JP2012062528A - Method for pretreatment of plating - Google Patents
Method for pretreatment of plating Download PDFInfo
- Publication number
- JP2012062528A JP2012062528A JP2010207716A JP2010207716A JP2012062528A JP 2012062528 A JP2012062528 A JP 2012062528A JP 2010207716 A JP2010207716 A JP 2010207716A JP 2010207716 A JP2010207716 A JP 2010207716A JP 2012062528 A JP2012062528 A JP 2012062528A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- plating
- pretreatment
- concentration
- ammonium fluoride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
Description
本発明は、シリンダブロックなどのアルミニウム合金製部材の表面のメッキ前処理方法に関する。 The present invention relates to a pretreatment method for plating a surface of an aluminum alloy member such as a cylinder block.
アルミニウム合金製シリンダブロックのピストン摺動面にはNi−SiCメッキが施される。このメッキ前処理として亜鉛下地被膜が一般に形成される。この亜鉛下地被膜を形成するには、図2に示すように、シリンダブロック表面に付着している油膜を脱脂処理して除去し、次いで、シリンダブロック表面のAl酸化膜、加工流動層或いは含油相などの変質層をアルカリ溶液でエッチングして除去し、更にシリンダブロック表面に残った合金成分を酸洗で除去し、この後、粗い亜鉛皮膜を形成し、この亜鉛皮膜を硝酸などで溶解させて亜鉛を含む不動態被膜とし、この不動態被膜をZn−O−Alからなる緻密な下地膜に置換するダブル亜鉛置換法が知られている。
上記の方法は、アルカリエッチング、酸洗、亜鉛皮膜置換、酸処理、亜鉛皮膜置換と工程数が多く、且つ各工程間に水洗工程が付加され、効率的ではない。
Ni-SiC plating is applied to the piston sliding surface of the aluminum alloy cylinder block. As this pretreatment for plating, a zinc undercoat is generally formed. In order to form this zinc undercoat, as shown in FIG. 2, the oil film adhering to the cylinder block surface is removed by degreasing, and then the Al oxide film, processed fluidized layer or oil-containing phase on the cylinder block surface is removed. Etch the denatured layer with an alkaline solution and remove the alloy components remaining on the cylinder block surface by pickling. Then, form a rough zinc film and dissolve this zinc film with nitric acid. There is known a double zinc replacement method in which a passive film containing zinc is used, and this passive film is replaced with a dense base film made of Zn—O—Al.
The above methods are not efficient because alkali etching, pickling, zinc film replacement, acid treatment, zinc film replacement and many processes are added, and a water washing process is added between the processes.
特許文献1には、上記のエッチングと酸洗に用いる処理液として、硝酸と硫酸と酸性フッ化アンモン(酸性フッ化アンモニウム)を混合した酸性エッチング液を用いることで、2工程を1工程で済ます提案がなされている。 In Patent Document 1, as the processing solution used for the above etching and pickling, an acidic etching solution in which nitric acid, sulfuric acid, and ammonium ammonium fluoride (acidic ammonium fluoride) are mixed can be used in two steps in one step. Proposals have been made.
特許文献2には、銀または銀合金からなる金属膜とITOなどの透明導電膜とを同時にエッチングする処理液として、銅イオン、硝酸及び酸性フッ化アンモニウムなどのフッ素化合物を含有する処理液が提案されている。 Patent Document 2 proposes a treatment liquid containing a fluorine compound such as copper ion, nitric acid and acidic ammonium fluoride as a treatment liquid for simultaneously etching a metal film made of silver or a silver alloy and a transparent conductive film such as ITO. Has been.
特許文献1に開示される酸性エッチング液は硝酸と硫酸を混合しており、酸性フッ化アンモニウムが含まれていても、酸化力が過度に強くアルミニウム合金表面に不動態膜が形成されエッチングが進行しにくくなる。 The acidic etching solution disclosed in Patent Document 1 is a mixture of nitric acid and sulfuric acid, and even when acidic ammonium fluoride is contained, the oxidizing power is excessively strong and a passive film is formed on the surface of the aluminum alloy and etching proceeds. It becomes difficult to do.
特許文献2に開示されるエッチング液は、硝酸と酸性フッ化アンモニウムを含んでいるが、アルミニウム合金の表面に前記同様に不動態膜を形成してしまう。 The etching solution disclosed in Patent Document 2 contains nitric acid and acidic ammonium fluoride, but forms a passive film on the surface of the aluminum alloy as described above.
上記課題を解決すべく本願発明は、アルミニウム合金表面を脱脂した後、表面の変質層の除去とアルミニウム合金成分の除去を行い、この後表面に亜鉛下地皮膜を形成するようにしたメッキ前処理方法において、前記変質層の除去とアルミニウム合金成分の除去の処理液として、濃度が50g/l(リットル)以上100g/l以下の酸性フッ化アンモニウム(NH4F)と、濃度が10g/l以上300g/l以下の塩化第2鉄(FeCl3)との混合液を用いることで、1工程で前記変質層の除去とアルミニウム合金の除去を行うようにした。 In order to solve the above problems, the present invention provides a plating pretreatment method in which after degreasing the surface of an aluminum alloy, the altered layer on the surface is removed and the aluminum alloy component is removed, and then a zinc undercoat is formed on the surface. As a treatment liquid for removing the deteriorated layer and removing the aluminum alloy component, acidic ammonium fluoride (NH 4 F) having a concentration of 50 g / l (liter) to 100 g / l and a concentration of 10 g / l to 300 g are used. By using a mixed solution with ferric chloride (FeCl 3 ) of / l or less, the deteriorated layer and the aluminum alloy are removed in one step.
前記混合液を構成する酸性フッ化アンモニウム溶液と塩化第2鉄溶液の混合割合(vol%)は、酸性フッ化アンモニウム溶液100部に対し塩化第2鉄溶液を50〜200部添加するのが好ましい。 The mixing ratio (vol%) of the acidic ammonium fluoride solution and the ferric chloride solution constituting the mixed solution is preferably 50 to 200 parts of the ferric chloride solution added to 100 parts of the acidic ammonium fluoride solution. .
本発明によれば、従来アルカリエッチング液による変質層除去とアルミニウム合金成分の除去を2つの工程に分けて行っていたが、これを1工程で行うことが可能になった。その結果、メッキ前処理のサイクルタイムが短縮され効率が大幅に向上する。また、工程数削減に伴って専用及び汎用設備の投資削減ができる。 According to the present invention, the removal of the deteriorated layer and the removal of the aluminum alloy component by the alkali etching solution are conventionally performed in two steps, but this can be performed in one step. As a result, the cycle time of the plating pretreatment is shortened and the efficiency is greatly improved. In addition, investment in dedicated and general-purpose facilities can be reduced with the reduction in the number of processes.
以下に本発明の実施の形態を添付図面に基づいて説明する。図1に示すように本実施例にあっては、変質層の除去とアルミニウム合金成分の除去(スマットの溶解も含む)を1工程で行うとともに、亜鉛下地皮膜の形成も1工程で行うようにしている。 Embodiments of the present invention will be described below with reference to the accompanying drawings. As shown in FIG. 1, in this embodiment, the removal of the deteriorated layer and the removal of the aluminum alloy component (including dissolution of the smut) are performed in one step, and the formation of the zinc undercoat is also performed in one step. ing.
またこの実施例にあっては、前記亜鉛下地皮膜の形成は同一溶液内での電解、即ち、粗い亜鉛皮膜を陽極電解し、電解で発生した活性な酸素によって、緻密なZn−O−Al膜を形成するようにしている。 In this embodiment, the formation of the zinc undercoat is performed by electrolysis in the same solution, that is, by anodic electrolysis of a rough zinc coat, and by the active oxygen generated by the electrolysis, a dense Zn-O-Al film is formed. To form.
変質層の除去とアルミニウム合金成分の除去を1工程で行う処理液としては、塩化第2鉄(塩化鉄[III])と酸性フッ化アンモニウムに着目し、これらを組み合わせて好適な範囲を検証した。 As a treatment liquid that removes the altered layer and the aluminum alloy component in one step, we focused on ferric chloride (iron chloride [III]) and ammonium acid fluoride, and combined them to verify a suitable range. .
好適か否かの判断はNi−SiCメッキ膜の密着性を基準として判断した。また、検証は図3に示すJIS−H8504−11(押出し試験方法)によって行った。
押出し試験方法は、先ずめっき面に対し裏側から底厚1.5mmを残しφ6.5mmの平底の穴をあけ、次いで、φ25mmの穴があいた受台の上に試料を乗せ、φ6.3mmのピンを前記平底の穴に刺し込み、打ち抜く。
打ち抜かれた破片部のめっきの状態変化を調べ密着性◎○×の判定を行った。
◎はめっきの剥がれが全く観られない、○は一部にめっきの剥がれが観られる、×は全周にめっきの剥がれが観られる、を表す。
以下の表に検証の結果を示す。
The determination as to whether or not it was suitable was made based on the adhesion of the Ni—SiC plating film. Moreover, verification was performed by JIS-H8504-11 (extrusion test method) shown in FIG.
For the extrusion test method, a flat bottom hole with a diameter of φ6.5 mm was left from the back side with respect to the plated surface, and then a sample was placed on a cradle with a hole with a diameter of φ25 mm, and a pin with a diameter of φ6.3 mm Is inserted into the hole in the flat bottom and punched out.
A change in the state of plating on the punched piece part was examined, and adhesion ◎ ○ × was determined.
◎ indicates that no peeling of the plating is observed, ○ indicates that peeling of the plating is partially observed, and × indicates that peeling of the plating is observed on the entire circumference.
The following table shows the results of verification.
上記した(表1)〜(表5)から明らかなように、酸性フッ化アンモニウムと塩化第2鉄との混合液を使用する場合、酸性フッ化アンモニウムについては50〜100g/lの濃度とし、塩化第2鉄については10〜300g/lの濃度とするのが好ましく、塩化第2鉄については50〜200g/lの濃度とするのが更に好ましい。 As apparent from the above (Table 1) to (Table 5), when using a mixed solution of acidic ammonium fluoride and ferric chloride, the concentration of acidic ammonium fluoride is set to 50 to 100 g / l, The ferric chloride concentration is preferably 10 to 300 g / l, and the ferric chloride concentration is more preferably 50 to 200 g / l.
