JP2011162860A - Surface-roughened copper foil, method of producing the same and copper-clad laminate plate - Google Patents
Surface-roughened copper foil, method of producing the same and copper-clad laminate plate Download PDFInfo
- Publication number
- JP2011162860A JP2011162860A JP2010028922A JP2010028922A JP2011162860A JP 2011162860 A JP2011162860 A JP 2011162860A JP 2010028922 A JP2010028922 A JP 2010028922A JP 2010028922 A JP2010028922 A JP 2010028922A JP 2011162860 A JP2011162860 A JP 2011162860A
- Authority
- JP
- Japan
- Prior art keywords
- treatment
- copper foil
- copper
- metallic
- subjected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Parts Printed On Printed Circuit Boards (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
Description
本発明は、近年の通信端末機能に欠かすことのできない高周波伝送特性、耐熱性に優れる表面処理銅箔と、その製造法に関するものである。
更に本発明は前記表面処理銅箔を用いた通信端末機能に欠かすことのできない長期信頼性に優れるリジットおよびフレキシブルエレクトロニックス回路基板用の銅張積層板に関するものである。
The present invention relates to a surface-treated copper foil excellent in high-frequency transmission characteristics and heat resistance indispensable for recent communication terminal functions, and a method for producing the same.
Furthermore, the present invention relates to a rigid and a copper-clad laminate for flexible electronic circuit boards, which are indispensable for a communication terminal function using the surface-treated copper foil and have excellent long-term reliability.
通信端末機器は携帯電話に代表される様に、小型化・薄型化に加えて通話以外にも映像や動画の送受信はもとよりGPS(Global Positioning System)機能、ワンセグ受信等々の多機能化が著しく進んでいる。このような技術は電子機器に止まらず昨今では、ハイブリット自動車や電気自動車にも搭載され飛躍的に利便性を向上させている。そのため、このような通信端末機器に使用される銅張積層板に注目がおかれている。 As represented by mobile phones, in addition to miniaturization and thinning of communication terminal equipment, in addition to communication, video and video transmission and reception, as well as GPS (Global Positioning System) functions, one-segment reception, and other multi-functionality have advanced significantly. It is out. Such a technology is not limited to electronic devices, and has recently been installed in hybrid cars and electric cars to dramatically improve convenience. Therefore, attention is paid to the copper clad laminated board used for such a communication terminal device.
前記通信端末機器として近時、高周波の電波を運転中の自動車より発信して対象物との距離を把握する車間レーダーや暗闇での物体を検知する暗視レーダーも開発され、安全性と快適な運転をサポートしている。 Recently, as the communication terminal device, an inter-vehicle radar that detects a distance from an object by transmitting a high-frequency radio wave from a driving car and a night-vision radar that detects an object in the dark have been developed. Supports driving.
このレーダー等の通信技術には、数ギガ帯から数十ギガ帯をカバーできる高周波対応のPCB(Printed Circuit Board)や搭載されるパッケージ部品等々が重要な鍵を担っている。この高周波対応の制御基板には回路形成の基となる高周波対応銅箔と誘電特性に優れる樹脂基板と両者の密着性に関する技術との組み合わせが欠かせないものとなってきている。 A high-frequency-compatible PCB (Printed Circuit Board) capable of covering several giga bands to several tens of giga bands, package parts mounted, and the like play an important key in communication technologies such as radar. A combination of a high-frequency compatible copper foil that is a basis for circuit formation, a resin substrate that is excellent in dielectric characteristics, and a technique related to adhesion between the two has become indispensable for this high-frequency compatible control board.
例えばガソリンエンジンの自動車やハイブリット車に搭載される電子制御機能を有する燃料噴射制御部品は、過酷な条件下で使用される。特に内燃機関における混合ガスの噴射量を制御する演算回路や、モーターの回転数を制御するコンピュータボックスは素早い演算性能を必須要件としている。演算は繁多になる程に回路は発熱する。たとえ放熱加工が施されていても、該ボックス内は必然的に高温となり回路基板は三次元方向に熱膨張する。
従来コンピュータボックス内の演算回路には、銅張積層板が用いられており徐熱対処法として放熱アルミ板を張り合わせた放熱方式が一般的に採用されてきている。しかし、昨今の高機能化に伴う演算回数の増大により放熱効果を大幅に改善する必要性に迫られており、自動車メーカーや電子制御実装部品メーカー、強いては、関連するPCBメーカーでは積層回路基板を大幅に見直す必要性に迫られている。
For example, a fuel injection control component having an electronic control function mounted on a gasoline engine vehicle or a hybrid vehicle is used under severe conditions. In particular, an arithmetic circuit that controls the injection amount of a mixed gas in an internal combustion engine and a computer box that controls the number of revolutions of a motor require a quick arithmetic performance. The more the computation is performed, the more the circuit generates heat. Even if heat dissipation processing is performed, the inside of the box inevitably becomes a high temperature, and the circuit board thermally expands in a three-dimensional direction.
Conventionally, a copper-clad laminate is used for an arithmetic circuit in a computer box, and a heat dissipation method in which a heat-dissipating aluminum plate is bonded is generally adopted as a countermeasure against slow heat. However, due to the increase in the number of computations due to the recent increase in functionality, there is an urgent need to significantly improve the heat dissipation effect, and automobile manufacturers, electronic control mounting component manufacturers, and related PCB manufacturers, are concerned with the use of laminated circuit boards. There is an urgent need to review it.
しかし回路基板に銅箔を用いる場合には、樹脂基板を構成する樹脂の熱膨張係数と銅箔の熱膨張係数とを理論上同じにする必要があるが、現状では樹脂材料の設計処方で樹脂基板の熱膨張係数を銅箔の熱膨張係数に近づけている。しかし、略同一にさせることはできていない。
そこで、これら業界では銅箔に、樹脂材料の熱膨張に相応する耐熱追従性があり、しかもこの追従限界を超えた場合でも樹脂基板に強力に密着し、回路剥離や断線を起こさない伸縮特性を要求し、このような伸縮特性を備えた銅箔によるリジットあるいはフレキシブルな銅箔積層板の要求が高まっている。
However, when copper foil is used for the circuit board, the thermal expansion coefficient of the resin constituting the resin board and the thermal expansion coefficient of the copper foil need to be theoretically the same. The thermal expansion coefficient of the substrate is brought close to the thermal expansion coefficient of the copper foil. However, they cannot be made substantially the same.
Therefore, in these industries, copper foil has a heat-resistant follow-up property corresponding to the thermal expansion of the resin material, and even when this follow-up limit is exceeded, it has a stretch property that strongly adheres to the resin substrate and does not cause circuit peeling or disconnection. There is a growing demand for rigid or flexible copper foil laminates made of copper foil having such stretch characteristics.
また近年、銅箔を使用したフレキシブルプリント配線板の用途が拡大し、樹脂基板材料として、例えば工業用プラスチックフィルムで代表的なPET(ポリエチレンテレフタレート)フィルム、PI(ポリミド)フィルム、PC(ポリカーボネート)フィルムが採用されている。そして、これらの樹脂基板と銅箔とはバインダーを介して接着する方法が用いられる一方で、銅箔の一方の表面に直接に熱硬化型の樹脂を塗工するキャスティング法技術も用いられている。 In recent years, the use of flexible printed wiring boards using copper foil has expanded, and as a resin substrate material, for example, PET (polyethylene terephthalate) film, PI (polyimide) film, and PC (polycarbonate) film, which are representative of industrial plastic films. Is adopted. And while the method of adhering these resin substrates and copper foils through a binder is used, the casting method technique of applying a thermosetting resin directly to one surface of the copper foil is also used. .
樹脂基板と銅箔との接着をバインダーを介する方法で行う場合は、接着にバインダーを使用するために粗化粒子を有する銅箔を必要とせず、光沢性に富む圧延銅箔や極めて光沢性のある電解銅箔を主に用いることができる。しかし、この方法で積層された回路基板は使用用途が日常生活の範疇に限られる携帯電話、携帯電子端末機器、デジタル機器の記録媒体等に限られ、耐熱条件下での密着性の維持や例えば低電流から40〜50A(アンペア)まで通電される回路には、長期品質信頼性の面で採用することができなかった。
そこで、例えば自動車の制御用回路基板に代表されるように、通信用、制御用に採用される電子制御機能を有する機器の積層基板は高温領域の温度変化条件の下で健全に回路を作動させる必要があり、銅張積層板に “そり”が起き、あるいは“クラック”を発生させない樹脂基板と該樹脂基板の熱線膨張に追随でき、該樹脂基板との間で回路剥離を起さない(密着する)銅箔が求められる。
When the resin substrate and copper foil are bonded by a method using a binder, a copper foil having roughened particles is not required to use the binder for bonding, and a rolled copper foil having high gloss or extremely glossy A certain electrolytic copper foil can be mainly used. However, circuit boards laminated by this method are limited to mobile phones, portable electronic terminal devices, digital media recording media, etc. whose usage is limited to the category of daily life, A circuit that is energized from a low current to 40 to 50 A (amperes) cannot be used in terms of long-term quality reliability.
Therefore, for example, as represented by a control circuit board of an automobile, a laminated board of a device having an electronic control function adopted for communication and control operates a circuit soundly under temperature change conditions in a high temperature region. It is necessary to follow the thermal expansion of the resin substrate and the resin substrate that does not cause “warping” or “crack” in the copper-clad laminate, and does not cause circuit peeling between the resin substrate (adhesion) Yes) Copper foil is required.
高周波特性等の付加価値を有する銅箔には、回路形成に必要なエッチング加工性、耐熱性に優れる樹脂基板と熱圧着積層時における耐熱性と密着性、更には樹脂基板と相まっての高伝送特性を兼ね備えることが求められる。しかし、一般に密着強度の向上と優れた伝送特性とを両立させることは物理的に極めて困難である。 Copper foils with added value such as high-frequency characteristics include etching process necessary for circuit formation, resin substrate with excellent heat resistance, heat resistance and adhesion during thermocompression lamination, and high transmission characteristics combined with resin substrate It is required to have both. However, in general, it is physically very difficult to achieve both improved adhesion strength and excellent transmission characteristics.
銅箔と樹脂基板との密着性は、銅箔表面に設けた凹凸により樹脂基板への物理的な投錨効果によることが大きく、そのため銅箔の一方の面に投錨性に富む大きさの(形状の)銅粒子による粗化処理を施し、その処理面に必要に応じて耐熱性を高める金属のメッキ処理やケミカル的なバインダー効果と密着性を向上させるカップリング剤処理を施している。
一方、高周波伝送特性を高めるためには、一般的に電気伝送が導体の表層をメインに流れるために、回路材料である銅箔の表面は鏡面に似た平滑性が必要とされる。
The adhesion between the copper foil and the resin substrate is largely due to the physical anchoring effect on the resin substrate due to the unevenness provided on the surface of the copper foil. (1) A roughening treatment with copper particles is performed, and the treatment surface is subjected to a metal plating treatment for improving heat resistance and a coupling agent treatment for improving the chemical binder effect and adhesion as necessary.
On the other hand, in order to improve the high-frequency transmission characteristics, generally, electrical transmission flows mainly through the surface layer of the conductor, so that the surface of the copper foil, which is a circuit material, needs to have smoothness similar to a mirror surface.
このような技術上の背景から従来は、銅箔の樹脂との積層面側に銅粗化粒子を低粗化となるように電気メッキで施して密着性を付与するとともに、耐熱(密着)性の維持には銅以外の重金属を平滑メッキすることで保ち、投錨効果による密着性の不足分をシランカップリング剤の併用により品質規格をクリァーしている。しかし、このような技術ではエッチング加工性、高耐熱密着性、マイグレーション不具合のない伝送特性に優れる銅箔は提供できていない。 Conventionally, from such a technical background, copper roughened particles are applied to the laminated surface side of the copper foil resin by electroplating so as to reduce the roughness, and heat resistance (adhesion) is provided. In order to maintain this, smooth metal plating is applied to heavy metals other than copper, and the lack of adhesion due to the anchoring effect is cleared by the combined use of a silane coupling agent. However, such a technique cannot provide a copper foil excellent in etching processability, high heat-resistant adhesion, and transmission characteristics free from migration defects.
本発明はこのような要求を満足する、エッチング加工性、高耐熱密着性、マイグレーション不具合のない高周波伝送特性に優れる銅箔を提供することを目的とし、平滑性(高周波特性)と投錨効果(樹脂基板との密着性)の相反する特性を満足させるべく鋭意検討を重ねた結果、銅箔の内、圧延銅箔であれば好ましくはOFC(無酸素銅)からなる銅箔の一方の面に、電解銅箔であれば好ましくは電解液面(マット面)側に表面処理を施して、エッチング加工性、高耐熱密着性、マイグレーション不具合のない伝送特性に優れる銅箔を提供する。 An object of the present invention is to provide a copper foil that satisfies such requirements and has excellent etching processability, high heat-resistant adhesion, and high frequency transmission characteristics free from migration defects, and has smoothness (high frequency characteristics) and anchoring effect (resin). As a result of intensive studies to satisfy the contradictory properties of the adhesion to the substrate), one of the copper foils is preferably one of the copper foils made of OFC (oxygen-free copper) if it is a rolled copper foil. If it is an electrolytic copper foil, surface treatment is preferably performed on the electrolyte surface (mat surface) side to provide a copper foil excellent in etching processability, high heat-resistant adhesion, and transmission characteristics free from migration defects.
本発明の表面粗化銅箔は、未処理銅箔の少なくとも一方の表面に、金属銅によるパルス陰極電解粗化処理が施された一次粗化面、金属銅による平滑メッキ処理が施された二次処理面、金属ニッケルによる処理が施された三次処理面、金属亜鉛による処理が施された四次処理面が順に設けられている。 The surface-roughened copper foil of the present invention has a primary roughened surface that has been subjected to pulse cathodic electrolysis roughening treatment with metallic copper and at least one surface of the untreated copper foil, and has been subjected to smooth plating treatment with metallic copper. A secondary treatment surface, a tertiary treatment surface treated with metallic nickel, and a quaternary treatment surface treated with metallic zinc are provided in this order.
本発明の表面粗化銅箔は、前記金属亜鉛による四次処理面上に、防錆剤による防錆層が設けられている。 The surface-roughened copper foil of the present invention is provided with a rust preventive layer made of a rust preventive agent on the quaternary treated surface of the metal zinc.
本発明の表面粗化銅箔は、前記金属亜鉛による四次処理面の上に、防錆剤による防錆層が設けられ、該防錆層上にカップリング剤による保護層が設けられている。 The surface-roughened copper foil of the present invention is provided with a rust-preventing layer with a rust-preventing agent on the quaternary treatment surface with the metallic zinc, and a protective layer with a coupling agent is provided on the rust-preventing layer. .
前記未処理銅箔は電解銅箔或いは圧延銅箔であり、該銅箔の前記一次粗化処理が施される側の素地が、JIS−B−0601に規定されるRz値で0.8〜2.5μmであることが好ましい。
また、前記未処理銅箔の常温状態での伸び率が3.5%以上であることが望ましい。
The untreated copper foil is an electrolytic copper foil or a rolled copper foil, and the substrate on the side of the copper foil subjected to the primary roughening treatment has an Rz value specified in JIS-B-0601 of 0.8 to The thickness is preferably 2.5 μm.
Moreover, it is desirable that the elongation percentage of the untreated copper foil at room temperature is 3.5% or more.
更に、前記二次処理後の粗度が、JIS−B−0601に規定されるRz値で3.0μm以下であることが好ましい。 Furthermore, it is preferable that the roughness after the secondary treatment is 3.0 μm or less in terms of the Rz value defined in JIS-B-0601.
本発明の表面粗化銅箔の製造方法は、未処理銅箔の少なくとも一方の表面にパルス陰極電解粗化処理により金属銅からなる一次粗化を施し、該一次粗化処理した面の上に平滑メッキ処理により金属銅からなる二次処理を施し、該二次粗化した面の上に金属ニッケルの処理による三次処理を施し、該三次処理面の上に金属亜鉛の処理による四次処理面を施すことを特徴とする製造方法である。 In the method for producing a surface-roughened copper foil of the present invention, at least one surface of an untreated copper foil is subjected to primary roughening made of metallic copper by pulse cathodic electrolysis roughening, and the surface is subjected to the primary roughening treatment. A secondary treatment made of metallic copper is performed by a smooth plating treatment, a tertiary treatment is carried out by treatment of metallic nickel on the secondary roughened surface, and a quaternary treatment surface by treatment of metallic zinc is applied on the tertiary treatment surface. It is a manufacturing method characterized by giving.
本発明の表面粗化銅箔の製造方法は、粗化処理を施す側の素地がJIS−B−0601に規定されるRz値で0.8〜2.5μmである銅箔面にパルス陰極電解粗化処理により金属銅からなる一次粗化を施し、該一次粗化処理した面の上に平滑メッキ処理により金属銅からなる二次処理を該面の表面粗さがJIS−B−0601に規定されるRz値で3.0μm以下に施し、該二次粗化した面の上に金属ニッケルの処理による三次処理を施し、該三次処理面の上に金属亜鉛の処理による四次処理面を施すことを特徴とする製造方法である。 In the method for producing a surface roughened copper foil of the present invention, the surface on the side subjected to the roughening treatment is subjected to pulse cathodic electrolysis on a copper foil surface having an Rz value specified by JIS-B-0601 of 0.8 to 2.5 μm. The surface is roughened according to JIS-B-0601 by subjecting it to primary roughening made of metallic copper by roughening treatment, and applying secondary treatment made of metallic copper by smooth plating treatment on the surface subjected to the primary roughening treatment. The Rz value is 3.0 μm or less, and the secondary roughened surface is subjected to a tertiary treatment by treatment with metallic nickel, and the tertiary treatment surface is subjected to a fourth treatment surface by treatment with metallic zinc. It is a manufacturing method characterized by this.
本発明の表面粗化銅箔の製造方法は、未処理銅箔の少なくとも一方の表面にパルス陰極電解粗化処理により金属銅からなる一次粗化を施し、該一次粗化処理した面の上に平滑メッキ処理により金属銅からなる二次処理を施し、該二次粗化した面の上に金属ニッケルの処理による三次処理を施し、該三次処理面の上に金属亜鉛の処理による四次処理面に施し、次いで熱処理して前記金属銅、前記金属ニッケル、金属亜鉛を合金化することを特徴とする製造方法である。 In the method for producing a surface-roughened copper foil of the present invention, at least one surface of an untreated copper foil is subjected to primary roughening made of metallic copper by pulse cathodic electrolysis roughening, and the surface is subjected to the primary roughening treatment. A secondary treatment made of metallic copper is performed by a smooth plating treatment, a tertiary treatment is carried out by treatment of metallic nickel on the secondary roughened surface, and a quaternary treatment surface by treatment of metallic zinc is applied on the tertiary treatment surface. Followed by heat treatment to alloy the metallic copper, the metallic nickel, and the metallic zinc.
本発明の表面粗化銅箔の製造方法は、未処理銅箔の少なくとも一方の表面にパルス陰極電解粗化処理により金属銅からなる一次粗化を施し、該一次粗化処理した面の上に平滑メッキ処理により金属銅からなる二次処理を施し、該二次粗化した面の上に金属ニッケルの処理による三次処理を施し、該三次処理面の上に金属亜鉛の処理による四次処理面を施し、該四次処理面の上に防錆剤による防錆層を施し、次いで、熱処理して前記金属銅と前記金属ニッケルと金属亜鉛とを合金化することを特徴とする製造方法である。 In the method for producing a surface-roughened copper foil of the present invention, at least one surface of an untreated copper foil is subjected to primary roughening made of metallic copper by pulse cathodic electrolysis roughening, and the surface is subjected to the primary roughening treatment. A secondary treatment made of metallic copper is performed by a smooth plating treatment, a tertiary treatment is carried out by treatment of metallic nickel on the secondary roughened surface, and a quaternary treatment surface by treatment of metallic zinc is applied on the tertiary treatment surface. And applying a rust preventive layer with a rust inhibitor on the quaternary treatment surface, and then heat treating to alloy the metal copper, the metal nickel, and the metal zinc. .
本発明の表面粗化銅箔の製造方法は、未処理銅箔の少なくとも一方の表面にパルス陰極電解粗化処理により金属銅からなる一次粗化を施し、該一次粗化処理した面の上に平滑メッキ処理により金属銅からなる二次処理を施し、該二次粗化した面の上に金属ニッケルの処理による三次処理を施し、該三次処理面の上に金属亜鉛の処理による四次処理面を施し、該四次処理面上に防錆剤による防錆層、カップリング剤からなる保護層を設けることを特徴とする製造方法である。 In the method for producing a surface-roughened copper foil of the present invention, at least one surface of an untreated copper foil is subjected to primary roughening made of metallic copper by pulse cathodic electrolysis roughening, and the surface is subjected to the primary roughening treatment. A secondary treatment made of metallic copper is performed by a smooth plating treatment, a tertiary treatment is carried out by treatment of metallic nickel on the secondary roughened surface, and a quaternary treatment surface by treatment of metallic zinc is applied on the tertiary treatment surface. And a protective layer composed of a rust preventive agent and a coupling agent is provided on the quaternary treatment surface.
本発明の表面粗化銅箔の製造方法は、未処理銅箔の少なくとも一方の表面にパルス陰極電解粗化処理により金属銅からなる一次粗化を施し、該一次粗化処理した面の上に平滑メッキ処理により金属銅からなる二次処理を施し、該二次粗化した面の上に金属ニッケルの処理による三次処理を施し、該三次処理面の上に金属亜鉛の処理による四次処理面を施し、該四次処理面上に防錆剤による防錆層、カップリング剤からなる保護層を施し、次いで熱処理して前記金属銅、前記金属ニッケル、前記金属亜鉛とを合金化してなることを特徴とする製造方法。 In the method for producing a surface-roughened copper foil of the present invention, at least one surface of an untreated copper foil is subjected to primary roughening made of metallic copper by pulse cathodic electrolysis roughening, and the surface is subjected to the primary roughening treatment. A secondary treatment made of metallic copper is performed by a smooth plating treatment, a tertiary treatment is carried out by treatment of metallic nickel on the secondary roughened surface, and a quaternary treatment surface by treatment of metallic zinc is applied on the tertiary treatment surface. A rust preventive layer with a rust preventive agent and a protective layer made of a coupling agent are applied on the quaternary treatment surface, followed by heat treatment to alloy the metal copper, the metal nickel, and the metal zinc. The manufacturing method characterized by this.
前記表面粗化銅箔の製造方法で使用する未処理銅箔は、該銅箔の常温状態での伸び率が3.5%以上であることが好ましい。 It is preferable that the untreated copper foil used in the method for producing the surface-roughened copper foil has an elongation percentage of 3.5% or more in a normal temperature state of the copper foil.
本発明の銅張積層板は前記表面粗化銅箔、又は前記製造方法で製造された表面粗化銅箔を樹脂基板と積層してなるものである。 The copper clad laminate of the present invention is obtained by laminating the surface roughened copper foil or the surface roughened copper foil produced by the production method on a resin substrate.
本発明の表面処理銅箔は、未処理銅箔の表面にパルス陰極電解処理により銅微細粗化処理を施した一次粗化面、次いで該粗化面の微細化させた粗化粒子(銅コブ)を脱落させないように平滑銅メッキ処理を施した二次処理面、該二次処理面上に金属ニッケルによる三次処理面と金属亜鉛による四次処理面とでニッケル・亜鉛の耐熱処理層を設け、更には必要により防錆処理層とシランカップリング処理による保護層とを付与することで、エッチング加工性、高耐熱密着性、マイグレーション不具合のない高周波伝送特性に優れる表面粗化銅箔を提供することができる、優れた効果を有するものである。
また本発明により得られた粗化形状は、樹脂材料との積層に際してその積層条件(プレス法、ラミネート法、キャスティング法等)の何れをも選択できる銅箔として好適である。
The surface-treated copper foil of the present invention comprises a primary roughened surface obtained by subjecting the surface of an untreated copper foil to copper fine roughening by pulse cathodic electrolysis, and then roughened particles (copper ) Is treated with smooth copper plating so that it does not fall off, and a nickel / zinc heat-resistant treatment layer is provided on the secondary treatment surface with a tertiary treatment surface with metallic nickel and a fourth treatment surface with metallic zinc. Furthermore, by providing a rust-proofing layer and a protective layer by silane coupling treatment if necessary, a surface-roughened copper foil having excellent high-frequency transmission characteristics free from etching processability, high heat-resistant adhesion, and migration defects is provided. It has an excellent effect.
The roughened shape obtained by the present invention is suitable as a copper foil that can select any of the lamination conditions (pressing method, laminating method, casting method, etc.) when laminating with a resin material.
前記高周波伝送特性に優れる耐熱性銅箔をフレキシブル樹脂基板又はリジット樹脂基板と積層してなる本発明の銅張積層基板は、エッチング加工性、高耐熱密着性、マイグレーション不具合のない高周波伝送特性に優れる回路基板を作成できる、優れた効果を有するものである。 The copper-clad laminate of the present invention obtained by laminating the heat-resistant copper foil having excellent high-frequency transmission characteristics with a flexible resin substrate or a rigid resin substrate is excellent in etching processability, high heat-resistant adhesion, and high-frequency transmission characteristics free from migration defects. The circuit board can be produced and has an excellent effect.
以下、本発明の高周波伝送特性に優れる表面粗化銅箔とその製造法につき詳細に説明する。
本発明の高周波伝送特性に優れる表面粗化銅箔は、銅箔の樹脂基板と接着させる少なくとも一方の表面(電解銅箔においては好ましくはマット面)に、樹脂基板との密着性を持たせるために、投錨効果の高い銅粒子による一次粗化処理をパルス陰極電解により施す。次いで該一次粗化処理面を健全に保つために一次粗化処理面の上に平滑な銅メッキからなるカプセル銅層を二次粗化処理として陰極電解メッキで付着する。次いで、前記二次粗化処理面上に金属ニッケル層を電解メッキにより施し(三次処理)、該三次処理面上に金属亜鉛層を電解メッキで設ける(四次処理)。なお、亜鉛メッキ浴には耐薬品性の向上のために、適宜のバナジュウム金属あるいはアンチモン金属を添加することが好ましい。
Hereinafter, the surface-roughened copper foil excellent in the high-frequency transmission characteristics of the present invention and the manufacturing method thereof will be described in detail.
The surface-roughened copper foil having excellent high-frequency transmission characteristics according to the present invention has adhesion to a resin substrate on at least one surface (preferably a matte surface in an electrolytic copper foil) to be bonded to the resin substrate of the copper foil. Further, a primary roughening treatment with copper particles having a high anchoring effect is performed by pulse cathode electrolysis. Next, in order to keep the primary roughened surface healthy, a capsule copper layer made of smooth copper plating is deposited on the primary roughened surface by cathodic electroplating as a secondary roughening treatment. Next, a metallic nickel layer is applied to the secondary roughened surface by electrolytic plating (tertiary treatment), and a metallic zinc layer is provided on the tertiary treated surface by electrolytic plating (quaternary treatment). In addition, it is preferable to add an appropriate vanadium metal or antimony metal to the zinc plating bath in order to improve chemical resistance.
未処理銅箔としては、電解銅箔の場合はマット面の素地がJIS−B−0601に規定されるRz値で0.8〜2.5μmの範囲にあるものを採用することが好ましく、電析結晶粒は非常に微細粒子であることが好ましい。微細粒子であるとは、電解銅箔のマット面側の断面が結晶粒径が1.0μm以下の細かな非柱状結晶構造となっている状態である。
圧延銅箔であればIPC‐TM‐650に規定される値で35〜45kN/cm2範囲(ヤング率であれば50〜65MPa)のOFC(無酸素銅)材を圧延した箔が好ましい。
As the untreated copper foil, it is preferable to employ an electrolytic copper foil in which the surface of the mat surface is in the range of 0.8 to 2.5 μm as the Rz value specified in JIS-B-0601. The crystal grains are preferably very fine particles. The fine particles are a state in which the cross section of the electrolytic copper foil on the mat surface side has a fine non-columnar crystal structure with a crystal grain size of 1.0 μm or less.
If it is a rolled copper foil, the foil which rolled the OFC (oxygen-free copper) material of the value prescribed | regulated to IPC-TM-650 in the range of 35-45 kN / cm < 2 > (50-65 MPa if Young's modulus) is preferable.
また、高温積層での使用に対する銅箔としては、この銅箔と貼り合わせる耐熱性の樹脂の伸び率を勘案すると常温状態での伸び率が、3.5%以上の銅箔を採用することが好ましい。 Also, as a copper foil for use in high-temperature lamination, it is possible to adopt a copper foil having an elongation rate of 3.5% or more at room temperature considering the elongation rate of a heat-resistant resin to be bonded to the copper foil. preferable.
該銅箔の例えば一方の面に一次粗化により施した銅微細粗化処理(コブ状銅粒子)の表面に、二次平滑銅メッキを施す。二次平滑メッキ処理によりコブ状の微細粒子は、健全な形状を維持すると共に粒子の均一性が保たれる。該二次平滑銅メッキ処理後の粗面は、JIS−B−0601に規定されるRz値で2.5〜3.0μmの範囲とすることが好ましい。 For example, secondary smooth copper plating is applied to the surface of the copper fine roughening treatment (cog-like copper particles) applied to the one surface of the copper foil by primary roughening. As a result of the secondary smooth plating treatment, the bump-like fine particles maintain a healthy shape and the uniformity of the particles is maintained. The rough surface after the secondary smooth copper plating treatment is preferably in the range of 2.5 to 3.0 [mu] m in Rz value defined in JIS-B-0601.
本発明の耐熱性で高周波伝送特性用途に用いられる銅箔においては、前記一次、二次処理後の表面に耐熱効果を有する金属ニッケル層と金属亜鉛層とを三次、四次処理として設ける。
前記ニッケルメッキによるニッケル層のニッケル付着量は、金属ニッケルとして0.8〜1.5mg/dm2、亜鉛メッキによる亜鉛層の亜鉛付着量は、金属亜鉛として2.5〜4.5mg/dm2とすることが好ましい。
In the copper foil used for heat resistance and high frequency transmission characteristics of the present invention, a metallic nickel layer and a metallic zinc layer having a heat resistance effect are provided as tertiary and quaternary treatments on the surface after the primary and secondary treatments.
The nickel adhesion amount of the nickel layer by the nickel plating is 0.8 to 1.5 mg / dm 2 as metallic nickel, and the zinc adhesion amount of the zinc layer by the zinc plating is 2.5 to 4.5 mg / dm 2 as metallic zinc. It is preferable that
次いで必要により前記亜鉛層の表面に防錆層を設ける。防錆層としてはクロメートによるクロメート防錆層が好ましく、そのクロム付着量は、金属クロムとして0.005〜0.020mg/dm2とすることが好ましい。この範囲であれば積層基板用の銅箔として必要かつ十分な程度の防錆性が得られるからである。 Then, if necessary, a rust prevention layer is provided on the surface of the zinc layer. As the rust preventive layer, a chromate rust preventive layer made of chromate is preferable, and the chromium adhesion amount is preferably 0.005 to 0.020 mg / dm 2 as metal chromium. This is because if it is within this range, the necessary and sufficient degree of rust prevention can be obtained as the copper foil for the laminated substrate.
前記防錆層の表面にカップリング剤による保護層を設けることが好ましい。保護層としてはシランカップリング剤からなるケミカル的な保護層とすることが望ましい。シランカップリング剤の付着量はケイ素として0.001〜0.015mg/dm2とすることが望ましい。この範囲であれば積層基板用の銅箔として必要かつ十分な程度の樹脂との密着性が得られるからである。 It is preferable to provide a protective layer with a coupling agent on the surface of the antirust layer. The protective layer is preferably a chemical protective layer made of a silane coupling agent. The adhesion amount of the silane coupling agent is preferably 0.001 to 0.015 mg / dm 2 as silicon. This is because within this range, the adhesiveness with a resin necessary and sufficient as a copper foil for a laminated substrate can be obtained.
本発明の表面粗化銅箔は前記したように、未処理銅箔の少なくとも一方の表面にパルス陰極電解粗化処理により一次粗化として金属銅からなる一次粗化処理層が設けられ、該一次粗化処理層の上に平滑メッキ処理により二次処理として金属銅からなる二次処理層が設けられ、該二次処理層の上に三次処理として金属ニッケルによる三次処理層が設けられ、該三次処理層の上に四次処理として金属亜鉛からなる四次処理層が設けられる。本発明の表面処理銅箔はこのような構成でも目的とする効果は十分発揮するが、前記のようにして製造した表面処理銅箔を次いで熱処理して前記金属銅(二次粗化処理層、あるいは一次粗化処理層)、前記金属ニッケル(三次処理層)、金属亜鉛(四次処理層)を合金化する。 As described above, the surface roughened copper foil of the present invention is provided with a primary roughening treatment layer made of metallic copper as a primary roughening by pulse cathode electrolytic roughening treatment on at least one surface of the untreated copper foil. A secondary treatment layer made of metallic copper is provided as a secondary treatment by smooth plating treatment on the roughening treatment layer, and a tertiary treatment layer made of metallic nickel is provided as a tertiary treatment on the secondary treatment layer. A quaternary treatment layer made of metallic zinc is provided as a quaternary treatment on the treatment layer. The surface-treated copper foil of the present invention exhibits the intended effect sufficiently even with such a configuration, but the surface-treated copper foil produced as described above is then heat treated to produce the metal copper (secondary roughened layer, Alternatively, the primary roughening treatment layer), the metal nickel (tertiary treatment layer), and the metal zinc (quaternary treatment layer) are alloyed.
前記金属銅、前記金属ニッケル、金属亜鉛を熱処理により合金化し、フレキシブル樹脂基板、リジット樹脂基板又はキャスティング法により樹脂基板と積層することで銅張積層基板として、特に高周波伝送特性に優れる耐熱性銅箔として、エッチング加工性、高耐熱密着性、マイグレーション不具合のない回路基板を作成することができる。
なお、前記熱処理は表面粗化銅箔を製造して後熱処理してもよく、フレキシブル樹脂基板又は、リジット樹脂基板と積層する熱処理時点でプレス積層するときの熱で合金化することも可能であり、その効果はどちらでも遜色のないものとなる。
The metal copper, the metal nickel, and the metal zinc are alloyed by heat treatment and laminated with a flexible resin substrate, a rigid resin substrate or a resin substrate by a casting method, and as a copper-clad laminate substrate, heat-resistant copper foil particularly excellent in high-frequency transmission characteristics As described above, a circuit board free from etching processability, high heat-resistant adhesion, and migration failure can be produced.
The heat treatment may be a post-heat treatment after producing a surface-roughened copper foil, or it can be alloyed with heat at the time of press lamination at the time of heat treatment for laminating with a flexible resin substrate or a rigid resin substrate. The effect is comparable to either.
前記熱処理による合金化は、前記四次処理層を設け、該四次処理層の上に防錆剤、例えばクロメートによるクロメート防錆層を施した後に熱処理して前記金属銅と前記金属ニッケルと金属亜鉛とを合金化することも可能である。 The alloying by the heat treatment is performed by providing the quaternary treatment layer, applying a chromate rust prevention layer with a rust inhibitor, for example, chromate on the quaternary treatment layer, and then heat-treating the metal copper, the metal nickel, and the metal. It is also possible to alloy with zinc.
また、前記熱処理による合金化は、前記四次処理層を設け、該四次処理層の上に防錆層を施し、該防錆層の上にカップリング剤からなる保護層を施し、次いで熱処理して前記金属銅、前記金属ニッケル、前記金属亜鉛とを合金化することも可能である。 Further, the alloying by the heat treatment is performed by providing the quaternary treatment layer, applying a rust preventive layer on the quaternary treatment layer, applying a protective layer made of a coupling agent on the rust preventive layer, and then performing a heat treatment. It is also possible to alloy the metal copper, the metal nickel, and the metal zinc.
前記金属銅、金属ニッケル、金属亜鉛を合金化する時期は、四次処理層を設けた後、防錆層を設けた後、カップリング剤からなる保護層を設けた後のいずれで熱処理してもその効果はほとんど変わらないので、樹脂基板との接着のタイミング、銅張積層基板の製造方法等で任意に施すことが可能である。 When the metal copper, metal nickel, and metal zinc are alloyed, after the quaternary treatment layer is provided, the rust preventive layer is provided, and then the protective layer made of the coupling agent is provided. However, since the effect is almost the same, it can be arbitrarily applied depending on the timing of adhesion to the resin substrate, the manufacturing method of the copper-clad laminate, and the like.
次に、図1により本発明の粗化処理銅箔の製造方法につきその一実施形態を説明する。
図1においてリールに巻き取られた未処理銅箔(電解銅箔あるいは電解脱脂済みの圧延銅箔、以下単に銅箔という)Aを一次パルス陰極電解により粗化銅粒子表面を形成するための第一処理槽1に導く。第一処理槽1には酸化イリジウムアノード11が配置され、銅−硫酸電解液12が充填され、該一次処理槽で銅箔Aの片面あるいは両面に銅粒子からなるコブ状の微細粗化粒子からなる一次粗化処理面を形成する。第一処理槽1で一次粗化処理面が形成された銅箔Bは水洗槽15で洗浄された後第二処理層2へ導かれる。なお、図中13は遮蔽板である。
Next, one embodiment of the method for producing the roughened copper foil of the present invention will be described with reference to FIG.
In FIG. 1, an untreated copper foil wound on a reel (electrolytic copper foil or electrolytically degreased rolled copper foil, hereinafter simply referred to as copper foil) A is used to form a roughened copper particle surface by primary pulse cathode electrolysis. One treatment tank 1 is led. The first treatment tank 1 is provided with an iridium oxide anode 11 and is filled with a copper-sulfuric
第二処理槽2には酸化イリジウムアノード21が配置され、第一処理槽と同様に銅-硫酸電解液22が充填されており、平滑銅メッキ処理が施される。該平滑メッキ処理が施された銅箔Cは水洗槽25で洗浄された後、第三処理層3へ導かれる。
第三処理槽3には酸化イリジウムアノード31が配置され、ニッケル電解液32が充填されている。第三処理槽3においてニッケルメッキが施された銅箔Dは水洗槽35で洗浄された後、第四処理槽4へ導かれる。
第四処理槽4には酸化イリジウムアノード41が配置され、亜鉛電解液42が充填されている。第四処理槽4で亜鉛メッキが施された銅箔Eは水洗槽45で洗浄された後、第五処理槽5へ導かれる。
The second treatment tank 2 is provided with an iridium oxide anode 21 and filled with a copper-sulfuric
The third treatment tank 3 is provided with an iridium oxide anode 31 and filled with a
The fourth treatment tank 4 is provided with an
第五処理槽5にはSUSアノード51が配置され、クロメート電解液52が充填されており、クロメート防錆層が施される。第五処理槽5においてクロメート防錆層が施された銅箔Fは水洗槽55で洗浄された後、第六処理槽6へ導かれる。なお、図中51はSUSアノードである。
第六処理槽6にはシラン液62が充填されており、銅箔Fの表面にシランカップリング剤を塗布する。第六処理槽6においてシランカップリング剤を塗布された銅箔Gは乾燥工程7を経て巻取りロール8に巻き取られる。
なお、図中9は給電コンタクトロールである。
巻き取りロールに巻き取られた表面処理銅箔は必要により図示しない熱処理装置で加熱処理され、前記金属銅、前記金属ニッケル、金属亜鉛を合金化する。
The
The
In the figure, 9 is a power supply contact roll.
If necessary, the surface-treated copper foil wound on the winding roll is heat-treated by a heat treatment apparatus (not shown) to alloy the metallic copper, metallic nickel, and metallic zinc.
未処理銅箔Aとしては対象とする樹脂材料(樹脂基板)との密着性を高め更には伝送特性の向上を図るために、少しでも粗化処理面が低粗化で投錨効果に優れかつ粗化銅粒子の表層が平滑である方が有利である。このためには、柱状晶粒からなる結晶構造を有する電解銅箔より、平滑な表面形状をなす両面光沢電解銅箔を用いる方が好ましく、0.010mm厚さ以上でマット面側の形状粗度がJIS−B−0601に規定されるRz値で0.8〜2.5μm範囲で、かつ室温状態での常温伸び率が3.5%以上ある電解銅箔を用いることが好ましい。 In order to improve the adhesion with the target resin material (resin substrate) as the untreated copper foil A and further improve the transmission characteristics, the roughened surface is low-roughened and excellent in anchoring effect and rough. It is advantageous that the surface layer of the copper halide particles is smooth. For this purpose, it is preferable to use a double-sided glossy electrolytic copper foil having a smooth surface shape rather than an electrolytic copper foil having a crystal structure composed of columnar crystal grains. It is preferable to use an electrolytic copper foil having an Rz value specified in JIS-B-0601 in the range of 0.8 to 2.5 μm and a room temperature elongation at room temperature of 3.5% or more.
本発明の表面処理銅箔は、特に高周波回路基板用途に優れ、自動車用の制御回路基板用に適する仕様で使用されることが考えられる。このため、高周波伝送性に加えて耐熱性を重視する。
一方、銅箔と積層する樹脂基板自体としては熱履歴に対して伸縮することの少ない材料、例えばテフロン(登録商標)系の樹脂材料が用いられる。このような熱履歴による伸びの少ない樹脂基板と積層する銅箔の伸び率(常温状態での伸び率、以下同様)は3.5%程度で十分である。このような銅箔と樹脂基板との組合せにより回路形成後の熱履歴により基板が“反る”、“曲がる”ような変形は起きない。しかし、熱履歴による伸び率の少ない樹脂基板に対しては銅箔の伸び率は3.5%程度であれば足りるが、伸び率の大きい樹脂基板と積層するときには、樹脂基板の伸び率に合致する伸び率の銅箔を製箔し、あるいは市場から選択して表面処理する必要があることは勿論である。
The surface-treated copper foil of the present invention is particularly excellent for high-frequency circuit board applications, and is considered to be used with specifications suitable for automotive control circuit boards. For this reason, importance is attached to heat resistance in addition to high-frequency transmission.
On the other hand, as the resin substrate itself to be laminated with the copper foil, a material that hardly expands and contracts with respect to the thermal history, for example, a Teflon (registered trademark) resin material is used. About 3.5% is sufficient for the elongation rate (elongation rate at normal temperature, hereinafter the same) of the copper foil laminated with such a resin substrate that is less elongated due to thermal history. By such a combination of the copper foil and the resin substrate, the substrate does not warp or bend due to the thermal history after the circuit is formed. However, for resin substrates with low elongation due to thermal history, the copper foil should have an elongation of about 3.5%, but when laminated with a resin substrate with a large elongation, it matches the elongation of the resin substrate. Needless to say, it is necessary to make a copper foil having an elongation ratio to be surface-treated or to select a surface treatment from the market.
銅箔Aのマット面に設ける一次粗化処理は第一処理槽1で砒素化合物や金属モリブデンが添加されている硫酸銅浴を用いたパルス陰極電解メッキ法により施される。
一次粗化処理は銅箔表面に銅のコブ状の粗化粒子を形成させる。具体的には、硫酸銅を銅として20〜30g/L、硫酸濃度をH2SO4として90〜110g/L、モリブデン酸ナトリュウムをMoとして0.15〜0.35g/L、塩素を塩素イオン換算で0.005〜0.010g/L混入した電解液で、浴温度18.5〜28.5℃に設定し、オンタイム時のパルス陰極電解メッキ電流密度を28〜35A/dm2に設定し、適宜な流速と極間距離とで、健全な銅コブ粗化粒子を銅箔表面に形成する。なお、同一浴内で前記銅コブ粗化粒子が脱落しないように、必要により電流密度を15〜20A/dm2程度に設定した条件で平滑銅による電解メッキを施すことも可能である。
The primary roughening treatment provided on the mat surface of the copper foil A is performed in the first treatment tank 1 by a pulse cathode electrolytic plating method using a copper sulfate bath to which an arsenic compound or metal molybdenum is added.
In the primary roughening treatment, copper bumpy rough particles are formed on the surface of the copper foil. Specifically, copper sulfate as copper is 20 to 30 g / L, sulfuric acid concentration is H 2 SO 4 as 90 to 110 g / L, sodium molybdate as Mo is 0.15 to 0.35 g / L, and chlorine is chloride ion An electrolyte mixed with 0.005 to 0.010 g / L in terms of conversion, the bath temperature is set to 18.5 to 28.5 ° C., and the on-time pulse cathode electroplating current density is set to 28 to 35 A / dm 2 . Then, healthy copper bump roughened particles are formed on the surface of the copper foil at an appropriate flow rate and inter-electrode distance. In addition, it is also possible to perform electrolytic plating with smooth copper under the condition that the current density is set to about 15 to 20 A / dm 2 as necessary so that the copper bump roughening particles do not fall out in the same bath.
次いで一次粗化処理で付着した微細銅粗化粒子を銅箔の面上より脱落させないようにすることと、個々の微細銅粗化粒子の表面形状を整え表面積を小さく均一に整えることを目的として二次粗化処理を施す。この二次粗化処理は樹脂基板との積層密着性を高め、回路形成エッチング後の残銅に起因するマイグレーション不具合や該残銅による無電解メッキ不具合等を回避するため、一次粗化処理層上に陰極電解メッキにより平滑銅メッキを施す。
第二処理槽2における電解液は具体的には、硫酸銅を銅として35〜55g/L、硫酸濃度をH2SO4として90〜110g/Lとし、浴温度35〜55℃に設定して、陰極電解メッキ電流密度を15〜20A/dm2に設定し、適宜な流速と極間距離とで、平滑な銅メッキを一次微細銅粗化粒子の表面に形成する。この場合の平滑メッキの処理厚さは、処理前の表面粗度に対して付着後の表面粗度がJIS−B−0601に規定されるRz値で3.0μm以下の範囲とすることが好ましい。
Next, the purpose is to prevent the fine copper roughened particles adhering to the primary roughening treatment from dropping off from the surface of the copper foil, and to adjust the surface shape of each fine copper roughened particle to make the surface area small and uniform. A secondary roughening treatment is performed. The secondary roughening treatment enhances the laminate adhesion with the resin substrate, to avoid an electroless plating defects such as due to migration problems or the residual copper due to residual copper after circuit formation etching, primary roughened layer Is subjected to smooth copper plating by cathodic electroplating.
Specifically, the electrolytic solution in the second treatment tank 2 is set to 35 to 55 g / L using copper sulfate as copper, 90 to 110 g / L using sulfuric acid concentration as H 2 SO 4 , and a bath temperature of 35 to 55 ° C. The cathode electrolytic plating current density is set to 15 to 20 A / dm 2 , and a smooth copper plating is formed on the surface of the primary fine copper roughened particles at an appropriate flow rate and inter-electrode distance. In this case, the smooth plating treatment thickness is preferably set to a range of 3.0 μm or less in terms of the Rz value defined in JIS-B-0601 with respect to the surface roughness before the treatment. .
ここまでの工程で樹脂基板との密着性は確保できる。しかし、このままでは樹脂基板との高温時(想定温度は鉛フリーの半田リフロー工程の条件を最大温度として288℃)の密着性が劣るため平滑銅メッキで個々の表面が整えられた二次粗化処理表面に耐熱性を高める処理を施す。
本発明では適宜な厚さの金属ニッケル層と金属亜鉛層を平滑電解メッキ処理にて二次粗化処理表面に施す。この工程では前工程(二次粗化処理工程)までで形成した銅粗化粒子の形状を損なうことなく多様な樹脂基板との投錨効果を有し、該樹脂基板との密着性向上と高温時の耐熱特性維持を両立させる表面処理を施す。
The adhesiveness with the resin substrate can be secured by the steps so far. However, if this is the case, the secondary surface roughening with smooth copper plating will adjust the individual surface due to poor adhesion with the resin substrate at high temperatures (assumed temperature is 288 ° C. with lead-free solder reflow process as the maximum temperature). A treatment for improving heat resistance is applied to the treated surface.
In the present invention, a metal nickel layer and a metal zinc layer having appropriate thicknesses are applied to the secondary roughened surface by smooth electrolytic plating. In this process, it has a throwing effect with various resin substrates without impairing the shape of the copper roughened particles formed up to the previous step (secondary roughening treatment step), improving adhesion with the resin substrate and at high temperature A surface treatment is applied to maintain both heat resistance characteristics.
金属ニッケルの電解メッキを行う第三次処理層のニッケル電解液の浴組成は、可溶性ニッケル化合物であれば特に限定はしないが、好ましくは硫酸ニッケルを用いニッケルとして15〜20g/L、エッチング時の溶解をし易くするために添加するリン化合物として次亜リン酸を3.0〜4.0g/L添加した浴組成とすることが好ましい。 The bath composition of the nickel electrolytic solution of the third treatment layer for performing electroplating of metallic nickel is not particularly limited as long as it is a soluble nickel compound, but it is preferably 15 to 20 g / L as nickel using nickel sulfate. It is preferable to have a bath composition in which 3.0 to 4.0 g / L of hypophosphorous acid is added as a phosphorus compound to be easily dissolved.
金属亜鉛の電解メッキを行う第四次処理槽の亜鉛浴の浴組成は、可溶性亜鉛化合物であれば特に限定はしないが、好ましくは硫酸亜鉛を用い、亜鉛として3.5〜6.0g/L、水酸化ナトリウムを18〜40g/L、耐薬品性を付与するために添加物としてバナジュウム化合物をバナジュウムとして0.1〜0.5g/L、またはアンチモン化合物をアンチモンとして0.3〜1.0g/L溶かした浴組成とすることが好ましい。 The bath composition of the zinc bath of the fourth treatment tank for performing electroplating of metallic zinc is not particularly limited as long as it is a soluble zinc compound, but preferably zinc sulfate is used, and zinc is 3.5 to 6.0 g / L. 18 to 40 g / L of sodium hydroxide, 0.1 to 0.5 g / L of vanadium compound as an additive for imparting chemical resistance, or 0.3 to 1.0 g of antimony compound as antimony / L It is preferable to make the bath composition dissolved.
上記工程では金属ニッケルの付着量は、金属ニッケルとして0.8〜1.5mg/dm2とすることが好ましい。金属亜鉛の付着量は、金属亜鉛として2.5〜4.5mg/dm2とすることが好ましい。このような付着量範囲であると銅箔と樹脂基板とを積層して銅張積層板を作製する場合に、160〜240℃程度の加熱加圧プレス条件下で下層の粗化銅粒子と十分に熱拡散して銅とニッケルと亜鉛の合金層となり、しかもこの合金層は一次処理、二次処理で形成した粗化処理の表面形状を変形させることはない。 In the above process, the adhesion amount of metallic nickel is preferably 0.8 to 1.5 mg / dm 2 as metallic nickel. The adhesion amount of metallic zinc is preferably 2.5 to 4.5 mg / dm 2 as metallic zinc. When a copper foil and a resin substrate are laminated to produce a copper-clad laminate with such an adhesion amount range, the roughened copper particles in the lower layer are sufficient under heating and pressing conditions of about 160 to 240 ° C. The alloy layer of copper, nickel, and zinc is thermally diffused, and this alloy layer does not deform the surface shape of the roughening treatment formed by the primary treatment and the secondary treatment.
合金層となった表層は高周波伝導特性を著しく損なうことはない。例えば導電特性において0.012mm厚みの銅箔で、JIS−C−3001に規定される電気抵抗値の測定方法により求めた導電率は、電解製箔後の所謂表面処理フリー(未処理銅箔)の状態での測定値が98.7%であるのに対して、前記の銅とニッケルと亜鉛を180℃で熱拡散させた所謂銅・ニッケル・亜鉛を合金化した銅箔での導電率は、97.8〜98.4%程度であり高周波伝導特性に殆ど影響を与えていない。 The surface layer that is an alloy layer does not significantly impair the high-frequency conduction characteristics. For example, the conductivity obtained by the method of measuring the electrical resistance value defined in JIS-C-3001 is 0.012 mm thick copper foil in terms of electrical conductivity, so-called surface treatment free (untreated copper foil) after electrolytic foil formation. The measured value in this state is 98.7%, whereas the conductivity in the copper foil obtained by alloying copper, nickel, and zinc, which is obtained by thermally diffusing the copper, nickel, and zinc at 180 ° C., is 97.8 to 98.4%, which hardly affects the high-frequency conduction characteristics.
次いでニッケルと亜鉛が順次処理された表面に、必要によりクロメート防錆剤を浸漬処理或いは必要に応じて陰極電解処理(第五処理槽5)して設け、防錆力を高める。
クロメート処理の場合の皮膜厚みは、金属クロム量として0.005〜0.025mg/dm2の範囲が好ましい。この付着量範囲であればJIS-Z−2371に規定される塩水噴霧試験(塩水濃度:5%−NaCl、温度35℃)条件下で24時間までは表面が酸化銅に変色しない。
Next, a chromate rust preventive agent is provided on the surface where nickel and zinc are sequentially treated, if necessary, by dipping treatment or, if necessary, cathodic electrolysis treatment (fifth treatment tank 5) to enhance rust prevention power.
The film thickness in the case of chromate treatment is preferably in the range of 0.005 to 0.025 mg / dm 2 as the amount of metallic chromium. Within this adhesion amount range, the surface does not change to copper oxide for up to 24 hours under the condition of a salt spray test (salt water concentration: 5% -NaCl, temperature 35 ° C.) specified in JIS-Z-2371.
防錆層の形成にはベンゾトリアゾールに代表される有機系防錆剤でもその誘導体化合物に耐熱性に優れるものが市販されており、適宜使い分けることができる。因みに有機防錆剤であれば例えば、千代田ケミカル株式会社の品番C−143の5.0Wt%(重量パーセント)で35〜40℃に建浴された浴中に浸漬し乾燥させたものでも、クロメート処理と遜色ない防錆効果が得られる。これらの防錆処理効果は、圧延銅箔ベースであっても電解銅箔ベースでも違いはない。しかし、耐熱性を重視する場合にはクロム酸溶解液による所謂クロメート防錆処理を施す方が好ましい。また、クロメート処理の方がコストパフォーマンスに優れる。 For the formation of the rust preventive layer, organic rust preventives typified by benzotriazole, which are excellent in heat resistance, are commercially available as the derivative compounds, and can be appropriately used. Incidentally, if it is an organic rust preventive, for example, even if it is immersed and dried in a bath constructed at 35-40 ° C. at 5.0 Wt% (weight percent) of product number C-143 of Chiyoda Chemical Co., Ltd. Rust prevention effect comparable to processing is obtained. These rust preventive treatment effects are the same for both rolled copper foil base and electrolytic copper foil base. However, when importance is attached to heat resistance, it is preferable to perform a so-called chromate rust prevention treatment with a chromic acid solution. Also, chromate treatment is superior in cost performance.
更にクロメート処理の施された面には必要に応じてシランカップリング剤を適宜コーティングする。シランカップリング剤処理により特に高周波対応基板材として用いられることの多いテフロン(登録商標)系樹脂基板や含有フィラー入り樹脂基板との密着性を高めることができる。
シランカップリング剤は対象となる樹脂基板により適宜選択されるが、特に高周波対応基板との相性に優れるエポキシ系、アミノ系、ビニル系のカップリング剤を選択することが好ましい。
また、本発明においては品種種類を限定しないが、少なくともケミカル的に樹脂基板との密着性を向上させるため、粗化処理面側のシランカップリング剤の付着量はケイ素として0.001〜0.015mg/dm2の範囲であることが好ましい。
Further, the surface subjected to the chromate treatment is appropriately coated with a silane coupling agent as necessary. Adhesion with a Teflon (registered trademark) -based resin substrate or a resin substrate containing a filler, which is often used as a substrate material for high frequency, can be enhanced by the silane coupling agent treatment.
The silane coupling agent is appropriately selected depending on the target resin substrate, and it is particularly preferable to select an epoxy-based, amino-based, or vinyl-based coupling agent that is excellent in compatibility with a high-frequency compatible substrate.
In the present invention, the kind of the product is not limited, but the adhesion amount of the silane coupling agent on the roughened surface side is 0.001 to 0.001 as silicon in order to improve the adhesion to the resin substrate at least chemically. A range of 015 mg / dm 2 is preferred.
〔実施例1〕
厚み18μmの未処理電解銅箔で、そのマット面側(電解液面側)の形状粗度がJIS−B−0601に規定のRz値0.8μmで、かつ常温伸び率が6.2%の銅箔(古河電気工業株式会社製造の両面光沢電解銅箔)を用いて、該マット面側に以下の条件で片面表面粗化処理を施した。
なお、実施例、比較例では陰極電解条件を「パルス陰極電解」と「直流陰極電解」とに分けて記載する。
[Example 1]
An untreated electrolytic copper foil having a thickness of 18 μm, having a Rz value of 0.8 μm as defined in JIS-B-0601 and a normal temperature elongation of 6.2%. Using a copper foil (double-sided glossy electrolytic copper foil manufactured by Furukawa Electric Co., Ltd.), one-side surface roughening treatment was performed on the mat surface side under the following conditions.
In the examples and comparative examples, the cathode electrolysis conditions are described separately as “pulse cathode electrolysis” and “DC cathode electrolysis”.
一次粗化粒子形成浴組成と処理条件
硫酸銅・・・・・・・・・・・・・金属銅として23.5g/L
硫酸として・・・・・・・・・・・・・・・・・・100g/L
モリブデン酸ナトリウム・・・モリブデンとして0.25g/L
塩酸・・・・・・・・・・・塩素イオンとして0.002g/L
硫酸第二鉄・・・・・・・・・・・金属鉄として0.20g/L
硫酸クロム・・・・・・・・・三価クロムとして0.20g/L
浴温度:・・・・・・・・・・・・・・・・・・25.5℃
槽入口側のパルス陰極電解オンタイム・・・・・10ms
槽入口側のパルス陰極電解オフタイム・・・・・60ms
パルス陰極電解平均メッキ電流密度:・・・22.5A/dm2
Primary coarse particle formation bath composition and treatment conditions Copper sulfate ... 23.5 g / L as metallic copper
As sulfuric acid ... 100g / L
Sodium molybdate: 0.25 g / L as molybdenum
Hydrochloric acid: 0.002 g / L as chloride ion
Ferric sulfate: 0.20 g / L as metallic iron
Chromium sulfate: 0.20 g / L as trivalent chromium
Bath temperature: 25.5 ° C
On-time pulse cathode electrolysis on the tank inlet side ... 10ms
Pulse cathode electrolysis off time at tank inlet side ... 60ms
Pulse cathode electrolytic average plating current density: 22.5 A / dm 2
二次平滑メッキ処理条件
硫酸銅・・・・・・・・・・・・・・・・・金属銅として45g/L
硫酸・・・・・・・・・・・・・・・・・・・・・・・110g/L
浴温度:・・・・・・・・・・・・・・・50.5℃
直流陰極電解メッキ電流密度:・・18.5A/dm2
Secondary smooth plating treatment conditions Copper sulfate ... 45g / L as metallic copper
Sulfuric acid ... 110g / L
Bath temperature: 50.5 ° C
DC cathode electroplating current density: 18.5 A / dm 2
金属ニッケルメッキ処理条件
硫酸ニッケル・・・・・・・・金属ニッケルとして5.0g/L
過硫酸アンモニューム・・・・・・・・・・・・40.0g/L
ホウ酸(H3BO3)・・・・・・・・・・・・25.0g/L
次亜燐酸(H3PO2)・・・・・ ・・・・・・・・3.6g/L
pH値・・・・・・・・・・・・・・ 3.5
浴温度:・・・・・・・・・・・・20.5℃
直流陰極電解メッキ電流密度:・・12.5A/dm2
Metal nickel plating treatment conditions Nickel sulfate ... 5.0g / L as metal nickel
Persulfate ammonium ········· 40.0 g / L
Boric acid (H 3 BO 3 ) 25.0 g / L
Hypophosphorous acid (H 3 PO 2 ) ... 3.6 g / L
pH value 3.5
Bath temperature: 20.5 ° C
DC cathode electroplating current density: 12.5 A / dm 2
金属亜鉛メッキ処理条件
硫酸亜鉛・・・・・・・・・・・・金属亜鉛として4.0g/L
水酸化ナトリュウム・・・・・・・・・・・・・25.0g/L
pH:・・・・・・・・・・・12.5〜13.5
浴温度:・・・・・・・・・・・・・・18.5℃
直流陰極電解メッキ電流密度:・・5.5A/dm2
前記でニッケルメッキと亜鉛メッキにより耐熱性を付与した銅箔に防錆処理としては、CrO3として3g/L浴に浸漬し、乾燥後に0.5wt%に建浴したエポキシ系のシランカップリング剤(チッソ株式会社製サイラエースS−510)を該銅箔のマット面側のみに薄膜塗布した。
Metal galvanization treatment conditions Zinc sulfate ···················· 4.0 g / L as metal zinc
Sodium hydroxide ... 25.0g / L
pH: 12.5 to 13.5
Bath temperature: 18.5 ° C
DC cathode electroplating current density: 5.5 A / dm 2
As an anticorrosive treatment for the copper foil to which heat resistance is imparted by nickel plating and galvanizing as described above, an epoxy-based silane coupling agent immersed in a 3 g / L bath as CrO 3 and built to 0.5 wt% after drying. (Chiasso Co., Ltd. Sila Ace S-510) was thin-film coated only on the matte surface side of the copper foil.
得られた粗化処理銅箔の表面処理を施した面(マット面側)の表面粗度をJIS−B−0601に規定されるRz値を測定し表1に記載した。
更に該処理銅箔を250mm角に切断して市販のポリフェニレンエーテル(PPE)樹脂系基板(Panasonic電工製メグトロン−6プリプレグ使用)に処理面を重ね合わせて加熱プレス積層(180〜200℃*25Kgf/cm2*60〜120min)して、片面銅張積層板を作製し密着性の測定用と残銅の評価用とした。
The surface roughness (matte surface side) of the obtained roughened copper foil subjected to surface treatment was measured by measuring the Rz value defined in JIS-B-0601 and listed in Table 1.
Further, the treated copper foil was cut into a 250 mm square, and the treated surface was superposed on a commercially available polyphenylene ether (PPE) resin-based substrate (Megtron-6 prepreg manufactured by Panasonic Electric Works Co., Ltd.) and heated press lamination (180 to 200 ° C. * 25 Kgf / cm 2 * 60 to 120 min) to prepare a single-sided copper-clad laminate for measuring adhesion and evaluating residual copper.
耐熱性の測定評価には、市販のガラスエポキシ系樹脂基板(日立化成(株)製LX67Nプリプレグ使用)に処理面(マット面側)を重ね合わせて加熱プレス積層して、片面銅張積層板を作製し、耐熱性評価用試験片とした。
高周波特性の評価は、伝送損失測定結果を以って優劣を相対評価した。対象とした基板は、市販の液晶ポリマー系樹脂基板(ROGERS CORPORATION製ULTRALAM3000使用)に処理面(マット面側)を重ね合わせて、単板熱プレス(180〜200℃)にて積層して、片面銅張積層板を作製し伝送損失の測定用試験片とした。
For measurement and evaluation of heat resistance, a processed glass epoxy resin substrate (using LX67N prepreg made by Hitachi Chemical Co., Ltd.) is overlaid with the treated surface (mat surface side) and heated and pressed to laminate a single-sided copper-clad laminate. It produced and it was set as the test piece for heat resistance evaluation.
For the evaluation of the high frequency characteristics, the relative superiority or inferiority was evaluated based on the transmission loss measurement result. The target substrate is a commercially available liquid crystal polymer resin substrate (uses ULTRALAM3000 made by ROGERS CORPORATION) and the processing surface (mat surface side) is overlaid and laminated with a single plate heat press (180-200 ° C), one side A copper clad laminate was prepared and used as a test piece for measuring transmission loss.
樹脂基材との密着性の測定は、JIS−C−6481に規定される測定方法により測定し密着強度として表1に記載した。
エッチング加工性、マイグレーション不具合に影響する残銅は、該積層基板の面をエッチング後、単位面積(0.5mm×0.5mm)当たりの残銅が全く見られない場合を◎、殆ど見られない場合を○、多少見られる場合を△、顕著に見られる場合を×として評価して表1に記載した。
The adhesion with the resin base material was measured by the measurement method defined in JIS-C-6481 and listed in Table 1 as the adhesion strength.
Residual copper that affects etching processability and migration failure is ◎ when there is no residual copper per unit area (0.5 mm x 0.5 mm) after etching the surface of the laminated substrate. The results are shown in Table 1, evaluated as ◯, when slightly seen as Δ, and marked as x.
また耐熱性の良否判定は、前記片面銅張板を50mm角に切断して各条件で5個の試験片を準備して、PCT(プレッシャークッカーテスト)試験条件(相対湿度100%、2気圧、121℃、120分)下で前処理を行い、次いでその試験片を288℃に設定された半田浴に30秒浸漬させて、銅箔と基板との間の“膨れ”発生の有無を、膨れが試験片の全てに全く発生しなかったものを◎、試験片の一片に1個の5mmΦ未満の軽微な膨れが見られた場合を○、2〜3個の5mmΦ未満の膨れが見られた場合を△、数に関係なく5mmΦ以上の膨れが見られた場合を×として評価し表1に記載した。 In addition, the heat quality determination was made by cutting the single-sided copper-clad plate into 50 mm squares, preparing five test pieces under each condition, and PCT (pressure cooker test) test conditions (relative humidity 100%, 2 atm, 121 ° C., 120 minutes), and then the test piece is immersed in a solder bath set at 288 ° C. for 30 seconds to check whether or not “blowing” occurs between the copper foil and the substrate. Was not generated in all of the test pieces, ◎, a case where a slight bulge of less than 5 mmΦ was observed in one piece of the test piece, ○, and 2-3 bulges of less than 5 mmΦ were observed. The case was evaluated as Δ and the case where a bulge of 5 mmΦ or more was seen regardless of the number was evaluated as × and listed in Table 1.
伝送測定の評価は、1〜25GHz域の測定に適する公知のストリップライン共振器法(マイクロストリップ構造:誘電体厚さ50μm、導体長さ1.0m、導体厚さ12μm、導体回路幅120μm、特性インピーダンス50Ωでカバーレイフィルムなし〔例えば誘電特性の悪いカバーレイを使うと伝送損失が大きくなり差異の判断が不正確になるため〕の状態でS21パラメーターを測定する方法)を用いて1〜15GHzまでを連続測定した。この測定値の内、周波数5、10、15GHzに相当する伝送損失(dB/100mm)を、下記比較例5(GTS-MP-18μm箔)の伝送損失値を100とした場合の相対値として表1に記載した。
The transmission measurement is evaluated by a known stripline resonator method (microstrip structure: dielectric thickness: 50 μm, conductor length: 1.0 m, conductor thickness: 12 μm, conductor circuit width: 120 μm, characteristics suitable for measurement in the 1 to 25 GHz range. 1 to 15 GHz using an impedance of 50Ω and no coverlay film (for example, using a coverlay with poor dielectric properties causes transmission loss to increase and the determination of the difference becomes inaccurate). Was continuously measured. Among these measured values, transmission loss (dB / 100 mm) corresponding to
〔実施例2〕
未処理銅箔の表面粗度がRz値で2.5μmの電解銅箔を用いて、耐熱表面処理後の表面粗度がRz値で3.0μm以下となるように実施例1と同様の粗化および表面処理を行い、実施例1と同様の評価測定を行った。その結果を表1に併記する。
[Example 2]
Using an electrolytic copper foil with an Rz value of 2.5 μm in surface roughness of the untreated copper foil, the same roughness as in Example 1 so that the surface roughness after heat-resistant surface treatment is 3.0 μm or less in Rz value. The same evaluation measurement as in Example 1 was performed. The results are also shown in Table 1.
〔実施例3〕
実施例1で用いた未処理電解銅箔の代わりに公称18μmで、常温伸び率が3.6%で、表面粗度がRz値で0.8μmのOFC圧延銅箔(古河電気工業(株)製造)を用いた以外は実施例1と同様の粗化および表面処理を行い、実施例1と同様の評価測定を行った。その結果を表1に併記する。
Example 3
OFC rolled copper foil having a nominal 18 μm, normal temperature elongation of 3.6% and surface roughness Rz value of 0.8 μm instead of the untreated electrolytic copper foil used in Example 1 (Furukawa Electric Co., Ltd.) Except for using (manufacturing), the same roughening and surface treatment as in Example 1 was performed, and the same evaluation measurement as in Example 1 was performed. The results are also shown in Table 1.
〔実施例4〕
実施例1で用いた未処理銅箔を用い、一次粗化処理条件のパルス陰極電解時のオフタイムを40msとした以外は、実施例1と同様の粗化および表面処理を行い、実施例1と同様の評価測定を行った。その結果を表1に記載する。
Example 4
The same roughening and surface treatment as in Example 1 was performed except that the untreated copper foil used in Example 1 was used and the off-time during pulse cathodic electrolysis under primary roughening conditions was 40 ms. The same evaluation measurement was performed. The results are listed in Table 1.
〔実施例5〕
実施例1で用いた未処理電解銅箔の光沢面側(ドラム剥離面側)とマット面側(電着液面側)の両面にパルス陰極電解処理により粗化処理を行い、実施例1と同様の粗化処理および表面処理を行い、実施例1と同様の評価測定を行った。その結果を表1に併記する。なお、この場合槽入口からボトム側でマット面側(電着液面側)に、ボトムから槽出口側で光沢面側(ドラム剥離面側)に粗化処理を分けて行い両面に粗化処理を施し、次いで平滑銅メッキ処理時には、槽入口からボトム側で同時に両面の粗化面に直流電解カプセルメッキを施した。パルス処理を二回に分けた理由は、ON−OFFタイムの設定効果を確実にするためであり、限られた槽内流速での両面処理は、ピーク電流に達した場合に銅イオンの供給が両面共に不十分となり粗化処理ムラ不具合を起こすのを回避するためである。
Example 5
A roughening treatment was performed on both the glossy surface side (drum peeling surface side) and the mat surface side (electrodeposition liquid surface side) of the untreated electrolytic copper foil used in Example 1 by pulse cathode electrolytic treatment. The same roughening treatment and surface treatment were performed, and the same evaluation measurement as in Example 1 was performed. The results are also shown in Table 1. In this case, the roughening treatment is performed separately on both sides by separating the roughening treatment from the tank inlet to the matte surface (electrodeposition liquid surface) on the bottom side and from the bottom to the glossy surface side (drum peeling surface side) from the tank outlet side. Then, at the time of smooth copper plating, DC electrolytic capsule plating was applied to the roughened surfaces on both sides simultaneously from the tank inlet to the bottom side. The reason why the pulse processing is divided into two times is to ensure the effect of setting the ON-OFF time, and the double-sided processing at a limited flow rate in the tank does not supply copper ions when the peak current is reached. This is for avoiding the occurrence of irregularities in the roughening treatment due to insufficient both sides.
〔比較例1〕
実施例1に用いた未処理銅箔のマット面側に実施例1同様の浴組成で直流陰極電解処理を施し、得られる表面処理側の粗度がRz値で3.0μm以下となる様に処理した以外は実施例1と同じ処理を施し、実施例1と同様の評価測定を行った。その結果を表1に併記する。
[Comparative Example 1]
The mat surface side of the untreated copper foil used in Example 1 is subjected to direct current cathode electrolysis treatment with the same bath composition as in Example 1, and the resulting surface treatment side roughness is 3.0 μm or less in terms of Rz value. The same process as Example 1 was performed except having processed, and the same evaluation measurement as Example 1 was performed. The results are also shown in Table 1.
〔比較例2〕
実施例2に用いた未処理銅箔に、比較例1同様な処理を施した以外は、実施例1と同様の評価測定を行った。その結果を表1に併記する。
[Comparative Example 2]
The same evaluation measurement as in Example 1 was performed, except that the untreated copper foil used in Example 2 was treated in the same manner as in Comparative Example 1. The results are also shown in Table 1.
〔比較例3〕
実施例3に用いた未処理銅箔に、比較例1同様な処理を施した以外は、実施例1と同様の評価測定を行った。その結果を表1に併記する。
[Comparative Example 3]
The same evaluation measurement as in Example 1 was performed, except that the untreated copper foil used in Example 3 was subjected to the same treatment as in Comparative Example 1. The results are also shown in Table 1.
〔比較例4〕
実施例5に用いた未処理銅箔に、直流電解処理により両面粗化処理を施した以外は、実施例1と同様の評価測定を行った。その結果を表1に併記する。
[Comparative Example 4]
The same evaluation measurement as in Example 1 was performed except that the untreated copper foil used in Example 5 was subjected to a double-sided roughening treatment by direct current electrolytic treatment. The results are also shown in Table 1.
〔比較例5〕
GTS−MP−18μm箔(公知の電解製箔条件により柱状結晶でIPC規格に分類されるミドルプロファイル形状のマット面側を有している銅箔)の表面に以下の処理を施した。
[Comparative Example 5]
The following treatment was applied to the surface of a GTS-MP-18 μm foil (a copper foil having a middle profile-shaped mat surface side classified as an IPC standard by columnar crystals under known electrolytic foil production conditions).
銅の粗化メッキ処理条件
硫酸銅・・・・・・・・・・・・金属銅として23.5g/L
硫酸として・・・・・・・・・・・・・・・・・100g/L
砒素化合物・・・・・・・・・・砒素として0.150g/L
塩酸・・・・・・・・・・塩素イオンとして0.002g/L
浴温度:・・・・・・・25.5℃
電解メッキ電流密度:・28・5A/dm2
Copper roughening treatment conditions Copper sulfate ... 23.5g / L as metallic copper
As sulfuric acid ... 100g / L
Arsenic compound: 0.150 g / L as arsenic
Hydrochloric acid: 0.002 g / L as chloride ion
Bath temperature: 25.5 ° C
Electrolytic plating current density: 28.5 A / dm 2
銅の平滑カプセルメッキ処理条件
硫酸銅・・・・・・・・・・・金属銅として 52.5g/L
硫酸として・・・・・・・・・・・・・・・・・100g/L
塩酸・・・・・・・・塩素イオンとして・・0.002g/L
浴温度:・・・・・・・・・・・・・・45.5℃
電解メッキ電流密度:・・・・・18.5A/dm2
Smooth capsule plating conditions for copper Copper sulfate: 52.5 g / L as metallic copper
As sulfuric acid ... 100g / L
Hydrochloric acid ··················· 0.002 g / L
Bath temperature: 45.5 ° C
Electrolytic plating current density: 18.5 A / dm 2
ニッケルメッキ条件
硫酸ニッケル・・・・・・金属ニッケルとして 5.0g/L
過硫酸アンモニュームとして・・・・・・・・40.0g/L
ホウ酸として・・・・・・・・・・・・・・・28.5g/L
pH:・・・・・・・・・・・・3.5〜4.2
浴温度:・・・・・・・・・・・・・28.5℃
Nickel plating conditions Nickel sulfate: 5.0 g / L as metallic nickel
As persulfate ammonium: 40.0 g / L
As boric acid 28.5g / L
pH: ... 3.5-4.2
Bath temperature: 28.5 ° C
亜鉛メッキ条件
硫酸亜鉛・・・・・・・・・・金属亜鉛として 4.8g/L
水酸化ナトリュウムとして・・・・・・・・・35.0g/L
pH:・・・・・・・・・12.5〜13.8
浴温度:・・・・・・・・・・・・18.5℃
電解メッキ電流密度:・・・0.8A/dm2
前記のニッケルと亜鉛メッキ処理された銅箔に防錆処理としては、CrO3として3g/L浴に浸漬し、乾燥後に0.5wt%に建浴したエポキシ系のシランカップリング剤(チッソ(株)製サイラエースS−510)を該銅箔のマット面側のみに薄膜塗布した。
表面処理したGTS−MP−18μm銅箔につき、実施例1と同様の評価測定を行った。その結果を表1に併記する。
Zinc plating condition Zinc sulfate ............ As metallic zinc 4.8g / L
As sodium hydroxide ... 35.0g / L
pH: 12.5 to 13.8
Bath temperature: 18.5 ° C
Electrolytic plating current density: 0.8 A / dm 2
As an anticorrosive treatment for the nickel and galvanized copper foil, an epoxy-based silane coupling agent (Chisso Corp.) was immersed in a 3 g / L bath as CrO 3 and then dried to 0.5 wt%. ) Manufactured Sila Ace S-510) was applied as a thin film only to the mat surface side of the copper foil.
The same evaluation measurement as in Example 1 was performed on the surface-treated GTS-MP-18 μm copper foil. The results are also shown in Table 1.
表1から明らかなように、実施例1〜5の銅箔は、伝送損失は小さく、樹脂基板との密着強度は必要とされる0.6kg/cm以上を満足し、伝送損失特性においては粗化された銅箔としてはかなり優れるものであった。
吸湿後の半田浸漬耐熱性は実施例1と3の密着強度が低かったために○となったが、実用性に支障はなく、その他の実施例は共に満足するものであった。
実施例と比較して比較例5の汎用タイプの銅箔は、密着強度と耐熱性は満足するものの、伝送損失で全く実用性に乏しく、比較例1と、比較例2および比較例4は、残銅の懸念が高く高密度配線(エッチング加工性、マイグレーション不具合)や伝送損失特性の観点から実施例より劣勢位にあるので、必要とされる樹脂基板との密着や耐熱性の評価で優位にあっても実用性は、実施例に劣ると評価した。
As is clear from Table 1, the copper foils of Examples 1 to 5 have a small transmission loss, the adhesion strength with the resin substrate satisfies the required 0.6 kg / cm or more, and the transmission loss characteristics are rough. It was quite excellent as a modified copper foil.
The solder immersion heat resistance after moisture absorption was evaluated as ◯ because the adhesion strength between Examples 1 and 3 was low, but there was no hindrance to practicality, and the other examples were satisfactory.
Compared with the examples, the general-purpose type copper foil of Comparative Example 5 is satisfactory in adhesion strength and heat resistance, but is very impractical in transmission loss. Comparative Example 1, Comparative Example 2 and Comparative Example 4 are Since there is a high concern about residual copper and it is inferior to the examples from the viewpoint of high-density wiring (etching processability, migration failure) and transmission loss characteristics, it is superior in evaluation of required adhesion to the resin substrate and heat resistance Even if it was, the practicality was evaluated to be inferior to the examples.
上述したように本発明の特に高周波伝送特性に優れるパルス陰極電解処理により粗化された銅箔は、密着強度の出し難いテフロン(登録商標)系樹脂やフィラー含有量の多いガラスエポキシ系樹脂との密着強度(JPCA規格)に優れると共に、適宜な伸縮塑性と耐熱性を兼ね備えたものであり、伝送特性に代表される高周波特性に優れ、HEVおよびEV自動車用の高周波用途の伝送を多用する制御回路としての樹脂基板との密着性も十分に維持でき、過酷な自然風土の条件にあっても、また制御回路自体の発熱等々に際しても適宜な耐熱性と耐湿性を有し、更には粗化形状と表面処理金属が伝送特性を阻害することなく(所謂伝送損失が小さく伝送性に優れる)適宜に高周波対応基板の特性を発揮できる優れた効果を有するものである。 As described above, the copper foil roughened by pulse cathodic electrolysis that is particularly excellent in high-frequency transmission characteristics of the present invention is a combination of Teflon (registered trademark) resin and glass epoxy resin with a high filler content that are difficult to obtain adhesion strength. A control circuit that has excellent adhesion strength (JPCA standard), has appropriate stretch plasticity and heat resistance, has excellent high-frequency characteristics typified by transmission characteristics, and uses high-frequency transmissions for HEV and EV vehicles. Adhesiveness to the resin substrate can be maintained sufficiently, and even under severe natural climate conditions, it has appropriate heat resistance and moisture resistance even when the control circuit itself generates heat, etc. The surface-treated metal has an excellent effect of appropriately exhibiting the characteristics of the high-frequency compatible substrate without impairing the transmission characteristics (so-called transmission loss is small and excellent in transmission characteristics).
本発明の高周波伝送特性に優れる耐熱性を有する表面粗化銅箔はエッチングにおける残銅の危険性が極めて少なく、従ってエッチング加工性に不具合がなく、高耐熱密着性、マイグレーション不具合のない伝送特性に優れる回路材料として優れ、耐熱性を要求される例えば自動車用制御回路基板に適した回路基板を提供することができる。
また本発明の両面粗化処理銅箔についても実施例同様の表面処理を施し、評価したが片面処理のものと同様の結果を得ている。
The surface roughened copper foil having heat resistance and excellent high-frequency transmission characteristics of the present invention has a very low risk of residual copper in etching, so there is no defect in etching processability, high heat adhesion and transmission characteristics without migration defects. It is possible to provide a circuit board suitable as, for example, an automobile control circuit board that is excellent as an excellent circuit material and requires heat resistance.
Moreover, although the surface treatment similar to an Example was performed and evaluated also about the double-side roughening copper foil of this invention, the result similar to the thing of a single-sided process is obtained.
本発明の高周波伝送特性に優れる耐熱性を有する表面粗化銅箔の製造方法によれば、密着強度の出し難いテフロン(登録商標)系樹脂やフィラー含有量の多いガラスエポキシ系樹脂との密着強度(JPCA規格)に優れると共に、適宜な伸縮塑性と耐熱性を兼ね備え、伝送特性に代表される高周波特性に優れ、自動車搭載用途をも含む耐熱性を要求される制御回路を形成する銅箔を特別な装置等を必要とせずに容易に製造することが出来る。 According to the method for producing a surface-roughened copper foil having excellent high-frequency transmission characteristics according to the present invention, adhesion strength with a Teflon (registered trademark) resin or a glass epoxy resin with a high filler content, which is difficult to obtain adhesion strength. (JPCA standard), special copper foil that forms a control circuit that has appropriate stretch plasticity and heat resistance, has excellent high-frequency characteristics such as transmission characteristics, and requires heat resistance including automotive applications Can be easily manufactured without the need for a simple device.
本発明の銅張積層基板の製造方法によれば、密着強度の出し難いテフロン(登録商標)系樹脂やフィラー含有量の多いガラスエポキシ系樹脂と密着し、伝送特性に代表される高周波特性に優れ、耐熱性が要求されるHEVおよびEV自動車用の高周波用途の伝送を多用する制御回路形成用銅張積層基板として優れた効果を発揮する銅張積層基板を提供することができる。
また、本発明銅箔の製造方法によれば、一次粗化処理から四次処理までを連続的に一貫した工程で製造できるので、表面処理銅箔を安価に製造することができ、来るべき環境対応の観点からEV自動車の普及が促進されても、供給面でも特性面でも、十分に対応することが可能である。
According to the method for producing a copper-clad laminate of the present invention, it adheres to a Teflon (registered trademark) resin or a glass epoxy resin with a high filler content, which is difficult to obtain adhesion strength, and has excellent high frequency characteristics typified by transmission characteristics. It is possible to provide a copper-clad laminate that exhibits excellent effects as a copper-clad laminate for forming a control circuit that frequently uses transmission for high-frequency applications for HEV and EV automobiles that require heat resistance.
In addition, according to the method for producing copper foil of the present invention, from the first roughening treatment to the quaternary treatment can be produced in a continuous and consistent process, the surface-treated copper foil can be produced at low cost, and the environment to come Even if the spread of EV cars is promoted from the viewpoint of response, it is possible to sufficiently respond in terms of supply and characteristics.
1 第一粗化処理(パルス陰極電解粗化処理)槽
2 第二粗化処理(平滑メッキ処理)槽
3 第三処理(金属ニッケル処理)槽
4 第四処理(金属亜鉛処理)槽
A 未処理銅箔
B 一次処理銅箔
C 二次処理銅箔
D 三次粗化次処理銅箔
E 四次処理銅箔
G 表面粗化銅箔
DESCRIPTION OF SYMBOLS 1 1st roughening process (pulse cathode electrolytic roughening process) tank 2 2nd roughening process (smooth plating process) tank 3 3rd process (metallic nickel process) tank 4 4th process (metallic zinc process) tank A Untreated Copper foil B Primary treated copper foil C Secondary treated copper foil D Tertiary roughened next treated copper foil E Fourth treated copper foil G Surface roughened copper foil
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010028922A JP2011162860A (en) | 2010-02-12 | 2010-02-12 | Surface-roughened copper foil, method of producing the same and copper-clad laminate plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010028922A JP2011162860A (en) | 2010-02-12 | 2010-02-12 | Surface-roughened copper foil, method of producing the same and copper-clad laminate plate |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011162860A true JP2011162860A (en) | 2011-08-25 |
Family
ID=44593896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010028922A Pending JP2011162860A (en) | 2010-02-12 | 2010-02-12 | Surface-roughened copper foil, method of producing the same and copper-clad laminate plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011162860A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013155415A (en) * | 2012-01-31 | 2013-08-15 | Furukawa Electric Co Ltd:The | Surface-treated copper foil for high frequency transmission, laminated plate for high frequency transmission, and printed wiring board for high frequency transmission |
CN104099652A (en) * | 2014-07-09 | 2014-10-15 | 山东金宝电子股份有限公司 | Surface treatment roughening process for electronic copper foils |
JP2015046570A (en) * | 2013-08-27 | 2015-03-12 | サムソン エレクトロ−メカニックス カンパニーリミテッド. | Method of manufacturing multilayer printed circuit board |
CN104962965A (en) * | 2015-05-29 | 2015-10-07 | 灵宝金源朝辉铜业有限公司 | Environmental protection ashing treatment process of calendaring copper foil |
JP2017082331A (en) * | 2015-10-27 | 2017-05-18 | 長春石油化學股▲分▼有限公司 | Heat-dissipating copper foil and graphene composite |
JP2017106068A (en) * | 2015-12-09 | 2017-06-15 | 古河電気工業株式会社 | Surface-treated copper foil for printed-wiring board, copper plated laminate sheet for printed-wiring board, and printed-wiring board |
JP6178035B1 (en) * | 2016-03-03 | 2017-08-09 | 三井金属鉱業株式会社 | Method for producing copper clad laminate |
WO2017150043A1 (en) * | 2016-03-03 | 2017-09-08 | 三井金属鉱業株式会社 | Production method for copper-clad laminate plate |
JPWO2018047933A1 (en) * | 2016-09-12 | 2018-09-06 | 古河電気工業株式会社 | Copper foil and copper-clad laminate having the same |
CN112921371A (en) * | 2021-01-21 | 2021-06-08 | 江苏铭丰电子材料科技有限公司 | Surface roughening and curing treatment method of RTF copper foil for high-frequency copper-clad plate |
CN113699571A (en) * | 2021-10-29 | 2021-11-26 | 苏州睿锂物联科技有限公司 | Lithium battery copper foil surface pretreatment device capable of improving material performance |
CN114008250A (en) * | 2019-06-12 | 2022-02-01 | 东洋钢钣株式会社 | Roughened plated plate |
CN114379174A (en) * | 2020-10-21 | 2022-04-22 | 湖北奥马电子科技有限公司 | Single-sided soft copper-clad plate |
TWI849260B (en) * | 2019-12-24 | 2024-07-21 | 日商日本電解股份有限公司 | Surface treated copper foil and its manufacturing method |
WO2024219162A1 (en) * | 2023-04-18 | 2024-10-24 | ナミックス株式会社 | Metal member |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5515216A (en) * | 1978-07-20 | 1980-02-02 | Mitsui Anakonda Dohaku Kk | Printed circut copper foil and method of manufacturing same |
JPS58164797A (en) * | 1982-03-05 | 1983-09-29 | オリン・コ−ポレ−シヨン | Bondage strength-improved copper electrochemical treatment |
JPS616297A (en) * | 1984-04-23 | 1986-01-11 | ステイ−ブン ジエイ.カ−ワン | Surface treatment of copper foil and surface treated copper product |
JPS61110794A (en) * | 1984-11-06 | 1986-05-29 | Mitsui Mining & Smelting Co Ltd | Surface treatment of copper foil |
JPS6317597A (en) * | 1986-07-10 | 1988-01-25 | 古河サーキットフォイル株式会社 | Printed circuit copper foil and manufacture of the same |
JPH07231161A (en) * | 1994-02-15 | 1995-08-29 | Mitsui Mining & Smelting Co Ltd | Copper foil for printed wiring board and its manufacture |
JPH10168596A (en) * | 1996-12-10 | 1998-06-23 | Fukuda Metal Foil & Powder Co Ltd | Surface treatment of copper foil |
JPH11256389A (en) * | 1998-03-09 | 1999-09-21 | Furukawa Circuit Foil Kk | Copper foil for printed circuit board and its production |
JPH11340595A (en) * | 1998-05-21 | 1999-12-10 | Furukawa Electric Co Ltd:The | Copper foil for printed circuit board and copper foil attached with resin |
JP2003193291A (en) * | 2001-12-28 | 2003-07-09 | Furukawa Circuit Foil Kk | Copper foil with resistance layer and production method therefor |
WO2003102277A1 (en) * | 2002-06-04 | 2003-12-11 | Mitsui Mining & Smelting Co.,Ltd. | Surface treatment copper foil for low dielectric substrate, copper clad laminate including the same and printed wiring board |
JP2004244656A (en) * | 2003-02-12 | 2004-09-02 | Furukawa Techno Research Kk | Copper foil which can deal with high-frequency application and method for manufacturing the same |
JP2005248323A (en) * | 2004-02-06 | 2005-09-15 | Furukawa Circuit Foil Kk | Surface-treated copper foil |
JP2005353918A (en) * | 2004-06-11 | 2005-12-22 | Hitachi Cable Ltd | Copper foil for printed-wiring board and manufacturing method thereof |
JP2008127618A (en) * | 2006-11-20 | 2008-06-05 | Furukawa Circuit Foil Kk | Method for treating surface of copper foil through feeding alternating current |
JP2008223063A (en) * | 2007-03-09 | 2008-09-25 | Furukawa Electric Co Ltd:The | Roughened rolled copper sheet and its manufacturing method |
JP2009188369A (en) * | 2008-01-10 | 2009-08-20 | Hitachi Cable Ltd | Rolled copper foil for printed wiring board, and manufacturing method thereof |
JP2011038168A (en) * | 2009-08-14 | 2011-02-24 | Furukawa Electric Co Ltd:The | Heat resistant copper foil having excellent high frequency transmission property, method for producing the same, circuit board, copper-clad laminated board, and method for producing the same |
JP2011168887A (en) * | 2010-01-22 | 2011-09-01 | Furukawa Electric Co Ltd:The | Roughened copper foil, method for producing the same, copper-clad laminate, and printed circuit board |
-
2010
- 2010-02-12 JP JP2010028922A patent/JP2011162860A/en active Pending
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5515216A (en) * | 1978-07-20 | 1980-02-02 | Mitsui Anakonda Dohaku Kk | Printed circut copper foil and method of manufacturing same |
JPS58164797A (en) * | 1982-03-05 | 1983-09-29 | オリン・コ−ポレ−シヨン | Bondage strength-improved copper electrochemical treatment |
JPS616297A (en) * | 1984-04-23 | 1986-01-11 | ステイ−ブン ジエイ.カ−ワン | Surface treatment of copper foil and surface treated copper product |
JPS61110794A (en) * | 1984-11-06 | 1986-05-29 | Mitsui Mining & Smelting Co Ltd | Surface treatment of copper foil |
JPS6317597A (en) * | 1986-07-10 | 1988-01-25 | 古河サーキットフォイル株式会社 | Printed circuit copper foil and manufacture of the same |
JPH07231161A (en) * | 1994-02-15 | 1995-08-29 | Mitsui Mining & Smelting Co Ltd | Copper foil for printed wiring board and its manufacture |
JPH10168596A (en) * | 1996-12-10 | 1998-06-23 | Fukuda Metal Foil & Powder Co Ltd | Surface treatment of copper foil |
JPH11256389A (en) * | 1998-03-09 | 1999-09-21 | Furukawa Circuit Foil Kk | Copper foil for printed circuit board and its production |
JPH11340595A (en) * | 1998-05-21 | 1999-12-10 | Furukawa Electric Co Ltd:The | Copper foil for printed circuit board and copper foil attached with resin |
JP2003193291A (en) * | 2001-12-28 | 2003-07-09 | Furukawa Circuit Foil Kk | Copper foil with resistance layer and production method therefor |
WO2003102277A1 (en) * | 2002-06-04 | 2003-12-11 | Mitsui Mining & Smelting Co.,Ltd. | Surface treatment copper foil for low dielectric substrate, copper clad laminate including the same and printed wiring board |
JP2004244656A (en) * | 2003-02-12 | 2004-09-02 | Furukawa Techno Research Kk | Copper foil which can deal with high-frequency application and method for manufacturing the same |
JP2005248323A (en) * | 2004-02-06 | 2005-09-15 | Furukawa Circuit Foil Kk | Surface-treated copper foil |
JP2005353918A (en) * | 2004-06-11 | 2005-12-22 | Hitachi Cable Ltd | Copper foil for printed-wiring board and manufacturing method thereof |
JP2008127618A (en) * | 2006-11-20 | 2008-06-05 | Furukawa Circuit Foil Kk | Method for treating surface of copper foil through feeding alternating current |
JP2008223063A (en) * | 2007-03-09 | 2008-09-25 | Furukawa Electric Co Ltd:The | Roughened rolled copper sheet and its manufacturing method |
JP2009188369A (en) * | 2008-01-10 | 2009-08-20 | Hitachi Cable Ltd | Rolled copper foil for printed wiring board, and manufacturing method thereof |
JP2011038168A (en) * | 2009-08-14 | 2011-02-24 | Furukawa Electric Co Ltd:The | Heat resistant copper foil having excellent high frequency transmission property, method for producing the same, circuit board, copper-clad laminated board, and method for producing the same |
JP2011168887A (en) * | 2010-01-22 | 2011-09-01 | Furukawa Electric Co Ltd:The | Roughened copper foil, method for producing the same, copper-clad laminate, and printed circuit board |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013155415A (en) * | 2012-01-31 | 2013-08-15 | Furukawa Electric Co Ltd:The | Surface-treated copper foil for high frequency transmission, laminated plate for high frequency transmission, and printed wiring board for high frequency transmission |
JP2015046570A (en) * | 2013-08-27 | 2015-03-12 | サムソン エレクトロ−メカニックス カンパニーリミテッド. | Method of manufacturing multilayer printed circuit board |
CN104099652A (en) * | 2014-07-09 | 2014-10-15 | 山东金宝电子股份有限公司 | Surface treatment roughening process for electronic copper foils |
CN104962965A (en) * | 2015-05-29 | 2015-10-07 | 灵宝金源朝辉铜业有限公司 | Environmental protection ashing treatment process of calendaring copper foil |
KR101849073B1 (en) | 2015-10-27 | 2018-04-16 | 장 춘 페트로케미컬 컴퍼니 리미티드 | Heat-dissipating copper foil and graphene composite |
JP2017082331A (en) * | 2015-10-27 | 2017-05-18 | 長春石油化學股▲分▼有限公司 | Heat-dissipating copper foil and graphene composite |
JP2017106068A (en) * | 2015-12-09 | 2017-06-15 | 古河電気工業株式会社 | Surface-treated copper foil for printed-wiring board, copper plated laminate sheet for printed-wiring board, and printed-wiring board |
WO2017099094A1 (en) * | 2015-12-09 | 2017-06-15 | 古河電気工業株式会社 | Surface-treated copper foil for printed circuit board, copper-clad laminate for printed circuit board, and printed circuit board |
KR102106924B1 (en) * | 2015-12-09 | 2020-05-06 | 후루카와 덴키 고교 가부시키가이샤 | Surface-treated copper foil for printed wiring boards, copper-clad laminate for printed wiring boards and printed wiring boards |
CN107109664A (en) * | 2015-12-09 | 2017-08-29 | 古河电气工业株式会社 | Printed substrate surface treatment copper foil, printed substrate copper clad laminate and printed substrate |
CN107109664B (en) * | 2015-12-09 | 2019-03-26 | 古河电气工业株式会社 | Printed wiring board surface treatment copper foil, printed wiring board copper clad laminate and printed wiring board |
KR20180037920A (en) * | 2015-12-09 | 2018-04-13 | 후루카와 덴키 고교 가부시키가이샤 | A surface-treated copper foil for a printed wiring board, a copper clad laminate for a printed wiring board and a printed wiring board |
US10244635B2 (en) | 2016-03-03 | 2019-03-26 | Mitsui Mining & Smelting Co., Ltd. | Production method for copper-clad laminate plate |
CN107614753A (en) * | 2016-03-03 | 2018-01-19 | 三井金属矿业株式会社 | The manufacture method of copper-clad laminated board |
WO2017150043A1 (en) * | 2016-03-03 | 2017-09-08 | 三井金属鉱業株式会社 | Production method for copper-clad laminate plate |
JP6178035B1 (en) * | 2016-03-03 | 2017-08-09 | 三井金属鉱業株式会社 | Method for producing copper clad laminate |
JPWO2018047933A1 (en) * | 2016-09-12 | 2018-09-06 | 古河電気工業株式会社 | Copper foil and copper-clad laminate having the same |
CN109642338A (en) * | 2016-09-12 | 2019-04-16 | 古河电气工业株式会社 | Copper foil and copper-clad plate with the copper foil |
KR20190049818A (en) | 2016-09-12 | 2019-05-09 | 후루카와 덴키 고교 가부시키가이샤 | Copper foil and copper-clad laminate having the copper foil |
CN109642338B (en) * | 2016-09-12 | 2021-02-09 | 古河电气工业株式会社 | Copper foil and copper-clad plate with same |
US12104271B2 (en) | 2019-06-12 | 2024-10-01 | Toyo Kohan Co., Ltd. | Roughened plated sheet |
CN114008250A (en) * | 2019-06-12 | 2022-02-01 | 东洋钢钣株式会社 | Roughened plated plate |
CN114008250B (en) * | 2019-06-12 | 2024-04-16 | 东洋钢钣株式会社 | Roughened plating plate |
US11732376B2 (en) | 2019-06-12 | 2023-08-22 | Toyo Kohan Co., Ltd. | Roughened plated sheet |
TWI849260B (en) * | 2019-12-24 | 2024-07-21 | 日商日本電解股份有限公司 | Surface treated copper foil and its manufacturing method |
CN114379174B (en) * | 2020-10-21 | 2023-10-20 | 湖北奥马电子科技有限公司 | Single-sided soft copper-clad plate |
CN114379174A (en) * | 2020-10-21 | 2022-04-22 | 湖北奥马电子科技有限公司 | Single-sided soft copper-clad plate |
CN112921371A (en) * | 2021-01-21 | 2021-06-08 | 江苏铭丰电子材料科技有限公司 | Surface roughening and curing treatment method of RTF copper foil for high-frequency copper-clad plate |
CN113699571A (en) * | 2021-10-29 | 2021-11-26 | 苏州睿锂物联科技有限公司 | Lithium battery copper foil surface pretreatment device capable of improving material performance |
WO2024219162A1 (en) * | 2023-04-18 | 2024-10-24 | ナミックス株式会社 | Metal member |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011162860A (en) | Surface-roughened copper foil, method of producing the same and copper-clad laminate plate | |
WO2011019055A1 (en) | Heat-resistant copper foil and method for producing same, circuit board, and copper-clad laminate board and method for manufacturing same | |
JP6149066B2 (en) | Surface treated copper foil | |
JP6190846B2 (en) | Surface treated copper foil | |
JP6722452B2 (en) | Surface-treated copper foil, copper-clad laminate obtained by using the surface-treated copper foil, and printed wiring board | |
TW201800242A (en) | Surface-treated copper foil and copper-clad laminate produced using same | |
JP7409760B2 (en) | Method for manufacturing surface-treated copper foil, copper foil with carrier, laminate, printed wiring board, and manufacturing method for electronic equipment | |
JP4626390B2 (en) | Copper foil for printed wiring boards in consideration of environmental protection | |
JP6854114B2 (en) | Surface-treated copper foil | |
WO2014109396A1 (en) | Surface treated copper foil, laminate board, copper foil with carrier, printed wiring board, printed circuit board, electronic device, and method for production of printed wiring board | |
US10383222B2 (en) | Surface-treated copper foil | |
KR101983875B1 (en) | Metal foil for radiating heat, method of preparing the same, and metal-clad laminate for radiating heat and multi-layer printed circuit board | |
KR20200033852A (en) | Surface-treated copper foil and copper clad laminate and printed wiring board using the same | |
WO2021131359A1 (en) | Surface-treated copper foil and method for manufacturing same | |
JP2007146258A (en) | Electrolytic copper foil, printed wiring board and multilayer printed wiring board | |
JP2012041626A (en) | Copper-clad laminated board and method for producing the same | |
CN111655907B (en) | Coating layer stack for electromagnetic wave shielding, electromagnetic wave shielding material, and method for producing electromagnetic wave shielding material | |
JP2020164975A (en) | Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board | |
JPH0588669B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110901 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121026 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130723 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130920 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131022 |