excellent durability even in an environment where temperature and humidity are inferior. A transparent conductive laminated film that can reduce the manufacturing cost while improving visibility and a method for producing the same are provided, and a touch panel including the transparent conductive laminated film is provided.

しかし、本願が解決しようとする課題は、以上で言及した課題に限らず、言及されなかったまた他の課題は、下記の記載から当業者に明確に理解できるであろう。   However, the problem to be solved by the present application is not limited to the problem mentioned above, and other problems not mentioned can be clearly understood by those skilled in the art from the following description.

前記課題を達成するために、本願の第1側面は、光学的透明基材;プラズマ−強化化学気相蒸着法(PECVD)を利用して前記光学的透明基材上に10nm〜300nmの厚さに積層され、無機酸化物を含み、屈折率1.3〜2.5を有する第1積層体と、プラズマ−強化化学気相蒸着法を利用して前記第1積層体上に10nm〜300nmの厚さに積層され、前記第1積層体に含まれた無機酸化物と異なる無機酸化物を含む第2積層体と、前記第2積層体上に10〜100nmの厚さに積層された透明導電層とを含む透明導電性積層フィルムを提供する。   In order to achieve the above object, a first aspect of the present application is an optically transparent substrate; a thickness of 10 nm to 300 nm on the optically transparent substrate using plasma-enhanced chemical vapor deposition (PECVD). A first laminated body including an inorganic oxide and having a refractive index of 1.3 to 2.5, and 10 nm to 300 nm on the first laminated body using a plasma-enhanced chemical vapor deposition method. A second laminated body including an inorganic oxide different from the inorganic oxide contained in the first laminated body, and a transparent conductive layer laminated to a thickness of 10 to 100 nm on the second laminated body. A transparent conductive laminated film comprising a layer is provided.

一具現例において、前記透明導電層の厚さが50nm以上である場合、前記第2積層体の屈折率は、前記第1積層体の屈折率より大きい屈折率を有するが、これに限らない。   In one embodiment, when the transparent conductive layer has a thickness of 50 nm or more, the refractive index of the second stacked body is higher than the refractive index of the first stacked body, but is not limited thereto.

一具現例において、前記第1積層体及び第2積層体の総厚さは、50〜350nmであるが、これに限らない。   In one embodiment, the total thickness of the first stacked body and the second stacked body is 50 to 350 nm, but is not limited thereto.

一具現例において、前記第2積層体の色差計のL、a*、b*値で透過色座標値が−7<b*<2であるが、これに限らない。   In one embodiment, the transmission color coordinate value of the L, a *, and b * values of the color difference meter of the second laminate is −7 <b * <2, but the present invention is not limited thereto.

一具現例において、前記透明導電層は、酸化インジウムスズ(ITO)、酸化アンチモンスズ(ATO)、及び酸化インジウム亜鉛(IZO)からなる群から選択される1種以上を含むが、これに限らない。   In one embodiment, the transparent conductive layer includes at least one selected from the group consisting of indium tin oxide (ITO), antimony tin oxide (ATO), and indium zinc oxide (IZO), but is not limited thereto. .

一具現例において、前記光学的透明基材は、プラスチックフィルムを含み、前記光学的透明基材の厚さが25um〜 350umであるが、これに限らない。   In one embodiment, the optically transparent substrate includes a plastic film, and the thickness of the optically transparent substrate is 25 um to 350 um, but is not limited thereto.

一具現例において、前記光学的透明基材の一面または両面に透明ハードコート膜を含むが、これに限らない。   In one embodiment, a transparent hard coat film is included on one or both surfaces of the optically transparent substrate, but the embodiment is not limited thereto.

本願の第2側面は、光学的透明基材上に、無機酸化物を含み、屈折率が1.3〜2.5である第1積層体を10nm〜300nmの厚さにプラズマ−強化化学気相蒸着法を利用して積層し、前記第1積層体上に、前記第1積層体に含まれた無機酸化物と異なる無機酸化物を含む第2積層体を10nm〜300nmの厚さにプラズマ−強化化学気相蒸着法を利用して積層し、前記第2積層体上に10〜100nmの厚さに透明導電層を積層することを含む透明導電性積層フィルムの製造方法を提供する。   According to a second aspect of the present application, a plasma-enhanced chemical vapor is formed on an optically transparent substrate by adding a first laminate including an inorganic oxide and having a refractive index of 1.3 to 2.5 to a thickness of 10 nm to 300 nm. The second stacked body including an inorganic oxide different from the inorganic oxide included in the first stacked body is formed on the first stacked body to a thickness of 10 nm to 300 nm by stacking using a phase deposition method. -The manufacturing method of the transparent conductive laminated film including laminating | stacking using a reinforced chemical vapor deposition method and laminating | stacking a transparent conductive layer on the said 2nd laminated body in thickness of 10-100 nm is provided.

一具現例において、前記プラズマ−強化化学気相蒸着法は、ロールツーロール方式のプラズマ−強化化学気相蒸着法を含むが、これに限らない。   In one embodiment, the plasma-enhanced chemical vapor deposition includes a roll-to-roll plasma-enhanced chemical vapor deposition, but is not limited thereto.

一具現例において、前記透明導電層を積層することは、蒸着法、イオンプレーティング法、スパッタリング法、化学蒸着法及びプレーティング法からなる群から選択される1つ以上の方法及びロールツーロール工程を利用して前記透明導電層を連続形成することを含むが、これに限らない。   In one embodiment, laminating the transparent conductive layer includes at least one method selected from the group consisting of vapor deposition, ion plating, sputtering, chemical vapor deposition, and plating, and a roll-to-roll process. However, the present invention is not limited to this.

一具現例において、前記透明導電層を積層した後に120℃〜150℃で熱処理して前記透明導電層を結晶化させることをさらに含む透明導電性積層フィルムの製造方法であるが、これに限らない。   In one embodiment, the method for producing a transparent conductive laminated film further includes crystallizing the transparent conductive layer by laminating the transparent conductive layer and then heat-treating at 120 ° C. to 150 ° C., but is not limited thereto. .

本願の第3側面は、前記透明導電性積層フィルムを含むタッチパネルを提供するが、これに限らない。   Although the 3rd side surface of this application provides the touch panel containing the said transparent conductive laminated film, it is not restricted to this.

本願によると、光学的透明基材上に屈折率と厚さを調節した2層構造を含む積層体をプラズマ−強化化学気相蒸着法を含む工程を通じて、緻密でかつ安定した構造の透明導電性積層フィルムを提供することができ、可視光透過率が高く、透過着色が少なく、高温・高湿環境で表面抵抗の変化率が少なく、高い薄膜耐久性を有する透明導電性積層フィルムを提供することができる。   According to the present application, a transparent conductive material having a dense and stable structure through a process including a plasma-enhanced chemical vapor deposition method on a laminate including a two-layer structure in which a refractive index and a thickness are adjusted on an optically transparent substrate. Provided is a transparent conductive laminated film that can provide a laminated film, has high visible light transmittance, little transmission coloration, little change in surface resistance in a high temperature / high humidity environment, and high thin film durability. Can do.

一方、屈折率と厚さを調節した2層構造を含む積層体の製造にロールツーロールタイプのプラズマ−強化化学気相蒸着法を含む工程を適用する場合、他のPVD工程(スパッタリング、電子ビーム蒸着など)に比べて成膜速度を5倍〜7倍以上高めることができるため、大面積生産性を高くし、製造費用を低くすることができる効果がある。   On the other hand, when a process including a roll-to-roll type plasma-enhanced chemical vapor deposition method is applied to manufacture a laminate including a two-layer structure in which the refractive index and the thickness are adjusted, other PVD processes (sputtering, electron beam) Compared with vapor deposition etc.), the film formation rate can be increased by 5 to 7 times or more, so that there is an effect that the large area productivity can be increased and the manufacturing cost can be reduced.

さらに、前記の高い光透過率、透過着色性の底さ、及び高温・高湿環境における表面抵抗の変化率が低い透明導電性積層フィルムを含むタッチパネルにおいて、静電容量方式のタッチパネル、抵抗膜方式のタッチパネルを含む多様な方式のタッチパネルに制限なく活用が可能である。   Furthermore, in the touch panel including the transparent conductive laminated film having a low rate of change in surface resistance in a high temperature / humidity environment, a capacitive touch panel, a resistive film method, It can be used without limitation to various types of touch panels including touch panels.

図1は、本願の一具現例において、透明導電性積層フィルムの断面図である。FIG. 1 is a cross-sectional view of a transparent conductive laminated film in an embodiment of the present application. 本願の実施例1による、透明導電性積層フィルムの反射率を測定したグラフである。It is the graph which measured the reflectance of the transparent conductive laminated film by Example 1 of this application. 比較例1による、透明導電性積層フィルムの反射率を測定したグラフである。5 is a graph obtained by measuring the reflectance of a transparent conductive laminated film according to Comparative Example 1. 本願の実施例2による、透明導電性積層フィルムの反射率を測定したグラフである。It is the graph which measured the reflectance of the transparent conductive laminated film by Example 2 of this application. 比較例3による、透明導電性積層フィルムの反射率を測定したグラフである。6 is a graph obtained by measuring the reflectance of a transparent conductive laminated film according to Comparative Example 3. 本願の実施例2による、透明導電性積層フィルムの反射率を測定したグラフである。It is the graph which measured the reflectance of the transparent conductive laminated film by Example 2 of this application. 比較例5による、透明導電性積層フィルムの反射率を測定したグラフである。6 is a graph obtained by measuring the reflectance of a transparent conductive laminated film according to Comparative Example 5.