但し、上記の範囲が検証できた混合割合は、酸性フッ化アンモニウム溶液100部に対し、塩化第2鉄溶液を50〜200部混合した範囲である。
尚、検証において液温については70℃、処理時間は60秒としたが、液温については50℃まで下げ、処理時間については30まで短縮しても同様の結果が得られた。
However, the mixing ratio with which the above range could be verified is a range in which 50 to 200 parts of ferric chloride solution was mixed with 100 parts of acidic ammonium fluoride solution.
In the verification, the liquid temperature was set to 70 ° C. and the processing time was set to 60 seconds. However, the same result was obtained even when the liquid temperature was reduced to 50 ° C. and the processing time was reduced to 30.
本発明に係るメッキ前処理工程は、例えばエンジンのシリンダブロックなどのアルミニウム合金製部材に施すメッキの前処理として利用することができる。 The plating pretreatment process according to the present invention can be used as a pretreatment for plating applied to an aluminum alloy member such as an engine cylinder block.
Claims (1)
After degreasing the surface of the aluminum alloy, removal of the deteriorated layer on the surface and removal of the aluminum alloy component are performed, and thereafter, the removal of the deteriorated layer and the aluminum alloy are performed in the pretreatment method for forming a zinc undercoat on the surface. As a treatment liquid for removing components, acidic ammonium fluoride (NH 4 F · HF) having a concentration of 50 g / l (liter) to 100 g / l and ferric chloride having a concentration of 10 g / l to 300 g / l A plating pretreatment method characterized in that the deteriorated layer and the aluminum alloy are removed in one step by using a mixed solution with (FeCl 3 ).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010207716A JP2012062528A (en) | 2010-09-16 | 2010-09-16 | Method for pretreatment of plating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010207716A JP2012062528A (en) | 2010-09-16 | 2010-09-16 | Method for pretreatment of plating |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012062528A true JP2012062528A (en) | 2012-03-29 |
Family
ID=46058540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010207716A Pending JP2012062528A (en) | 2010-09-16 | 2010-09-16 | Method for pretreatment of plating |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012062528A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4293136A1 (en) | 2022-06-16 | 2023-12-20 | C. Uyemura & Co., Ltd. | Etchant and method of surface treatment of aluminum or aluminum alloy |
-
2010
- 2010-09-16 JP JP2010207716A patent/JP2012062528A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4293136A1 (en) | 2022-06-16 | 2023-12-20 | C. Uyemura & Co., Ltd. | Etchant and method of surface treatment of aluminum or aluminum alloy |
KR20230173025A (en) | 2022-06-16 | 2023-12-26 | 우에무라 고교 가부시키가이샤 | Etching solution, method for surface treatment of aluminum or aluminum alloy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2337374A1 (en) | Composition for desmutting aluminum | |
US20110253554A1 (en) | Electrolyte for removing titanium-containing coatings and removing method using same | |
EP2573214A1 (en) | Protection of magnesium alloys by aluminum plating from ionic liquids | |
CN106884191B (en) | Electrolyte for micro-arc oxidation, micro-arc oxidation method and application | |
CN103590043A (en) | Aluminum alloy surface pretreatment method | |
JP2011106024A (en) | Method for surface treatment of magnesium or magnesium alloy by anodization | |
US20110253556A1 (en) | Solution system for electrolytically removing titanium carbide coating and method for same | |
JP2008095192A (en) | Electropolishing process for niobium and tantalum | |
US20140034514A1 (en) | Electrolyte for removing metal-carbide/nitride coatings or metal-carbide-nitride coatings and removing method using same | |
JP2011137206A (en) | Plating pretreatment method of aluminum alloy | |
JPWO2014203919A1 (en) | Manufacturing method of magnesium alloy products | |
CN103966616B (en) | A kind of chemical deburring technique for spring surface | |
JP2011162850A (en) | Plating pretreatment method for aluminum alloy | |
JP2012062528A (en) | Method for pretreatment of plating | |
JP4814073B2 (en) | Aluminum alloy for semiconductor or liquid crystal manufacturing apparatus and method for manufacturing the same | |
TWI636160B (en) | Aluminum electrolytic treatment method | |
JP2012057225A (en) | Plating pretreatment method | |
KR100783006B1 (en) | Copper-plated of magnesium compound and surface treat method thterof | |
JP4054813B2 (en) | Plating method for aluminum alloy material | |
JP2012057224A (en) | Method for pre-plating treatment | |
JP2012057223A (en) | Plating pretreatment method | |
KR20120127840A (en) | Plating method pretreatment method for magnesium alloy | |
JP2012057222A (en) | Pretreatment method for plating | |
JP3426800B2 (en) | Pretreatment method for plating aluminum alloy material | |
KR101137493B1 (en) | A electro plating method for aluminum alloy wheels |