JP2011245437A - Vibration device - Google Patents

Vibration device Download PDF

Info

Publication number
JP2011245437A
JP2011245437A JP2010122445A JP2010122445A JP2011245437A JP 2011245437 A JP2011245437 A JP 2011245437A JP 2010122445 A JP2010122445 A JP 2010122445A JP 2010122445 A JP2010122445 A JP 2010122445A JP 2011245437 A JP2011245437 A JP 2011245437A
Authority
JP
Japan
Prior art keywords
weight
piezoelectric actuator
piezoelectric
actuator
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010122445A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Abe
善幸 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2010122445A priority Critical patent/JP2011245437A/en
Publication of JP2011245437A publication Critical patent/JP2011245437A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vibration device using a piezoelectric actuator having a thin dimension structure.SOLUTION: The vibration device includes a plate-shaped piezoelectric actuator 1, an end part of which is fixed to a pedestal 4, and a weight 2 through a damper 3 at the other end part of the piezoelectric actuator 1.

Description

本発明は圧電バイモルフ型アクチュエータ、又は圧電ユニモルフ型アクチュエータ等の圧電アクチュエータを用いた振動装置に関するものである。   The present invention relates to a vibration device using a piezoelectric actuator such as a piezoelectric bimorph actuator or a piezoelectric unimorph actuator.

近年、表示装置にタッチパネル機能を組み込んだもの、または入力装置において操作キーを用いたものが導入されてきている。タッチパネルや操作キーにおいては、操作者が指やペンで押圧することによって情報を入力するものであるが、操作した後に確実に操作したという情報が操作者に確実に伝わらないという問題があった。この為、操作者は確実に操作を行ったことを常に自分自身で把握する必要があった。特に昨今の表示装置、入力装置においては薄型の操作キーが主流であるが、この場合クリック感が浅い、もしくはほとんど無いに等しい、これが操作者に確実に操作したという感覚を不明瞭なものとする傾向があり、同じ操作キーを2度押してしまう等して、誤った操作をしてしまう事が多かった。この対策として電磁型アクチュエータを装置内に有することによって、操作者の指に振動を返すことにより確実に操作を行ったという感触を与える方式は存在する。しかし、電磁型アクチュエータは、マグネットとコイルを有する為に高さ寸法が大きくなり、薄型の操作キーを有する装置においては、搭載する為のスペースを確保するのが困難であるという難点があった。又、振動量を大きくして確実に操作者に振動を返すには、電磁アクチュエータのコイル及びマグネットを大型化する必要が有り、システムの外形寸法を大型化する必要があった。すなわち、電磁型アクチュエータでは、厚み寸法において搭載スペースを確保するのが困難である為、結果としてシステムの薄型化と操作感向上を両立させる事を妨げる要因となっていた。   In recent years, a display device incorporating a touch panel function or an input device using operation keys has been introduced. In the touch panel and operation keys, information is input by the operator pressing with a finger or a pen. However, there is a problem that information indicating that the operation is reliably performed after the operation is not reliably transmitted to the operator. For this reason, the operator has always had to grasp himself / herself that the operation has been performed reliably. Especially in recent display devices and input devices, thin operation keys are the mainstream, but in this case, the click feeling is shallow or almost absent, and this makes the sense that the operator has surely operated it unclear. There was a tendency, and the wrong operation was often performed by pressing the same operation key twice. As a countermeasure against this, there is a method of providing a feeling that an operation is surely performed by returning vibration to an operator's finger by having an electromagnetic actuator in the apparatus. However, since the electromagnetic actuator has a magnet and a coil, the height dimension is large, and in a device having a thin operation key, it is difficult to secure a space for mounting. Moreover, in order to increase the amount of vibration and return the vibration to the operator with certainty, it is necessary to increase the size of the coil and magnet of the electromagnetic actuator, and it is necessary to increase the external dimensions of the system. That is, in the electromagnetic actuator, it is difficult to secure a mounting space in the thickness dimension, and as a result, it has been a factor that hinders both a reduction in the thickness of the system and an improvement in operational feeling.

このため特許文献1において、ベース部に2点支持された圧電振動板の両端に振動錘を取り付けた圧電振動子が提案されている。   For this reason, Patent Document 1 proposes a piezoelectric vibrator in which vibration weights are attached to both ends of a piezoelectric diaphragm supported at two points on a base portion.

特開2007−300426号公報JP 2007-300426 A

上述した特許文献1においては、薄型の矩形状の圧電アクチュエータを用いている。図2に圧電アクチュエータの平面図を示す。圧電アクチュエータは、金属シム5に圧電セラミックス素子6を貼り付けた構造となっている。このような薄型かつ幅狭な圧電バイモルフ型アクチュエータ又は圧電ユニモルフ型アクチュエータであれば、搭載スペースに制約のある表示装置においても搭載可能なスペースを見出せる可能性が高くなる。しかし、人体とくに指先に振動を与え、操作者に操作感を伝達するには100Hz〜200Hzの低周波数振動が必要となる。矩形状の圧電バイモルフ型アクチュエータ、又は圧電ユニモルフ型アクチュエータの共振周波数fは以下の式より算出できる。   In Patent Document 1 described above, a thin rectangular piezoelectric actuator is used. FIG. 2 shows a plan view of the piezoelectric actuator. The piezoelectric actuator has a structure in which a piezoelectric ceramic element 6 is attached to a metal shim 5. With such a thin and narrow piezoelectric bimorph actuator or piezoelectric unimorph actuator, there is a high possibility that a space that can be mounted can be found even in a display device with a limited mounting space. However, low-frequency vibrations of 100 Hz to 200 Hz are required to apply vibrations to the human body, particularly the fingertips, and to transmit the operational feeling to the operator. The resonance frequency f of the rectangular piezoelectric bimorph actuator or piezoelectric unimorph actuator can be calculated from the following equation.

f=(α/(4・(3)1/2π))・(t/l)・(Y/ρ)1/2なおαは非線形補正係数、tは厚み寸法、lは長さ寸法、Yはセラミック弾性率、ρはセラミック比重を示す。 f = (α 2 / (4 · (3) 1/2 π)) · (t / l 2 ) · (Y / ρ) 1/2 where α is the nonlinear correction factor, t is the thickness dimension, and l is the length Dimension, Y is ceramic elastic modulus, and ρ is ceramic specific gravity.

これに添えば厚みが0.5mm〜1.0mm、長さが30mm〜40mmの寸法が必要となる。   If attached to this, a thickness of 0.5 mm to 1.0 mm and a length of 30 mm to 40 mm are required.

しかし、圧電セラミックス素子を直接、タッチパネルに貼り付ける場合、機械的強度を確認するため落下試験等をクリアする必要がある。圧電セラミックス素子自体は形状によっては非常に破損しやすい為、タッチパネルを設計する際に、大きさ、形状を考慮する必要が生じる。   However, when the piezoelectric ceramic element is directly attached to the touch panel, it is necessary to clear a drop test or the like in order to confirm the mechanical strength. Since the piezoelectric ceramic element itself is very easily damaged depending on its shape, it is necessary to consider the size and shape when designing the touch panel.

上述の圧電アクチュエータの大きさ、形状の課題に対しては、特許文献1等で記載される様に圧電アクチュエータ自体は小型化して追加工を行いデバイス化するという方法がある。   In order to deal with the above-mentioned problems of size and shape of the piezoelectric actuator, there is a method in which the piezoelectric actuator itself is reduced in size and subjected to additional processing to form a device as described in Patent Document 1 and the like.

図3は従来の圧電アクチュエータを用いた振動装置の断面図である。例えば、圧電アクチュエータをバイモルフ型、又はユニモルフ型とし、更に片もち梁構造とし発生振動力を増やす為に錘付加を行った場合、図3に示す様に、発生振動力に貢献する錘2の部位は、圧電バイモルフ素子、又は圧電ユニモルフ素子等の圧電アクチュエータ1の先端に取り付けられた錘2の先端である事が分かる。錘2を取り付けた場合、デバイスとしての寸法、重量が増えてしまう為、これに見合うだけの発生振動力の向上が望まれる。例えば図3においては、発生振動力の向上に貢献しているのは、シミュレーション上の分布によると錘の体積の約1/5程度と推測される。上述の共振周波数の計算においては、錘は2g程度必要な事が判明しているが、これを真鍮で作成した場合、比重から計算すると、長さ寸法:15mm、幅寸法:4.5mm、高さ寸法:3.6mmが必要となる。これだけの体積が増えたにも関わらず、性能向上に寄与するのが1/5程度の場合、民生用途のモバイル端末や入力装置においては搭載するのが困難となり、上述した電磁型アクチュエータと同様の問題を圧電アクチュエータにおいても抱えてしまう事となってしまう。   FIG. 3 is a cross-sectional view of a vibration device using a conventional piezoelectric actuator. For example, when the piezoelectric actuator is a bimorph type or a unimorph type and further has a single beam structure to add a weight to increase the generated vibration force, the portion of the weight 2 that contributes to the generated vibration force as shown in FIG. Is the tip of the weight 2 attached to the tip of the piezoelectric actuator 1 such as a piezoelectric bimorph element or a piezoelectric unimorph element. When the weight 2 is attached, the dimensions and weight of the device increase, so that it is desired to improve the generated vibration force to meet this. For example, in FIG. 3, it is estimated that the contribution of the generated vibration force is about 1/5 of the volume of the weight according to the distribution on the simulation. In the calculation of the resonance frequency described above, it has been found that about 2 g of the weight is necessary, but when this is made of brass, the length dimension is 15 mm, the width dimension is 4.5 mm, and the high is calculated from the specific gravity. Size: 3.6 mm is required. In spite of this increase in volume, if it is about 1/5 that contributes to performance improvement, it will be difficult to mount in consumer mobile terminals and input devices, and it will be the same as the electromagnetic actuator described above. The problem is also held in the piezoelectric actuator.

本発明はこのような問題点を解決するために成されたもので、その技術的課題は、厚み寸法の増加を最小限にする為に出来るだけ薄い寸法構成の圧電アクチュエータを用いた振動装置を提供することにある。   The present invention has been made to solve such problems, and its technical problem is to provide a vibration device using a piezoelectric actuator having a dimension configuration as thin as possible in order to minimize the increase in thickness dimension. It is to provide.

本発明は、圧電アクチュエータに接続した錘の効果を最大限、発生振動力に還元する為に、圧電アクチュエータにダンパを介して錘を接続し、錘の運動方向を上下方向のみとすることにより、錘の体積を可能な限り振動力増加に寄与させることができることを見出したものである。   In the present invention, in order to maximize the effect of the weight connected to the piezoelectric actuator to the generated vibration force, the weight is connected to the piezoelectric actuator via a damper, and the movement direction of the weight is limited to the vertical direction. It has been found that the volume of the weight can contribute to an increase in vibration force as much as possible.

すなわち、本発明によれば、一端部を台座に固定した板状の圧電アクチュエータと、前記圧電アクチュエータの他端部にダンパを介して接続した錘を有することを特徴とする振動装置が得られる。   That is, according to the present invention, there is obtained a vibration device having a plate-like piezoelectric actuator having one end fixed to a pedestal and a weight connected to the other end of the piezoelectric actuator via a damper.

また、本発明によれば、前記圧電アクチュエータがバイモルフ型圧電アクチュエータ、又はユニモルフ型圧電アクチュエータであることを特徴とする振動装置が得られる。   In addition, according to the present invention, there is obtained a vibration device in which the piezoelectric actuator is a bimorph piezoelectric actuator or a unimorph piezoelectric actuator.

また、本発明によれば、一端部を台座に固定した前記圧電アクチュエータのベンディングによる円弧運動を錘の直線運動へ変換されることを特徴とする振動装置が得られる。   In addition, according to the present invention, there is obtained a vibration device characterized in that an arc motion due to bending of the piezoelectric actuator having one end fixed to a pedestal is converted into a linear motion of a weight.

また、本発明によれば、前記錘がシャフトにより支持され、前記圧電アクチュエータのベンディングによる円弧運動が、錘の直線運動へと変換されることを特徴とする振動装置が得られる。   In addition, according to the present invention, there is obtained a vibration device characterized in that the weight is supported by a shaft, and an arc motion due to bending of the piezoelectric actuator is converted into a linear motion of the weight.

本発明によれば、圧電アクチュエータに接続した錘が垂直方向にのみ上下の直線運動(以下上下運動と記載)を行う為、錘の質量は100%発生振動量に寄与し、デバイスの外形寸法の増加を最小限に抑制することが出来る。又、錘の外形寸法の調整によっては、大きな振動量を発生しながらも薄型の振動装置を提供することが可能となる。   According to the present invention, since the weight connected to the piezoelectric actuator performs vertical linear motion (hereinafter referred to as vertical motion) only in the vertical direction, the mass of the weight contributes to 100% of the generated vibration amount. The increase can be minimized. Further, depending on the adjustment of the external dimension of the weight, it is possible to provide a thin vibration device while generating a large amount of vibration.

本発明の振動装置の第一の実施の形態の断面図。Sectional drawing of 1st embodiment of the vibration apparatus of this invention. 圧電アクチュエータの平面図。The top view of a piezoelectric actuator. 従来の圧電アクチュエータを用いた振動装置の断面図。Sectional drawing of the vibration apparatus using the conventional piezoelectric actuator. 本発明の振動装置の第二の実施の形態の断面図。Sectional drawing of 2nd embodiment of the vibration apparatus of this invention. 本発明の振動装置の第一の実施の形態の要部断面図。The principal part sectional view of a first embodiment of the vibration device of the present invention. 本発明の振動装置の金属シムにダンパを取り付けた斜視図。The perspective view which attached the damper to the metal shim of the vibration apparatus of this invention. 本発明の実施例1と従来の比較例1の振動特性を示す図。The figure which shows the vibration characteristic of Example 1 of this invention and the comparative example 1 of the past.

本発明の実施の形態による振動装置の構成について図面を参照して説明する。   A configuration of a vibration device according to an embodiment of the present invention will be described with reference to the drawings.

まず本発明の第一の実施の形態の振動装置について説明する。図1に示すように、圧電アクチュエータを用いた振動装置は、それぞれ一端部をケース8上の台座4にエポキシ系接着剤またはゴム系接着剤で固定した2個の圧電バイモルフ型、または圧電ユニモルフ型の圧電アクチュエータ1の他端部にダンパ3を介して1個の真鍮またはリン青銅等の金属からなる錘2を接続した構成となっている。錘2の中央部から左右に等距離の箇所にそれぞれ圧電アクチュエータ1をダンパ3を介して接続している。錘2の左右に圧電アクチュエータ1を配置し、圧電アクチュエータのベンディング動作を、圧電アクチュエータ1と錘2とをダンパ3により接続した事で圧電アクチュエータ先端部の円弧運動を錘の上下運動に変換することを可能としたものである。ここで圧電アクチュエータのベンディング動作を錘の上下運動に変換する為のダンパについて説明する。圧電アクチュエータの先端は円弧を描いて動作する為、図5の要部断面図に示す様に断面がU字状のダンパ3による伸縮により圧電アクチュエータの円弧運動による動的な寸法の違いを吸収する。ダンパ3の形状は断面U字状の他断面が波形等、動的な寸法の違いを吸収できる形状であればよい。これは図6に示す様に圧電バイモルフ型アクチュエータ又は圧電ユニモルフ型アクチュエータを構成する為の金属シムと呼ばれる薄い金属板に直接ダンパを取り付けられる様な構造とすることにより得られる。又錘2へのダンパ3の取り付けも同様で、錘2に対して直接ダンパ3を取り付ける様にする(図5参照)。この構造により圧電アクチュエータのベンディングによる円弧動作はほぼ100%、錘を動かす為の上下運動へと変換される事になる。   First, the vibration device according to the first embodiment of the present invention will be described. As shown in FIG. 1, a vibration device using a piezoelectric actuator has two piezoelectric bimorph types or piezoelectric unimorph types each having one end fixed to a pedestal 4 on a case 8 with an epoxy adhesive or a rubber adhesive. The weight 2 made of a metal such as brass or phosphor bronze is connected to the other end of the piezoelectric actuator 1 via a damper 3. Piezoelectric actuators 1 are connected via dampers 3 at positions equidistant from the center of the weight 2 to the left and right. Piezoelectric actuators 1 are arranged on the left and right sides of the weight 2, and the bending motion of the piezoelectric actuator is converted by connecting the piezoelectric actuator 1 and the weight 2 with a damper 3 to convert the circular motion of the tip of the piezoelectric actuator into the vertical motion of the weight. Is possible. Here, a damper for converting the bending operation of the piezoelectric actuator into the vertical movement of the weight will be described. Since the tip of the piezoelectric actuator operates while drawing a circular arc, as shown in the cross-sectional view of the main part in FIG. 5, the difference in the dynamic dimension due to the circular movement of the piezoelectric actuator is absorbed by expansion and contraction by the damper 3 having a U-shaped cross section. . The shape of the damper 3 may be any shape as long as the other cross-section of the U-shaped cross-section can absorb a dynamic dimensional difference such as a waveform. This is obtained by adopting a structure in which a damper is directly attached to a thin metal plate called a metal shim for constituting a piezoelectric bimorph actuator or a piezoelectric unimorph actuator as shown in FIG. Similarly, the damper 3 is attached to the weight 2, and the damper 3 is directly attached to the weight 2 (see FIG. 5). With this structure, the arc motion due to bending of the piezoelectric actuator is almost 100% converted into a vertical motion for moving the weight.

次に本発明の第二の実施の形態の振動装置について図4を参照して説明する。本発明の第二の実施の形態の振動装置は、一端部をケース8上の台座4に固定した圧電アクチュエータ1の他端部にダンパ3を介して錘2を接続した構成となっている。錘2の中央部にはシャフト7が貫通し、錘2が上下の直線運動をする構成としている。また、錘2のダンパ3との接続部の上下には、シャフト側とは反対側に延伸する突出部が設けられている。これにより質量の調整等が可能となる。圧電バイモルフ型アクチュエータ、又は圧電ユニモルフ型アクチュエータの構成、ダンパ、錘の構成については第一に実施の形態と同様のものを使用することができる。   Next, a vibration device according to a second embodiment of the present invention will be described with reference to FIG. The vibration device according to the second embodiment of the present invention has a configuration in which a weight 2 is connected via a damper 3 to the other end of the piezoelectric actuator 1 having one end fixed to a base 4 on a case 8. A shaft 7 penetrates through the center of the weight 2 so that the weight 2 moves up and down linearly. Moreover, the protrusion part extended | stretched to the opposite side to the shaft side is provided in the upper and lower sides of the connection part with the damper 3 of the weight 2. As shown in FIG. This makes it possible to adjust the mass and the like. Regarding the configuration of the piezoelectric bimorph type actuator or the piezoelectric unimorph type actuator, the configuration of the damper, and the weight, the same ones as in the embodiment can be used first.

次に本発明の具体的実施例について図面を参照して説明する。   Next, specific embodiments of the present invention will be described with reference to the drawings.

まず圧電アクチュエータについて説明する。NECトーキン製圧電セラミックス材料N10をベースにして、一層58μmのグリーンシートを作成し、銀とパラジュームよりなる内部電極を印刷したあと、熱プレスで8層に積層したあと、裁断して焼成して得られた矩形状の圧電セラミックス素子、長さ11.5mm×幅3.0mm×厚み0.4mmを作製した。これを更に鉄ニッケル42アロイからなる金属シムにエポキシ系接着剤で貼り付け積層型の圧電ユニモルフ型の圧電アクチュエータ(長さ11.5mm×幅3.0mm×厚み0.5mm)を作製した。図4の第二の実施の形態の断面図に示すように、この圧電アクチュエータ1の一端を長さ2.5mm×幅3.0mm×厚み0.5mmの取り付け用台座4にエポキシ系接着剤で貼り付けた。圧電アクチュエータ1の他端には幅4.5mm×厚み0.1mmのU字状のダンパ3を介して真鍮からなる長さ34mm×幅4.5mm×厚み2.3mmの錘2を接続した。錘の中央部にシャフトを貫通させた。シャフトはφ0.5mm×3.5mmとした。本実施例1の圧電アクチュエータを用いた振動装置の外形寸法は長さ35mm×幅4.5mm×厚み4.0mmとなった。図7に振動特性、即ち振動周波数〔Hz〕に対するゲイン[dB]特性を示した。   First, the piezoelectric actuator will be described. Based on NEC TOKIN's piezoelectric ceramic material N10, a green sheet of 58 μm is made, and internal electrodes made of silver and palladium are printed. A rectangular piezoelectric ceramic element having a length of 11.5 mm, a width of 3.0 mm, and a thickness of 0.4 mm was produced. This was further attached to a metal shim made of iron-nickel 42 alloy with an epoxy adhesive to produce a laminated piezoelectric unimorph type piezoelectric actuator (length 11.5 mm × width 3.0 mm × thickness 0.5 mm). As shown in the cross-sectional view of the second embodiment of FIG. 4, one end of the piezoelectric actuator 1 is attached to an attachment base 4 having a length of 2.5 mm, a width of 3.0 mm, and a thickness of 0.5 mm with an epoxy adhesive. Pasted. A weight 2 having a length of 34 mm, a width of 4.5 mm, and a thickness of 2.3 mm made of brass was connected to the other end of the piezoelectric actuator 1 via a U-shaped damper 3 having a width of 4.5 mm and a thickness of 0.1 mm. A shaft was passed through the center of the weight. The shaft was φ0.5 mm × 3.5 mm. The external dimensions of the vibration device using the piezoelectric actuator of Example 1 were 35 mm long × 4.5 mm wide × 4.0 mm thick. FIG. 7 shows vibration characteristics, that is, gain [dB] characteristics with respect to vibration frequency [Hz].

(比較例1)
比較例1に用いた圧電アクチュエータは実施例1で用いたものと同様のものを用いた。図3の従来の圧電アクチュエータを用いた振動装置の断面図に示すように、圧電アクチュエータ1の一端を長さ2.5mm×幅3.0mm×厚み0.5mmの取り付け用台座4にエポキシ系接着剤で貼り付けた。圧電アクチュエータ1の他端には真鍮からなる長さ34mm×幅4.5mm×厚み2.3mmの錘2を接続した。本比較例1の振動装置の外形寸法は長さ35mm×幅4.5mm×厚み4.0mmとなった。図7に振動特性、即ち振動周波数〔Hz〕に対するゲイン[dB]特性を示した。なお入力は1Vrmsとして測定した。
(Comparative Example 1)
The piezoelectric actuator used in Comparative Example 1 was the same as that used in Example 1. As shown in the cross-sectional view of the vibration device using the conventional piezoelectric actuator of FIG. 3, one end of the piezoelectric actuator 1 is bonded to the mounting base 4 having a length of 2.5 mm, a width of 3.0 mm, and a thickness of 0.5 mm with an epoxy system. Pasted with an agent. The other end of the piezoelectric actuator 1 was connected with a weight 2 made of brass having a length of 34 mm, a width of 4.5 mm, and a thickness of 2.3 mm. The external dimensions of the vibration device of Comparative Example 1 were 35 mm long × 4.5 mm wide × 4.0 mm thick. FIG. 7 shows vibration characteristics, that is, gain [dB] characteristics with respect to vibration frequency [Hz]. The input was measured as 1 Vrms.

本発明による実施例1と、従来の構造の比較例1の振動特性を比較した結果を図7に記載したが、比較例1においては圧電ユニモルフ型アクチュエータの先端に錘を付加しているが、錘が最大振幅を描くのは圧電ユニモルフ型アクチュエータに付けられた先端部分のみであり、圧電ユニモルフ型アクチュエータに近づくに従って錘の振幅は減っていく。この為、錘を付加しても錘の全自重が発生振動力に寄与する率は、コンピュータ解析の結果から推定すると30%程度であり、残りの70%は発生振動力への寄与率が少ない為、デバイスの外形寸法に対して必要以上に寸法を増加させるという事が分かる。これに対して実施例1による構造では、錘が完全に垂直方向にのみ上下運動を行う為、錘の重量は100%発生振動力に寄与し、デバイスの外形寸法の増加を最小限に抑制することが出来る。又、錘の外形寸法の調整によっては、大きな振動量を発生しながらも薄型の振動デバイスを提供することも可能となる。   FIG. 7 shows the result of comparing the vibration characteristics of Example 1 according to the present invention and Comparative Example 1 of the conventional structure. In Comparative Example 1, a weight is added to the tip of the piezoelectric unimorph actuator. The weight draws the maximum amplitude only at the tip portion attached to the piezoelectric unimorph type actuator, and the amplitude of the weight decreases as it approaches the piezoelectric unimorph type actuator. For this reason, even if the weight is added, the rate that the total weight of the weight contributes to the generated vibration force is about 30% when estimated from the result of computer analysis, and the remaining 70% has a small contribution rate to the generated vibration force. Therefore, it can be seen that the dimensions are increased more than necessary with respect to the external dimensions of the device. On the other hand, in the structure according to the first embodiment, since the weight moves up and down completely only in the vertical direction, the weight of the weight contributes 100% to the generated vibration force, and the increase in the external dimensions of the device is minimized. I can do it. Further, depending on the adjustment of the external dimension of the weight, it is possible to provide a thin vibration device while generating a large amount of vibration.

上述した通り、従来の比較例1のコンピュータシミュレーションの結果よりも、本実施例1により本発明による最適化された錘寸法への振動デバイスに対する有効性を確認することができた。   As described above, compared with the result of the computer simulation of the conventional comparative example 1, the effectiveness of the vibration device to the optimized weight size according to the present invention can be confirmed according to the first embodiment.

本発明による圧電バイモルフ型アクチュエータ、又は圧電ユニモルフ型アクチュエータを使用した振動装置は、表示装置、タッチパネル機能付き表示装置、入力装置としての適用が有効である。   The vibration device using the piezoelectric bimorph actuator or the piezoelectric unimorph actuator according to the present invention is effective when applied as a display device, a display device with a touch panel function, or an input device.

1 圧電アクチュエータ
2 錘
3 ダンパ
4 台座
5 金属シム
6 圧電セラミックス素子
7 シャフト
8 ケース
DESCRIPTION OF SYMBOLS 1 Piezoelectric actuator 2 Weight 3 Damper 4 Base 5 Metal shim 6 Piezoelectric ceramic element 7 Shaft 8 Case

Claims (4)

一端部を台座に固定した板状の圧電アクチュエータと、前記圧電アクチュエータの他端部にダンパを介して接続した錘を有することを特徴とする振動装置。   A vibration device comprising: a plate-like piezoelectric actuator having one end fixed to a pedestal; and a weight connected to the other end of the piezoelectric actuator via a damper. 前記圧電アクチュエータがバイモルフ型圧電アクチュエータ、又はユニモルフ型圧電アクチュエータであることを特徴とする請求項1に記載の振動装置。   The vibration device according to claim 1, wherein the piezoelectric actuator is a bimorph piezoelectric actuator or a unimorph piezoelectric actuator. 一端部を台座に固定した前記圧電アクチュエータのベンディングによる円弧運動を錘の直線運動へ変換されることを特徴とする請求項1又は2に記載の振動装置。   The vibration device according to claim 1 or 2, wherein an arc motion due to bending of the piezoelectric actuator having one end fixed to a pedestal is converted into a linear motion of a weight. 前記錘がシャフトにより支持され、前記圧電アクチュエータのベンディングによる円弧運動が、錘の直線運動へと変換されることを特徴とする請求項1〜3のいずれか1項に記載の振動装置。   The vibration device according to any one of claims 1 to 3, wherein the weight is supported by a shaft, and an arc motion due to bending of the piezoelectric actuator is converted into a linear motion of the weight.
JP2010122445A 2010-05-28 2010-05-28 Vibration device Pending JP2011245437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010122445A JP2011245437A (en) 2010-05-28 2010-05-28 Vibration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010122445A JP2011245437A (en) 2010-05-28 2010-05-28 Vibration device

Publications (1)

Publication Number Publication Date
JP2011245437A true JP2011245437A (en) 2011-12-08

Family

ID=45411355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010122445A Pending JP2011245437A (en) 2010-05-28 2010-05-28 Vibration device

Country Status (1)

Country Link
JP (1) JP2011245437A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014142129A1 (en) * 2013-03-11 2014-09-18 北陸電気工業株式会社 Piezoelectric vibration-generating device
CN104056769A (en) * 2013-03-20 2014-09-24 三星电机株式会社 Vibration generating apparatus
CN104104353A (en) * 2013-04-01 2014-10-15 思考电机(上海)有限公司 Vibration Device And Electronic Device
KR20150028195A (en) 2013-09-05 2015-03-13 신시코 카기 가부시키가이샤 Vibration apparatus, electronic device and wearable device using the vibration apparatus
KR20150032806A (en) 2013-09-20 2015-03-30 신시코 카기 가부시키가이샤 Linear driving apparatus, electronic device and wearable device using the linear driving apparatus
US9800179B2 (en) 2013-09-20 2017-10-24 New Shicoh Technology Co., Ltd. Linear driving device, electronic device and human body fitting article both employing such linear driving device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05128459A (en) * 1991-11-05 1993-05-25 Matsushita Electric Ind Co Ltd Head actuator
JPH0937571A (en) * 1995-07-19 1997-02-07 Denso Corp Stacked-type actuator and moving device
JP2000233157A (en) * 1999-02-15 2000-08-29 Murata Mfg Co Ltd Vibration generator
JP2003116285A (en) * 2001-10-05 2003-04-18 Nec Tokin Ceramics Corp Piezoelectric power generator
WO2003077410A1 (en) * 2002-03-11 2003-09-18 Seiko Epson Corporation Rotation/movement converting actuator
JP2006345630A (en) * 2005-06-08 2006-12-21 Sony Corp Driving device, lens unit, and image pickup apparatus
JP2008167508A (en) * 2006-12-27 2008-07-17 National Institute Of Advanced Industrial & Technology Actuator and manufacturing method of actuator
JP2008284532A (en) * 2007-05-21 2008-11-27 Michio Tsujiura Bimorph vibrator for piezo-electric sheet power generation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05128459A (en) * 1991-11-05 1993-05-25 Matsushita Electric Ind Co Ltd Head actuator
JPH0937571A (en) * 1995-07-19 1997-02-07 Denso Corp Stacked-type actuator and moving device
JP2000233157A (en) * 1999-02-15 2000-08-29 Murata Mfg Co Ltd Vibration generator
JP2003116285A (en) * 2001-10-05 2003-04-18 Nec Tokin Ceramics Corp Piezoelectric power generator
WO2003077410A1 (en) * 2002-03-11 2003-09-18 Seiko Epson Corporation Rotation/movement converting actuator
JP2006345630A (en) * 2005-06-08 2006-12-21 Sony Corp Driving device, lens unit, and image pickup apparatus
JP2008167508A (en) * 2006-12-27 2008-07-17 National Institute Of Advanced Industrial & Technology Actuator and manufacturing method of actuator
JP2008284532A (en) * 2007-05-21 2008-11-27 Michio Tsujiura Bimorph vibrator for piezo-electric sheet power generation

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014142129A1 (en) * 2013-03-11 2014-09-18 北陸電気工業株式会社 Piezoelectric vibration-generating device
JPWO2014142129A1 (en) * 2013-03-11 2017-02-16 北陸電気工業株式会社 Piezoelectric vibration generator
CN104056769B (en) * 2013-03-20 2016-09-28 Mplus株式会社 Vibration generating apparatus
CN104056769A (en) * 2013-03-20 2014-09-24 三星电机株式会社 Vibration generating apparatus
JP2014180663A (en) * 2013-03-20 2014-09-29 Samsung Electro-Mechanics Co Ltd Vibration generating apparatus
US9475094B2 (en) 2013-03-20 2016-10-25 Mplus Co., Ltd. Vibration generating apparatus
CN104104353A (en) * 2013-04-01 2014-10-15 思考电机(上海)有限公司 Vibration Device And Electronic Device
CN105743458A (en) * 2013-04-01 2016-07-06 新思考电机有限公司 Vibratory equipment and electronic apparatus
CN105743458B (en) * 2013-04-01 2018-07-06 新思考电机有限公司 Vibrating device and electronic equipment
KR20150028195A (en) 2013-09-05 2015-03-13 신시코 카기 가부시키가이샤 Vibration apparatus, electronic device and wearable device using the vibration apparatus
US9901957B2 (en) 2013-09-05 2018-02-27 New Shicoh Technology Co., Ltd. Vibration producing device as well as electronic device and human body fitting article both employing such vibration producing device
KR20150032806A (en) 2013-09-20 2015-03-30 신시코 카기 가부시키가이샤 Linear driving apparatus, electronic device and wearable device using the linear driving apparatus
US9800179B2 (en) 2013-09-20 2017-10-24 New Shicoh Technology Co., Ltd. Linear driving device, electronic device and human body fitting article both employing such linear driving device

Similar Documents

Publication Publication Date Title
US9117999B2 (en) Piezoelectric vibration module
JP2011245437A (en) Vibration device
JP4761459B2 (en) Piezoelectric vibration unit and piezoelectric speaker
JP2011091719A (en) Flexural oscillating actuator
EP2555267A1 (en) Transducer module
WO2011074579A1 (en) Actuator, piezoelectric actuator, electronic device, and method for attenuating vibration and converting vibration direction
WO2016157264A1 (en) Force sensation providing device
KR20120108315A (en) Piezoelectric vibration module and touch screen using the same
JP5676043B1 (en) A device that generates sound
JP2013149124A (en) Inner force sense presentation oscillator and inner force sense presentation oscillator array
WO2017168793A1 (en) Vibration presentation device
JPWO2014050983A1 (en) SOUND GENERATOR, SOUND GENERATOR, AND ELECTRONIC DEVICE
Giannopoulos et al. Effect of single-side stroke limiter on cantilever-based piezoelectric energy harvesting from low frequency vibrations
EP2884765B1 (en) Acoustic generator, acoustic generation device, and electronic apparatus
JP6335626B2 (en) Tactile transmission device
JP2013146143A (en) Vibration force power generating apparatus
KR20140072620A (en) Haptic actuator
JP2021030188A (en) Electronic instrument
WO2013150731A1 (en) Piezoelectric vibration sensor
KR20140088678A (en) Piezo Actuator
JP7313799B2 (en) vibration transmission device
US20230071811A1 (en) Electrodynamic actuator for a speaker or a sound transducer with improved damping
JP5228136B1 (en) Vibration power generator
JP2015099484A (en) Tactile transmission device
KR20150014608A (en) Piezo Actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140507