以下、添付の図面を参照して本願が属する技術分野で通常の知識を持った者が容易に実施することができるように本発明の具現例及び実施例を挙げて詳しく説明する。   Hereinafter, exemplary embodiments and examples of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art to which the present application pertains can easily implement the present invention.

しかし、本願は、様々な異なる形態で具現されることができ、ここで説明する具現例及び実施例に限らない。そして、図面で本願を明確に説明するために説明と関係ない部分は省略し、明細書全体を通じて類似した部分に対しては類似した図面符号を付けた。   However, the present application can be embodied in various different forms, and is not limited to the embodiments and examples described here. In order to clearly describe the present application in the drawings, portions not related to the description are omitted, and similar portions are denoted by similar reference numerals throughout the specification.

本願明細書全体において、ある部分がある構成要素を「含む」とすると、これは、特に反対される記載がない限り、他の構成要素を除外するものではなく、他の構成要素をさらに含むことができることを意味する。   Throughout this specification, when a part “includes” a component, this does not exclude other components unless specifically stated to the contrary, and further includes other components. Means you can.

本願明細書全体において、ある層または部材が他の層または部材と「上に」位置しているとすると、これは、ある層または部材が他の層または部材に接している場合だけでなく、二つの層または二つの部材の間にまた他の層またはまた他の部材が存在する場合も含む。   Throughout this application, if a layer or member is located "on" another layer or member, this is not only when the layer or member is in contact with the other layer or member, This includes the case where another layer or other member exists between two layers or two members.

本願明細書全体で使用される程度の用語「約」、「実質的に」などは、言及された意味に固有の製造及び物質許容誤差が提示される時、その数値でまたはその数値に近接した意味で使用され、本発明の理解を助けるために、正確または絶対的な数値が言及された開示内容を非良心的な侵害者が不当に利用することを防止するために使用される。本願明細書全体で使用される用語「〜(する)段階」または「〜の段階」は、「〜のための段階」を意味しない。   The terms “about”, “substantially”, etc., to the extent used throughout this specification, are expressed in or close to the numerical value when manufacturing and material tolerances inherent in the stated meaning are presented. Used in the sense and to help understand the present invention, exact or absolute numerical values are used to prevent unauthorized use of the disclosure content to which the conscientious infringer is referred. As used throughout this specification, the terms “steps” or “steps of” do not mean “steps for”.

本願の第1側面は、光学的透明基材;プラズマ−強化化学気相蒸着法(PECVD)を利用して前記光学的透明基材上に10nm〜300nmの厚さに積層され、無機酸化物を含み、屈折率1.3〜2.5を有する第1積層体と、プラズマ−強化化学気相蒸着法を利用して前記第1積層体上に10nm〜300nmの厚さに積層され、前記第1積層体に含まれた無機酸化物と異なる無機酸化物を含む第2積層体と、前記第2積層体上に10〜100nmの厚さに積層された透明導電層とを含む透明導電性積層フィルムを提供する。   The first aspect of the present application is an optically transparent substrate; laminated on the optically transparent substrate to a thickness of 10 nm to 300 nm using plasma-enhanced chemical vapor deposition (PECVD), and an inorganic oxide Including a first laminate having a refractive index of 1.3 to 2.5, and a first laminate having a thickness of 10 nm to 300 nm on the first laminate using a plasma-enhanced chemical vapor deposition method. A transparent conductive laminate comprising a second laminate containing an inorganic oxide different from the inorganic oxide contained in one laminate, and a transparent conductive layer laminated to a thickness of 10 to 100 nm on the second laminate. Provide film.

図1は、本願の一具現例において、透明導電性積層フィルム100の断面図である。図1を参照して、本願の一具現例を以下で詳しく説明する。   FIG. 1 is a cross-sectional view of a transparent conductive laminated film 100 in an embodiment of the present application. An embodiment of the present application will be described in detail below with reference to FIG.

前記無機酸化物は、金属酸化物または両性金属酸化物を含み、具体的な例として、チタン酸化物(titanium oxide)、亜鉛酸化物(zinc oxide)、セリウム酸化物(cerium oxide)、アルミニウム酸化物(aluminium oxide)、タンタル酸化物(tantalum oxide)、イットリウム酸化物(yttrium oxide)、イッテルビウム酸化物(ytterbium oxide)、及びジルコニウム酸化物(zirconium oxide)、酸化ケイ素 (silicon oxide)、アンチモンスズ酸化物(antimony tin oxide)、及びインジウムスズ酸化物(indium tin oxide)からなる群から選択される1種以上を含むが、これに限らない。例示的具現例において、前記無機酸化物は、酸化チタン、酸化ケイ素及び酸化ジルコニウムからなる群から選択される1種以上を含むが、これに限らない。例示的具現例において、透明電極パターンの視認性を向上するために、前記無機酸化物は酸化チタンまたは酸化ケイ素を含むが、これに限らない。   The inorganic oxide includes a metal oxide or an amphoteric metal oxide, and specific examples thereof include titanium oxide, zinc oxide, cerium oxide, and aluminum oxide. (Alumium oxide), tantalum oxide, yttrium oxide, ytterbium oxide, zirconium oxide (silicon oxide), silicon oxide (silicon oxide) including one or more selected from the group consisting of antimony tin oxide and indium tin oxide. Not limited to this. In an exemplary embodiment, the inorganic oxide includes at least one selected from the group consisting of titanium oxide, silicon oxide, and zirconium oxide, but is not limited thereto. In an exemplary embodiment, in order to improve the visibility of the transparent electrode pattern, the inorganic oxide includes, but is not limited to, titanium oxide or silicon oxide.

前記第1積層体20の屈折率は、1.3〜2.5であり、厚さは、10〜300nmであるが、これに限らない。前記数値範囲は、前記第1積層体20及び第2積層体30を含む積層体において、前記プラズマ−強化化学気相蒸着法を利用した蒸着工程で2層膜の光の挙動及び多層の積層体を構成する場合、積層体の物理的特性を考慮しなければならないが、前記数値範囲内で積層体物質の安定性が大きく、積層体間のストレスマッチング(matching)になり、屈折率の変化が少ない。前記ストレスマッチングの例として、第1積層体20の場合、酸化チタン(TiO)を積層して約1.46の屈折率を有するようにし、第2積層体30は、酸化ケイ素(SiO)を用いて屈折率を調節して2層膜の積層体を構成すると、前記酸化チタンが含まれた積層体は、外部のストレスを受ける場合、引張力(tensile)を受け、酸化ケイ素を含む積層体は、収縮力(compressive strain)を受けて、光学的透明基材10に対する力の均衡を保つことができるという長所がある。 The refractive index of the first stacked body 20 is 1.3 to 2.5, and the thickness is 10 to 300 nm, but is not limited thereto. The numerical value range includes the light behavior of the two-layer film and the multilayer laminate in the deposition process using the plasma-enhanced chemical vapor deposition method in the laminate including the first laminate 20 and the second laminate 30. However, the physical properties of the laminate must be taken into account, but the stability of the laminate material is large within the above numerical range, resulting in stress matching between the laminates, and a change in refractive index. Few. As an example of the stress matching, in the case of the first laminated body 20, titanium oxide (TiO 2 ) is laminated to have a refractive index of about 1.46, and the second laminated body 30 is made of silicon oxide (SiO 2 ). If the refractive index is adjusted to form a two-layer film laminate, the laminate containing titanium oxide will receive a tensile force when subjected to external stress, and will contain silicon oxide. The body has the advantage that it can receive a compressive strain to balance the force on the optically transparent substrate 10.

前記第2積層体30は、前記第1積層体20に含まれた金属酸化物及び/または無機酸化物と異なる無機酸化物を含み、10nm〜300nmの厚さであるが、これに限らない。例示的具現例において、前記第1積層体20が酸化チタンを含む場合、第2積層体30は、前記酸化チタンを除いた金属酸化物または無機酸化物として酸化ケイ素を含む。このように、互いに異なる金属酸化物及び/または無機酸化物を含む理由は、上記で説明したように、積層体の安定性、光学透過率の優秀性などを確保することができるからである。   The second stacked body 30 includes an inorganic oxide different from the metal oxide and / or inorganic oxide included in the first stacked body 20 and has a thickness of 10 nm to 300 nm, but is not limited thereto. In an exemplary embodiment, when the first stacked body 20 includes titanium oxide, the second stacked body 30 includes silicon oxide as a metal oxide or inorganic oxide excluding the titanium oxide. Thus, the reason for including different metal oxides and / or inorganic oxides is that, as described above, the stability of the laminate and the excellent optical transmittance can be ensured.

一具現例において、前記透明導電層40の厚さが50nm以上である場合、前記第2積層体30の屈折率は、前記第1積層体20の屈折率より大きい屈折率を含む透明導電性積層フィルムを提供するが、これに限らない。透明導電層40の厚さが50nm以上である場合、前記第2積層体30の屈折率が前記第1積層体20の屈折率より高くなければ、高光透過性の効果を有することができない。   In an exemplary embodiment, when the thickness of the transparent conductive layer 40 is 50 nm or more, the transparent conductive laminate including a refractive index of the second stacked body 30 that is higher than a refractive index of the first stacked body 20. Provide film, but not limited to this. When the thickness of the transparent conductive layer 40 is 50 nm or more, the high light-transmitting effect cannot be obtained unless the refractive index of the second stacked body 30 is higher than the refractive index of the first stacked body 20.

一具現例において、前記第1積層体20及び第2積層体30の総厚さは、50〜350nmであるが、これに限らない。例示的具現例において、前記第1積層体20及び第2積層体30の総厚さは、90〜310nmであるが、これに限らない。前記数値範囲内で積層体の高安定性、高い光学的透過率の優秀性を確保することができる。   In one embodiment, the total thickness of the first stacked body 20 and the second stacked body 30 is 50 to 350 nm, but is not limited thereto. In an exemplary embodiment, the total thickness of the first stacked body 20 and the second stacked body 30 is 90 to 310 nm, but is not limited thereto. Within the above numerical range, it is possible to ensure high stability of the laminate and excellent optical transmittance.

前記第1積層体20と第2積層体30とは、緩衝の役割をして前記透明導電層40の面抵抗より、外部環境、特に湿度と熱あるいはフィルムの曲げ(Bending)のような衝撃による電気的安定性を高めるようになる。また、積層される酸化物の高い密度と緻密な膜構造は、透明な樹脂フィルム基材から発生する水分やソルベントのような有機物が透明導電体層への拡散を防ぐバリアーの役割と曲げ衝撃に対する緩衝機能を向上させる。   The first laminated body 20 and the second laminated body 30 serve as a buffer and are affected by an impact such as humidity, heat, or film bending due to surface resistance of the transparent conductive layer 40 due to external resistance. Increases electrical stability. In addition, the high density and dense film structure of the oxide to be laminated, the role of the barrier that prevents the diffusion of organic substances such as moisture and solvent generated from the transparent resin film base material into the transparent conductor layer and the bending impact Improve the buffer function.

一具現例において、前記第2積層体30の色差計のL、a*、b*値で透過色座標値が−7<b*<2であることを含む透明導電性積層フィルムを提供する。前記L、a*、及びb*は色差表を意味し、前記L値は明度を表し、0〜100まで表示される。そして、前記a*及びb*は、xy座標系のような平面座標系であり、横軸がa*値、縦軸がb*値を意味し、+aの方は赤色、−aの方は緑を表し、+bの方は黄色、−bの方は青色を示す。本願の例示的具現例において、前記色差計のL、a*、b*値で透過色座標値が−5<b*<3であることを含む透明導電性積層フィルムを提供する。前記数値範囲内で、前記透明導電性積層フィルムの完全な透過率と色座標値を具現することができ、前記互いに異なる屈折率を有する2層積層体の表面の局部最低反射率波長が350〜500nm領域で最低値を有することができ、積層体の屈折率と厚さを調節し、前記プラズマ−強化化学気相蒸着法を利用して蒸着させる場合、前記色差計の透過色座標値の数値範囲内で、紫色光乃至青色光の反射が減少することができ、透過光の着色も減少することができる。   In one embodiment, a transparent conductive laminated film is provided that includes the L, a *, and b * values of the color difference meter of the second laminated body 30 and the transmitted color coordinate value is −7 <b * <2. The L, a *, and b * mean a color difference table, and the L value represents lightness and is displayed from 0 to 100. The a * and b * are a plane coordinate system such as an xy coordinate system, the horizontal axis represents the a * value, the vertical axis represents the b * value, + a is red, and -a is Represents green, + b indicates yellow, and -b indicates blue. In an exemplary embodiment of the present application, there is provided a transparent conductive laminated film including transmission color coordinate values of L, a *, b * values of the color difference meter of −5 <b * <3. Within the numerical range, it is possible to embody the complete transmittance and color coordinate value of the transparent conductive laminated film, and the local minimum reflectance wavelength of the surface of the two-layer laminate having different refractive indexes is 350 to In the case where the refractive index and thickness of the laminate are adjusted and the deposition is performed using the plasma-enhanced chemical vapor deposition method, the numerical value of the transmission color coordinate value of the color difference meter can be obtained. Within the range, the reflection of purple light or blue light can be reduced, and the coloring of transmitted light can also be reduced.

一具現例において、前記透明導電層40は、酸化インジウムスズ(ITO)、酸化アンチモンスズ(ATO)、及び酸化インジウム亜鉛(IZO)からなる群から選択される1種以上を含むが、これに限らない。前記透明導電層40は、金属または金属酸化物を含むが、これに限らない。例示的具現例において、酸化インジウムスズ(ITO)、酸化アンチモンスズ(ATO)、酸化インジウム亜鉛(IZO)、金、銀、銅、白金及びニッケルからなる群から選択される1種以上を含むが、これに限らない。   In one embodiment, the transparent conductive layer 40 includes at least one selected from the group consisting of indium tin oxide (ITO), antimony tin oxide (ATO), and indium zinc oxide (IZO), but is not limited thereto. Absent. The transparent conductive layer 40 includes a metal or a metal oxide, but is not limited thereto. In an exemplary embodiment, indium tin oxide (ITO), antimony tin oxide (ATO), indium zinc oxide (IZO), one or more selected from the group consisting of gold, silver, copper, platinum and nickel, Not limited to this.

一具現例において、前記光学的透明基材10は、プラスチックフィルムを含み、前記光学的透明基材の厚さが25〜350umであるが、これに限らない。従って、前記光学的透明基材の厚さ数値範囲で、前記透明導電性積層フィルムの透明度及び生産性の観点で望ましい。前記光学的透明基材10は、その基材の厚さが透明度が確保されることができる光学的に透明な物質であれば、当業者が必要に応じて適宜選択可能な基材が含まれる。例示的具現例において、前記光学的透明基材10は、例えば、ガラス、または、ポリエチレンテレフタレート(polyethyleneterephthalate、PET)、ポリブチレンテレフタレート(polybutyleneterephthalate)、ポリカーボネート(polycarbonate)、ポリ(メチルメタクリレート)共重合体(poly(methylmethacrylate)copolymer)、トリアセチルセルロース(triacetyl cellulose)、ポリオレフイン(polyolefin)、ポリアミド(polyamide)、ポリ(ビニルクロライド)(poly(vinyl chloride))及び非結晶ポリオレフイン(amorphous polyolefin)からなる群から選択される1種以上を含む基材を含むが、これに限らない。前記光学的透明基材10の形態は、シート、板または薄膜であるが、これに限らない。   In one embodiment, the optically transparent substrate 10 includes a plastic film, and the thickness of the optically transparent substrate is 25 to 350 μm, but is not limited thereto. Therefore, it is desirable from the viewpoint of transparency and productivity of the transparent conductive laminated film within the range of the thickness of the optically transparent substrate. The optically transparent base material 10 includes a base material that can be appropriately selected by those skilled in the art as long as the thickness of the base material is an optically transparent substance that can ensure transparency. . In an exemplary embodiment, the optically transparent substrate 10 may be made of, for example, glass, polyethylene terephthalate (PET), polybutylene terephthalate, polycarbonate, poly (methyl methacrylate) copolymer (poly (methyl methacrylate) copolymer). poly (methylmethacrylate) copolymer), triacetyl cellulose (triacetyl cellulose), polyolefin (polyolefin), polyamide (polyamide), poly (vinyl chloride) (poly (chloro chloride)) and amorphous polyolefin (poly polyolefin). Including a substrate comprising one or more selected from the group consisting in), it is not limited thereto. The form of the optically transparent substrate 10 is a sheet, a plate, or a thin film, but is not limited thereto.

一具現例において、前記光学的透明基材10は、それの少なくとも一面以上に透明ハードコート膜を含むが、これに限らない。前記光学的透明基材の表面硬度の向上及び曲げ性(bending)の向上のために、前記透明ハードコート膜の厚さは2〜15umであるが、これに限らない。例示的具現例においては、3〜15umであるが、これに限らない。前記ハードコート膜は、メラニン系樹脂、ウレタン系樹脂、アルキド系樹脂、アクリル系樹脂、及びシリコーン系樹脂からなる群から選択される1種以上を含む硬化型樹脂であるが、これに限らない。   In one embodiment, the optically transparent substrate 10 includes a transparent hard coat film on at least one surface thereof, but is not limited thereto. In order to improve the surface hardness and bendability of the optically transparent substrate, the thickness of the transparent hard coat film is 2 to 15 μm, but is not limited thereto. In the exemplary embodiment, it is 3 to 15 μm, but is not limited thereto. The hard coat film is a curable resin including at least one selected from the group consisting of a melanin resin, a urethane resin, an alkyd resin, an acrylic resin, and a silicone resin, but is not limited thereto.

本願の第2側面は、光学的透明基材上に、無機酸化物を含み、屈折率が1.3〜2.5である第1積層体を10nm〜300nmの厚さにプラズマ−強化化学気相蒸着法を利用して積層し、前記第1積層体上に、前記第1積層体に含まれた無機酸化物と異なる無機酸化物を含む第2積層体を10nm〜300nmの厚さにプラズマ−強化化学気相蒸着法を利用して積層し、前記第2積層体上に10〜100nmの厚さに透明導電層40を積層することを含む透明導電性積層フィルムの製造方法を提供する。   According to a second aspect of the present application, a plasma-enhanced chemical vapor is formed on an optically transparent substrate by adding a first laminate including an inorganic oxide and having a refractive index of 1.3 to 2.5 to a thickness of 10 nm to 300 nm. The second stacked body including an inorganic oxide different from the inorganic oxide included in the first stacked body is formed on the first stacked body to a thickness of 10 nm to 300 nm by stacking using a phase deposition method. -The manufacturing method of the transparent conductive laminated film including laminating | stacking using a reinforced chemical vapor deposition method and laminating | stacking the transparent conductive layer 40 on the said 2nd laminated body in thickness of 10-100 nm is provided.

一具現例において、前記プラズマ−強化化学気相蒸着法は、ロールツーロール方式のプラズマ−強化化学気相蒸着法を含むが、これに限らない。前記プラズマ−強化化学気相蒸着法は、高い密度と純度を有する積層体を緻密でかつ均一に膜を形成することができる。一方、蒸着率(deposition rate)の調節が容易でかつ低い温度で前記光学的基材フィルムに蒸着する場合、安価で製造が可能である。前記プラズマ−強化化学気相蒸着法は、最適の均一な膜質を得るために、温度分布、反応器の位置による反応気体の流動などの流体力学的要素と熱伝逹要素を最適化して適用することができる。例示的具現例において、低い圧力で高い電気エネルギーをガスに供給してプラズマを発生させるプラズマイオンソース(plasma ion source)を通じて反応物質(precursor)と活性させ、活性化された反応ガスを反応器に移動して前記光学的透明基材上に相変化を誘導して所望の膜を低温で形成することができる。例示的具現例において、この時に使用される前記前駆体は、酸化チタンを含む積層体を形成する場合、チタンエトキシド(titanium ethoxide)またはチタンテトラクロライド(titanium tetrachloride)を用い、酸化ケイ素を含む積層体を形成する場合は、TMDSO(tetramethyldisiloxane)+OまたはSiH+Oを反応前駆体として用いるが、これに限らない。一方、前記プラズマ−強化化学気相蒸着法は、ロールツーロール方式を含むが、これに限らない。前記プラズマ−強化化学気相蒸着法を通じた前記第1積層体及び第2積層体の積層は、成膜時間が速く、成膜後の積層体の無機酸化物の緻密性と均一な分布性を確保することができ、これを通じてロールツーロール方式を含み、前記透明導電性積層フィルムの逐次的な連続生産が可能である。 In one embodiment, the plasma-enhanced chemical vapor deposition includes a roll-to-roll plasma-enhanced chemical vapor deposition, but is not limited thereto. The plasma-enhanced chemical vapor deposition method can form a dense and uniform film having a high density and purity. On the other hand, when the deposition rate is easily adjusted and deposited on the optical substrate film at a low temperature, it can be manufactured at low cost. The plasma-enhanced chemical vapor deposition method is applied by optimizing hydrodynamic elements such as temperature distribution and flow of reaction gas depending on the position of the reactor and heat transfer elements in order to obtain an optimal uniform film quality. be able to. In an exemplary embodiment, a reactant is activated through a plasma ion source that generates plasma by supplying high electrical energy to the gas at a low pressure, and the activated reactant gas is supplied to the reactor. The desired film can be formed at a low temperature by moving to induce a phase change on the optically transparent substrate. In an exemplary embodiment, when the precursor used at this time forms a laminate including titanium oxide, the precursor including titanium oxide is used by using titanium ethoxide or titanium tetrachloride. When forming a body, TMDSO (tetramethyldisiloxane) + O 2 or SiH 4 + O 2 is used as a reaction precursor, but is not limited thereto. Meanwhile, the plasma-enhanced chemical vapor deposition method includes a roll-to-roll method, but is not limited thereto. The lamination of the first laminate and the second laminate through the plasma-enhanced chemical vapor deposition method has a fast film formation time, and the denseness and uniform distribution of the inorganic oxide of the laminate after the film formation. Through this, a continuous continuous production of the transparent conductive laminated film is possible including a roll-to-roll system.

一具現例において、前記透明導電層を積層することは、蒸着法、イオンプレーティング法、スパッタリング法、化学蒸着法及びプレーティング法からなる群から選択される1つ以上の方法及びロールツーロール工程を利用して前記透明導電層を連続形成することを含むが、これに限らない。   In one embodiment, laminating the transparent conductive layer includes at least one method selected from the group consisting of vapor deposition, ion plating, sputtering, chemical vapor deposition, and plating, and a roll-to-roll process. However, the present invention is not limited to this.

一具現例において、前記透明導電層を積層した後に120℃〜150℃で熱処理して前記透明導電層を結晶化させることをさらに含む透明導電性積層フィルムの製造方法であるが、これに限らない。例示的具現例において、前記熱処理は、120℃〜150℃で約90分間熱処理することをさらに含むが、これに限らない。   In one embodiment, the method for producing a transparent conductive laminated film further includes crystallizing the transparent conductive layer by laminating the transparent conductive layer and then heat-treating at 120 ° C. to 150 ° C., but is not limited thereto. . In an exemplary embodiment, the heat treatment further includes heat treatment at 120 ° C. to 150 ° C. for about 90 minutes, but is not limited thereto.

本願の第3側面は、透明導電性積層フィルムを含むタッチパネルを提供するが、これに限らない。前記タッチパネルは、静電容量方式のタッチパネルであるが、これに限らず、抵抗膜方式のタッチパネルでも適用が可能である。例示的具現例において、前記透明導電性積層フィルムをパネル板とし、他方のパネル板としてガラス板上に酸化インジウムスズ(ITO)の薄膜を形成した後、透明導電性ガラスを利用してこの両パネル板を酸化インジウムスズ薄膜同士が対向するようにスペーサを介在させて対向配置し、スイッチ構造としてのタッチパネルを製造するが、これに限らない。   Although the 3rd side surface of this application provides the touch panel containing a transparent conductive laminated film, it is not restricted to this. The touch panel is a capacitive touch panel, but is not limited thereto, and can be applied to a resistive touch panel. In an exemplary embodiment, the transparent conductive laminated film is used as a panel plate, and an indium tin oxide (ITO) thin film is formed on the glass plate as the other panel plate, and then both panels are formed using transparent conductive glass. The touch panel as the switch structure is manufactured by arranging the plates so that the indium tin oxide thin films face each other with a spacer interposed therebetween, but the invention is not limited to this.

以下、実施例を利用して本願をさらに具体的に説明するが、本願がこれに限られるものではない。   Hereinafter, the present application will be described more specifically using examples, but the present application is not limited thereto.

第1積層体の製造
厚さが125umであるPETフィルムからなる透明樹脂フィルム基材の一面に、大面積PECVD線形ソースを適用したプラズマ強化化学気相蒸着設備としてGPi社PECVDモジュレータを利用した。
Production of First Laminate A GPi PECVD modulator was used as a plasma enhanced chemical vapor deposition facility in which a large area PECVD linear source was applied to one surface of a transparent resin film substrate made of a PET film having a thickness of 125 um.

PECVDチャンバにPETを注入し、真空度を1〜20mtorrに維持したチャンバのプラズマイオンソースに40kHzのAC発電機からパワーを印加し、反応前駆体(Precusor)としてチタンテトラクロライド(Titanium Tetrachloride)をPECVD反応器に注入して、基板上に相変異を誘導して、屈折率2.32を有した34nm厚さのTiO膜を形成した。 PET was injected into the PECVD chamber, power was applied from a 40 kHz AC generator to the plasma ion source in the chamber maintained at a vacuum of 1 to 20 mtorr, and titanium tetrachloride (PE) was used as a reaction precursor (Precusor). It was injected into the reactor to induce phase variation on the substrate to form a 34 nm thick TiO 2 film having a refractive index of 2.32.

第2積層体の積層
前記第1積層体上に、前記の第1積層体の製造方法として、反応前駆体(Precusor)としてTMDSOと雰囲気ガスOとをPECVD反応器に注入し、屈折率1.45を有した61nm厚さのSiO膜を有する第2積層体を形成した。
Lamination of Second Laminate As a method for producing the first laminate, TMDSO and atmospheric gas O 2 are injected into the PECVD reactor as a reaction precursor (Precusor) on the first laminate, and a refractive index of 1 A second laminate having a 61 nm thick SiO 2 film having a thickness of .45 was formed.

透明導電層の積層
第2積層体が成膜されたフィルムをスパッタチャンバに注入し、RFマグネトロンスパッタリング法で形成した。ターゲットは、一酸化スズ5重量%を含む95重量%酸化インジウム焼結体を用い、チャンバの初期真空度を5.0×10−5torrを維持してアルゴンガス80%及び酸素ガス20%分圧で注入して4.0×10−3torr雰囲気で屈折率2.05を有した25nm厚さの透明導電層としてのITO膜を積層して、透明導電性積層フィルムを製造した。
Lamination of Transparent Conductive Layer A film on which the second laminate was formed was injected into a sputtering chamber and formed by RF magnetron sputtering. The target was a 95 wt% indium oxide sintered body containing 5 wt% tin monoxide, and the initial vacuum of the chamber was maintained at 5.0 × 10 −5 torr, and argon gas was 80% and oxygen gas was 20%. A transparent conductive laminated film was manufactured by laminating an ITO film as a 25 nm-thick transparent conductive layer having a refractive index of 2.05 in a 4.0 × 10 −3 torr atmosphere under pressure.

<比較例1>
透明導電層の厚さを25nmに固定させ、中間層の構造による透過率と透過着色、高温・高湿環境による信頼性を調査するために、第1積層体であるTiOを形成しないことを除いては、実施例1と同様な方法で屈折率1.45と厚さ42nmのSiO膜を有する透明導電性積層フィルムを製作した。
<Comparative Example 1>
In order to fix the thickness of the transparent conductive layer to 25 nm, and to investigate the transmittance and transmission color due to the structure of the intermediate layer, and the reliability due to the high temperature and high humidity environment, TiO 2 that is the first laminate is not formed. Except for the above, a transparent conductive laminated film having an SiO 2 film having a refractive index of 1.45 and a thickness of 42 nm was produced in the same manner as in Example 1.

<比較例2>
透明導電層の厚さと抵抗の変化、屈折率の差による透過率と透過着色値の差を調査するために、第1積層体及び第2積層体を真空蒸着(Electron Beam Evaporation)工程を通じて形成した。
<Comparative example 2>
In order to investigate the thickness and resistance change of the transparent conductive layer, and the difference between the transmittance and the transmission color value due to the difference in refractive index, the first and second laminates were formed through a vacuum deposition (Electron Beam Evaporation) process. .

厚さが125μmであるPETフィルムを蒸着チャンバに注入し、電子ビームの坩堝に第1積層体(TiO)と第2積層体(SiO)との薬品をそれぞれ注入し、初期真空を6.0×10−6torrに維持して電子ビームを照射しながら酸素ガスを注入して無機酸化物の反応性を高めた。無機酸化物の光学薄膜の最適化された酸素分圧圧力である5.0×10−5torrで作業が行われるようにした。 A PET film having a thickness of 125 μm is injected into the vapor deposition chamber, the chemicals of the first laminate (TiO 2 ) and the second laminate (SiO 2 ) are respectively injected into the electron beam crucible, and an initial vacuum is set to 6. While maintaining an electron beam of 0 × 10 −6 torr, oxygen gas was injected to increase the reactivity of the inorganic oxide. The operation was carried out at 5.0 × 10 −5 torr, which is an optimized oxygen partial pressure of the inorganic oxide optical thin film.

2.16の屈折率を有する厚さ66nmのTiO膜と、1.43の屈折率を有する43nmのSiO膜を製造した。ITOの厚さと形成方法は、実施例1と同様な方法で透明導電性積層フィルムを製作した。 A 66 nm thick TiO 2 film having a refractive index of 2.16 and a 43 nm SiO 2 film having a refractive index of 1.43 were produced. A transparent conductive laminated film was manufactured in the same manner as in Example 1 with respect to the thickness and formation method of ITO.

本願の一実施例による前記実施例1によって製造された透明導電性積層フィルムの透過率、色座標値、面抵抗、及び信頼性などを測定し、これを比較例1及び比較例2と共にその結果を下記の[表1]に表した。   The transmittance, color coordinate value, sheet resistance, reliability, and the like of the transparent conductive laminated film manufactured according to Example 1 according to an example of the present application are measured. Is shown in the following [Table 1].

Figure 2012101544
Figure 2012101544

<平均透過率と色座標値の測定方法>
本願の一実施例による透明導電性積層フィルムの透過率を比較例と共に測定し、透過率は、日立社U4300分光光度計(spectrophotometer)を使用して測定し、CIE色座標測定法とD75ソースを使用してそれぞれ測定した。
<Measuring method of average transmittance and color coordinate value>
The transmittance of the transparent conductive laminated film according to one embodiment of the present application is measured together with a comparative example. The transmittance is measured using a Hitachi U4300 spectrophotometer, and the CIE color coordinate measurement method and the D75 source are measured. Each was measured using.

<表面抵抗の測定と抵抗変化率の測定方法>
4端子法を利用して測定し、常温に放置した透明導電性積層フィルムのITO面の表面抵抗Ro(ohm/cm)を測定した後、加熱チャンバに入れて60℃、95%湿度の雰囲気に240時間放置した後、ITO面抵抗Rを測定して、面抵抗の変化率(R/Ro)を求めて高温・高湿の信頼性を評価した。
<Measurement of surface resistance and resistance change rate>
After measuring the surface resistance Ro (ohm / cm 2 ) of the ITO surface of the transparent conductive laminated film that was measured using the 4-terminal method and left at room temperature, it was placed in a heating chamber and an atmosphere of 60 ° C. and 95% humidity After being allowed to stand for 240 hours, the ITO sheet resistance R was measured to determine the sheet resistance change rate (R / Ro), and the reliability of high temperature and high humidity was evaluated.

<薄膜の屈折率及び厚さの測定方法>
各層に形成されるTiOとSiO、ITO膜の屈折率と膜の厚さの測定は、位相変調方式の分光楕円計(Phase Modulated Spectroscopic Ellipsometer)を使用した。
<Method for measuring refractive index and thickness of thin film>
A phase modulation spectroscopic ellipsometer was used to measure the refractive index and thickness of the TiO 2 and SiO 2 and ITO films formed in each layer.

前記[表1]から確認できるように、透明積層体としてのITO面抵抗の高温・高湿に対する信頼性(R/Ro)は、実施例1で2層の中間層(第1積層体と第2積層体)をPECVDで形成した場合が、単層の中間層のみをPECVDで形成した比較例1と、2層の中間体を電子ビール蒸着工程で形成した比較例2より優れた特性を持っていることが分かる。これは、上記で言及したように、TiOとSiO層が外部の熱的衝撃に対してそれぞれ引張力と収縮力に対応することで、ITO膜の表面張力が安定化できることが分かる。 As can be confirmed from the above [Table 1], the reliability (R / Ro) of the ITO sheet resistance as a transparent laminate with respect to high temperature and high humidity (R / Ro) in Example 1 is two intermediate layers (first laminate and first laminate). 2 layer) is formed by PECVD, but has superior characteristics to Comparative Example 1 in which only a single intermediate layer is formed by PECVD and Comparative Example 2 in which a two-layer intermediate is formed by an electronic beer deposition process. I understand that As mentioned above, it can be seen that the surface tension of the ITO film can be stabilized by the TiO 2 and SiO 2 layers corresponding to the tensile force and the contraction force against the external thermal shock, respectively.

また、電子ビームで形成された中間層である第1積層体と第2積層体とは、低い密度と緩い膜構造によって熱と水分の衝撃に弱い結果を表しており、これは、本願による一実施例としての実施例1のPECVD工程を通じた高い密度と緻密な膜構造の第1積層体と第2積層体が熱と水分などの外部衝撃に対する信頼性特性が非常に優れていることが確認できる。   In addition, the first laminated body and the second laminated body, which are intermediate layers formed by an electron beam, show a result that is weak against heat and moisture shock due to a low density and a loose film structure. It is confirmed that the first laminate and the second laminate having a high density and a dense film structure through the PECVD process of Example 1 as an example have very excellent reliability characteristics against external impacts such as heat and moisture. it can.

図2aは、本願の実施例1による、透明導電性積層フィルムの反射率を測定したグラフであり、図2bは、比較例1による、透明導電性積層フィルムの反射率を測定したグラフである。   2a is a graph obtained by measuring the reflectance of the transparent conductive laminated film according to Example 1 of the present application, and FIG. 2b is a graph obtained by measuring the reflectance of the transparent conductive laminated film according to Comparative Example 1.

前記[表1]、図2a及び図2bをみると、比較例1では、本願の一実施例による実施例1と比べて、透過着色の数値において微細な差があるが、低い可視光線透過率値を表しているので、高い透過率値を要求する静電容量方式のタッチパネルに使用するには不適当であることが確認できる。   As can be seen from Table 1 and FIGS. 2a and 2b, in Comparative Example 1, although there is a fine difference in numerical values of transmission coloring compared to Example 1 according to one example of the present application, low visible light transmittance is low. Since the value is expressed, it can be confirmed that it is unsuitable for use in a capacitive touch panel that requires a high transmittance value.

比較例2では、本願の一実施例による実施例1と比べて、透過率値では同じ程度の値であるが、透過着色(黄色)を示すb*値が相対的に高いことが分かる。   In Comparative Example 2, it can be seen that the transmittance value is the same as that in Example 1 according to one example of the present application, but the b * value indicating transmission coloring (yellow) is relatively high.

さらに、図2a及び図2bを比べると、本願の一実施例による実施例1の場合が比較例3と比べて、可視光領域帯における反射率が低いことが確認でき、特に550nm波長帯で非常に低いことが確認でき、これを通じて本願の光透過性が高いことが確認できる。   Furthermore, comparing FIG. 2a and FIG. 2b, it can be confirmed that the reflectance in the visible light region band is lower in the case of Example 1 according to the embodiment of the present application than in Comparative Example 3, especially in the 550 nm wavelength band. It can be confirmed that the light transmittance of the present application is high.

透明導電層の厚さと抵抗の変化、屈折率の差による透過率と透過着色値の差を調査するために、TiO膜の厚さを61nm、SiO膜の厚さを25nmに積層し、透明導電層の厚さは40nmにしたことを除いては実施例1と同様に積層して透明導電性積層フィルムを製造した。 In order to investigate the difference in transmittance and transmission coloring value due to the change in thickness and resistance of the transparent conductive layer, the difference in refractive index, the thickness of the TiO 2 film was laminated to 61 nm, the thickness of the SiO 2 film was laminated to 25 nm, A transparent conductive laminated film was produced by laminating in the same manner as in Example 1 except that the thickness of the transparent conductive layer was 40 nm.

<比較例3>
透明導電層の厚さを実施例2のように固定させ、中間階の構造による透過率と透過着色の変化を調査するために、第2積層体であるSiOの厚さを24nmに変化させたことを除いては比較例1と同様な方法で透明導電性積層フィルムを製作した。
<Comparative Example 3>
In order to fix the thickness of the transparent conductive layer as in Example 2 and investigate the change in transmittance and transmission coloration due to the structure of the intermediate floor, the thickness of SiO 2 as the second laminate was changed to 24 nm. A transparent conductive laminated film was produced in the same manner as in Comparative Example 1 except that.

<比較例4>
前記比較例2において、第1積層体としてのTiO層と第2積層体としてのSiO層、透明導電層としてのITOの厚さをそれぞれ67nm、25nm、40nmであることを除いては比較例2と同様な方法で透明導電性フィルムを製作した。
<Comparative example 4>
In Comparative Example 2, the TiO 2 layer as the first laminate, the SiO 2 layer as the second laminate, and the ITO as the transparent conductive layer were compared with the thicknesses of 67 nm, 25 nm, and 40 nm, respectively. A transparent conductive film was produced in the same manner as in Example 2.

本願の一実施例による前記実施例2によって製造された透明導電性積層フィルムの透過率と色座標値を測定し、これを比較例3及び比較例4と共にその結果を下記の[表2]に表した。   The transmittance and color coordinate value of the transparent conductive laminated film manufactured according to Example 2 according to one example of the present application were measured, and the results are shown in the following [Table 2] together with Comparative Example 3 and Comparative Example 4. expressed.

Figure 2012101544
Figure 2012101544

図3aは、本願の実施例2による、透明導電性積層フィルムの反射率を測定したグラフであり、図3bは、比較例3による、透明導電性積層フィルムの反射率を測定したグラフである。   3a is a graph obtained by measuring the reflectance of the transparent conductive laminated film according to Example 2 of the present application, and FIG. 3b is a graph obtained by measuring the reflectance of the transparent conductive laminated film according to Comparative Example 3.

前記[表2]、図3a及び図3bをみると、比較例3では、本願の一実施例による実施例2と比べて、透過着色数値において微細な差があるが、低い可視光線透過率値を表しているので、高い透過率値を要求する静電容量方式のタッチパネルに使用するには不適当であることが確認できる。   [Table 2], FIG. 3a and FIG. 3b show that in Comparative Example 3, there is a fine difference in transmission coloring values compared to Example 2 according to one example of the present application, but a low visible light transmittance value. Therefore, it can be confirmed that it is unsuitable for use in a capacitive touch panel that requires a high transmittance value.

比較例4では、本願の一実施例による実施例1と比べて、透過率値では同じ程度の値であるが、透過着色(黄色)を示すb*値が相対的に高いことが分かる。   In Comparative Example 4, it is understood that the b * value indicating the transmission coloring (yellow) is relatively high, although the transmittance value is the same as that in Example 1 according to one example of the present application.

さらに、図3a及び図3bを比べると、本願の一実施例による実施例2の場合が比較例5と比べて、可視光領域帯における反射率が低いことが確認でき、特に550nm波長帯で非常に低いことが確認でき、これを通じて本願の光透過性が高いことが確認できる。   Further, comparing FIG. 3a and FIG. 3b, it can be confirmed that the reflectivity in the visible light region band is lower in the case of the second embodiment according to one embodiment of the present application than in the comparative example 5, particularly in the 550 nm wavelength band. It can be confirmed that the light transmittance of the present application is high.

透明導電層(ITO;屈折率20.5)の厚さが50nm以上である場合、光学的透明樹脂としてPET上に形成される第1積層体と第2積層体の場合、第2積層体の屈折率が第1積層体の屈折率より高いことが要求される。   When the thickness of the transparent conductive layer (ITO; refractive index 20.5) is 50 nm or more, in the case of the first laminate and the second laminate formed on the PET as an optically transparent resin, the second laminate The refractive index is required to be higher than the refractive index of the first laminate.

PET上に1.45の屈折率を有するSiO層を282nmの厚さに積層して第1積層体を製作し、前記第1積層体上に屈折率2.32を有するTiOを57nmに積層し、透明導電層の厚さを70nmにして積層し、透明導電性積層フィルムを製造した。 A first laminated body is manufactured by laminating a SiO 2 layer having a refractive index of 1.45 on PET to a thickness of 282 nm, and TiO 2 having a refractive index of 2.32 is formed on the first laminated body to 57 nm. Laminated and laminated with the thickness of the transparent conductive layer being 70 nm to produce a transparent conductive laminated film.

<比較例5>
透明導電層の厚さを実施例3と同様に固定させ、中間層の構造による透過率と透過着色の変化を調査するために、第2積層体であるSiOの厚さを55nmに変化させたことを除いては比較例1と同様な方法で透明導電性積層フィルムを製作した。
<Comparative Example 5>
In order to fix the thickness of the transparent conductive layer in the same manner as in Example 3 and investigate the change in transmittance and transmission coloration due to the structure of the intermediate layer, the thickness of SiO 2 as the second laminate was changed to 55 nm. A transparent conductive laminated film was produced in the same manner as in Comparative Example 1 except that.

<比較例6>
比較例2において、第1積層体であるSiO層、第2積層体であるTiO層及び透明導電層としてのITO層の厚さがそれぞれ288nm、64nm、70nmであることを除いては比較例2と同様な方法で透明導電性フィルムを製作した。
<Comparative Example 6>
In Comparative Example 2, a comparison was made except that the thicknesses of the SiO 2 layer as the first laminate, the TiO 2 layer as the second laminate, and the ITO layer as the transparent conductive layer were 288 nm, 64 nm, and 70 nm, respectively. A transparent conductive film was produced in the same manner as in Example 2.

本願の一実施例による前記実施例3によって製造された透明導電性積層フィルムの透過率と色座標値を測定し、これを比較例5及び比較例6と共にその結果を下記の[表3]に表した。   The transmittance and color coordinate value of the transparent conductive laminated film manufactured according to Example 3 according to an example of the present application were measured, and the results are shown in the following [Table 3] together with Comparative Example 5 and Comparative Example 6. expressed.

Figure 2012101544
Figure 2012101544

図4aは、本願の実施例2による、透明導電性積層フィルムの反射率を測定したグラフであり、図4bは、比較例5による、透明導電性積層フィルムの反射率を測定したグラフである。   4a is a graph obtained by measuring the reflectance of the transparent conductive laminated film according to Example 2 of the present application, and FIG. 4b is a graph obtained by measuring the reflectance of the transparent conductive laminated film according to Comparative Example 5.

前記[表3]、図4a及び図4bによると、比較例5では、本願の一実施例による実施例3と比べて、透過着色数値において微細な差があるが、低い可視光線透過率値を表しているので、高い透過率値を要求する静電容量方式のタッチパネルに使用するには不適当であることが確認できる。   According to [Table 3] and FIGS. 4a and 4b, in Comparative Example 5, although there is a fine difference in transmission coloring values compared to Example 3 according to one example of the present application, a low visible light transmittance value is obtained. Therefore, it can be confirmed that it is unsuitable for use in a capacitive touch panel that requires a high transmittance value.

比較例6では、本願の一実施例による実施例1と比べて、透過率値では同じ程度の値であるが、透過着色(黄色)を示すb*値が相対的に高いことが分かる。   In the comparative example 6, it can be seen that the b * value indicating the transmission coloring (yellow) is relatively high, although the transmittance value is the same as that of the embodiment 1 according to the embodiment of the present application.

さらに、図4a及び図4bを比べると、本願の一実施例による実施例3の場合が比較例5と比べて可視光領域帯における反射率が低いことが確認でき、特に550nm波長帯で非常に低いことが確認でき、これを通じて本願の光透過性が高いことが確認できる。   Furthermore, comparing FIG. 4a and FIG. 4b, it can be confirmed that the reflectivity in the visible light region band is lower in the case of Example 3 according to the embodiment of the present application than in Comparative Example 5, particularly in the 550 nm wavelength band. It can confirm that it is low, and it can confirm that the light transmittance of this application is high through this.

