JP2011198848A - Photoelectric converter and method of manufacturing the same - Google Patents

Photoelectric converter and method of manufacturing the same Download PDF

Info

Publication number
JP2011198848A
JP2011198848A JP2010061574A JP2010061574A JP2011198848A JP 2011198848 A JP2011198848 A JP 2011198848A JP 2010061574 A JP2010061574 A JP 2010061574A JP 2010061574 A JP2010061574 A JP 2010061574A JP 2011198848 A JP2011198848 A JP 2011198848A
Authority
JP
Japan
Prior art keywords
layer
photoelectric conversion
type semiconductor
semiconductor layer
conversion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010061574A
Other languages
Japanese (ja)
Other versions
JP5247748B2 (en
Inventor
Kyozo Kanemoto
恭三 金本
Hidetada Tokioka
秀忠 時岡
Hiroyuki Fuchigami
宏幸 渕上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010061574A priority Critical patent/JP5247748B2/en
Publication of JP2011198848A publication Critical patent/JP2011198848A/en
Application granted granted Critical
Publication of JP5247748B2 publication Critical patent/JP5247748B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photoelectric converter capable of improving conductivity between two photoelectric conversion layers across an intermediate layer, and a method of manufacturing the photoelectric converter.SOLUTION: The photoelectric converter includes: a first photoelectric conversion layer having an n-type semiconductor layer and a p-type semiconductor layer; a second photoelectric conversion layer with light absorption wavelength characteristics differing from those of the first photoelectric conversion layer and having an n-type semiconductor layer and a p-type semiconductor layer; and the intermediate layer interposed between the n-type semiconductor layer of the first photoelectric conversion layer and the p-type semiconductor layer of the second photoelectric conversion layer. The intermediate layer has an electrical double layer where molecules are oriented so that a region of positive charge in the molecule is directed toward the n-type semiconductor layer in the first photoelectric conversion layer and a region of negative charge in the molecule is directed toward the p-type semiconductor layer in the second photoelectric conversion layer.

Description

本発明は、光電変換装置、及び光電変換装置の製造方法に関する。   The present invention relates to a photoelectric conversion device and a method for manufacturing the photoelectric conversion device.

光エネルギーを電気エネルギーに変換する光電変換装置として、光吸収波長特性の異なる複数の薄膜光電変換層が積層された積層型の薄膜太陽電池が知られている。このような積層型の薄膜太陽電池では、透明電極が形成された絶縁性の透明基板上に、それぞれ薄膜半導体であるp型層、i型層、n型層が順に堆積された光電変換層を複数積層されており、その上に裏面電極として反射導電膜が形成されている。この積層型の薄膜太陽電池は、絶縁性の透明基板側から複数の光電変換層への光入射により光起電力を発生する。   As a photoelectric conversion device that converts light energy into electrical energy, a stacked thin film solar cell in which a plurality of thin film photoelectric conversion layers having different light absorption wavelength characteristics are stacked is known. In such a laminated thin film solar cell, a photoelectric conversion layer in which a p-type layer, an i-type layer, and an n-type layer, which are thin film semiconductors, are sequentially deposited on an insulating transparent substrate on which a transparent electrode is formed. A plurality of layers are stacked, and a reflective conductive film is formed thereon as a back electrode. This laminated thin-film solar cell generates a photovoltaic force by light incident on a plurality of photoelectric conversion layers from the insulating transparent substrate side.

特許文献1には、薄膜シリコン積層型太陽電池において、非晶質シリコン太陽電池(トップセル)と結晶質シリコン太陽電池(ボトムセル)との間に、透明中間層が配された構成が記載されている。この透明中間層は、非晶質シリコン太陽電池(トップセル)で発電に使用されるスペクトル領域の太陽光を反射させて非晶質シリコン太陽電池(トップセル)に再入射させる。これにより、特許文献1によれば、非晶質シリコン太陽電池(トップセル)における発電効率を向上できるとされている。   Patent Document 1 describes a configuration in which a transparent intermediate layer is arranged between an amorphous silicon solar cell (top cell) and a crystalline silicon solar cell (bottom cell) in a thin film silicon laminated solar cell. Yes. The transparent intermediate layer reflects sunlight in a spectral region used for power generation in the amorphous silicon solar cell (top cell) and re-enters the amorphous silicon solar cell (top cell). Thereby, according to patent document 1, it is supposed that the power generation efficiency in an amorphous silicon solar cell (top cell) can be improved.

特許文献2には、タンデム型光電変換素子において、フロントセルとバックセルとを接続する接続層を、電子輸送性がありシアノ基(CN)が配位された有機化合物で形成することが記載されている。これにより、特許文献2によれば、接続層にホールを生成する機能を持たせることができるので、フロントセルとバックセルとの間で障壁の少ない接合が可能になるとされている。   Patent Document 2 describes that in a tandem photoelectric conversion element, a connection layer that connects a front cell and a back cell is formed of an organic compound that has an electron transporting property and is coordinated with a cyano group (CN). ing. Thus, according to Patent Document 2, since a function of generating holes in the connection layer can be provided, it is possible to perform bonding with a small barrier between the front cell and the back cell.

特開2006−120747号公報JP 2006-120747 A 特開2008−117798号公報JP 2008-117798 A

特許文献1には、透明中間層の材料として、ZnO、ITO、あるいはSnOを用いることが示されている。この透明中間層は、非晶質シリコン太陽電池(トップセル)におけるn型シリコン層と結晶質シリコン太陽電池(ボトムセル)におけるp型シリコン層とに挟まれている。 Patent Document 1 discloses that ZnO, ITO, or SnO 2 is used as a material for the transparent intermediate layer. This transparent intermediate layer is sandwiched between an n-type silicon layer in an amorphous silicon solar cell (top cell) and a p-type silicon layer in a crystalline silicon solar cell (bottom cell).

特許文献1に記載された透明中間層は、透光性とキャリア導電性とを両立するために、n型半導体になっていると考えられる。透明中間層がn型半導体になっていると、n型シリコン層との接触抵抗は低く出来ても反対側のp型シリコン層との接触抵抗はp−n逆接合となるため接触抵抗の低減が難しい。これにより、透明中間層を間にして配された非晶質シリコン太陽電池及び結晶質シリコン太陽電池(2つの光電変換層)の間における導電性が低下する。特に、非晶質シリコン太陽電池や結晶質シリコン太陽電池が発生する電流が高い場合には、p−n逆接合となる部分の抵抗によって流れる電流が制限され、薄膜シリコン積層型太陽電池(光電変換装置)の光変換効率が著しく低下する。   The transparent intermediate layer described in Patent Document 1 is considered to be an n-type semiconductor in order to achieve both translucency and carrier conductivity. When the transparent intermediate layer is an n-type semiconductor, even if the contact resistance with the n-type silicon layer can be lowered, the contact resistance with the p-type silicon layer on the opposite side becomes a pn reverse junction, thus reducing the contact resistance. Is difficult. Thereby, the electrical conductivity between the amorphous silicon solar cell and the crystalline silicon solar cell (two photoelectric conversion layers) arranged with the transparent intermediate layer interposed therebetween is lowered. In particular, when the current generated by an amorphous silicon solar cell or a crystalline silicon solar cell is high, the current flowing is limited by the resistance of the portion that becomes the pn reverse junction, and the thin film silicon laminated solar cell (photoelectric conversion) The light conversion efficiency of the device is significantly reduced.

また、特許文献2の技術では、接続層が、フロントセルにおけるホールブロック層(n型有機半導体)とバックセルにおけるホール輸送層(p型有機半導体)とに挟まれている。また、接続層が電子輸送材料を基本骨格としているため、接続層に接するn型有機半導体との親和性が高いとされている。しかし、特許文献2には、接続層に接するp型有機半導体との親和性について記載がない。また、特許文献2には、接続層内で各分子がどのような向きにあるのかについて記載がない。   In the technique of Patent Document 2, the connection layer is sandwiched between the hole block layer (n-type organic semiconductor) in the front cell and the hole transport layer (p-type organic semiconductor) in the back cell. In addition, since the connection layer has an electron transport material as a basic skeleton, it has high affinity with an n-type organic semiconductor in contact with the connection layer. However, Patent Document 2 does not describe the affinity with the p-type organic semiconductor in contact with the connection layer. Patent Document 2 does not describe the orientation of each molecule in the connection layer.

本発明は、上記に鑑みてなされたものであって、中間層を挟む2つの光電変換層の間における導電性を向上できる光電変換装置、及び光電変換装置の製造方法を得ることを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at obtaining the manufacturing method of the photoelectric conversion apparatus which can improve the electroconductivity between the two photoelectric conversion layers which pinch | interpose an intermediate | middle layer, and a photoelectric conversion apparatus. .

上述した課題を解決し、目的を達成するために、本発明の1つの側面にかかる光電変換装置は、n型半導体層とp型半導体層とを有する第1光電変換層と、前記第1光電変換層と光吸収波長特性が異なっており、n型半導体層とp型半導体層とを有する第2光電変換層と、前記第1光電変換層におけるn型半導体層と前記第2光電変換層におけるp型半導体層とに挟まれた中間層とを備え、前記中間層は、電気2重層を有し、分子内の正電荷の部位が前記第1光電変換層におけるn型半導体層の側に向き、前記分子内の負電荷の部位が前記第2光電変換層におけるp型半導体層の側に向くように、前記分子が配向していることを特徴とする。   In order to solve the above-described problems and achieve the object, a photoelectric conversion device according to one aspect of the present invention includes a first photoelectric conversion layer having an n-type semiconductor layer and a p-type semiconductor layer, and the first photoelectric conversion layer. The conversion layer and the light absorption wavelength characteristic are different, the second photoelectric conversion layer having an n-type semiconductor layer and a p-type semiconductor layer, the n-type semiconductor layer in the first photoelectric conversion layer, and the second photoelectric conversion layer an intermediate layer sandwiched between p-type semiconductor layers, the intermediate layer having an electric double layer, and a positive charge site in the molecule facing the n-type semiconductor layer side in the first photoelectric conversion layer The molecule is oriented so that the negatively charged portion in the molecule faces the p-type semiconductor layer side of the second photoelectric conversion layer.

本発明によれば、中間層の近傍において第1光電変換層におけるn型半導体層の電子エネルギーレベルと第2光電変換層におけるp型半導体層の正孔エネルギーレベルとが近づき、第2光電変換層におけるp型半導体層と第1光電変換層におけるn型半導体層との間でトンネル電流が中間層を介して流れやすくなる。すなわち、中間層を挟む2つの光電変換層の間における導電性を向上できる。   According to the present invention, the electron energy level of the n-type semiconductor layer in the first photoelectric conversion layer and the hole energy level of the p-type semiconductor layer in the second photoelectric conversion layer approach each other in the vicinity of the intermediate layer. Between the p-type semiconductor layer and the n-type semiconductor layer in the first photoelectric conversion layer becomes easier to flow through the intermediate layer. That is, the conductivity between the two photoelectric conversion layers sandwiching the intermediate layer can be improved.

図1は、実施の形態1に係る光電変換装置の概略構成を示す断面図である。1 is a cross-sectional view illustrating a schematic configuration of a photoelectric conversion apparatus according to Embodiment 1. FIG. 図2は、実施の形態1における中間層の形成途中における状態を示す模式図である。FIG. 2 is a schematic diagram showing a state in the middle of forming the intermediate layer in the first embodiment. 図3は、実施の形態1における中間層とその両側に接合された半導体層のエネルギーバンドを示す図である。FIG. 3 is a diagram showing energy bands of the intermediate layer and the semiconductor layers bonded to both sides thereof in the first embodiment. 図4は、比較例における中間層とその両側に接合された半導体層のエネルギーバンド示す図である。FIG. 4 is a diagram showing energy bands of the intermediate layer and the semiconductor layers bonded to both sides thereof in the comparative example.

以下に、本発明にかかる光電変換装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of a photoelectric conversion device according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態1.
実施の形態1に係る光電変換装置の概略構成を、図1を用いて説明する。図1は、実施の形態1に係る光電変換装置の概略構成を示す断面図である。
Embodiment 1 FIG.
A schematic configuration of the photoelectric conversion device according to Embodiment 1 will be described with reference to FIG. 1 is a cross-sectional view illustrating a schematic configuration of a photoelectric conversion apparatus according to Embodiment 1. FIG.

光電変換装置1では、基板2の上に、透明電極3、光電変換層(第1光電変換層)4、中間層5、光電変換層(第2光電変換層)6、裏面電極7が順に積層されている。なお、基板2上すなわち基板2及び透明電極3の間には、不純物の阻止層として、必要に応じて酸化Siなどのアンダーコート層8を設けるようにしてもよい。   In the photoelectric conversion device 1, a transparent electrode 3, a photoelectric conversion layer (first photoelectric conversion layer) 4, an intermediate layer 5, a photoelectric conversion layer (second photoelectric conversion layer) 6, and a back electrode 7 are sequentially stacked on a substrate 2. Has been. An undercoat layer 8 such as Si oxide may be provided on the substrate 2, that is, between the substrate 2 and the transparent electrode 3, as an impurity blocking layer, if necessary.

基板2は、絶縁性を有する透明な物質(例えば、ガラス)で形成されている。透明電極3は、基板2の上に配されている。透明電極3は、その表面に、微細な凹凸である表面テクスチャ構造を有する。   The board | substrate 2 is formed with the transparent substance (for example, glass) which has insulation. The transparent electrode 3 is disposed on the substrate 2. The transparent electrode 3 has a surface texture structure that is fine irregularities on its surface.

光電変換層4と光電変換層6とは、ともにSiを主成分とするが、異なる結晶構造を有する。光電変換層4は、例えば、非晶質Siで形成されている。光電変換層6は、例えば、微結晶Siで形成されている。光電変換層4と光電変換層6とは、その結晶構造の違いにより異なるバンドギャップを有し、従って異なる光吸収波長特性を有する。光電変換層4は、受けた光のうち第1の波長領域の光を吸収し、その第1の波長領域の光に応じた電荷を発生させる(発電する)。光電変換層6は、受けた光のうち第2の波長領域の光を吸収し、その第2の波長領域の光に応じた電荷を発生させる(発電する)。   The photoelectric conversion layer 4 and the photoelectric conversion layer 6 are both mainly composed of Si, but have different crystal structures. The photoelectric conversion layer 4 is made of, for example, amorphous Si. The photoelectric conversion layer 6 is made of, for example, microcrystalline Si. The photoelectric conversion layer 4 and the photoelectric conversion layer 6 have different band gaps due to differences in their crystal structures, and thus have different light absorption wavelength characteristics. The photoelectric conversion layer 4 absorbs light in the first wavelength region out of the received light, and generates (generates electric power) electric charges corresponding to the light in the first wavelength region. The photoelectric conversion layer 6 absorbs light in the second wavelength region out of the received light, and generates (generates electric power) electric charges corresponding to the light in the second wavelength region.

実施の形態1の光電変換装置1は、透明の基板2を用いて、主として基板2側から入射する光を電気に変換する装置である。すなわち、光電変換層4及び中間層5は、光電変換層6に対して光入射側に配されている。光電変換層4の発電素子と光電変換層6の発電素子とが積層方向に直列に接続されて、それぞれの光電変換層で発生した電流(電荷)が透明電極3と裏面電極7とから取り出される構成である。このような光電変換装置はタンデム型の太陽電池として用いることができる。   The photoelectric conversion device 1 according to Embodiment 1 is a device that converts light incident mainly from the substrate 2 side into electricity using a transparent substrate 2. That is, the photoelectric conversion layer 4 and the intermediate layer 5 are arranged on the light incident side with respect to the photoelectric conversion layer 6. The power generation element of the photoelectric conversion layer 4 and the power generation element of the photoelectric conversion layer 6 are connected in series in the stacking direction, and the current (charge) generated in each photoelectric conversion layer is taken out from the transparent electrode 3 and the back electrode 7. It is a configuration. Such a photoelectric conversion device can be used as a tandem solar cell.

タンデム型の太陽電池では、光を入射する側に、主として短い波長の光を吸収して電気エネルギーに変換するバンドギャップの大きい光電変換層が配置され、裏面側(光入射側と反対側)に、前者よりも長い波長の光を吸収して電気エネルギーに変換するバンドギャップの小さい光電変換層が配置される。   In a tandem solar cell, a photoelectric conversion layer having a large band gap that mainly absorbs light of a short wavelength and converts it into electric energy is disposed on the light incident side, and is disposed on the back side (on the opposite side to the light incident side). A photoelectric conversion layer having a small band gap that absorbs light having a longer wavelength than the former and converts it into electrical energy is disposed.

光電変換層4では、基板2側から順に、p型半導体層4a、i型半導体層4b、n型半導体層4c、n型半導体層4dが積層されている。p型半導体層4aは、ボロンなどのp型不純物を含む半導体(例えば、非晶質SiC)で形成されている。i型半導体層4bは、真性の半導体(例えば、非晶質Si)で形成されている。n型半導体層4c、4dは、リン、砒素などのn型不純物を含む半導体(例えば、非晶質Si)で形成されている。なお、p型半導体層4aとi型半導体層4bとの間に(例えば、非晶質SiCで形成された)i型半導体層がさらに挿入されていても良い。   In the photoelectric conversion layer 4, a p-type semiconductor layer 4a, an i-type semiconductor layer 4b, an n-type semiconductor layer 4c, and an n-type semiconductor layer 4d are stacked in this order from the substrate 2 side. The p-type semiconductor layer 4a is formed of a semiconductor (for example, amorphous SiC) containing a p-type impurity such as boron. The i-type semiconductor layer 4b is formed of an intrinsic semiconductor (for example, amorphous Si). The n-type semiconductor layers 4c and 4d are formed of a semiconductor (for example, amorphous Si) containing an n-type impurity such as phosphorus or arsenic. Note that an i-type semiconductor layer (eg, formed of amorphous SiC) may be further inserted between the p-type semiconductor layer 4a and the i-type semiconductor layer 4b.

光電変換層6では、基板2側から順に、p型半導体層6d、p型半導体層6a、i型半導体層6b、n型半導体層6cが積層されている。p型半導体層6d、6aは、ボロンなどのp型不純物を含む半導体(例えば、微結晶Si)で形成されている。i型半導体層6bは、真性の半導体(例えば、微結晶Si)で形成されている。n型半導体層6cは、リン、砒素などのn型不純物を含む半導体(例えば、微結晶Si)で形成されている。   In the photoelectric conversion layer 6, a p-type semiconductor layer 6d, a p-type semiconductor layer 6a, an i-type semiconductor layer 6b, and an n-type semiconductor layer 6c are stacked in this order from the substrate 2 side. The p-type semiconductor layers 6d and 6a are formed of a semiconductor (for example, microcrystalline Si) containing a p-type impurity such as boron. The i-type semiconductor layer 6b is formed of an intrinsic semiconductor (for example, microcrystalline Si). The n-type semiconductor layer 6c is formed of a semiconductor (for example, microcrystalline Si) containing an n-type impurity such as phosphorus or arsenic.

裏面電極7は、例えば、AlやAl合金などの反射率の高い金属で形成することができる。Alの代わりにAgを用いてもよい。反射性能に優れた物質で裏面電極7が形成されていると、光電変換層6を透過した光は裏面電極7により再び光電変換層6側に反射されて光電変換層6で光電変換されるので変換効率が向上する。光電変換される波長領域(第2の波長領域)の光を効果的に反射するために、裏面電極7とn型半導体層6cとの間に適当な光学特性を有するZnOなどの透明導電層11を挿入してもよい。   The back electrode 7 can be formed of a metal having a high reflectance such as Al or an Al alloy, for example. Ag may be used instead of Al. When the back electrode 7 is formed of a material having excellent reflection performance, light transmitted through the photoelectric conversion layer 6 is reflected again by the back electrode 7 toward the photoelectric conversion layer 6 and is photoelectrically converted by the photoelectric conversion layer 6. Conversion efficiency is improved. In order to effectively reflect light in the wavelength region (second wavelength region) to be photoelectrically converted, a transparent conductive layer 11 such as ZnO having appropriate optical characteristics between the back electrode 7 and the n-type semiconductor layer 6c. May be inserted.

中間層5は、光電変換層4と光電変換層6とに挟まれた層である。すなわち、中間層5は、光電変換層(第1光電変換層)4におけるn型半導体層4dと光電変換層(第2光電変換層)6におけるp型半導体層6dとに挟まれている。中間層5は、光電変換層4で吸収されなかった光(受けた光のうち第1の波長領域を除く光)を光電変換層6側に透過すると同時に、中間層5は、光電変換層4と光電変換層6との間を電気的に導通させる。   The intermediate layer 5 is a layer sandwiched between the photoelectric conversion layer 4 and the photoelectric conversion layer 6. That is, the intermediate layer 5 is sandwiched between the n-type semiconductor layer 4 d in the photoelectric conversion layer (first photoelectric conversion layer) 4 and the p-type semiconductor layer 6 d in the photoelectric conversion layer (second photoelectric conversion layer) 6. The intermediate layer 5 transmits light that has not been absorbed by the photoelectric conversion layer 4 (light other than the first wavelength region in the received light) to the photoelectric conversion layer 6 side, and at the same time, the intermediate layer 5 includes the photoelectric conversion layer 4. And the photoelectric conversion layer 6 are electrically connected.

中間層5が光電変換層6で吸収する波長領域(第2の波長領域)の光を透過する一方、光電変換層4で吸収する波長領域(第1の波長領域)の光を光電変換層4側に反射する光学特性を備えると、光電変換層4を通過した光が再び光電変換層4に入射して光電変換されるので変換効率が向上する。すなわち、中間層5は、少なくとも光電変換層(第2光電変換層)6で吸収する光波長領域(第2の波長領域)で透光性を有し、光電変換層4で吸収する光波長領域(第1の波長領域)で反射性能を有する。   The intermediate layer 5 transmits light in the wavelength region (second wavelength region) absorbed by the photoelectric conversion layer 6, while the light in the wavelength region (first wavelength region) absorbed by the photoelectric conversion layer 4 is converted to the photoelectric conversion layer 4. When the optical characteristic which reflects to the side is provided, the light which passed the photoelectric converting layer 4 will inject into the photoelectric converting layer 4 again, and will be photoelectrically converted, and conversion efficiency will improve. That is, the intermediate layer 5 has a light-transmitting property at least in the light wavelength region (second wavelength region) absorbed by the photoelectric conversion layer (second photoelectric conversion layer) 6 and is absorbed by the photoelectric conversion layer 4. Reflective performance in (first wavelength region).

中間層5は、その層を挟む2つの光電変換層(光電変換層4及び光電変換層6)の間のキャリア(電荷、電流)を滞りなく伝えなければならないため、キャリア伝導性(導電性)を有していることが必須である。2つの光電変換層(光電変換層4及び光電変換層6)間でキャリア伝導が妨げられると、実効的な光電変換層間の接続抵抗が高くなり、太陽電池の曲線因子(Fill Factor: FF)が低下し、結果として発電効率(光電変換効率)が低下する。そのため中間層5は、所定の波長領域(第2の波長領域)における透光性と2つの光電変換層(光電変換層4及び光電変換層6)間におけるキャリア導電性とを両立させなければならない。   Since the intermediate layer 5 must transmit carriers (charges and currents) between the two photoelectric conversion layers (photoelectric conversion layer 4 and photoelectric conversion layer 6) sandwiching the layer without delay, carrier conductivity (conductivity) It is essential to have When carrier conduction is hindered between the two photoelectric conversion layers (the photoelectric conversion layer 4 and the photoelectric conversion layer 6), the effective connection resistance between the photoelectric conversion layers is increased, and the fill factor (FF) of the solar cell is increased. As a result, the power generation efficiency (photoelectric conversion efficiency) decreases. Therefore, the intermediate layer 5 must satisfy both the translucency in the predetermined wavelength region (second wavelength region) and the carrier conductivity between the two photoelectric conversion layers (the photoelectric conversion layer 4 and the photoelectric conversion layer 6). .

実施の形態1では、中間層5の構造を、電気双極子を備えた分子からなる電気2重層としている。すなわち、中間層5は、電気双極子を有する分子で形成されている。中間層5は、分子内の正電荷の部位が光電変換層(第1光電変換層)4におけるn型半導体層4dの側に向き、分子内の負電荷の部位が光電変換層(第2光電変換層)6におけるp型半導体層6dの側に向くように、分子が配向している。また、中間層5は、透光性を有している。   In the first embodiment, the structure of the intermediate layer 5 is an electric double layer made of molecules having an electric dipole. That is, the intermediate layer 5 is formed of molecules having an electric dipole. The intermediate layer 5 has a positive charge site in the molecule facing the n-type semiconductor layer 4d side in the photoelectric conversion layer (first photoelectric conversion layer) 4 and a negative charge site in the molecule is the photoelectric conversion layer (second photoelectric layer). The molecules are oriented so as to face the p-type semiconductor layer 6d side in the conversion layer 6). Further, the intermediate layer 5 has translucency.

次に、実施の形態1に係る光電変換装置1の製造方法について、図1及び図2を用いて説明する。図2は、実施の形態1における中間層の形成途中における状態を示す模式図である。   Next, a method for manufacturing the photoelectric conversion device 1 according to Embodiment 1 will be described with reference to FIGS. FIG. 2 is a schematic diagram showing a state in the middle of forming the intermediate layer in the first embodiment.

第1の工程では、基板2の上に、(アンダーコート層8、)透明電極3、p型半導体層4a、i型半導体層4b、n型半導体層4c、及びn型半導体層4dを順に形成する。これにより、n型半導体層4cとp型半導体層4aとを有する光電変換層(第1光電変換層)4を形成する。   In the first step, the (undercoat layer 8) transparent electrode 3, p-type semiconductor layer 4 a, i-type semiconductor layer 4 b, n-type semiconductor layer 4 c, and n-type semiconductor layer 4 d are sequentially formed on the substrate 2. To do. Thereby, the photoelectric conversion layer (first photoelectric conversion layer) 4 including the n-type semiconductor layer 4c and the p-type semiconductor layer 4a is formed.

第2の工程では、光電変換層(第1光電変換層)4におけるn型半導体層4dと光電変換層(第2光電変換層)6におけるp型半導体層6dとに挟まれるべき位置、すなわち光電変換層(第1光電変換層)4の上に、電気2重層を有する中間層5を形成する。中間層5は、例えば、3フッ化アルキルシラン(FAS3 [3,3,3−trifluoropropyl−trimethoxysilane,CF(CHSi(OCH])を気相中での接触反応による自己組織化を行い単分子層として形成した。なお、中間層5は、溶液への浸漬法や真空蒸着法などでも形成することができる。 In the second step, the position to be sandwiched between the n-type semiconductor layer 4d in the photoelectric conversion layer (first photoelectric conversion layer) 4 and the p-type semiconductor layer 6d in the photoelectric conversion layer (second photoelectric conversion layer) 6, that is, photoelectric An intermediate layer 5 having an electric double layer is formed on the conversion layer (first photoelectric conversion layer) 4. The intermediate layer 5 is made of, for example, trifluoride alkylsilane (FAS3 [3,3,3-trifluoropropyl-trimethylsilane, CF 3 (CH 2 ) 2 Si (OCH 3 ) 3 ]) by self-contact in a gas phase. It was organized and formed as a monolayer. The intermediate layer 5 can also be formed by a dipping method in a solution or a vacuum deposition method.

ここで、光電変換層4は、基板2上に透明電極3を通して入射した光がp型半導体層4a側から入射するように、p−i−nの順序で例えば非晶質Siで形成されている。このため、中間層5は、光電変換層4におけるn型半導体層4dの上に形成する事になる。n型半導体層4dを例えば非晶質Siで形成した後に成膜装置から取り出した試料の表面(n型半導体層4dの表面)に、中間層5を成膜するのであるが、フッ化アルキルシランを入れた容器と試料とを密閉容器の中に封入して試料の全体を150℃程度に加熱し3時間保持することでフッ化アルキルシラン膜を中間層5として自己組織化により形成した。自己組織化による形成とは、図2に示したように、シラン部分(正電荷の部位)が(例えば非晶質Siで形成された)n型半導体層4d側に、フッ素部分(負電荷の部位)が外側(n型半導体層4d側と反対側)に配向して単分子層形成されていることを意味する。言い換えると、電気双極子による電気双極子モーメント402の向きが揃っている。すなわち、中間層5は、図2に示すように、電気双極子(電気双極子モーメント402)の向きの互いにそろった分子401が2次元的に複数配された単分子層で形成されている。   Here, the photoelectric conversion layer 4 is formed of, for example, amorphous Si in the order of p-i-n so that light incident on the substrate 2 through the transparent electrode 3 enters from the p-type semiconductor layer 4a side. Yes. For this reason, the intermediate layer 5 is formed on the n-type semiconductor layer 4 d in the photoelectric conversion layer 4. The intermediate layer 5 is formed on the surface of the sample taken out of the film forming apparatus after forming the n-type semiconductor layer 4d with, for example, amorphous Si (the surface of the n-type semiconductor layer 4d). The container containing the sample and the sample were sealed in a sealed container, and the entire sample was heated to about 150 ° C. and held for 3 hours to form a fluoroalkylsilane film as the intermediate layer 5 by self-assembly. As shown in FIG. 2, the formation by self-organization means that the silane portion (positively charged portion) has a fluorine portion (negatively charged portion) on the n-type semiconductor layer 4d side (formed with amorphous Si, for example). This means that a monomolecular layer is formed by orienting the portion to the outside (the side opposite to the n-type semiconductor layer 4d side). In other words, the directions of the electric dipole moment 402 by the electric dipole are aligned. That is, as shown in FIG. 2, the intermediate layer 5 is formed of a monomolecular layer in which a plurality of molecules 401 aligned in the direction of electric dipoles (electric dipole moment 402) are two-dimensionally arranged.

このようにフッ化アルキルシランとSi(n型半導体層4d)との反応性によりシラン部分がSi側(n型半導体層4dの側)に、フッ素部分が表面側(形成されるべきp型半導体層6dの側)に配向する。この結果、基板側(n型半導体層4dの側)が正電荷の層、表面側(形成されるべきp型半導体層6dの側)が負電荷の層の電気2重層が形成される。   Thus, due to the reactivity of the fluorinated alkylsilane and Si (n-type semiconductor layer 4d), the silane portion is on the Si side (n-type semiconductor layer 4d side) and the fluorine portion is on the surface side (p-type semiconductor to be formed). Oriented to the layer 6d side). As a result, an electric double layer is formed in which the substrate side (n-type semiconductor layer 4d side) is a positively charged layer and the surface side (p-type semiconductor layer 6d side to be formed) is a negatively charged layer.

なお、フッ化アルキルシランとしては例えば1分子中にフッ素を3原子含むFAS3[3,3,3−trifluoropropyltrimethoxysilane,CF(CHSi(OCH]が最も好ましいが、これよりもフッ素をたくさん含む分子量の大きな分子でも可能である。ただしこの場合には膜厚が厚くなってしまうために中間層の伝導性が損なわれるため厚くとも1nm程度に留めておくのが好ましい。この時のフッ素は15原子程度でFAS15[CF(CHSi(OCH]である。すなわち、中間層5は、光電変換層4が中間層5に対して光入射側に配され光電変換層4内においてp型半導体層4aが光入射側に配されn型半導体層4c、4dが光入射側と反対側に配される場合、(3+2n)フッ化アルキルシラン[CF(CH(CFSi(OCH;n=0〜6]よりなる一群の物質から選択された物質で形成されていてもよい。 As the fluorinated alkylsilane, for example, FAS3 [3,3,3-trifluoropropyloxysilane, CF 3 (CH 2 ) 2 Si (OCH 3 ) 3 ] containing 3 atoms of fluorine in one molecule is most preferable. Even molecules with a large molecular weight containing a large amount of fluorine are possible. However, in this case, since the film thickness is increased and the conductivity of the intermediate layer is impaired, it is preferable to keep the thickness at about 1 nm. The fluorine at this time is about 15 atoms and is FAS15 [CF 3 (CH 2 ) 2 Si (OCH 3 ) 3 ]. That is, in the intermediate layer 5, the photoelectric conversion layer 4 is disposed on the light incident side with respect to the intermediate layer 5, the p-type semiconductor layer 4a is disposed on the light incident side in the photoelectric conversion layer 4, and the n-type semiconductor layers 4c and 4d are formed. When arranged on the side opposite to the light incident side, a group of substances consisting of (3 + 2n) fluoroalkylsilane [CF 3 (CH 2 ) 2 (CF 2 ) n Si (OCH 3 ) 3 ; n = 0 to 6] It may be formed of a substance selected from

第3の工程では、中間層5の上に、p型半導体層6d、p型半導体層6a、i型半導体層6b、n型半導体層6cを順に形成する。これにより、n型半導体層6cとp型半導体層6d、6aとを有する光電変換層(第2光電変換層)6を形成する。   In the third step, a p-type semiconductor layer 6d, a p-type semiconductor layer 6a, an i-type semiconductor layer 6b, and an n-type semiconductor layer 6c are sequentially formed on the intermediate layer 5. Thereby, the photoelectric conversion layer (second photoelectric conversion layer) 6 including the n-type semiconductor layer 6c and the p-type semiconductor layers 6d and 6a is formed.

そして、光電変換層6の上に、(透明導電層11、)裏面電極7を順に形成する。これにより、図1に示す光電変換装置1が得られる。   Then, a back electrode 7 (transparent conductive layer 11) is formed on the photoelectric conversion layer 6 in order. Thereby, the photoelectric conversion apparatus 1 shown in FIG. 1 is obtained.

次に、実施の形態1における中間層5によりどのように2つの光電変換層(光電変換層4及び光電変換層6)の間の導電性が向上されるのかについて、図3を用いて説明する。図3は、実施の形態1における中間層とその両側に接合された半導体層のエネルギーバンドを示す図である。   Next, how the conductivity between the two photoelectric conversion layers (the photoelectric conversion layer 4 and the photoelectric conversion layer 6) is improved by the intermediate layer 5 in Embodiment 1 will be described with reference to FIG. . FIG. 3 is a diagram showing energy bands of the intermediate layer and the semiconductor layers bonded to both sides thereof in the first embodiment.

図3は、n型半導体層302(図1に示すn型半導体層4d)とp型半導体層303(図1に示すp型半導体層6d)との間に中間層306(図1に示す中間層5)が挟まれている。中間層(電気2重層からなる分子膜)306内において、n型半導体層302側に負電荷保持部304が位置し、p型半導体層303側に正電荷保持部305が位置している状態が図示されている。図3中の点線はフェルミレベルEfを示す。   3 shows an intermediate layer 306 (an intermediate layer shown in FIG. 1) between an n-type semiconductor layer 302 (an n-type semiconductor layer 4d shown in FIG. 1) and a p-type semiconductor layer 303 (a p-type semiconductor layer 6d shown in FIG. 1). Layer 5) is sandwiched. In the intermediate layer (molecular film composed of an electric double layer) 306, there is a state where the negative charge holding portion 304 is located on the n-type semiconductor layer 302 side and the positive charge holding portion 305 is located on the p-type semiconductor layer 303 side. It is shown in the figure. The dotted line in FIG. 3 indicates the Fermi level Ef.

ここで、仮に、図4に示すように、中間層1301がZnO、ITO、あるいはSnOで形成されている場合を考える。この場合、中間層1307自体がn型半導体になる。そして、中間層1307の両側に位置するn型半導体層1302の伝導帯エネルギー(Ec,n)、価電子帯エネルギー(Ev,n)、p型半導体層1303の伝導帯エネルギー(Ec,p)、価電子帯エネルギ(Ev,p)のエネルギーレベルは、いずれも、中間層1301の近傍で変化しない。すなわち、中間層1301の近傍において、n型半導体層302の伝導帯エネルギー(Ec,n)とp型半導体層303の伝導帯エネルギー(Ec,p)とが同等のレベルである。また、中間層1301の近傍において、n型半導体層1302の価電子帯エネルギー(Ev,n)とp型半導体層1303の価電子帯エネルギ(Ev,p)とが同等のレベルである。これにより、p型半導体層1303とn型半導体層1302との間でトンネル伝導を行わせることが困難である。 Here, suppose that the intermediate layer 1301 is formed of ZnO, ITO, or SnO 2 as shown in FIG. In this case, the intermediate layer 1307 itself is an n-type semiconductor. Then, the conduction band energy (Ec, n), valence band energy (Ev, n) of the n-type semiconductor layer 1302 located on both sides of the intermediate layer 1307, the conduction band energy (Ec, p) of the p-type semiconductor layer 1303, The energy level of the valence band energy (Ev, p) does not change in the vicinity of the intermediate layer 1301. That is, in the vicinity of the intermediate layer 1301, the conduction band energy (Ec, n) of the n-type semiconductor layer 302 and the conduction band energy (Ec, p) of the p-type semiconductor layer 303 are at the same level. In the vicinity of the intermediate layer 1301, the valence band energy (Ev, n) of the n-type semiconductor layer 1302 and the valence band energy (Ev, p) of the p-type semiconductor layer 1303 are at the same level. Thereby, it is difficult to cause tunnel conduction between the p-type semiconductor layer 1303 and the n-type semiconductor layer 1302.

それに対して、実施の形態1では、図3に示すように、中間層306(図1に示す中間層5)内において、n型半導体層302(図1に示すn型半導体層4d)側に正電荷保持部305(正電荷の層)、p型半導体層303(図1に示すp型半導体層6d)側に負電荷保持部304(負電荷の層)を配置する。これにより、それぞれの層の正孔(正電荷)と電子(負電荷)との蓄積傾向の違いによって、中間層5の近傍、すなわち正電荷保持部305及び負電荷保持部304の界面の近傍では、n型半導体層302、p型半導体層303のエネルギーレベルの傾きが変化している。この結果、n型半導体層302の伝導帯エネルギ(Ec,n)と、p型半導体層303の価電子帯エネルギ(Ev,p)とが接近している。   In contrast, in the first embodiment, as shown in FIG. 3, in the intermediate layer 306 (intermediate layer 5 shown in FIG. 1), on the n-type semiconductor layer 302 (n-type semiconductor layer 4d shown in FIG. 1) side. The negative charge holding portion 304 (negative charge layer) is disposed on the positive charge holding portion 305 (positive charge layer) and the p-type semiconductor layer 303 (p-type semiconductor layer 6d shown in FIG. 1). Thereby, in the vicinity of the intermediate layer 5, that is, in the vicinity of the interface between the positive charge holding unit 305 and the negative charge holding unit 304 due to the difference in accumulation tendency between holes (positive charge) and electrons (negative charge) of each layer. The slopes of the energy levels of the n-type semiconductor layer 302 and the p-type semiconductor layer 303 change. As a result, the conduction band energy (Ec, n) of the n-type semiconductor layer 302 and the valence band energy (Ev, p) of the p-type semiconductor layer 303 are close to each other.

つまり、正電荷保持部305及び負電荷保持部304の界面近傍でn型半導体層302の電子エネルギーレベルとp型半導体層303の正孔エネルギーレベルとが近づくようにそれぞれのエネルギーレベルが変化している。このように、n型伝導帯−p型価電子帯間のエネルギギャップが小さいと、層間のトンネル伝導が増進され、キャリア再結合が増進されて、電流が流れやすくなる。   That is, the energy level of each of the n-type semiconductor layer 302 and the hole energy level of the n-type semiconductor layer 302 is changed in the vicinity of the interface between the positive charge holding unit 305 and the negative charge holding unit 304 so as to approach each other. Yes. Thus, when the energy gap between the n-type conduction band and the p-type valence band is small, tunnel conduction between layers is enhanced, carrier recombination is enhanced, and current flows easily.

以上のように、実施の形態1では、中間層306の近傍においてn型半導体層302の電子エネルギーレベルとp型半導体層303の正孔エネルギーレベルとが近づき、p型半導体層6aとn型半導体層4cとの間でトンネル電流が中間層5を介して流れやすくなる(電荷のトンネル伝導を行わせやすくなる)。すなわち、中間層5を挟む2つの光電変換層4、6の間における導電性を向上できる。この結果、光電変換装置1の光電変換効率が改善される。また、中間層5を自己組織化により単分子膜として形成できるため、光電変換装置1の製造コストの低コスト化が図れる。   As described above, in the first embodiment, the electron energy level of the n-type semiconductor layer 302 and the hole energy level of the p-type semiconductor layer 303 approach each other in the vicinity of the intermediate layer 306, and the p-type semiconductor layer 6a and the n-type semiconductor are in contact with each other. It becomes easy for a tunnel current to flow between the layers 4c through the intermediate layer 5 (to facilitate charge tunneling). That is, the conductivity between the two photoelectric conversion layers 4 and 6 sandwiching the intermediate layer 5 can be improved. As a result, the photoelectric conversion efficiency of the photoelectric conversion device 1 is improved. Moreover, since the intermediate layer 5 can be formed as a monomolecular film by self-organization, the manufacturing cost of the photoelectric conversion device 1 can be reduced.

また、仮に、ポテンシャルを制御するために絶縁膜中の固定電荷を利用する場合を考える。この場合、絶縁膜厚を薄くしてトンネル電流を増やそうとすると電荷が少なくなってポテンシャル制御効果が小さくなる。導電性を維持しつつポテンシャルを制御することが困難である。   Also, suppose that a fixed charge in the insulating film is used to control the potential. In this case, if the insulating film thickness is reduced to increase the tunnel current, the electric charge is reduced and the potential control effect is reduced. It is difficult to control the potential while maintaining conductivity.

それに対して、実施の形態1によれば、中間層5内に正電荷保持部305及び負電荷保持部304の電気2重層を形成してポテンシャルを制御するために、電荷が少なくなることなくトンネル電流を増やすことができる。   On the other hand, according to the first embodiment, the electric double layer of the positive charge holding unit 305 and the negative charge holding unit 304 is formed in the intermediate layer 5 to control the potential. The current can be increased.

なお、光吸収波長特性の異なる光電変換層として、実施の形態1では光電変換層4と光電変換層6とで結晶化率の異なる材料を用いたが、元素組成の異なる層としてもよい。例えば、光電変換層4と光電変換層6とは、Si半導体層に添加するGeやCの割合を変化させ、バンドギャップを調整して積層する光電変換層で光吸収波長特性が異なるように調整してもよい。また、光電変換装置1において、積層される光電変換層は3つ以上としてもよい。その場合、中間層5が各光電変換層の間に配され2つ以上ある構成としてもよい。   Note that, as the photoelectric conversion layer having different light absorption wavelength characteristics, materials having different crystallization ratios in the photoelectric conversion layer 4 and the photoelectric conversion layer 6 are used in Embodiment 1, but layers having different elemental compositions may be used. For example, the photoelectric conversion layer 4 and the photoelectric conversion layer 6 are adjusted such that the ratio of Ge or C added to the Si semiconductor layer is changed and the band gap is adjusted so that the light absorption wavelength characteristics are different between the stacked photoelectric conversion layers. May be. Further, in the photoelectric conversion device 1, three or more photoelectric conversion layers may be stacked. In that case, it is good also as a structure which has the intermediate | middle layer 5 distribute | arranged between each photoelectric converting layer, and two or more.

また、光電変換装置1における各層の積層の順番は、上記に限定されない。すなわち、光電変換装置1において、基板2からの積層順序を反対として、基板2と反対側の膜面側から光を入射する構成としてもよい。膜面側から光を入射する場合、基板2は透明でなくてよい。   Moreover, the order of lamination | stacking of each layer in the photoelectric conversion apparatus 1 is not limited above. That is, in the photoelectric conversion device 1, the order of stacking from the substrate 2 may be reversed, and light may be incident from the film surface side opposite to the substrate 2. When light is incident from the film surface side, the substrate 2 does not have to be transparent.

例えば、中間層5が、光電変換層(第1光電変換層)4におけるn型半導体層4dと光電変換層(第2光電変換層)6におけるp型半導体層とに挟まれていれば、光電変換装置1において、基板2の上に、透明電極3、光電変換層(第2光電変換層)6、中間層5、光電変換層(第1光電変換層)4、裏面電極7が順に積層されていてもよい。この場合、例えば、光電変換層4では、基板2側から順に、n型半導体層4d、n型半導体層4c、i型半導体層4b、p型半導体層4aが積層されていてもよい。光電変換層6では、基板2側から順に、n型半導体層6c、i型半導体層6b、p型半導体層6a、p型半導体層6dが積層されていてもよい。   For example, if the intermediate layer 5 is sandwiched between the n-type semiconductor layer 4d in the photoelectric conversion layer (first photoelectric conversion layer) 4 and the p-type semiconductor layer in the photoelectric conversion layer (second photoelectric conversion layer) 6, In the conversion device 1, the transparent electrode 3, the photoelectric conversion layer (second photoelectric conversion layer) 6, the intermediate layer 5, the photoelectric conversion layer (first photoelectric conversion layer) 4, and the back electrode 7 are sequentially stacked on the substrate 2. It may be. In this case, for example, in the photoelectric conversion layer 4, an n-type semiconductor layer 4d, an n-type semiconductor layer 4c, an i-type semiconductor layer 4b, and a p-type semiconductor layer 4a may be stacked in this order from the substrate 2 side. In the photoelectric conversion layer 6, an n-type semiconductor layer 6c, an i-type semiconductor layer 6b, a p-type semiconductor layer 6a, and a p-type semiconductor layer 6d may be stacked in this order from the substrate 2 side.

また、この場合、第1の工程では、基板2の上に、(アンダーコート層8、)透明電極3、n型半導体層6c、i型半導体層6b、p型半導体層6a、p型半導体層6dを順に形成する。これにより、n型半導体層6cとp型半導体層6d、6aとを有する光電変換層(第2光電変換層)6を形成する。第2の工程では、光電変換層(第1光電変換層)4におけるn型半導体層4dと光電変換層(第2光電変換層)6におけるp型半導体層6dとに挟まれるべき位置、すなわち光電変換層(第2光電変換層)6の上に、電気双極子を有する分子で中間層5を形成する。第3の工程では、中間層5の上に、n型半導体層6c、i型半導体層6b、p型半導体層6a、p型半導体層6dを順に形成する。これにより、n型半導体層6cとp型半導体層6d、6aとを有する光電変換層(第2光電変換層)6を形成する。これにより、光電変換層(第1光電変換層)4におけるn型半導体層4dと光電変換層(第2光電変換層)6におけるp型半導体層とに挟まれた中間層5が得られる。   In this case, in the first step, on the substrate 2, the (undercoat layer 8) transparent electrode 3, n-type semiconductor layer 6 c, i-type semiconductor layer 6 b, p-type semiconductor layer 6 a, p-type semiconductor layer 6d are formed in order. Thereby, the photoelectric conversion layer (second photoelectric conversion layer) 6 including the n-type semiconductor layer 6c and the p-type semiconductor layers 6d and 6a is formed. In the second step, the position to be sandwiched between the n-type semiconductor layer 4d in the photoelectric conversion layer (first photoelectric conversion layer) 4 and the p-type semiconductor layer 6d in the photoelectric conversion layer (second photoelectric conversion layer) 6, that is, photoelectric On the conversion layer (second photoelectric conversion layer) 6, the intermediate layer 5 is formed of molecules having an electric dipole. In the third step, an n-type semiconductor layer 6c, an i-type semiconductor layer 6b, a p-type semiconductor layer 6a, and a p-type semiconductor layer 6d are sequentially formed on the intermediate layer 5. Thereby, the photoelectric conversion layer (second photoelectric conversion layer) 6 including the n-type semiconductor layer 6c and the p-type semiconductor layers 6d and 6a is formed. Thereby, the intermediate layer 5 sandwiched between the n-type semiconductor layer 4d in the photoelectric conversion layer (first photoelectric conversion layer) 4 and the p-type semiconductor layer in the photoelectric conversion layer (second photoelectric conversion layer) 6 is obtained.

実施の形態2.
実施の形態2に係る光電変換装置1について説明する。以下では、実施の形態1と異なる点を中心に説明する。
Embodiment 2. FIG.
A photoelectric conversion device 1 according to Embodiment 2 will be described. Below, it demonstrates focusing on a different point from Embodiment 1. FIG.

実施の形態2に係る光電変換装置1は、中間層5が、パラ置換ベンゼンクロライド誘導体よりなる一群の物質から選択された物質で形成されている。すなわち、第2の工程において、中間層5は、例えば、p置換クロロフェニルフォスフォリルジクロライドを1mモル含有したジクロロメタン5分間浸漬することで自己組織化を行い単分子膜として形成した。さらにこれを窒素ガス雰囲気中150℃で乾燥した。   In the photoelectric conversion device 1 according to Embodiment 2, the intermediate layer 5 is formed of a material selected from a group of materials made of para-substituted benzene chloride derivatives. That is, in the second step, the intermediate layer 5 was formed as a monomolecular film by being self-assembled by immersing it in dichloromethane containing 1 mmol of p-substituted chlorophenylphosphoryl dichloride for 5 minutes, for example. Further, this was dried at 150 ° C. in a nitrogen gas atmosphere.

このように形成した単分子膜は、COCl基(正電荷の部位)がn型半導体層4dの側に向き、Cl基(負電荷の部位)がp型半導体層6dの側に向くように、分子が配向したものとなる。この結果、基板側(n型半導体層4dの側)が正電荷の層、表面側(形成されるべきp型半導体層6dの側)が負電荷の層の電気2重層が形成される。   The monomolecular film thus formed has a COCl group (positively charged portion) facing the n-type semiconductor layer 4d side and a Cl group (negatively charged portion) facing the p-type semiconductor layer 6d side. The molecules are oriented. As a result, an electric double layer is formed in which the substrate side (n-type semiconductor layer 4d side) is a positively charged layer and the surface side (p-type semiconductor layer 6d side to be formed) is a negatively charged layer.

したがって、実施の形態2によっても、中間層306の近傍においてn型半導体層302(n型半導体層4d)の電子エネルギーレベルとp型半導体層303(p型半導体層6d)の正孔エネルギーレベルとが近づき、p型半導体層6aとn型半導体層4cとの間でトンネル電流が中間層5を介して流れやすくなる(電荷のトンネル伝導を行わせやすくなる)。   Therefore, also in the second embodiment, in the vicinity of the intermediate layer 306, the electron energy level of the n-type semiconductor layer 302 (n-type semiconductor layer 4d) and the hole energy level of the p-type semiconductor layer 303 (p-type semiconductor layer 6d) And the tunnel current easily flows between the p-type semiconductor layer 6a and the n-type semiconductor layer 4c through the intermediate layer 5 (it becomes easier to conduct charge tunneling).

以上の実施の形態の構成は、特にSiを主成分とする半導体層からなる光電変換層の変換効率向上に適するが、Si系以外の化合物半導体系、有機物系などの材料にも適用可能である。   The configuration of the above embodiment is particularly suitable for improving the conversion efficiency of a photoelectric conversion layer composed of a semiconductor layer containing Si as a main component, but it can also be applied to compounds such as compound semiconductors other than Si and organic materials. .

以上のように、本発明にかかる光電変換装置、及び光電変換装置の製造方法は、積層型の薄膜太陽電池に有用である。   As described above, the photoelectric conversion device and the method for manufacturing the photoelectric conversion device according to the present invention are useful for stacked thin-film solar cells.

1 光電変換装置
2 基板
3 透明電極
4 光電変換層
4a p型半導体層
4b i型半導体層
4c、4d n型半導体層
5 中間層
6 光電変換層
6a、6d p型半導体層
6b i型半導体層
6c n型半導体層
7 裏面電極
8 アンダーコート層
11 透明導電層
302 n型半導体層
303 p型半導体層
304 負電荷保持部
305 正電荷保持部
306 中間層
401 分子
402 電気双極子モーメント
1302 n型半導体層
1303 p型半導体層
1307 中間層
1 Photoelectric conversion device 2 Substrate
3 transparent electrode 4 photoelectric conversion layer 4a p-type semiconductor layer 4b i-type semiconductor layer 4c, 4d n-type semiconductor layer 5 intermediate layer 6 photoelectric conversion layer 6a, 6d p-type semiconductor layer 6b i-type semiconductor layer 6c n-type semiconductor layer 7 back surface Electrode 8 Undercoat layer 11 Transparent conductive layer 302 n-type semiconductor layer 303 p-type semiconductor layer 304 Negative charge holding portion 305 Positive charge holding portion 306 Intermediate layer 401 Molecule 402 Electric dipole moment 1302 n-type semiconductor layer 1303 p-type semiconductor layer 1307 Middle class

Claims (6)

n型半導体層とp型半導体層とを有する第1光電変換層と、
前記第1光電変換層と光吸収波長特性が異なっており、n型半導体層とp型半導体層とを有する第2光電変換層と、
前記第1光電変換層におけるn型半導体層と前記第2光電変換層におけるp型半導体層とに挟まれた中間層と、
を備え、
前記中間層は、電気2重層を有し、分子内の正電荷の部位が前記第1光電変換層におけるn型半導体層の側に向き、前記分子内の負電荷の部位が前記第2光電変換層におけるp型半導体層の側に向くように、前記分子が配向している
ことを特徴とする光電変換装置。
a first photoelectric conversion layer having an n-type semiconductor layer and a p-type semiconductor layer;
A light absorption wavelength characteristic different from that of the first photoelectric conversion layer, a second photoelectric conversion layer having an n-type semiconductor layer and a p-type semiconductor layer;
An intermediate layer sandwiched between an n-type semiconductor layer in the first photoelectric conversion layer and a p-type semiconductor layer in the second photoelectric conversion layer;
With
The intermediate layer has an electric double layer, a positive charge site in the molecule is directed toward the n-type semiconductor layer in the first photoelectric conversion layer, and a negative charge site in the molecule is the second photoelectric conversion. The photoelectric conversion device, wherein the molecules are oriented so as to face the p-type semiconductor layer side of the layer.
前記第1光電変換層及び前記中間層は、前記第2光電変換層に対して光入射側に配され、
前記中間層は、少なくとも前記第2光電変換層で吸収する光波長領域で透光性を有する
ことを特徴とする請求項1に記載の光電変換装置。
The first photoelectric conversion layer and the intermediate layer are arranged on the light incident side with respect to the second photoelectric conversion layer,
The photoelectric conversion device according to claim 1, wherein the intermediate layer has translucency at least in a light wavelength region absorbed by the second photoelectric conversion layer.
前記中間層は、電気双極子の向きの互いにそろった分子が2次元的に複数配された単分子層で形成されている
ことを特徴とする請求項1又は2に記載の光電変換装置。
The photoelectric conversion device according to claim 1, wherein the intermediate layer is formed of a monomolecular layer in which a plurality of molecules aligned in the direction of electric dipoles are arranged two-dimensionally.
前記中間層は、前記第1光電変換層が前記中間層に対して光入射側に配され前記第1光電変換層内においてp型半導体層が光入射側に配されn型半導体層が光入射側と反対側に配される場合、(3+2n)フッ化アルキルシラン[CF(CH(CFSi(OCH;n=0〜6]よりなる一群の物質から選択された物質で形成されている
ことを特徴とする請求項1から3のいずれか1項に記載の光電変換装置。
In the intermediate layer, the first photoelectric conversion layer is disposed on a light incident side with respect to the intermediate layer, a p-type semiconductor layer is disposed on a light incident side in the first photoelectric conversion layer, and an n-type semiconductor layer is light incident. Selected from a group of substances consisting of (3 + 2n) fluorinated alkylsilanes [CF 3 (CH 2 ) 2 (CF 2 ) n Si (OCH 3 ) 3 ; n = 0-6] The photoelectric conversion device according to any one of claims 1 to 3, wherein the photoelectric conversion device is formed of a formed material.
前記中間層は、パラ置換ベンゼンクロライド誘導体よりなる一群の物質から選択された物質で形成されている
ことを特徴とする請求項1から3のいずれか1項に記載の光電変換装置。
The photoelectric conversion device according to any one of claims 1 to 3, wherein the intermediate layer is formed of a material selected from a group of materials made of a para-substituted benzene chloride derivative.
n型半導体層とp型半導体層とを有する第1光電変換層を形成する工程と、
前記第1光電変換層と光吸収波長特性が異なっており、n型半導体層とp型半導体層とを有する第2光電変換層を形成する工程と、
前記第1光電変換層におけるn型半導体層と前記第2光電変換層におけるp型半導体層とに挟まれるべき位置に、電気2重層を有する中間層を形成する工程と、
を備え、
前記中間層を形成する工程では、分子内の正電荷の部分が前記第1光電変換層におけるn型半導体層の側に向き、前記分子内の負電荷の部分が前記第2光電変換層におけるp型半導体層側に向くように、前記分子を配向させる自己組織化を行う
ことを特徴とする光電変換装置の製造方法。
forming a first photoelectric conversion layer having an n-type semiconductor layer and a p-type semiconductor layer;
Forming a second photoelectric conversion layer having a light absorption wavelength characteristic different from that of the first photoelectric conversion layer and having an n-type semiconductor layer and a p-type semiconductor layer;
Forming an intermediate layer having an electric double layer at a position to be sandwiched between an n-type semiconductor layer in the first photoelectric conversion layer and a p-type semiconductor layer in the second photoelectric conversion layer;
With
In the step of forming the intermediate layer, the positive charge portion in the molecule is directed to the n-type semiconductor layer side in the first photoelectric conversion layer, and the negative charge portion in the molecule is p in the second photoelectric conversion layer. Self-organization for orienting the molecules so as to face the type semiconductor layer side. A method for manufacturing a photoelectric conversion device, comprising:
JP2010061574A 2010-03-17 2010-03-17 Photoelectric conversion device and method for manufacturing photoelectric conversion device Expired - Fee Related JP5247748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010061574A JP5247748B2 (en) 2010-03-17 2010-03-17 Photoelectric conversion device and method for manufacturing photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010061574A JP5247748B2 (en) 2010-03-17 2010-03-17 Photoelectric conversion device and method for manufacturing photoelectric conversion device

Publications (2)

Publication Number Publication Date
JP2011198848A true JP2011198848A (en) 2011-10-06
JP5247748B2 JP5247748B2 (en) 2013-07-24

Family

ID=44876727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010061574A Expired - Fee Related JP5247748B2 (en) 2010-03-17 2010-03-17 Photoelectric conversion device and method for manufacturing photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP5247748B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016154232A (en) * 2012-07-20 2016-08-25 旭化成株式会社 Solar cell and method of manufacturing solar cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235374A (en) * 2007-03-16 2008-10-02 Seiko Epson Corp Organic field effect transistor
JP2008311594A (en) * 2007-06-18 2008-12-25 Hitachi Ltd Method for manufacturing thin film transistor and thin film transistor device
JP2009152577A (en) * 2007-11-29 2009-07-09 Semiconductor Energy Lab Co Ltd Photoelectric conversion device and manufacturing method thereof
JP2009260209A (en) * 2007-09-20 2009-11-05 Kyocera Corp Laminated photoelectric converter and photoelectric conversion module
WO2009144944A1 (en) * 2008-05-30 2009-12-03 三菱電機株式会社 Photoelectric converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235374A (en) * 2007-03-16 2008-10-02 Seiko Epson Corp Organic field effect transistor
JP2008311594A (en) * 2007-06-18 2008-12-25 Hitachi Ltd Method for manufacturing thin film transistor and thin film transistor device
JP2009260209A (en) * 2007-09-20 2009-11-05 Kyocera Corp Laminated photoelectric converter and photoelectric conversion module
JP2009152577A (en) * 2007-11-29 2009-07-09 Semiconductor Energy Lab Co Ltd Photoelectric conversion device and manufacturing method thereof
WO2009144944A1 (en) * 2008-05-30 2009-12-03 三菱電機株式会社 Photoelectric converter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016154232A (en) * 2012-07-20 2016-08-25 旭化成株式会社 Solar cell and method of manufacturing solar cell
US10535788B2 (en) 2012-07-20 2020-01-14 Asahi Kasei Kabushiki Kaisha Semiconductor film and semiconductor element
US10944018B2 (en) 2012-07-20 2021-03-09 Asahi Kasei Kabushiki Kaisha Semiconductor film and semiconductor element

Also Published As

Publication number Publication date
JP5247748B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
AU2007234548B8 (en) Amorphous-crystalline tandem nanostructured solar cells
RU2415495C2 (en) Photoelectric element
JP4671002B2 (en) Photoelectric conversion device
KR20180007585A (en) Tandem solar cell, tanden solar cell module comprising the same and method for manufacturing thereof
KR20180011832A (en) Tandem solar cell, tanden solar cell module comprising the same and method for manufacturing thereof
JP5420109B2 (en) Multiple solar cell having PN junction and Schottky junction and manufacturing method thereof
EP4200914A1 (en) Photovoltaic structure and method of fabrication
CN117178649A (en) Perovskite solar cell and tandem solar cell comprising same
KR20190115382A (en) Solar cell module and manufacturing method for the same
WO2012057604A1 (en) Nanostructure-based photovoltaic cell
JP2013516783A (en) Solar power plant
JP5247748B2 (en) Photoelectric conversion device and method for manufacturing photoelectric conversion device
US9947824B1 (en) Solar cell employing nanocrystalline superlattice material and amorphous structure and method of constructing the same
CN1870302A (en) Photoelectric/thermoelectric conversion battery
JP5188487B2 (en) Photoelectric conversion device
JP2011181608A (en) Photoelectric converter and manufacturing method of photoelectric converter
US20100116337A1 (en) Tandem Module Photovoltaic Devices Including An Organic Module
CN115020519B (en) Solar laminated battery, battery assembly and photovoltaic system
KR20130059976A (en) Solar cell and method of fabricating the same
KR101079214B1 (en) Solar cell structure
Li et al. Perovskite‐based Tandem Solar Cells
KR101326539B1 (en) Thin-film typed solar cell comprising wo3 buffer layer
KR101846337B1 (en) Solar cell apparatus and method of fabricating the same
WO2010135828A1 (en) Low work function electrode
KR101349417B1 (en) Solar cell apparatus and method of fabricating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees