JP2011187591A - Nitride semiconductor ultraviolet light-emitting element - Google Patents

Nitride semiconductor ultraviolet light-emitting element Download PDF

Info

Publication number
JP2011187591A
JP2011187591A JP2010049996A JP2010049996A JP2011187591A JP 2011187591 A JP2011187591 A JP 2011187591A JP 2010049996 A JP2010049996 A JP 2010049996A JP 2010049996 A JP2010049996 A JP 2010049996A JP 2011187591 A JP2011187591 A JP 2011187591A
Authority
JP
Japan
Prior art keywords
layer
type cladding
active layer
well
composition ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010049996A
Other languages
Japanese (ja)
Inventor
Hikari Hirano
光 平野
Masamichi Ipponmatsu
正道 一本松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UV Craftory Co Ltd
Original Assignee
UV Craftory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UV Craftory Co Ltd filed Critical UV Craftory Co Ltd
Priority to JP2010049996A priority Critical patent/JP2011187591A/en
Publication of JP2011187591A publication Critical patent/JP2011187591A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nitride semiconductor ultraviolet light-emitting element that suppresses a degradation in light emission efficiency by relaxing an internal electric field generated in an active layer without depending upon In composition modulation effect. <P>SOLUTION: At least an n-type clad layer 6 made of an n-type AlGaN-based semiconductor, the active layer 7 of an AlGaN-based semiconductor having a quantum well structure of one or more layers, and a p-type clad layer 9 made of a p-type AlGaN-base semiconductor are arranged in order on a surface of a substrate or on a template 5 formed of one or more AlGaN-based semiconductor layers formed on a surface of a substrate, and composition modulation is applied to an Al composition ratio at least in one well layer 7b of the active layer 7 so as to decrease band gap energy from the side of the p-type clad layer 9 toward the n-type clad layer 6. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、発光ダイオード、レーザダイオード等に利用される窒化物半導体発光素子に関し、特に、発光中心波長が400nm以下の窒化物半導体紫外線発光素子に関する。   The present invention relates to a nitride semiconductor light emitting device used for a light emitting diode, a laser diode or the like, and more particularly to a nitride semiconductor ultraviolet light emitting device having an emission center wavelength of 400 nm or less.

従来から、GaN系窒化物半導体はGaNや比較的Al組成比(AlNモル分率)の低いAlGaN層をベースとして、その上に多層構造から成る発光素子や受光素子が作製されている(例えば、非特許文献1参照)。図14に、典型的な従来のGaN系発光ダイオードの結晶層構造を示す。図14に示す発光ダイオードは、サファイア基板101上に、AlNからなる下地層102を形成し、周期的な溝構造をフォトリソグラフィと反応性イオンエッチングで形成した後に、ELO(Epitaxial Lateral Overgrowth)−AlN層103を、テンプレートとして形成し、当該ELO−AlNテンプレート103上に、膜厚2μmのn型AlGaNのn型クラッド層104、AlGaN/GaN多重量子井戸活性層105、Al組成比が多重量子井戸活性層105より高い膜厚が20nmのp型AlGaNの電子ブロック層106、膜厚が50nmのp型AlGaNのp型クラッド層107、膜厚が20nmのp型GaNのコンタクト層108を順番に積層した積層構造を有している。多重量子井戸活性層105は、膜厚2nmのGaN井戸層を膜厚8nmのAlGaNバリア層で挟んだ構造を5層積層した構造を有している。結晶成長後、n型クラッド層104の一部表面が露出するまで、その上の多重量子井戸活性層105、電子ブロック層106、p型クラッド層107、及び、コンタクト層108をエッチング除去し、コンタクト層108の表面に、例えば、Ni/Auのp−電極109が、露出したn型クラッド層104の表面に、例えば、Ti/Al/Ti/Auのn−電極110が夫々形成されている。GaN井戸層をAlGaN井戸層として、Al組成比や膜厚を変化させることにより発光波長の短波長化を行い、或いは、Inを添加することで発光波長の長波長化を行い、波長200nmから400nm程度の紫外領域の発光ダイオードが作製できる。半導体レーザについても類似の構成で作製可能である。   Conventionally, a GaN-based nitride semiconductor is based on GaN or an AlGaN layer having a relatively low Al composition ratio (AlN molar fraction), and a light-emitting element and a light-receiving element having a multilayer structure have been produced thereon (for example, Non-patent document 1). FIG. 14 shows a crystal layer structure of a typical conventional GaN-based light emitting diode. In the light-emitting diode shown in FIG. 14, an underlying layer 102 made of AlN is formed on a sapphire substrate 101, a periodic groove structure is formed by photolithography and reactive ion etching, and then ELO (Epitaxial Lateral Overgrowth) -AlN. The layer 103 is formed as a template. On the ELO-AlN template 103, an n-type AlGaN n-type cladding layer 104 having a film thickness of 2 μm, an AlGaN / GaN multiple quantum well active layer 105, and an Al composition ratio having multiple quantum well activity. A p-type AlGaN electron blocking layer 106 having a thickness of 20 nm higher than the layer 105, a p-type AlGaN p-type cladding layer 107 having a thickness of 50 nm, and a p-type GaN contact layer 108 having a thickness of 20 nm are sequentially stacked. It has a laminated structure. The multiple quantum well active layer 105 has a structure in which five layers of a structure in which a GaN well layer having a thickness of 2 nm is sandwiched between AlGaN barrier layers having a thickness of 8 nm are stacked. After the crystal growth, the multi-quantum well active layer 105, the electron blocking layer 106, the p-type cladding layer 107, and the contact layer 108 are removed by etching until a partial surface of the n-type cladding layer 104 is exposed. For example, a Ni / Au p-electrode 109 is formed on the surface of the layer 108, and a Ti / Al / Ti / Au n-electrode 110 is formed on the exposed n-type cladding layer 104. Using a GaN well layer as an AlGaN well layer, the emission wavelength is shortened by changing the Al composition ratio and film thickness, or the emission wavelength is lengthened by adding In, and the wavelength is from 200 nm to 400 nm. A light emitting diode in the ultraviolet region can be manufactured. A semiconductor laser can be fabricated with a similar configuration.

ところで、窒化物半導体は、ウルツ鉱型の結晶構造を有しc軸方向に非対称性を有するため、強い極性を有し、自発分極による電界がc軸方向に発生する。また、窒化物半導体は、圧電効果の大きい材料であり、例えばサファイア基板上にc軸方向に成長させたGaN系半導体では、結晶の最表面が窒素面となり、基板面に平行な方向に圧縮歪みが加わり、界面の法線方向に圧電分極による電界(ピエゾ電界)が発生する。ここで、上記c軸方向に結晶成長を行い、上述の積層構造を有する発光ダイオードを作製する場合を考えると、量子井戸活性層の井戸層内には、井戸層とバリア層のヘテロ界面の両側での自発分極の差による電界と圧縮歪みによるピエゾ電界が同じc軸方向に沿って合成された内部電界が発生する。GaN系窒化物半導体では、この内部電界によって、図15に示すように、活性層の井戸層内では価電子帯も伝導帯もポテンシャルがn型クラッド層側からp型クラッド層側に向けて下降する。この結果、井戸層内において、電子はp型クラッド層側に偏って分布し、正孔(ホール)はn型クラッド層側に偏って分布することになるため、電子と正孔が空間的に分離され、再結合が阻害されるため、発光効率(内部量子効率)が低下する。   By the way, the nitride semiconductor has a wurtzite type crystal structure and is asymmetric in the c-axis direction, and thus has a strong polarity, and an electric field due to spontaneous polarization is generated in the c-axis direction. A nitride semiconductor is a material having a large piezoelectric effect. For example, in a GaN-based semiconductor grown on a sapphire substrate in the c-axis direction, the outermost surface of the crystal is a nitrogen surface, and compressive strain is applied in a direction parallel to the substrate surface. And an electric field (piezoelectric field) due to piezoelectric polarization is generated in the normal direction of the interface. Here, when considering the case where a light emitting diode having the above-described stacked structure is manufactured by performing crystal growth in the c-axis direction, the well layer of the quantum well active layer includes both sides of the hetero interface between the well layer and the barrier layer. An internal electric field is generated in which the electric field due to the difference in spontaneous polarization and the piezoelectric field due to compressive strain are combined along the same c-axis direction. In the GaN-based nitride semiconductor, due to this internal electric field, the potential of both the valence band and the conduction band decreases from the n-type cladding layer side to the p-type cladding layer side in the well layer of the active layer, as shown in FIG. To do. As a result, in the well layer, electrons are unevenly distributed to the p-type cladding layer side, and holes (holes) are unevenly distributed to the n-type cladding layer side. Since it is separated and recombination is inhibited, the light emission efficiency (internal quantum efficiency) decreases.

上述の量子井戸活性層の井戸層内に発生する内部電界による発光効率の低下を緩和するため、AlGaN系窒化物半導体にIn(インジウム)を数%程度以上添加して4元混晶とすることで、結晶成長行程でIn組成がnmオーダーで不均一に分布する組成の揺らぎが自然発生的に生じる効果(In組成変調効果)を利用する方法がある(下記非特許文献2参照)。量子井戸活性層をInAlGaN4元混晶とすることで、上記In組成変調効果により、電子と正孔の捕獲されやすいエネルギポテンシャルの低い領域(In濃度の高い部位)が不均一に分散して生じ、上記内部電界の存在にも拘らず、発光効率の著しい低下が生じないことが知られている。   In order to alleviate the decrease in light emission efficiency due to the internal electric field generated in the well layer of the quantum well active layer, about 4% or more of In (indium) is added to the AlGaN-based nitride semiconductor to form a quaternary mixed crystal. In the crystal growth process, there is a method of utilizing an effect (In composition modulation effect) in which fluctuation of the composition in which the In composition is non-uniformly distributed in the order of nm occurs (see Non-Patent Document 2 below). By forming the quantum well active layer as an InAlGaN quaternary mixed crystal, the above-mentioned In composition modulation effect results in non-uniformly dispersed regions with low energy potential (sites with high In concentration) where electrons and holes are easily trapped, In spite of the presence of the internal electric field, it is known that the luminous efficiency does not significantly decrease.

Kentaro Nagamatsu,etal.,“High−efficiency AlGaN−based UV light−emitting diode on laterally overgrown AlN”,Journal of Crystal Growth,2008,310,pp.2326−2329Kentaro Nagamatsu, et al. "High-efficiency AlGaN-based UV light-emitting diode on laterally overgrown AlN", Journal of Crystal Growth, 2008, 310, pp. 199 2326-2329 “殺菌用途に最適な深紫外光を10mWで発する高出力発光ダイオード登場”、[online]、独立行政法人 理化学研究所、松下電工株式会社、[平成20年9月5日検索]、インターネット<URL:https://www.riken.jp/r-world/info/release/press/2008/080704/detail.html>“Appearance of high-power light-emitting diode that emits deep ultraviolet light at 10 mW, suitable for sterilization applications”, [online], RIKEN, Matsushita Electric Works, Ltd. [searched September 5, 2008], Internet <URL : Http:https://www.riken.jp/r-world/info/release/press/2008/080704/detail.html>

発光中心波長が400nm以下の窒化物半導体紫外線発光素子の場合、量子井戸活性層にInを数%程度以上添加すると、Alの組成比を高くしてInAlGaN4元混晶とする必要がある。一般に4元混晶は3元混晶に比べて結晶の安定成長が困難であることが知られている。これは、InNの結晶成長温度が800℃以下であるのに対し、GaNの結晶成長温度が1000〜1100℃、AlGaNの結晶成長温度が1050〜1200℃と高温となるため、Inを添加することで、結晶成長が不安定となるためである。   In the case of a nitride semiconductor ultraviolet light emitting device having an emission center wavelength of 400 nm or less, if In is added to the quantum well active layer by about several percent or more, it is necessary to increase the Al composition ratio to form an InAlGaN quaternary mixed crystal. In general, it is known that a quaternary mixed crystal has difficulty in stable crystal growth compared to a ternary mixed crystal. This is because the crystal growth temperature of InN is 800 ° C. or lower, whereas the crystal growth temperature of GaN is 1000 to 1100 ° C., and the crystal growth temperature of AlGaN is 1050 to 1200 ° C. This is because crystal growth becomes unstable.

また、上記の如く、Inが存在することで、InAlGaNの結晶成長温度を低下させる必要があるが、活性層の上層に形成する電子ブロック層の成長温度が高温であるため、量子井戸活性層においてInの分解が生じ、結果として、Inを添加したことの効果が十分に発揮されなくなる。これを防止するために、Inの分解を防ぐためのGaNまたはAlGaN層(キャップ層と呼ばれる)を量子井戸活性層と電子ブロック層の間に設けることが必要となる。このキャップ層は高抵抗であるため、キャップ層での電圧降下を補償するために印加電圧が高電圧化し、却って発光効率が低下することになり好ましくない。   Further, as described above, the presence of In makes it necessary to lower the crystal growth temperature of InAlGaN. However, since the growth temperature of the electron blocking layer formed on the active layer is high, in the quantum well active layer, In decomposition occurs, and as a result, the effect of adding In is not sufficiently exhibited. In order to prevent this, it is necessary to provide a GaN or AlGaN layer (called a cap layer) for preventing the decomposition of In between the quantum well active layer and the electron blocking layer. Since this cap layer has a high resistance, the applied voltage is increased to compensate for the voltage drop in the cap layer, and the light emission efficiency is lowered, which is not preferable.

以上より、量子井戸活性層をInAlGaN4元混晶とした場合、結晶成長が不安定となる問題、及び、Inの分解の問題があるため、安定した製造(量産)を考えた場合、上述の内部電界に起因する発光効率の低下を、In組成変調効果に頼らず解決する必要がある。   From the above, when the quantum well active layer is an InAlGaN quaternary mixed crystal, there is a problem of unstable crystal growth and a problem of decomposition of In. It is necessary to solve the decrease in luminous efficiency due to the electric field without depending on the In composition modulation effect.

本発明は、上述の問題点に鑑みてなされたものであり、その目的は、In組成変調効果に頼らず活性層に発生する内部電界を緩和して発光効率の低下を抑制した窒化物半導体紫外線発光素子を提供することにある。   The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to nitride semiconductor ultraviolet light that suppresses a decrease in luminous efficiency by relaxing an internal electric field generated in an active layer without relying on an In composition modulation effect. The object is to provide a light emitting element.

上記目的を達成するための本発明に係る窒化物半導体紫外線発光素子は、基板面或いは前記基板面上に形成された1層以上のAlGaN系半導体層からなるテンプレート上に、少なくとも、n型AlGaN系半導体からなるn型クラッド層、単一または多重量子井戸構造のAlGaN系半導体の活性層、及び、p型AlGaN系半導体からなるp型クラッド層が、順番に配置されており、前記活性層の少なくとも1層の井戸層内部に、前記p型クラッド層側から前記n型クラッド層に向けてバンドギャップエネルギが減少するようにAl組成比に対する組成変調が設けられていることを特徴とする。   In order to achieve the above object, a nitride semiconductor ultraviolet light emitting device according to the present invention includes at least an n-type AlGaN-based material on a substrate surface or a template formed of one or more AlGaN-based semiconductor layers formed on the substrate surface. An n-type cladding layer made of a semiconductor, an active layer of an AlGaN semiconductor having a single or multiple quantum well structure, and a p-type cladding layer made of a p-type AlGaN semiconductor are arranged in order, and at least of the active layers A composition modulation with respect to the Al composition ratio is provided in one well layer so that the band gap energy decreases from the p-type cladding layer side toward the n-type cladding layer.

更に、上記第1の特徴の窒化物半導体紫外線発光素子において、前記活性層が3層以下の量子井戸構造であることが好ましい。   Furthermore, in the nitride semiconductor ultraviolet light-emitting device having the first feature, it is preferable that the active layer has a quantum well structure having three or less layers.

更に、上記特徴の窒化物半導体紫外線発光素子において、前記活性層が2層以上の多重量子井戸構造である場合、少なくとも前記p型クラッド層に最も近い井戸層に、前記組成変調が設けられていることが好ましい。   Furthermore, in the nitride semiconductor ultraviolet light emitting device having the above characteristics, when the active layer has a multiple quantum well structure of two or more layers, the composition modulation is provided at least in the well layer closest to the p-type cladding layer. It is preferable.

更に、上記特徴の窒化物半導体紫外線発光素子において、前記活性層と前記p型クラッド層の間に、前記活性層と前記p型クラッド層よりAl組成比が高いp型AlGaN系半導体からなる電子ブロック層が配置されていることが好ましい。   Furthermore, in the nitride semiconductor ultraviolet light emitting device having the above characteristics, an electronic block made of a p-type AlGaN-based semiconductor having an Al composition ratio higher than that of the active layer and the p-type cladding layer between the active layer and the p-type cladding layer. It is preferred that the layers are arranged.

更に、上記特徴の窒化物半導体紫外線発光素子において、前記電子ブロック層に、前記p型クラッド層側から前記n型クラッド層に向けてバンドギャップエネルギが増加するようにAl組成比に対する組成変調が設けられていることが好ましい。   Furthermore, in the nitride semiconductor ultraviolet light emitting device having the above characteristics, composition modulation with respect to the Al composition ratio is provided in the electron blocking layer so that band gap energy increases from the p-type cladding layer side toward the n-type cladding layer. It is preferable that

上記特徴の窒化物半導体紫外線発光素子によれば、活性層の井戸層内において価電子帯と伝導帯の両側でp型クラッド層側に向けて下降しているポテンシャルの傾斜が、伝導帯側で緩和され、価電子帯側でより急峻となる。この結果、n型クラッド層側から活性層内に注入される電子は、活性層の井戸層内において、p型クラッド層側に局在することが緩和され分散するため、活性層の井戸層内においてn型クラッド層側に局在する正孔との再結合が生じ易くなり、内部量子効率の改善が図られる。結果として、量子井戸活性層をInAlGaN4元混晶とすることなく、内部電界に起因する発光効率の低下を抑制できる。   According to the nitride semiconductor ultraviolet light-emitting device having the above characteristics, the potential gradient descending toward the p-type cladding layer on both sides of the valence band and the conduction band in the well layer of the active layer is on the conduction band side. Relaxed and steeper on the valence band side. As a result, electrons injected from the n-type clad layer side into the active layer are relaxed and dispersed in the well layer of the active layer and localized in the p-type clad layer side. , Recombination with holes localized on the n-type cladding layer side is likely to occur, and the internal quantum efficiency is improved. As a result, it is possible to suppress a decrease in light emission efficiency due to the internal electric field without making the quantum well active layer an InAlGaN quaternary mixed crystal.

尚、本発明の効果は、InAlGaN4元混晶の場合にも発揮されるため、InAlGaN4元混晶においても有効である。例えば、In組成比が小さく、上述のIn組成変調効果が小さい場合において、内部電界緩和の有効な手段となる。   The effect of the present invention is also exhibited in the case of an InAlGaN quaternary mixed crystal, and is therefore effective in an InAlGaN quaternary mixed crystal. For example, when the In composition ratio is small and the above In composition modulation effect is small, it is an effective means for relaxing the internal electric field.

ところで、電子と正孔では電子の方が高移動度であるため、活性層の井戸層内においては、n型クラッド層側から注入される電子の方が、p型クラッド層側から注入される正孔より潤沢に存在する。つまり、潤沢に存在する電子が分散することで、正孔との効率的な再結合が促進される。   By the way, since electrons are higher in mobility of electrons and holes, electrons injected from the n-type cladding layer side are injected from the p-type cladding layer side in the well layer of the active layer. It exists more abundantly than holes. In other words, abundantly dispersed electrons promote efficient recombination with holes.

これに対し、上記特徴とは逆に、p型クラッド層側から前記n型クラッド層に向けてバンドギャップエネルギが増大するようにAl組成比に対する組成変調を設けると、活性層の井戸層内において価電子帯と伝導帯の両側でp型クラッド層側に向けて下降しているポテンシャルの傾斜が、伝導帯側でより急峻となり、価電子帯側で緩和される。そうすると、潤沢に存在する電子が局在化し、数量的に少ない正孔が分散してしまうため、再結合に供される正孔数が減少して、内部量子効率が却って低下することになる。   On the other hand, contrary to the above feature, when compositional modulation with respect to the Al composition ratio is provided so that the band gap energy increases from the p-type cladding layer side toward the n-type cladding layer, in the well layer of the active layer The slope of the potential falling toward the p-type cladding layer on both sides of the valence band and the conduction band becomes steeper on the conduction band side and relaxed on the valence band side. Then, abundant electrons are localized and a small number of holes are dispersed, so that the number of holes used for recombination is reduced and the internal quantum efficiency is decreased.

また、上述の如く、活性層の井戸層内では電子の方が潤沢に存在し、高移動度であるため、電子と正孔の再結合は、p型クラッド層に近い活性層において活発に生じることになり、活性層を4層以上の量子井戸構造としても、発光に関与する井戸層は、p型クラッド層に近い3層程度となる。従って、活性層を3層以下の量子井戸構造とすることで、井戸層内にAl組成比の組成変調を設ける効果が十分に発揮されることになる。また、その場合に、p型クラッド層に最も近い井戸層に、Al組成比の組成変調を設けることで、内部電界の抑制効果がより良く発揮されることになる。   In addition, as described above, electrons are more abundant in the well layer of the active layer and have higher mobility, so that recombination of electrons and holes is actively generated in the active layer close to the p-type cladding layer. Thus, even if the active layer has a quantum well structure of four or more layers, the number of well layers involved in light emission is about three layers close to the p-type cladding layer. Therefore, when the active layer has a quantum well structure of three or less layers, the effect of providing compositional modulation of the Al composition ratio in the well layer is sufficiently exhibited. In that case, the effect of suppressing the internal electric field is better exhibited by providing compositional modulation of the Al composition ratio in the well layer closest to the p-type cladding layer.

尚、上記特徴の窒化物半導体紫外線発光素子において、活性層とp型クラッド層の間に、活性層とp型クラッド層よりAl組成比が高いp型AlGaN系半導体からなる電子ブロック層が配置されることで、n型クラッド層側から注入される電子に対して電子ブロック層がエネルギ障壁となって、活性層に注入された電子が、p型クラッド層側にオーバーフローするのを抑制して、それに起因して発光効率が低下するのを防止できる。   In the nitride semiconductor ultraviolet light emitting device having the above characteristics, an electron block layer made of a p-type AlGaN-based semiconductor having an Al composition ratio higher than that of the active layer and the p-type cladding layer is disposed between the active layer and the p-type cladding layer. Thus, the electron blocking layer becomes an energy barrier against electrons injected from the n-type cladding layer side, and the electrons injected into the active layer are prevented from overflowing to the p-type cladding layer side, As a result, it is possible to prevent the light emission efficiency from being lowered.

ここで、上記電子ブロック層は、活性層に注入された電子がp型クラッド層側にオーバーフローするのを効果的に抑制するが、一方において、電子のオーバーフローを抑制するために、活性層よりAl組成比を高くしてバンドギャップエネルギを大きくする必要があるが、発光中心波長の短波長化によって、電子ブロック層のAl組成比も高くなるため、その分、p型不純物の活性化が困難となり、高いアクセプタ濃度が得られずに高抵抗化するため、電子ブロック層での電圧降下によって閾値電圧が増加して発光効率の低下を招くことになる。   Here, the electron blocking layer effectively suppresses the electrons injected into the active layer from overflowing to the p-type cladding layer side. On the other hand, in order to suppress the electron overflow, the electron blocking layer is more Al than the active layer. It is necessary to increase the band gap energy by increasing the composition ratio. However, since the Al composition ratio of the electron block layer increases as the emission center wavelength becomes shorter, it becomes difficult to activate the p-type impurity. Since the resistance is increased without obtaining a high acceptor concentration, the threshold voltage increases due to a voltage drop in the electron block layer, leading to a decrease in light emission efficiency.

そこで、電子ブロック層に、p型クラッド層側からn型クラッド層に向けてバンドギャップエネルギが増加するようにAl組成比に対する組成変調を設けることで、電子のオーバーフローを抑制しつつ、正孔の活性層内への注入効率を高めることが可能となり、電子ブロック層の高抵抗化の影響を緩和して、発光効率を高めることができる。   Therefore, by providing composition modulation to the Al composition ratio in the electron blocking layer so that the band gap energy increases from the p-type cladding layer side to the n-type cladding layer, The efficiency of injection into the active layer can be increased, the effect of increasing the resistance of the electron blocking layer can be reduced, and the light emission efficiency can be increased.

本発明に係る窒化物半導体紫外線発光素子(以下、適宜「本発明素子」と称する)の実施の形態につき、図面に基づいて説明する。   DESCRIPTION OF EMBODIMENTS Embodiments of a nitride semiconductor ultraviolet light emitting device according to the present invention (hereinafter referred to as “the present device” as appropriate) will be described with reference to the drawings.

〈第1実施形態〉
本発明素子の構造及び製造方法の一例につき、本発明素子が発光ダイオードの場合を想定して説明する。
<First Embodiment>
An example of the structure and manufacturing method of the element of the present invention will be described assuming that the element of the present invention is a light emitting diode.

図1に示すように、本発明素子1は、サファイア基板2上、周期的な溝構造をフォトリソグラフィと反応性イオンエッチングでAlNからなる下地層3を形成した後、ELO−AlN層4を成長させた基板をテンプレート5として用い、当該テンプレート5上に、膜厚2μmのn型AlGaNからなるn型クラッド層6、多重量子井戸活性層7、Al組成比が多重量子井戸活性層105より高い膜厚20nmのp型AlGaNの電子ブロック層8、膜厚50nmのp型AlGaNのp型クラッド層9、膜厚20nmのp型GaNのコンタクト層10を順番に積層した積層構造を有している。n型クラッド層6より上部の多重量子井戸活性層7、電子ブロック層8、p型クラッド層9、コンタクト層10の一部が、n型クラッド層6の一部表面が露出するまで反応性イオンエッチング等により除去され、コンタクト層10の表面に、例えば、Ni/Auのp−電極11(アノード電極)が、露出したn型クラッド層6の表面に、例えば、Ti/Al/Ti/Auのn−電極12(カソード電極)が形成されている。尚、図1に示す素子構造は、図14に示す従来の発光ダイオードの素子構造と、多重量子井戸活性層7の内部構造を除き同じである。従って、本発明素子1は、多重量子井戸活性層7の内部構造に特徴がある。   As shown in FIG. 1, the element 1 of the present invention has an ELO-AlN layer 4 grown on a sapphire substrate 2 after a periodic groove structure is formed with an underlayer 3 made of AlN by photolithography and reactive ion etching. Using the prepared substrate as the template 5, an n-type cladding layer 6 made of n-type AlGaN having a thickness of 2 μm, a multiple quantum well active layer 7, and a film having an Al composition ratio higher than that of the multiple quantum well active layer 105 on the template 5. A p-type AlGaN electron blocking layer 8 having a thickness of 20 nm, a p-type cladding layer 9 having a thickness of 50 nm, and a contact layer 10 having a thickness of 20 nm are sequentially stacked. Reactive ions until a part of the surface of the n-type cladding layer 6 is exposed in a part of the multiple quantum well active layer 7, the electron blocking layer 8, the p-type cladding layer 9, and the contact layer 10 above the n-type cladding layer 6. For example, a Ni / Au p-electrode 11 (anode electrode) is removed on the surface of the contact layer 10 by etching or the like, and an exposed n-type cladding layer 6 surface is formed of, for example, Ti / Al / Ti / Au. An n-electrode 12 (cathode electrode) is formed. The element structure shown in FIG. 1 is the same as that of the conventional light emitting diode shown in FIG. 14 except for the internal structure of the multiple quantum well active layer 7. Therefore, the element 1 of the present invention is characterized by the internal structure of the multiple quantum well active layer 7.

本実施形態の多重量子井戸活性層7は、図2に示すように、AlGaNからなるバリア層7aと、Al組成比(AlNモル分率)がバリア層7aのAl組成比を超えない範囲で積層方向に沿って変調されたAlGaNからなる井戸層7bを交互に積層し、井戸層7bがバリア層7aに挟まれた多重量子井戸構造となっている。より具体的には、バリア層7aは、膜厚8.5nm、Al組成比35%のAlGaNからなり、井戸層7bは、膜厚3nmで、図3に示すように、電子ブロック層8側(p型クラッド層9側)の端面からn型クラッド層6側の端面に向けてバンドギャップエネルギが単調減少するようにAl組成比に対する組成変調が設けられている。例えば、井戸層7bのAl組成比は、n型クラッド層6側の端面で0〜5%(0%の場合はGaN)、そこから単調増加して、電子ブロック層8側の端面で5〜15%程度に至る。この結果、井戸層7b内において価電子帯と伝導帯でn型クラッド層側からp型クラッド層側に向けて下降するポテンシャルの傾斜(図15参照)が、伝導帯では緩和され、価電子帯側ではより急峻となる。しかし、伝導帯でポテンシャルの傾斜が緩和することで、井戸層7b内での電子の空間的な分布が広範となり、Al組成比に対する組成変調が無い場合(図15参照)と比べて、電子と正孔の再結合が阻害されにくくなり、発光効率(内部量子効率)が改善される。尚、井戸層7bの層数は特に限定されないが、後述するように3層以下が好ましい。また、バリア層7aの膜厚とAl組成比、及び、井戸層7bの膜厚とAl組成比の変調範囲(上限値と下限値)は、発光波長(発光中心波長)に応じて適宜設定を変更すれば良い。   As shown in FIG. 2, the multiple quantum well active layer 7 of the present embodiment is laminated with a barrier layer 7a made of AlGaN so that the Al composition ratio (AlN molar fraction) does not exceed the Al composition ratio of the barrier layer 7a. The well layers 7b made of AlGaN modulated along the direction are alternately stacked, and the well layer 7b has a multiple quantum well structure sandwiched between the barrier layers 7a. More specifically, the barrier layer 7a is made of AlGaN with a film thickness of 8.5 nm and an Al composition ratio of 35%, and the well layer 7b has a film thickness of 3 nm, as shown in FIG. Composition modulation is provided for the Al composition ratio so that the band gap energy monotonously decreases from the end face on the p-type cladding layer 9 side to the end face on the n-type cladding layer 6 side. For example, the Al composition ratio of the well layer 7b is 0 to 5% (GaN in the case of 0%) at the end surface on the n-type cladding layer 6 side, and monotonically increases from there to 5 to 5 at the end surface on the electron blocking layer 8 side. It reaches about 15%. As a result, the potential gradient (see FIG. 15) that decreases from the n-type cladding layer side to the p-type cladding layer side in the valence band and the conduction band in the well layer 7b is relaxed in the conduction band, and the valence band. The side becomes steeper. However, by reducing the potential gradient in the conduction band, the spatial distribution of electrons in the well layer 7b becomes broad, and compared with the case where there is no composition modulation with respect to the Al composition ratio (see FIG. 15), Hole recombination becomes difficult to be inhibited, and luminous efficiency (internal quantum efficiency) is improved. The number of well layers 7b is not particularly limited, but is preferably 3 or less as will be described later. Further, the thickness and Al composition ratio of the barrier layer 7a and the modulation range (upper limit and lower limit) of the thickness and Al composition ratio of the well layer 7b are appropriately set according to the emission wavelength (emission center wavelength). Change it.

n型クラッド層6のn型AlGaN及びp型クラッド層9のp型AlGaNは、各Al組成比が、バンドギャップエネルギが多重量子井戸活性層7のバンドギャップエネルギより高くなるように設定され、例えば、15%〜20%程度に設定される。   The n-type AlGaN of the n-type clad layer 6 and the p-type AlGaN of the p-type clad layer 9 are set such that each Al composition ratio is higher than the band gap energy of the multiple quantum well active layer 7. , About 15% to 20%.

電子ブロック層8は、多重量子井戸活性層7からp型クラッド層9へのキャリアオーバーフローを抑制するために設けられており、そのバンドギャップエネルギは、多重量子井戸活性層7及びp型クラッド層9のバンドギャップエネルギより高くなるように、Al組成比が設定され、例えば、35%程度に設定される。   The electron block layer 8 is provided to suppress carrier overflow from the multiple quantum well active layer 7 to the p-type cladding layer 9, and the band gap energy thereof is determined by the multiple quantum well active layer 7 and the p-type cladding layer 9. The Al composition ratio is set so as to be higher than the band gap energy of, for example, about 35%.

本発明素子1は、上述のように、多重量子井戸活性層7の内部構造、つまり、井戸層7bを構成するAlGaNに対してAl組成比の組成変調を施している点に特徴があるため、本発明素子1の製造方法は、多重量子井戸活性層7の井戸層7bの形成工程以外は、従来のAlGaN系の発光ダイオードの製造方法と同じであり、公知のテンプレート5の作製方法、及び、AlGaNの成膜方法を用いて製造できる。   As described above, the element 1 of the present invention is characterized in that the internal structure of the multiple quantum well active layer 7, that is, the AlGaN constituting the well layer 7 b is subjected to composition modulation of the Al composition ratio. The manufacturing method of the element 1 of the present invention is the same as the manufacturing method of the conventional AlGaN-based light emitting diode except for the step of forming the well layer 7b of the multiple quantum well active layer 7, and the manufacturing method of the known template 5, It can be manufactured using an AlGaN film forming method.

以下、本発明素子1の製造方法について説明する。先ず、例えば上記非特許文献1に開示される公知の製法により作製されたテンプレート5上に、減圧型の有機金属化合物気相成長(MOVPE)法、或いは、分子線エピタキシ(MBE)法により、n型クラッド層6、多重量子井戸活性層7、電子ブロック層8、p型クラッド層9、及び、コンタクト層10を連続的に成長させる。尚、上記非特許文献1では、多重量子井戸活性層7のバリア層にSiドーピングを行い、量子井戸内の内部電界を緩和させる処置が施されているが、本実施形態では、井戸層7b内のAl組成比の組成変調によりその必要性がないため、Siドーピングは行わない。   Hereinafter, the manufacturing method of the element 1 of the present invention will be described. First, for example, on a template 5 produced by a known manufacturing method disclosed in Non-Patent Document 1 above, by a reduced pressure metal organic compound vapor phase growth (MOVPE) method or a molecular beam epitaxy (MBE) method, n The type cladding layer 6, the multiple quantum well active layer 7, the electron block layer 8, the p-type cladding layer 9, and the contact layer 10 are continuously grown. In Non-Patent Document 1, the barrier layer of the multiple quantum well active layer 7 is doped with Si to reduce the internal electric field in the quantum well. In the present embodiment, however, the inside of the well layer 7b Since this is not necessary due to the compositional modulation of the Al composition ratio, Si doping is not performed.

多重量子井戸活性層7の井戸層7b内のAl組成比の組成変調は、MOVPE法の場合、AlGaNを構成する各組成の原料ガスの供給流量比を制御することで行われるが、AlGaN膜の成長速度を0.1μm/h以下に抑えることで、制御性を高めることができる。例えば、90nm/hの成長速度で、膜厚3nmの井戸層7bを成長させる場合、1層の井戸層7bの成長時間は2分となる。流量制御に用いる質量制御流量計の応答時間が約3秒であるのに対し、上記成長時間が2分と十分長いので、組成変調の制御が可能である。尚、井戸層7b内のAl組成比の組成変調は、MBE法の場合、フラックス強度比を制御することで行われる。   In the MOVPE method, the compositional modulation of the Al composition ratio in the well layer 7b of the multiple quantum well active layer 7 is performed by controlling the supply flow ratio of the source gas of each composition constituting the AlGaN. Controllability can be improved by suppressing the growth rate to 0.1 μm / h or less. For example, when a well layer 7b having a thickness of 3 nm is grown at a growth rate of 90 nm / h, the growth time of one well layer 7b is 2 minutes. While the response time of the mass control flow meter used for flow rate control is about 3 seconds, the growth time is sufficiently long as 2 minutes, so that composition modulation can be controlled. Note that the compositional modulation of the Al composition ratio in the well layer 7b is performed by controlling the flux intensity ratio in the case of the MBE method.

次に、多重量子井戸活性層7の井戸層7bに組成変調を施した本発明素子1と、多重量子井戸活性層7の井戸層7bに組成変調を施していない従来の発光ダイオードとの発光特性の比較を、発光特性のシミュレーション結果に基づいて行う。   Next, light emission characteristics of the element 1 of the present invention in which the composition modulation is applied to the well layer 7b of the multiple quantum well active layer 7 and a conventional light emitting diode in which the well layer 7b of the multiple quantum well active layer 7 is not subjected to composition modulation. Are compared based on the simulation result of the light emission characteristics.

図4及び図5に、井戸層7bがGaNの従来の発光ダイオードと、井戸層7bのAl組成比が、n型クラッド層6側の端面から電子ブロック層8側の端面に向けて、5%〜10%、2.5%〜12.5%、0%〜15%の3通りで夫々線形的に単調増加する3種類の本発明素子1の発光強度(単位:1/(cm・s・nm))の周波数特性と、内部量子効率と順方向印加電圧(単位:V)間の特性を示す。図中、従来の発光ダイオード(井戸層7bのAl組成比が7.5%)の特性曲線を破線で示し、3種類の本発明素子1の特性曲線に、夫々、Al組成比の増分に応じて、5%、10%、15%の標識を付して区別している。尚、3種類の本発明素子1と従来の発光ダイオードは、相互の比較を容易にするため、何れも井戸層7bのAl組成比の平均値が7.5%と共通になっている。 4 and 5, a conventional light emitting diode in which the well layer 7b is GaN and the Al composition ratio of the well layer 7b are 5% from the end face on the n-type cladding layer 6 side to the end face on the electron block layer 8 side. The light emission intensity (unit: 1 / (cm 2 · s) of the three types of the element 1 of the present invention that linearly and monotonously increases in three ways of 10%, 2.5% to 12.5%, and 0% to 15%. (Nm))) and frequency characteristics between the internal quantum efficiency and the forward applied voltage (unit: V). In the figure, the characteristic curve of the conventional light emitting diode (Al composition ratio of the well layer 7b is 7.5%) is indicated by a broken line, and the characteristic curves of the three types of the element 1 of the present invention correspond to the increments of the Al composition ratio, respectively. And 5%, 10%, and 15% labels. The three types of the present invention element 1 and the conventional light emitting diodes all have a common average value of 7.5% of the Al composition ratio of the well layer 7b in order to facilitate mutual comparison.

更に、図6及び図7に、比較例として、井戸層7bのAl組成比の組成変調を逆方向に施した、即ち、井戸層7bのAl組成比が、電子ブロック層8側の端面からn型クラッド層6側の端面に向けて、5%〜10%、2.5%〜12.5%、0%〜15%の3通りで夫々線形的に単調増加する3種類の比較サンプルと、従来の発光ダイオード(井戸層7bのAl組成比が7.5%)の発光強度(単位:1/(cm・s・nm))の周波数特性と、内部量子効率と順方向印加電圧(単位:V)間の特性を示す。図中、従来の発光ダイオードの特性曲線を破線で示し、3種類の比較サンプルの特性曲線に、夫々、Al組成比の増分に応じて、△5%、△10%、△15%の標識を付して区別している。 Further, in FIGS. 6 and 7, as a comparative example, the compositional modulation of the Al composition ratio of the well layer 7 b was performed in the opposite direction, that is, the Al composition ratio of the well layer 7 b was n from the end face on the electron blocking layer 8 side. Three types of comparative samples that linearly and monotonously increase in three ways of 5% to 10%, 2.5% to 12.5%, and 0% to 15% toward the end surface on the mold cladding layer 6 side, Frequency characteristics of conventional light-emitting diodes (Al composition ratio of well layer 7b: 7.5%) (unit: 1 / (cm 2 · s · nm)), internal quantum efficiency and forward applied voltage (units) : V). In the figure, the characteristic curve of the conventional light emitting diode is indicated by a broken line, and the signs of Δ5%, Δ10%, and Δ15% are respectively added to the characteristic curves of the three types of comparative samples according to the increment of the Al composition ratio. It distinguishes by attaching.

尚、上記各シミュレーションでは、井戸層7b以外の各層の膜厚及びAlN組成比は、図1〜図3に示す素子構造について説明した値を用い、井戸層7bの層数は3とし、全ての井戸層7bに対して同じ組成変調を施している。また、発光強度のシミュレーションでは、多重量子井戸活性層7を流れる電流の電流密度Jを一定値(50A/cm)とした。 In each of the above simulations, the thickness and AlN composition ratio of each layer other than the well layer 7b are the values described for the element structure shown in FIGS. The same compositional modulation is applied to the well layer 7b. In the simulation of light emission intensity, the current density J of the current flowing through the multiple quantum well active layer 7 was set to a constant value (50 A / cm 2 ).

図4及び図5のシミュレーション結果より明らかなように、AlN組成比の増分が5%〜15%の組成変調で、発光強度及び内部量子効率の何れもが、従来の発光ダイオードより改善されていることが分かる。また、組成変調によるAlN組成比の増分を大きくすることで改善効果が大きくなることが分かる。また、図4より、AlN組成比の平均値を7.5%に統一したので、AlN組成比の増分に関係なく発光中心波長が同じであることが分かる。   As is clear from the simulation results of FIGS. 4 and 5, both the light emission intensity and the internal quantum efficiency are improved as compared with the conventional light emitting diodes when the AlN composition ratio increment is 5% to 15%. I understand that. It can also be seen that the improvement effect is increased by increasing the increment of the AlN composition ratio due to the composition modulation. In addition, FIG. 4 shows that since the average value of the AlN composition ratio is unified to 7.5%, the emission center wavelength is the same regardless of the increment of the AlN composition ratio.

一方、図6及び図7のシミュレーション結果より明らかなように、井戸層7bのAl組成比の組成変調を逆方向に施した比較サンプルでは、AlN組成比の増分が大きい程、発光強度が従来の発光ダイオードより低下しており、内部量子効率は一部の順方向印加電圧範囲(3V〜4V)で改善されているものの、4V以上の高電圧側では逆に内部量子効率が低下しており、順方向印加電圧に対する電圧依存性が高くなっている。従って、組成変調を逆方向に施した比較サンプルでは、本発明素子1と同様の改善効果は得られないことが分かる。また、上記比較サンプルでは、AlN組成比の平均値を7.5%に統一したにも拘わらず、AlN組成比の増分を大きくすると、発光中心波長が高波長側にシフトしており、発光波長の低波長化が阻害される。   On the other hand, as is apparent from the simulation results of FIGS. 6 and 7, in the comparative sample in which the compositional modulation of the Al composition ratio of the well layer 7b is performed in the reverse direction, the larger the increment of the AlN composition ratio, the more the emission intensity becomes the conventional one. Although it is lower than the light emitting diode and the internal quantum efficiency is improved in a part of the forward applied voltage range (3 V to 4 V), the internal quantum efficiency is decreased on the high voltage side of 4 V or higher. The voltage dependency on the forward applied voltage is high. Therefore, it can be seen that the same improvement effect as that of the element 1 of the present invention cannot be obtained with the comparative sample subjected to the composition modulation in the reverse direction. In addition, in the comparative sample, although the average value of the AlN composition ratio was unified to 7.5%, when the increment of the AlN composition ratio was increased, the emission center wavelength was shifted to the higher wavelength side, and the emission wavelength Lowering the wavelength is hindered.

次に、多重量子井戸活性層7の複数の井戸層7bの内のAl組成比の組成変調を施す井戸層7bの数及び位置について検討した結果について、図8〜図11を参照して説明する。図8は、井戸層7bの層数が3の場合において、組成変調を施す井戸層7bの数が0〜3における内部量子効率と順方向印加電圧間の特性を示す。組成変調を施す井戸層7bの数が0は、従来の発光ダイオードを表している。組成変調を施す井戸層7bの数は、電子ブロック層8側の井戸層7bから順次1ずつ増加している。図9は、井戸層7bの層数が3の場合において、組成変調を施す1つの井戸層7bの位置が、電子ブロック層8側から1番目、2番目、3番目の場合における内部量子効率と順方向印加電圧間の特性を示す。また、図9に、従来の発光ダイオードの特性曲線(破線で表示)を参考例として表示している。図10は、井戸層7bの数が1〜4の場合において、全ての井戸層7bに組成変調を施した場合の、内部量子効率と順方向印加電圧間の特性を示す。図11は、井戸層7bの数が4で、全ての井戸層7bに組成変調を施した場合の、電子ブロック層8側から1番目、2番目、3番目、4番目の各井戸層7bからの発光強度、及び、多重量子井戸活性層7全体からの発光強度の周波数特性を示している。図11中の数字1〜4は、各井戸層7bの電子ブロック層8側からの順番を示している。尚、図8〜図11の各シミュレーション結果において、Al組成比の組成変調は、n型クラッド層6側の端面から電子ブロック層8側の端面に向けて、0%から15%に線形的に単調増加する場合を想定している。また、他の条件は、図5に示す同特性のシミュレーションと同じであり、重複する説明は割愛する。   Next, the results of studying the number and position of the well layers 7b subjected to compositional modulation of the Al composition ratio among the plurality of well layers 7b of the multiple quantum well active layer 7 will be described with reference to FIGS. . FIG. 8 shows the characteristics between the internal quantum efficiency and the forward applied voltage when the number of well layers 7b is 3 when the number of well layers 7b is 0 to 3. The number of well layers 7b subjected to compositional modulation is 0, which represents a conventional light emitting diode. The number of well layers 7b subjected to compositional modulation is sequentially increased by one from the well layer 7b on the electron block layer 8 side. FIG. 9 shows the internal quantum efficiency in the case where the number of well layers 7b is 3, and the position of one well layer 7b subjected to composition modulation is the first, second, and third positions from the electron block layer 8 side. The characteristic between forward applied voltages is shown. Further, FIG. 9 shows a characteristic curve (shown by a broken line) of a conventional light emitting diode as a reference example. FIG. 10 shows the characteristics between the internal quantum efficiency and the forward applied voltage when the composition modulation is applied to all the well layers 7b when the number of the well layers 7b is 1 to 4. FIG. 11 shows that each of the first, second, third, and fourth well layers 7b from the electron block layer 8 side when the number of well layers 7b is four and the composition modulation is applied to all the well layers 7b. And the frequency characteristics of the emission intensity from the entire multiple quantum well active layer 7 are shown. Numbers 1 to 4 in FIG. 11 indicate the order of each well layer 7b from the electron block layer 8 side. 8 to 11, the compositional modulation of the Al composition ratio is linearly changed from 0% to 15% from the end surface on the n-type cladding layer 6 side to the end surface on the electron blocking layer 8 side. The case where it increases monotonously is assumed. Other conditions are the same as those of the simulation having the same characteristics shown in FIG. 5, and a duplicate description is omitted.

図8のシミュレーション結果より、組成変調を施す井戸層7bの数が大きい程、内部量子効率が向上すること、更に、組成変調を施す井戸層7bの数が1の場合でも、組成変調を施す効果のあることが分かる。また、図9のシミュレーション結果より、組成変調を施す井戸層7bの位置は、電子ブロック層8側、つまり、p型クラッド層9側に近い方が内部量子効率の改善効果が大きいことが分かる。また、図8及び図9の結果より、井戸層7bが複数で、全ての井戸層7bに組成変調を施す場合に、組成変調の程度を、p型クラッド層9側に近い方が大きくなるように井戸層7bの位置に応じて変化させても構わない。この場合、組成変調を施した複数の井戸層7bの平均のAl組成比を井戸層7b間で等しく設定するのが好ましい。   From the simulation results of FIG. 8, the larger the number of well layers 7b subjected to compositional modulation, the higher the internal quantum efficiency, and the effect of applying compositional modulation even when the number of well layers 7b subjected to compositional modulation is 1. I understand that there is. From the simulation results of FIG. 9, it can be seen that the effect of improving the internal quantum efficiency is greater when the position of the well layer 7b subjected to composition modulation is closer to the electron block layer 8 side, that is, the p-type cladding layer 9 side. 8 and 9, when there are a plurality of well layers 7b and all the well layers 7b are subjected to compositional modulation, the degree of compositional modulation is increased toward the p-type cladding layer 9 side. Further, it may be changed according to the position of the well layer 7b. In this case, it is preferable to set the average Al composition ratio of the plurality of well layers 7b subjected to composition modulation to be equal between the well layers 7b.

また、図10のシミュレーション結果より、組成変調を施す井戸層7bの数は3以下で十分であることが分かる。更に、図10のシミュレーション結果より、組成変調を施す井戸層7bの数は2以上が好ましいことが分かる。しかし、図8のシミュレーション結果の井戸層7bの数が3で組成変調を施さない場合と比較すると、順方向印加電圧が4.8V以下では、井戸層7bの数が1で組成変調を施した場合の方が、内部量子効率が高いことが分かる。これより、井戸層7bの数が1、つまり、単一量子井戸構造であっても組成変調を施す効果のあることが分かる。   Further, from the simulation result of FIG. 10, it is understood that the number of the well layers 7b subjected to the composition modulation is sufficient to be 3 or less. Furthermore, the simulation result of FIG. 10 shows that the number of well layers 7b subjected to composition modulation is preferably 2 or more. However, in comparison with the case where the number of well layers 7b in the simulation results of FIG. It can be seen that the internal quantum efficiency is higher in the case. From this, it can be seen that even if the number of well layers 7b is 1, that is, a single quantum well structure, the composition modulation is effective.

更に、図11のシミュレーション結果より、井戸層7bが4層の場合の各層の発光強度の分布が、p型クラッド層9側に近い方の3層に集中して、p型クラッド層9側から4番目の井戸層7bの発光強度の分布が、他の3層と比べて非常に小さいことが分かる。この結果からも、井戸層7bの数は4層を越えて増やす必要のないことが分かる。   Furthermore, from the simulation results of FIG. 11, when the well layer 7b has four layers, the emission intensity distribution of each layer is concentrated in the three layers closer to the p-type cladding layer 9 side, and from the p-type cladding layer 9 side. It can be seen that the emission intensity distribution of the fourth well layer 7b is very small compared to the other three layers. This result also shows that the number of well layers 7b does not need to increase beyond four.

以上、図8〜図11のシミュレーション結果より、活性層の構造は、多重量子井戸構造が好ましが、単一量子井戸構造であっても良いこと、井戸層7bの層数を4以上に増やしても組成変調を施す効果は大きくは増加しないこと、及び、多重量子井戸構造の場合では、組成変調を施す井戸層7bは1層でも効果があり、特に、p型クラッド層9に近い側が最も効果が大きいことが明らかになった。   As described above, from the simulation results of FIGS. 8 to 11, the active layer structure is preferably a multiple quantum well structure, but may be a single quantum well structure, and the number of well layers 7b is increased to four or more. However, the effect of applying the composition modulation does not increase greatly, and in the case of the multiple quantum well structure, even the single well layer 7b to which the composition modulation is performed is effective, and the side closer to the p-type cladding layer 9 is most effective. It became clear that the effect was great.

〈第2実施形態〉
次に、本発明素子の第2実施形態について、本発明素子が発光ダイオードの場合を想定して説明する。第1実施形態では、多重量子井戸活性層7の井戸層7bに対してAl組成比の組成変調を施し、キャリアオーバーフローを抑制するためも電子ブロック層8のAl組成比は、その膜厚内で一定であった。これに対し、第2実施形態では、電子ブロック層8に対してもAl組成比の組成変調を施している。具体的には、p型クラッド層9側の端面から多重量子井戸活性層7側の端面に向けてバンドギャップエネルギが増加するようにAl組成比に対する組成変調が設けられている。例えば、電子ブロック層8のAl組成比は、p型クラッド層9側の端面で20%、そこから単調増加して、多重量子井戸活性層7側の端面で50%程度に至る。尚、Al組成比の平均値は、組成変調を施さない場合と同じ値になるように設定している。電子ブロック層8のAl組成比が組成変調されている点を除いて第1実施形態と同様であるので、他の層及び製造方法についての重複する説明は割愛する。また、電子ブロック層8の組成変調は、多重量子井戸活性層7の井戸層7bの組成変調と同様の要領で行えば良い。
Second Embodiment
Next, a second embodiment of the element of the present invention will be described on the assumption that the element of the present invention is a light emitting diode. In the first embodiment, the Al composition ratio of the electron blocking layer 8 is within the film thickness in order to modulate the Al composition ratio with respect to the well layer 7b of the multiple quantum well active layer 7 and suppress the carrier overflow. It was constant. In contrast, in the second embodiment, the electronic block layer 8 is also subjected to compositional modulation of the Al composition ratio. Specifically, compositional modulation is provided for the Al composition ratio so that the band gap energy increases from the end face on the p-type cladding layer 9 side to the end face on the multiple quantum well active layer 7 side. For example, the Al composition ratio of the electron blocking layer 8 is 20% at the end face on the p-type cladding layer 9 side, and monotonically increases from there to reach about 50% at the end face on the multiple quantum well active layer 7 side. Note that the average value of the Al composition ratio is set to be the same value as when no composition modulation is performed. Since the Al composition ratio of the electron block layer 8 is the same as that of the first embodiment except that the composition is modulated, the redundant description of the other layers and the manufacturing method is omitted. The composition modulation of the electron block layer 8 may be performed in the same manner as the composition modulation of the well layer 7b of the multiple quantum well active layer 7.

次に、多重量子井戸活性層7の井戸層7bに対してAl組成比の組成変調を施した上で、更に、電子ブロック層8に対してAl組成比の組成変調を行うことの効果について検討した結果を、図12及び図13を参照して説明する。図12及び図13に、井戸層7bの層数が3で、全ての井戸層7bに組成変調を施した場合における、電子ブロック層8に対してAl組成比の組成変調を行った場合(第2実施形態)と行わない場合(第1実施形態)の本発明素子1の発光強度(単位:1/(cm・s・nm))の周波数特性と、内部量子効率と順方向印加電圧(単位:V)間の特性を夫々示す。尚、図12及び図13の各シミュレーション結果において、井戸層7bのAl組成比の組成変調は、n型クラッド層6側の端面から電子ブロック層8側の端面に向けて、0%から15%に線形的に単調増加する場合を想定し、電子ブロック層8のAl組成比の組成変調は、20%から50%に線形的に単調増加する場合を想定している。また、他の条件は、図5に示す同特性のシミュレーションと同じであり、重複する説明は割愛する。 Next, after the composition modulation of the Al composition ratio is performed on the well layer 7b of the multiple quantum well active layer 7, the effect of the composition modulation of the Al composition ratio on the electron block layer 8 is further examined. The results obtained will be described with reference to FIGS. 12 and 13, when the number of well layers 7 b is 3 and the composition modulation is applied to all the well layers 7 b, the composition ratio of the Al composition ratio is applied to the electron block layer 8 (first order). 2 embodiment) and the frequency characteristics of the light emission intensity (unit: 1 / (cm 2 · s · nm)) of the element 1 of the present invention when not performed (first embodiment), the internal quantum efficiency and the forward applied voltage ( The characteristic between unit: V) is shown respectively. 12 and 13, the compositional modulation of the Al composition ratio of the well layer 7b is 0% to 15% from the end surface on the n-type cladding layer 6 side to the end surface on the electron block layer 8 side. It is assumed that the compositional modulation of the Al composition ratio of the electron block layer 8 increases linearly monotonically from 20% to 50%. Other conditions are the same as those of the simulation having the same characteristics shown in FIG. 5, and a duplicate description is omitted.

図12及び図13のシミュレーション結果より、多重量子井戸活性層7の井戸層7bに対してAl組成比の組成変調に加えて、電子ブロック層8に対してAl組成比の組成変調を行うことで、内部発光効率が更に改善されることが分かる。   From the simulation results of FIGS. 12 and 13, in addition to the compositional modulation of the Al composition ratio for the well layer 7 b of the multiple quantum well active layer 7, the compositional modulation of the Al composition ratio is performed for the electron blocking layer 8. It can be seen that the internal luminous efficiency is further improved.

以下に、別の実施形態につき説明する。
〈1〉上記第1及び第2実施形態では、本発明素子が発光ダイオードの場合を想定して説明したが、半導体レーザ(レーザダイオード)においても、同様の積層構造を有し、p−電極とn−電極間に電圧を印加することで、活性層の井戸層内に電子と正孔が注入され再結合して発光するまでの原理は同じであるので、多重量子井戸構造或いは単一量子井戸構造の活性層の井戸層のAl組成比に組成変調を施すことの効果は同様であることは明らかである。従って、本発明素子は、発光ダイオードに限定されるものではなく、半導体レーザにも適用される。
Hereinafter, another embodiment will be described.
<1> In the first and second embodiments described above, it is assumed that the element of the present invention is a light emitting diode. However, a semiconductor laser (laser diode) also has a similar stacked structure, and has a p-electrode and By applying a voltage between the n-electrodes, the principle until electrons and holes are injected into the active layer and recombined to emit light is the same. Therefore, a multiple quantum well structure or a single quantum well is used. It is clear that the effect of applying compositional modulation to the Al composition ratio of the well layer of the active layer of the structure is the same. Therefore, the element of the present invention is not limited to a light emitting diode, but is also applicable to a semiconductor laser.

〈2〉上記第1及び第2実施形態では、本発明素子を構成するテンプレートとして、図1に示すELO−AlNテンプレートを一例としたが、本発明素子に使用するテンプレートELO−AlNに限定されるものではない。更に、上記第1及び第2実施形態で例示した本発明素子を構成するAlGaNまたはGaNの各層の膜厚及びAl組成比は、一例であり、素子の仕様に応じて適宜変更可能である。   <2> In the first and second embodiments, the ELO-AlN template shown in FIG. 1 is taken as an example of the template constituting the element of the present invention, but is limited to the template ELO-AlN used for the element of the present invention. It is not a thing. Furthermore, the film thickness and Al composition ratio of each layer of AlGaN or GaN constituting the element of the present invention exemplified in the first and second embodiments are examples, and can be appropriately changed according to the specifications of the element.

〈3〉また、上記第1実施形態では、電子ブロック層8を設けることを前提としたが、電子ブロック層8は必ずしも設けなくても構わない。電子ブロック層8の有無に関係なく、多重量子井戸構造或いは単一量子井戸構造の活性層の井戸層のAl組成比に組成変調を施すことの効果は発揮される。   <3> In the first embodiment, it is assumed that the electron block layer 8 is provided. However, the electron block layer 8 is not necessarily provided. Regardless of the presence or absence of the electron block layer 8, the effect of applying compositional modulation to the Al composition ratio of the well layer of the active layer having the multiple quantum well structure or the single quantum well structure is exhibited.

〈4〉本発明素子は、量子井戸活性層を、Inを含むInAlGaN4元混晶とした場合の問題点の解消を目的としているが、In組成変調効果が十分に現れない程度の微量のInが含まれている場合においても、多重量子井戸構造或いは単一量子井戸構造の活性層の井戸層のAl組成比に組成変調を施すことの効果は同様に発揮されるため、本発明素子を構成するAlGaN系半導体層に微量のInが含まれることを除外するものではない。   <4> The element of the present invention is intended to solve the problem when the quantum well active layer is an InAlGaN quaternary mixed crystal containing In. However, a small amount of In that does not sufficiently exhibit the In composition modulation effect is present. Even if it is included, the effect of applying the composition modulation to the Al composition ratio of the well layer of the active layer of the multiple quantum well structure or the single quantum well structure is similarly exhibited, so that the element of the present invention is configured. It is not excluded that a trace amount of In is contained in the AlGaN-based semiconductor layer.

本発明に係る窒化物半導体紫外線発光素子は、発光中心波長が400nm以下の発光ダイオード、レーザダイオード等に利用可能である。   The nitride semiconductor ultraviolet light-emitting device according to the present invention can be used for a light-emitting diode, a laser diode, or the like having an emission center wavelength of 400 nm or less.

本発明に係る窒化物半導体紫外線発光素子の概略の積層構造を模式的に示す断面図Sectional drawing which shows typically the general | schematic laminated structure of the nitride semiconductor ultraviolet light emitting element concerning this invention 図1に示す窒化物半導体紫外線発光素子の多重量子井戸活性層の断面構造を模式的に示す断面図Sectional drawing which shows typically the cross-section of the multiple quantum well active layer of the nitride semiconductor ultraviolet light emitting element shown in FIG. 図1に示す窒化物半導体紫外線発光素子の多重量子井戸活性層のエネルギバンド図Energy band diagram of multiple quantum well active layer of nitride semiconductor ultraviolet light emitting device shown in FIG. 本発明に係る窒化物半導体紫外線発光素子と従来の発光ダイオードの発光強度の周波数特性を比較して示す特性図The characteristic diagram which compares and compares the frequency characteristic of the emitted light intensity of the nitride semiconductor ultraviolet light emitting element which concerns on this invention, and the conventional light emitting diode 本発明に係る窒化物半導体紫外線発光素子と従来の発光ダイオードの内部量子効率と順方向印加電圧間の特性を比較して示す特性図The characteristic view which compares the characteristic between the internal quantum efficiency of the nitride semiconductor ultraviolet light emitting element which concerns on this invention, and the conventional light emitting diode, and the forward applied voltage 本発明に係る窒化物半導体紫外線発光素子と異なる組成変調を施した比較サンプルと従来の発光ダイオードの発光強度の周波数特性を比較して示す特性図The characteristic view which compares and compares the frequency characteristic of the light emission intensity of the comparative sample which gave the composition modulation different from the nitride semiconductor ultraviolet light emitting element which concerns on this invention, and the conventional light emitting diode 本発明に係る窒化物半導体紫外線発光素子と異なる組成変調を施した比較サンプルと従来の発光ダイオードの内部量子効率と順方向印加電圧間の特性を比較して示す特性図The characteristic diagram which compares and compares the characteristic between the internal quantum efficiency of the comparative sample which gave the composition modulation different from the nitride semiconductor ultraviolet light emitting element which concerns on this invention, and the conventional light emitting diode, and a forward applied voltage 本発明に係る窒化物半導体紫外線発光素子における井戸層の層数が3の場合における組成変調を施す井戸層の数と内部量子効率と順方向印加電圧間の特性との関係を示す図The figure which shows the relationship between the number of well layers which perform a composition modulation | alteration, the internal quantum efficiency, and the characteristic between forward applied voltages in the case where the number of well layers in the nitride semiconductor ultraviolet light emitting element which concerns on this invention is 3 本発明に係る窒化物半導体紫外線発光素子における組成変調を施す井戸層の位置と内部量子効率と順方向印加電圧間の特性との関係を示す図The figure which shows the relationship between the position of the well layer which performs compositional modulation | alteration, the internal quantum efficiency, and the characteristic between forward applied voltages in the nitride semiconductor ultraviolet light emitting element which concerns on this invention 本発明に係る窒化物半導体紫外線発光素子における全ての井戸層に組成変調を施した場合の井戸層の層数と内部量子効率と順方向印加電圧間の特性との関係を示す図The figure which shows the relationship between the number of layers of a well layer at the time of performing composition modulation | alteration in all the well layers in the nitride semiconductor ultraviolet light emitting element which concerns on this invention, an internal quantum efficiency, and the characteristic between forward applied voltages. 本発明に係る窒化物半導体紫外線発光素子における多重量子井戸活性層内の各井戸層からの発光強度の周波数特性を示す図The figure which shows the frequency characteristic of the emitted light intensity from each well layer in the multiple quantum well active layer in the nitride semiconductor ultraviolet light emitting element which concerns on this invention. 本発明に係る窒化物半導体紫外線発光素子における電子ブロック層に対してAl組成比の組成変調を行った場合と行わない場合で発光強度の周波数特性を比較して示す特性図FIG. 7 is a characteristic diagram comparing the frequency characteristics of the emission intensity with and without the compositional modulation of the Al composition ratio for the electron blocking layer in the nitride semiconductor ultraviolet light emitting device according to the present invention. 本発明に係る窒化物半導体紫外線発光素子における電子ブロック層に対してAl組成比の組成変調を行った場合と行わない場合で内部量子効率と順方向印加電圧間の特性を比較して示す特性図The characteristic view which compares the characteristic between internal quantum efficiency and a forward applied voltage in the case where it does not perform the composition modulation | alteration of Al composition ratio with respect to the electronic block layer in the nitride semiconductor ultraviolet light emitting element concerning this invention 従来のGaN系発光ダイオードの結晶層構造を模式的に示す断面図Sectional view schematically showing the crystal layer structure of a conventional GaN-based light emitting diode 従来のGaN系発光ダイオードの活性層の井戸層内での内部電界の影響を示すエネルギバンド図Energy band diagram showing the effect of internal electric field in the well layer of the active layer of a conventional GaN-based light emitting diode

1: 窒化物半導体紫外線発光素子
2,101: サファイア基板
3,102: 下地層(AlN)
4,103: ELO−AlN層
5: テンプレート
6,104: n型クラッド層(n型AlGaN)
7,105: 多重量子井戸活性層
7a: バリア層
7b: 井戸層
8,106: 電子ブロック層(p型AlGaN)
9,107: p型クラッド層(p型AlGaN)
10,108: コンタクト層(p型GaN)
11,109: p−電極
12,110: n−電極
1: Nitride semiconductor ultraviolet light emitting element 2,101: Sapphire substrate 3,102: Underlayer (AlN)
4, 103: ELO-AlN layer 5: Template 6, 104: n-type cladding layer (n-type AlGaN)
7, 105: Multiple quantum well active layer 7a: Barrier layer 7b: Well layer 8, 106: Electron block layer (p-type AlGaN)
9, 107: p-type cladding layer (p-type AlGaN)
10, 108: Contact layer (p-type GaN)
11, 109: p-electrode 12, 110: n-electrode

Claims (5)

基板面或いは前記基板面上に形成された1層以上のAlGaN系半導体層からなるテンプレート上に、少なくとも、n型AlGaN系半導体からなるn型クラッド層、単一または多重量子井戸構造のAlGaN系半導体の活性層、及び、p型AlGaN系半導体からなるp型クラッド層が、順番に配置されており、
前記活性層の少なくとも1層の井戸層内部に、前記p型クラッド層側から前記n型クラッド層に向けてバンドギャップエネルギが減少するようにAl組成比に対する組成変調が設けられていることを特徴とする窒化物半導体紫外線発光素子。
At least an n-type cladding layer made of an n-type AlGaN semiconductor, an AlGaN semiconductor having a single or multiple quantum well structure on a substrate surface or a template made of one or more AlGaN semiconductor layers formed on the substrate surface. Active layer and a p-type cladding layer made of a p-type AlGaN-based semiconductor are arranged in order,
A compositional modulation with respect to the Al composition ratio is provided in at least one well layer of the active layer so that the band gap energy decreases from the p-type cladding layer side toward the n-type cladding layer. Nitride semiconductor ultraviolet light emitting device.
前記活性層が3層以下の量子井戸構造であることを特徴とする請求項1に記載の窒化物半導体紫外線発光素子。   The nitride semiconductor ultraviolet light-emitting device according to claim 1, wherein the active layer has a quantum well structure of three or less layers. 前記活性層が2層以上の多重量子井戸構造である場合、少なくとも前記p型クラッド層に最も近い井戸層に、前記組成変調が設けられていることを特徴とする請求項1または2に記載の窒化物半導体紫外線発光素子。   3. The composition modulation according to claim 1, wherein when the active layer has a multiple quantum well structure of two or more layers, the composition modulation is provided at least in a well layer closest to the p-type cladding layer. Nitride semiconductor ultraviolet light emitting device. 前記活性層と前記p型クラッド層の間に、前記活性層と前記p型クラッド層よりAl組成比が高いp型AlGaN系半導体からなる電子ブロック層が配置されていることを特徴とする請求項1〜3の何れか1項に記載の窒化物半導体紫外線発光素子。   The electron block layer made of a p-type AlGaN-based semiconductor having an Al composition ratio higher than that of the active layer and the p-type cladding layer is disposed between the active layer and the p-type cladding layer. The nitride semiconductor ultraviolet light-emitting device according to any one of 1 to 3. 前記電子ブロック層に、前記p型クラッド層側から前記n型クラッド層に向けてバンドギャップエネルギが増加するようにAl組成比に対する組成変調が設けられていることを特徴とする請求項4に記載の窒化物半導体紫外線発光素子。   5. The compositional modulation with respect to the Al composition ratio is provided in the electron block layer so that a band gap energy increases from the p-type cladding layer side toward the n-type cladding layer. Nitride semiconductor ultraviolet light emitting device.
JP2010049996A 2010-03-08 2010-03-08 Nitride semiconductor ultraviolet light-emitting element Pending JP2011187591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010049996A JP2011187591A (en) 2010-03-08 2010-03-08 Nitride semiconductor ultraviolet light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010049996A JP2011187591A (en) 2010-03-08 2010-03-08 Nitride semiconductor ultraviolet light-emitting element

Publications (1)

Publication Number Publication Date
JP2011187591A true JP2011187591A (en) 2011-09-22

Family

ID=44793557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010049996A Pending JP2011187591A (en) 2010-03-08 2010-03-08 Nitride semiconductor ultraviolet light-emitting element

Country Status (1)

Country Link
JP (1) JP2011187591A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133264A1 (en) * 2012-03-06 2013-09-12 独立行政法人科学技術振興機構 Multi-quantum well solar cell and method of manufacturing multi-quantum well solar cell
KR20140020028A (en) * 2012-08-07 2014-02-18 엘지이노텍 주식회사 Uv light emitting device and light emitting device package
KR20140035094A (en) * 2012-09-13 2014-03-21 엘지이노텍 주식회사 Uv light emitting deviceand uv light emitting device package
CN104393088A (en) * 2014-10-29 2015-03-04 中国科学院半导体研究所 InGaN/AlInGaN multi-quantum well solar cell structure
WO2015151471A1 (en) * 2014-03-31 2015-10-08 パナソニック株式会社 Ultraviolet light emitting element and electrical device using same
WO2017119365A1 (en) * 2016-01-08 2017-07-13 ソニー株式会社 Semiconductor light-emitting element, display device, and electronic apparatus
JP2017139252A (en) * 2016-02-01 2017-08-10 パナソニック株式会社 Ultraviolet light emitting element
WO2017155215A1 (en) * 2016-03-10 2017-09-14 주식회사 소프트에피 Near-ultraviolet light-emitting semiconductor light-emitting element and group iii nitride semiconductor template used therefor
WO2018052252A1 (en) * 2016-09-13 2018-03-22 엘지이노텍 주식회사 Semiconductor device and semiconductor device package including same
WO2018150651A1 (en) * 2017-02-15 2018-08-23 創光科学株式会社 Method for producing nitride semiconductor ultraviolet light emitting element, and nitride semiconductor ultraviolet light emitting element
US10593838B2 (en) 2017-08-14 2020-03-17 Lg Innotek Co., Ltd. Semiconductor device
CN111146318A (en) * 2020-01-20 2020-05-12 江苏晶曌半导体有限公司 Based on MoS2Thin layer ultraviolet light-emitting diode and manufacturing method thereof
US10910519B2 (en) 2016-09-13 2021-02-02 Lg Innotek Co., Ltd. Semiconductor device having layers including aluminum and semiconductor device package including same
JP2021027324A (en) * 2020-04-28 2021-02-22 日機装株式会社 Nitride semiconductor light-emitting element
US11404603B2 (en) 2019-08-06 2022-08-02 Nikkiso Co., Ltd. Nitride semiconductor light-emitting element
US11569416B2 (en) 2016-09-10 2023-01-31 Suzhou Lekin Semiconductor Co., Ltd. Light emitting semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091705A (en) * 1998-09-11 2000-03-31 Nec Corp Gallium nitride based semiconductor light emitting element
JP2000151023A (en) * 1998-11-05 2000-05-30 Fujitsu Ltd Semiconductor light emitting device
JP2000223790A (en) * 1999-01-29 2000-08-11 Toshiba Corp Nitride-based semiconductor laser device
JP2002280610A (en) * 2001-03-21 2002-09-27 Nippon Telegr & Teleph Corp <Ntt> Ultraviolet light emitting diode
JP2003023220A (en) * 2001-07-06 2003-01-24 Toshiba Corp Nitride semiconductor element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091705A (en) * 1998-09-11 2000-03-31 Nec Corp Gallium nitride based semiconductor light emitting element
JP2000151023A (en) * 1998-11-05 2000-05-30 Fujitsu Ltd Semiconductor light emitting device
JP2000223790A (en) * 1999-01-29 2000-08-11 Toshiba Corp Nitride-based semiconductor laser device
JP2002280610A (en) * 2001-03-21 2002-09-27 Nippon Telegr & Teleph Corp <Ntt> Ultraviolet light emitting diode
JP2003023220A (en) * 2001-07-06 2003-01-24 Toshiba Corp Nitride semiconductor element

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5366279B1 (en) * 2012-03-06 2013-12-11 独立行政法人科学技術振興機構 Multiple quantum well solar cell and method of manufacturing multiple quantum well solar cell
KR101399441B1 (en) * 2012-03-06 2014-05-28 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 Multi-quantum well solar cell and method of manufacturing multi-quantum well solar cell
CN103999232A (en) * 2012-03-06 2014-08-20 独立行政法人科学技术振兴机构 Multi-quantum well solar cell and method of manufacturing multi-quantum well solar cell
CN103999232B (en) * 2012-03-06 2015-10-14 国立研究开发法人科学技术振兴机构 The manufacture method of Multiple Quantum Well solar cell and Multiple Quantum Well solar cell
TWI506802B (en) * 2012-03-06 2015-11-01 Japan Science & Tech Agency Multiple quantum well type solar cell and method for producing multiple quantum well type solar cell
WO2013133264A1 (en) * 2012-03-06 2013-09-12 独立行政法人科学技術振興機構 Multi-quantum well solar cell and method of manufacturing multi-quantum well solar cell
KR20140020028A (en) * 2012-08-07 2014-02-18 엘지이노텍 주식회사 Uv light emitting device and light emitting device package
KR20140035094A (en) * 2012-09-13 2014-03-21 엘지이노텍 주식회사 Uv light emitting deviceand uv light emitting device package
KR101919109B1 (en) * 2012-09-13 2018-11-16 엘지이노텍 주식회사 Uv light emitting deviceand uv light emitting device package
US9843163B2 (en) 2014-03-31 2017-12-12 Panasonic Corporation Ultraviolet light emitting element and electrical device using same
WO2015151471A1 (en) * 2014-03-31 2015-10-08 パナソニック株式会社 Ultraviolet light emitting element and electrical device using same
JPWO2015151471A1 (en) * 2014-03-31 2017-04-13 パナソニック株式会社 Ultraviolet light emitting device and electrical equipment using the same
CN104393088A (en) * 2014-10-29 2015-03-04 中国科学院半导体研究所 InGaN/AlInGaN multi-quantum well solar cell structure
JPWO2017119365A1 (en) * 2016-01-08 2018-11-01 ソニー株式会社 Semiconductor light emitting device, display device and electronic apparatus
US10540916B2 (en) 2016-01-08 2020-01-21 Sony Corporation Semiconductor light-emitting device, display unit, and electronic apparatus
WO2017119365A1 (en) * 2016-01-08 2017-07-13 ソニー株式会社 Semiconductor light-emitting element, display device, and electronic apparatus
JP2017139252A (en) * 2016-02-01 2017-08-10 パナソニック株式会社 Ultraviolet light emitting element
WO2017134709A1 (en) * 2016-02-01 2017-08-10 パナソニック株式会社 Ultraviolet light emitting element
US10879423B2 (en) 2016-02-01 2020-12-29 Panasonic Corporation Ultraviolet light-emitting element
KR101803929B1 (en) 2016-03-10 2018-01-11 주식회사 소프트에피 Light emitting device emiting near-uv rays and iii-nitride semiconductor template used for the smae
WO2017155215A1 (en) * 2016-03-10 2017-09-14 주식회사 소프트에피 Near-ultraviolet light-emitting semiconductor light-emitting element and group iii nitride semiconductor template used therefor
US11264538B2 (en) 2016-03-10 2022-03-01 Soft-Epi Inc. Near-ultraviolet light-emitting semiconductor light-emitting element and group III nitride semiconductor template used therefor
US11961943B2 (en) 2016-09-10 2024-04-16 Suzhou Lekin Semiconductor Co., Ltd. Light emitting semiconductor device for enhancing light extraction efficiency
US11569416B2 (en) 2016-09-10 2023-01-31 Suzhou Lekin Semiconductor Co., Ltd. Light emitting semiconductor device
WO2018052252A1 (en) * 2016-09-13 2018-03-22 엘지이노텍 주식회사 Semiconductor device and semiconductor device package including same
US10910519B2 (en) 2016-09-13 2021-02-02 Lg Innotek Co., Ltd. Semiconductor device having layers including aluminum and semiconductor device package including same
WO2018150651A1 (en) * 2017-02-15 2018-08-23 創光科学株式会社 Method for producing nitride semiconductor ultraviolet light emitting element, and nitride semiconductor ultraviolet light emitting element
TWI710145B (en) * 2017-02-15 2020-11-11 日商創光科學股份有限公司 Method for manufacturing nitride semiconductor ultraviolet light emitting element and nitride semiconductor ultraviolet light emitting element
US10643849B2 (en) 2017-02-15 2020-05-05 Soko Kagaku Co., Ltd. Manufacturing method of nitride semiconductor ultraviolet light emitting element, and nitride semiconductor ultraviolet light emitting element
JPWO2018150651A1 (en) * 2017-02-15 2019-06-27 創光科学株式会社 Method of manufacturing nitride semiconductor ultraviolet light emitting device and nitride semiconductor ultraviolet light emitting device
CN109564959A (en) * 2017-02-15 2019-04-02 创光科学株式会社 Nitride-based semiconductor ultraviolet ray emitting element and its manufacturing method
US10593838B2 (en) 2017-08-14 2020-03-17 Lg Innotek Co., Ltd. Semiconductor device
US11404603B2 (en) 2019-08-06 2022-08-02 Nikkiso Co., Ltd. Nitride semiconductor light-emitting element
CN111146318A (en) * 2020-01-20 2020-05-12 江苏晶曌半导体有限公司 Based on MoS2Thin layer ultraviolet light-emitting diode and manufacturing method thereof
JP2021027324A (en) * 2020-04-28 2021-02-22 日機装株式会社 Nitride semiconductor light-emitting element
JP7141425B2 (en) 2020-04-28 2022-09-22 日機装株式会社 Nitride semiconductor light emitting device

Similar Documents

Publication Publication Date Title
JP2011187591A (en) Nitride semiconductor ultraviolet light-emitting element
US8039830B2 (en) Semiconductor light emitting device and wafer
JP4328366B2 (en) Semiconductor element
JP5526181B2 (en) Nitride-based light-emitting heterostructure
JP4505147B2 (en) Semiconductor structure and processing method using group III nitride quaternary material system with little phase separation
US8451877B1 (en) High efficiency III-nitride light-emitting diodes
JP2010532926A (en) Radiation emitting semiconductor body
JP2010123965A (en) Light-emitting diode having indium nitride
TW200810304A (en) Semiconductor laser, method of manufacturing semiconductor device, optical pickup, and optical disk apparatus
EP2919282B1 (en) Nitride semiconductor stacked body and semiconductor light emitting device comprising the same
JP2005302784A (en) Semiconductor light emitting element and its manufacturing method
JP2007214221A (en) Nitride semiconductor laser device
JP2007019277A (en) Semiconductor light emitting element
KR101423720B1 (en) Light emitting device having active region of multi quantum well structure and method for fabricating the same
JP2009049422A (en) Semiconductor structure employing group iii nitride material system with inhibited phase separation, and photodetector
KR100558455B1 (en) Nitride based semiconductor device
JP4288030B2 (en) Semiconductor structure using group III nitride quaternary material system
JP6135559B2 (en) Semiconductor light emitting device, method for manufacturing semiconductor light emitting device, and semiconductor device
JP2007335854A (en) Semiconductor optical element
US20080175293A1 (en) Semiconductor laser device
JP2013102182A (en) Semiconductor optical element
KR101359486B1 (en) Light Emitting Diode of having Sloped Band Gap Structure
JP3724213B2 (en) Gallium nitride compound semiconductor light emitting device
JP3763701B2 (en) Gallium nitride semiconductor light emitting device
JP2004006957A (en) Optical semiconductor equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140204