本願による一実施例としての実施例1〜実施例3の結果は、本願が高い透過率の確保と低い透過着色、及び高温・高湿の外部環境に対する信頼性特性に非常に優れていることを表す。   The results of Examples 1 to 3 as one example according to the present application show that the present application is very excellent in securing high transmittance, low transmission coloring, and reliability characteristics with respect to the external environment of high temperature and high humidity. To express.

以上、具現例及び実施例を挙げて本発明を詳しく説明したが、本発明は、前記具現例及び実施例に限らず、様々な形態で変形されることができ、本発明の技術的思想内で当分野で通常の知識を持った者によって様々な多くの変形が可能であることが明らかである。   The present invention has been described in detail with reference to the embodiments and examples. However, the present invention is not limited to the embodiments and examples, and can be modified in various forms. It is apparent that many variations are possible by those having ordinary knowledge in the field.

10:光学的透明基材
20:第1積層体
30:第2積層体
40:透明導電層
100:透明導電性積層フィルム
DESCRIPTION OF SYMBOLS 10: Optically transparent base material 20: 1st laminated body 30: 2nd laminated body 40: Transparent conductive layer 100: Transparent conductive laminated film

Claims (12)

光学的透明基材;
プラズマ−強化化学気相蒸着法(PECVD)を利用して前記光学的透明基材上に10nm〜300nmの厚さに積層され、無機酸化物を含み、屈折率1.3〜2.5を有する第1積層体と、
プラズマ−強化化学気相蒸着法を利用して前記第1積層体上に10nm〜300nmの厚さに積層され、前記第1積層体に含まれた無機酸化物と異なる無機酸化物を含む第2積層体と、
前記第2積層体上に10〜100nmの厚さに積層された透明導電層と
を含む透明導電性積層フィルム。
An optically transparent substrate;
The plasma-enhanced chemical vapor deposition (PECVD) is used to deposit a thickness of 10 nm to 300 nm on the optically transparent substrate, includes an inorganic oxide, and has a refractive index of 1.3 to 2.5. A first laminate;
A second layer containing an inorganic oxide different from the inorganic oxide included in the first stacked body and stacked to a thickness of 10 nm to 300 nm on the first stacked body using a plasma-enhanced chemical vapor deposition method. A laminate,
A transparent conductive laminated film comprising: a transparent conductive layer laminated to a thickness of 10 to 100 nm on the second laminate.
前記透明導電層の厚さが50nm以上である場合、前記第2積層体の屈折率は、前記第1積層体の屈折率より大きい屈折率を有する請求項1に記載の透明導電性積層フィルム。   2. The transparent conductive laminated film according to claim 1, wherein when the thickness of the transparent conductive layer is 50 nm or more, the refractive index of the second laminated body is higher than the refractive index of the first laminated body. 前記第1積層体及び第2積層体の総厚さは、50〜350nmである請求項1または2に記載の透明導電性積層フィルム。   The transparent conductive laminated film according to claim 1 or 2, wherein a total thickness of the first laminated body and the second laminated body is 50 to 350 nm. 前記透明導電層は、酸化インジウムスズ(ITO)、酸化アンチモンスズ(ATO)、及び酸化インジウム亜鉛(IZO)からなる群から選択される1種以上を含む請求項1から3の何れか1項に記載の透明導電性積層フィルム。   4. The method according to claim 1, wherein the transparent conductive layer includes at least one selected from the group consisting of indium tin oxide (ITO), antimony tin oxide (ATO), and indium zinc oxide (IZO). 5. The transparent conductive laminated film as described. 前記光学的透明基材は、ガラスまたはプラスチックフィルムを含み、前記光学的透明基材の厚さが25um〜350umである請求項1から4の何れか1項に記載の透明導電性積層フィルム。   The transparent conductive laminated film according to any one of claims 1 to 4, wherein the optically transparent substrate includes glass or a plastic film, and the thickness of the optically transparent substrate is 25 um to 350 um. 前記第2積層体の色差計のL、a*、b*値で透過色座標値が−7<b*<2であることを含む請求項1から5の何れか1項に記載の透明導電性積層フィルム。   6. The transparent conductive material according to claim 1, wherein the color coordinate value of the color difference meter of the second laminated body is -7 <b * <2 in terms of L, a *, b * values. Laminated film. 前記光学的透明基材は、一面または両面に透明ハードコート膜を含む請求項1から6の何れか1項に記載の透明導電性積層フィルム。   The transparent conductive laminated film according to claim 1, wherein the optically transparent substrate includes a transparent hard coat film on one surface or both surfaces. 光学的透明基材上に、無機酸化物を含み、屈折率が1.3〜2.5である第1積層体を10nm〜300nmの厚さにプラズマ−強化化学気相蒸着法を利用して積層し、
前記第1積層体上に、前記第1積層体に含まれた無機酸化物と異なる無機酸化物を含む第2積層体を10nm〜300nmの厚さにプラズマ−強化化学気相蒸着法を利用して積層し、
前記第2積層体上に10〜100nmの厚さに透明導電層を積層する
ことを含む透明導電性積層フィルムの製造方法。
Using a plasma-enhanced chemical vapor deposition method, a first laminate including an inorganic oxide and having a refractive index of 1.3 to 2.5 is formed on an optically transparent substrate to a thickness of 10 to 300 nm. Laminated,
A plasma-enhanced chemical vapor deposition method is applied to a second stacked body including an inorganic oxide different from the inorganic oxide included in the first stacked body to a thickness of 10 nm to 300 nm on the first stacked body. And laminated
A method for producing a transparent conductive laminated film, comprising: laminating a transparent conductive layer on the second laminate to a thickness of 10 to 100 nm.
前記プラズマ−強化化学気相蒸着法は、ロールツーロール方式のプラズマ−強化化学気相蒸着法を含む請求項8に記載の透明導電性積層フィルムの製造方法。   The method for producing a transparent conductive laminated film according to claim 8, wherein the plasma-enhanced chemical vapor deposition method includes a roll-to-roll plasma-enhanced chemical vapor deposition method. 前記透明導電層を積層することは、蒸着法、イオンプレーティング法、スパッタリング法、化学蒸着法及びプレーティング法からなる郡から選択される1つ以上の方法及びロールツーロール工程を利用して前記透明導電層を連続形成することを含む請求項8または9に記載の透明導電性積層フィルムの製造方法。   Laminating the transparent conductive layer is performed by using one or more methods selected from a group consisting of a vapor deposition method, an ion plating method, a sputtering method, a chemical vapor deposition method, and a plating method, and a roll-to-roll process. The manufacturing method of the transparent conductive laminated film of Claim 8 or 9 including forming a transparent conductive layer continuously. 前記透明導電層を積層した後に120℃〜150℃で熱処理して前記透明導電層を結晶化させることをさらに含む請求項8から10の何れか1項に記載の透明導電性積層フィルムの製造方法。   The method for producing a transparent conductive laminated film according to any one of claims 8 to 10, further comprising crystallizing the transparent conductive layer by laminating the transparent conductive layer at 120 ° C to 150 ° C. . 請求項1から7のいずれか一項に記載の透明導電性積層フィルムを含むタッチパネル。   The touch panel containing the transparent conductive laminated film as described in any one of Claim 1 to 7.
JP2011247076A 2010-11-12 2011-11-11 Transparent conductive laminated film, method for producing the same, and touch panel including the same Expired - Fee Related JP5692859B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100112932A KR101045026B1 (en) 2010-11-12 2010-11-12 Transparent conductive multilayered film, producing method of the same, and touch panel containing the same
KR10-2010-0112932 2010-11-12

Publications (2)

Publication Number Publication Date
JP2012101544A true JP2012101544A (en) 2012-05-31
JP5692859B2 JP5692859B2 (en) 2015-04-01

Family

ID=44406218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011247076A Expired - Fee Related JP5692859B2 (en) 2010-11-12 2011-11-11 Transparent conductive laminated film, method for producing the same, and touch panel including the same

Country Status (4)

Country Link
JP (1) JP5692859B2 (en)
KR (1) KR101045026B1 (en)
CN (1) CN102467992B (en)
TW (1) TWI486973B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141318A1 (en) * 2012-03-22 2013-09-26 リンテック株式会社 Transparent conductive laminate and electronic device or module
WO2015152481A1 (en) * 2014-04-02 2015-10-08 (주)비엠씨 High-hardness thin film-type transparent sheet glass, manufacturing method therefor, high-hardness thin film-type transparent sheet conductive glass and touch panel including same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5190854B2 (en) * 2011-05-10 2013-04-24 株式会社麗光 Transparent conductive film, transparent conductive laminate, and touch panel
CN103474548B (en) * 2012-06-07 2016-12-07 清华大学 Semiconductor structure
CN103713761A (en) * 2012-10-09 2014-04-09 联胜(中国)科技有限公司 Touchpad and touch display device
KR101385952B1 (en) 2013-04-29 2014-04-16 주식회사 옵트론텍 Transparent electrode structure for touch screen applying for a vehicle
KR101385951B1 (en) 2013-04-29 2014-04-16 주식회사 옵트론텍 Transparent electrode structure for touch screen using electron beam evaporation and touch screen panel comprising the same
KR101523747B1 (en) * 2013-06-20 2015-05-28 주식회사 피치 Thin film type hard coating film and method for manufacturing the same
KR101644038B1 (en) * 2014-04-28 2016-07-29 주식회사 피치 Transparent conductive film, method for manufacturing the same and touch panel containing the same
KR20160020696A (en) 2014-08-14 2016-02-24 (주) 유니플라텍 Transparent conductive film where multi-layer thin film is coated
CN105677097A (en) * 2016-01-04 2016-06-15 京东方科技集团股份有限公司 Touch screen and manufacturing method thereof
WO2018130289A1 (en) * 2017-01-12 2018-07-19 Applied Materials, Inc. Hardcoat layer system and method for manufacturing a hardcoat layer system in a continuous roll-to-roll process
CN108417313A (en) * 2018-03-14 2018-08-17 中南大学 A kind of flexibility roll-to-roll wet etching of indium tin oxide transparent conducting film and patterned method
JP7371387B2 (en) * 2018-08-20 2023-10-31 東ソー株式会社 Zirconia sintered body and its manufacturing method
JP7374589B2 (en) * 2019-02-06 2023-11-07 日東電工株式会社 Temperature sensor film, conductive film and manufacturing method thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293118A (en) * 2002-04-01 2003-10-15 Nitto Denko Corp Method for manufacturing transparent conductive laminate
JP2004152727A (en) * 2002-11-01 2004-05-27 Toyo Metallizing Co Ltd Transparent conductive film
JP2005097484A (en) * 2003-09-26 2005-04-14 Sumitomo Chemical Co Ltd Extrusion molded product of ethylene polymer resin, and ethylene polymer resin
WO2005097484A1 (en) * 2004-03-31 2005-10-20 Konica Minolta Holdings, Inc. Transparent conductive film, method for producing transparent conductive film and organic electroluminescent device
JP2006184849A (en) * 2004-11-30 2006-07-13 Toppan Printing Co Ltd Antireflection stack, optically functional filter, optical display device and optical article
JP2007023304A (en) * 2005-07-12 2007-02-01 Konica Minolta Holdings Inc Manufacturing method of gas barrier property film with transparent conductive film, and manufacturing method of organic electroluminescence element
JP2007200823A (en) * 2006-01-30 2007-08-09 Nitto Denko Corp Crystalline transparent conductive thin film, manufacturing method therefor, transparent conductive film, and touch panel
JP2009032548A (en) * 2007-07-27 2009-02-12 Toppan Printing Co Ltd Transparent conductive membrane, its manufacturing method, and touch panel using transparent conductive membrane
JP2009092913A (en) * 2007-10-09 2009-04-30 Toppan Printing Co Ltd Optical thin film laminate
JP2010015861A (en) * 2008-07-04 2010-01-21 Toyobo Co Ltd Transparent conductive laminate film
JP2010184478A (en) * 2009-02-13 2010-08-26 Toppan Printing Co Ltd Multilayer film and method for manufacturing the same
JP2010184477A (en) * 2009-02-13 2010-08-26 Toppan Printing Co Ltd Laminated film and method for manufacturing the same
JP4640535B1 (en) * 2009-10-19 2011-03-02 東洋紡績株式会社 Transparent conductive film and touch panel using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4799745A (en) * 1986-06-30 1989-01-24 Southwall Technologies, Inc. Heat reflecting composite films and glazing products containing the same
TWI290328B (en) * 2002-05-23 2007-11-21 Nof Corp Transparent conductive laminated film and touch panel
JP4419146B2 (en) * 2005-06-13 2010-02-24 日東電工株式会社 Transparent conductive laminate
KR100724336B1 (en) * 2005-11-03 2007-06-04 제일모직주식회사 Composition for conducting film of organic opto-electronic device comprising self-doped conducting polymer graft copolymer and organic opto-electronic device using the same
TWI314760B (en) * 2006-12-29 2009-09-11 Univ Southern Taiwan Tech Method for manufacturing transparent conductive thin films
JP4966924B2 (en) * 2008-07-16 2012-07-04 日東電工株式会社 Transparent conductive film, transparent conductive laminate and touch panel, and method for producing transparent conductive film

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293118A (en) * 2002-04-01 2003-10-15 Nitto Denko Corp Method for manufacturing transparent conductive laminate
JP2004152727A (en) * 2002-11-01 2004-05-27 Toyo Metallizing Co Ltd Transparent conductive film
JP2005097484A (en) * 2003-09-26 2005-04-14 Sumitomo Chemical Co Ltd Extrusion molded product of ethylene polymer resin, and ethylene polymer resin
WO2005097484A1 (en) * 2004-03-31 2005-10-20 Konica Minolta Holdings, Inc. Transparent conductive film, method for producing transparent conductive film and organic electroluminescent device
JP2006184849A (en) * 2004-11-30 2006-07-13 Toppan Printing Co Ltd Antireflection stack, optically functional filter, optical display device and optical article
JP2007023304A (en) * 2005-07-12 2007-02-01 Konica Minolta Holdings Inc Manufacturing method of gas barrier property film with transparent conductive film, and manufacturing method of organic electroluminescence element
JP2007200823A (en) * 2006-01-30 2007-08-09 Nitto Denko Corp Crystalline transparent conductive thin film, manufacturing method therefor, transparent conductive film, and touch panel
JP2009032548A (en) * 2007-07-27 2009-02-12 Toppan Printing Co Ltd Transparent conductive membrane, its manufacturing method, and touch panel using transparent conductive membrane
JP2009092913A (en) * 2007-10-09 2009-04-30 Toppan Printing Co Ltd Optical thin film laminate
JP2010015861A (en) * 2008-07-04 2010-01-21 Toyobo Co Ltd Transparent conductive laminate film
JP2010184478A (en) * 2009-02-13 2010-08-26 Toppan Printing Co Ltd Multilayer film and method for manufacturing the same
JP2010184477A (en) * 2009-02-13 2010-08-26 Toppan Printing Co Ltd Laminated film and method for manufacturing the same
JP4640535B1 (en) * 2009-10-19 2011-03-02 東洋紡績株式会社 Transparent conductive film and touch panel using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141318A1 (en) * 2012-03-22 2013-09-26 リンテック株式会社 Transparent conductive laminate and electronic device or module
US9736929B2 (en) 2012-03-22 2017-08-15 Lintec Corporation Transparent conductive laminate and electronic device or module
WO2015152481A1 (en) * 2014-04-02 2015-10-08 (주)비엠씨 High-hardness thin film-type transparent sheet glass, manufacturing method therefor, high-hardness thin film-type transparent sheet conductive glass and touch panel including same

Also Published As

Publication number Publication date
JP5692859B2 (en) 2015-04-01
CN102467992A (en) 2012-05-23
TW201220328A (en) 2012-05-16
CN102467992B (en) 2016-03-02
TWI486973B (en) 2015-06-01
KR101045026B1 (en) 2011-06-30

Similar Documents

Publication Publication Date Title
JP5692859B2 (en) Transparent conductive laminated film, method for producing the same, and touch panel including the same
JP6307062B2 (en) Transparent body used in touch panel and manufacturing method and apparatus thereof
JP6095765B2 (en) Transparent body used in touch screen panel manufacturing method and system
JP5585143B2 (en) Transparent conductive laminate, method for producing the same, and touch panel
JP6122253B2 (en) Capacitive touch panel substrate, manufacturing method and manufacturing apparatus thereof
JP5549216B2 (en) Transparent conductive laminate, method for producing the same, and touch panel
TWI653670B (en) Transparent body with single substrate and anti-refelection and/or anti-fingerprint coating and method of manufacturing thereof
JP5382820B2 (en) Optical adjustment film, transparent conductive film obtained using the same, transparent conductive laminate, and touch panel
JP2015518596A5 (en)
Hong et al. Index-matched indium tin oxide electrodes for capacitive touch screen panel applications
JP2013532868A (en) Touch panel
JP5297125B2 (en) Gas barrier film with transparent conductive film and touch panel using the same
JP4349794B2 (en) Method for producing conductive transparent substrate with multilayer antireflection film
JP2011175900A (en) Transparent conductive laminate and method of manufacturing the same
WO2014167835A1 (en) Translucent conductor
JP6319302B2 (en) Transparent conductor and method for producing the same
TW201328878A (en) Double-sided transparent conductive film with excellent visibility and method of manufacturing the same
CN102942308A (en) Layered silicon nitride SiNxOy film forming method applied to transparent material
CN109545443A (en) Transparent conductive film and touch screen
JP5192792B2 (en) Transparent conductive film and manufacturing method thereof
KR101398385B1 (en) Conductive film, method for manufacturing the same and touch panel having the same
KR101270753B1 (en) Functionality thin film including flexible plate and method for laminating the same
JP2006024011A (en) Touch panel
JP2014186279A (en) Light-transmitting conductive film and touch panel having the same
JPWO2014188683A1 (en) Electrode substrate for touch panel, touch panel including the same, and display panel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150130

R150 Certificate of patent or registration of utility model

Ref document number: 5692859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees