JP2011143449A - Method for removing inclusion in tundish for continuous casting - Google Patents
Method for removing inclusion in tundish for continuous casting Download PDFInfo
- Publication number
- JP2011143449A JP2011143449A JP2010006058A JP2010006058A JP2011143449A JP 2011143449 A JP2011143449 A JP 2011143449A JP 2010006058 A JP2010006058 A JP 2010006058A JP 2010006058 A JP2010006058 A JP 2010006058A JP 2011143449 A JP2011143449 A JP 2011143449A
- Authority
- JP
- Japan
- Prior art keywords
- tundish
- molten steel
- weir
- inert gas
- molten metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Continuous Casting (AREA)
Abstract
Description
本発明は、連続鋳造工程において取鍋から注入された溶融金属を中継して鋳型に供給するためのタンディッシュにおいて、該タンディッシュ内に注入された溶融金属中の酸化物系非金属介在物を効率良く除去する方法に関するものである。 The present invention relates to a tundish for relaying and supplying molten metal injected from a ladle in a continuous casting process to a mold, and includes oxide-based non-metallic inclusions in the molten metal injected into the tundish. The present invention relates to an efficient removal method.
溶融金属、例えば溶鋼の連続鋳造では、取鍋内の溶鋼を、取鍋底部に設置した注入ノズル(「ロングノズル」ともいう)を介してタンディッシュに供給しながら、タンディッシュ内に所定量の溶鋼が滞在した状態にて、タンディッシュ内の溶鋼を、タンディッシュ底部に設置した溶鋼流出孔を通して各鋳型に分配・注入し、鋳片を製造している。
溶鋼中には脱酸生成物を起源とするアルミナなどの酸化物系非金属介在物(以下「介在物」と記す)が懸濁しており、溶鋼が凝固する際に介在物が凝固層の中に取り込まれてしまうと、薄鋼板などの最終製品において介在物起因の欠陥を引き起こす。そのため、タンディッシュには、介在物を浮上分離させる機能も求められている。
In continuous casting of molten metal, for example, molten steel, a predetermined amount of molten steel in the ladle is supplied to the tundish through an injection nozzle (also referred to as a “long nozzle”) installed at the bottom of the ladle. While the molten steel stays, the molten steel in the tundish is distributed and injected into each mold through molten steel outflow holes installed at the bottom of the tundish to produce a slab.
In the molten steel, oxide-based non-metallic inclusions such as alumina originating from the deoxidation product (hereinafter referred to as “inclusions”) are suspended, and the inclusions are contained in the solidified layer when the molten steel solidifies. If it is taken in, it causes defects due to inclusions in the final product such as a thin steel plate. Therefore, the tundish is also required to have a function of floating and separating inclusions.
従来、タンディッシュ内で介在物を浮上・分離させるために、タンディッシュ内に堰を設置し、この堰によってタンディッシュ内の溶鋼流動を制御することが行われており、介在物の少ない鋳片が製造できるようになってきた。しかし、50μm以下のような、粒径の小さい介在物は、溶鋼中の浮上速度が極めて遅いために、その浮上・分離が困難である。近年、軸受鋼などの高品質材料では、非常に高い清浄性が求められており、微小な介在物も取り除くことができる高度な介在物分離技術が求められている。 Conventionally, in order to float and separate inclusions in the tundish, weirs have been installed in the tundish and the molten steel flow in the tundish has been controlled by this weir. Can now be manufactured. However, inclusions with a small particle size, such as 50 μm or less, are difficult to float and separate because the floating speed in molten steel is extremely slow. In recent years, high-quality materials such as bearing steel are required to have very high cleanliness, and advanced inclusion separation techniques that can remove minute inclusions are also required.
タンディッシュ内にて介在物の浮上・分離を促進する方法として、タンディッシュ内にアルゴンなどの不活性ガスを吹き込む方法が提案されている。
すなわち、特許文献1では、タンディッシュ内の底部複数箇所に先端が突出するように微細ノズルを設置し、微細な不活性ガスを吹き込むことによって介在物の除去を促進できるとされている。
As a method for promoting the floating and separation of inclusions in the tundish, a method of blowing an inert gas such as argon into the tundish has been proposed.
That is, in Patent Document 1, it is said that the removal of inclusions can be promoted by installing a fine nozzle so that the tip protrudes at a plurality of locations in the bottom of the tundish and blowing fine inert gas.
また、特許文献2には、アルゴンと溶鋼に溶解可能な非酸化性ガスとの混合ガスを、タンディッシュ内の溶鋼中若しくはタンディッシュ内に注入される溶鋼中に吹き込みながら、タンディッシュ内の溶鋼を鋳型内に注湯することが記載されている。さらに、混合ガスは、タンディッシュの底部又は側壁下部に配置したポーラス煉瓦から吹き込むことが記載されている。
Further, in
ところで、不活性ガスや混合ガスは、吹き込み流量を多くするほど溶鋼の上昇流れが促進され、微小介在物を浮上除去することができる反面、ガス流量を大きくしすぎるとタンディッシュ内の溶鋼浴面が揺らぎ、浴面に浮いているタンディッシュスラグを巻き込んで介在物の増加を引き起こしてしまうことが問題になる。 By the way, as for the inert gas or mixed gas, the rising flow of the molten steel is promoted as the flow rate of blowing is increased, and the fine inclusions can be lifted and removed. On the other hand, if the gas flow rate is increased too much, the molten steel bath surface in the tundish Swaying and entraining the tundish slag floating on the bath surface, causing an increase in inclusions.
この点、特許文献1には、微細ノズルからガスを吹き込むことによって気泡を微細化することによって介在物の除去効果や浴面スラグの再巻き込みを防止するとある。しかし、不活性ガスの吹き込み位置における溶鋼流速が小さい場合は、不活性ガスの気泡群が溶鋼流動によって分散されず吹き込み位置上部に気泡が集中し、同じ不活性ガスの吹き込み量であっても吹き込み位置上部で非常に強い上昇流が発生する。溶鋼流速はタンディッシュの形状や鋳造速度によって変わるため、同じガス吹き込み条件でも条件によっては浴面スラグの巻き込みが起こり得る。特に、特許文献1には、タンディッシュ形状や鋳造条件に対するガス吹き込み量の値について記載されていないため、不十分である。すなわち、近年の高清浄鋼では、鋳造速度を小さく抑えて操業することが多いため、特許文献1のように鋳造条件に関係なく同じ不活性ガス吹き込み条件を用いる方法では、介在物の除去を十分に行うことが難しい。 In this regard, Patent Document 1 discloses that the effect of removing inclusions and the re-entrainment of the bath surface slag are prevented by refining bubbles by blowing gas from a fine nozzle. However, if the molten steel flow velocity at the position where the inert gas is blown is small, the bubbles of inert gas are not dispersed by the molten steel flow, and the bubbles are concentrated at the upper portion of the blowing position. A very strong upward flow is generated at the upper position. Since the molten steel flow velocity varies depending on the shape of the tundish and the casting speed, bath surface slag can be involved depending on the conditions even under the same gas blowing conditions. In particular, Patent Document 1 is insufficient because it does not describe the value of the gas blowing amount with respect to the tundish shape and casting conditions. That is, in recent high-clean steel, since the casting speed is often kept low, the method using the same inert gas blowing conditions regardless of casting conditions as in Patent Document 1 sufficiently removes inclusions. Difficult to do.
一方、特許文献2に記載の技術は、溶鋼に溶解可能な非酸化性ガスを使用しているが、コストの観点から、この溶鋼に溶解可能な非酸化性ガスの使用を避けたい場合もあり、このような場合に、不活性ガスのみにて介在物の除去が可能であれば、極めて有意義である。
On the other hand, although the technique described in
本発明は、上記事情に鑑みてなされたものであり、その目的とするところは、不活性ガスの吹き込み量を多くした際の浴面の揺らぎを抑制し、不活性ガスの吹き込みにて十分に介在物を除去できる、タンディッシュ内の介在物除去方法を提供することにある。 The present invention has been made in view of the above circumstances, and the object of the present invention is to suppress the fluctuation of the bath surface when the amount of inert gas blown is increased, and the inert gas blow is sufficient. An object of the present invention is to provide a method for removing inclusions in a tundish, which can remove inclusions.
本発明の要旨構成は、次のとおりである。
1.溶融金属が注入される連続鋳造用タンディッシュにおいて、該溶融金属の注入点と鋳型へ溶融金属を導出する流出孔との間に堰を配置し、該堰に設けた流通部を介して前記注入点側から流出孔側へ溶融金属流を導くに際し、前記堰の流出孔側のタンディッシュ底部から、下記式(1)を満たす条件下に不活性ガスを溶融金属中に吹き込むことを特徴とする連続鋳造用タンディッシュにおける介在物除去方法。
記
0.00014≦Ql・A/(Q2・W)≦0.00025 …(1)
但し、
Ql:1ストランド当たりの不活性ガス吹き込み流量(標準状態換算Nm3/s)
Q2:1ストランド当たりの溶鋼流量(m3/s)
A:堰の流通部の総断面積(m2)
W:堰の位置におけるタンディッシュの平均幅(m)
The gist configuration of the present invention is as follows.
1. In a tundish for continuous casting in which molten metal is injected, a weir is disposed between the injection point of the molten metal and an outflow hole through which the molten metal is led out to the mold, and the injection is performed through a flow section provided in the weir. When the molten metal flow is guided from the point side to the outflow hole side, an inert gas is blown into the molten metal from the bottom of the tundish on the outflow hole side of the weir under the condition satisfying the following formula (1). Inclusion removal method in tundish for continuous casting.
Record
0.00014 ≦ Ql · A / (Q2 · W) ≦ 0.00025 (1)
However,
Ql: Inert gas blowing flow rate per strand (standard state conversion Nm 3 / s)
Q2: Molten steel flow rate per strand (m 3 / s)
A: Total cross-sectional area (m 2 ) of the circulation part of the weir
W: Average width of tundish at the weir position (m)
2.前記不活性ガスの吹き込み量を、連続鋳造における鋳造速度に応じて調整することを特徴とする前記1に記載の連続鋳造用タンディッシュにおける介在物除去方法。 2. 2. The inclusion removal method in a continuous casting tundish according to the above 1, wherein the amount of the inert gas blown is adjusted according to a casting speed in continuous casting.
本発明によれば、タンディッシュの形状および溶鋼の流量に対応させて不活性ガスの吹き込み量を適正化するため、広い鋳造条件に対して浴面スラグの巻き込みを起こすことなく不活性ガスによる介在物除去効果を得ることができる。また、鋳造速度の変動に対応して不活性ガスの吹き込み量を適正な値に制御することによって、鋳造中に鋳造速度が変更された場合であっても優れた介在物除去効果を維持できる。 According to the present invention, in order to optimize the amount of inert gas blown in accordance with the shape of the tundish and the flow rate of the molten steel, it is possible to intervene with the inert gas without causing entrainment of the bath surface slag under a wide casting condition. An object removal effect can be obtained. In addition, by controlling the amount of inert gas blown to an appropriate value in response to fluctuations in the casting speed, an excellent inclusion removal effect can be maintained even when the casting speed is changed during casting.
以下、図面を参照して、本発明を詳しく説明する。
図1に、本発明の方法の実施に使用する連続鋳造用タンディッシュ1の概略を示す。この連続鋳造用タンディッシュ1は、例えば上面が開口した直方体状の容器であり、取鍋(図示せず)から注入ノズル2を介して溶鋼3が供給され、貯留した溶鋼3を、底部に設けた図示例で2つの流出孔4aおよび4bからそれぞれ鋳型(図示せず)に供給するものである。
すなわち、図示例では、前記注入ノズル2をタンディッシュ1の幅方向(長手方向)中央部に挿入配置するが、この際の注入ノズル2先端の開口位置を溶鋼注入点Pとすると、この溶鋼注入点Pを挟んで幅方向で対向するそれぞれの側の底部に、鋳型へ溶鋼3を分配・供給するための流出孔4aおよび4bを形成し、さらに、溶鋼注入点Pと溶鋼流出孔4aおよび4bとの間に、溶鋼注入点Pを挟んで対をなす堰5aおよび5bを設置してある。
Hereinafter, the present invention will be described in detail with reference to the drawings.
In FIG. 1, the outline of the tundish 1 for continuous casting used for implementation of the method of this invention is shown. The continuous casting tundish 1 is, for example, a rectangular parallelepiped container having an open top surface. The
That is, in the illustrated example, the
これら堰5aおよび5bには、注入ノズル2から注入された溶鋼3を流出孔4aおよび4b側へ導く、図示例で長方形の流通部6を設けてある(図1(B)参照)。さらに、堰5aおよび5bと流出孔4aおよび4bとの間の底部には、不活性ガス7を吹き込むための多孔質煉瓦による吹き込み口8aおよび8bを有する。
These
以上の構成のタンディッシュ1内に注入ノズル2を介して溶鋼3を連続注入すると、流入してきた溶鋼3は、堰5aおよび5bの流通部6を通って不活性ガス7の吹き込み領域に流れ込む。不活性ガス7を吹き込んでいる領域では、溶鋼3中に気泡7aが分散上昇するのに伴い浮力が働き、溶鋼3に上昇流を与える。そのとき、溶鋼3中の介在物、特に50μm以下の微小介在物は、溶鋼3の上昇流に帯同して浴面に浮上する。この介在物の浮上を促進することによって介在物の除去効率を引き上げることができるため、浴面スラグの巻き込みが起こらない範囲では溶鋼の浮上流速が大きいほど介在物の除去効率は高くなる。溶鋼の上昇流速は、不活性ガス吹き込み量が多いほど高くなるから、浴面に揺らぎが発生しない上昇流速の範囲内において、最大流量の不活性ガスを吹き込むことが望ましい。そこで、最大流量の不活性ガスを吹き込む条件について、以下のように鋭意検討した。
When the
まず、ガス吹き込み領域における溶鋼の浮上挙動を、図2に模式的に示す。溶鋼が不活性ガス吹き込み領域を通過した後の溶鋼流速の浮上成分Vyは、不活性ガスによる浮力Fおよび浮力付与時間△tを用いて、
Vy∝F・△t ・・・(2)
と表せる。
First, the floating behavior of molten steel in the gas blowing region is schematically shown in FIG. The levitation component Vy of the molten steel flow velocity after the molten steel has passed through the inert gas blowing region is expressed by using the buoyancy F by the inert gas and the buoyancy application time Δt,
Vy∝F · Δt (2)
It can be expressed.
次に、不活性ガスによる浮力Fは、溶鋼中の気泡の体積分率に比例する。ここに、ガス吹き込み領域において気泡の体積分率は一定と見做せるから、浮力Fは、
F=γQ1・ρ・g/(Vg・W・X)・・・(3)
ここで、γ:溶鋼中における不活性ガスの膨張比
Q1:不活性ガスの吹き込み量(標準状態換算)(Nm3/s)
ρ:溶鋼の密度(kg/m3)
g:重力加速度(=9.8m/s2)
Vg:気泡の平均上昇速度(m/s)
W:タンディッシュの平均幅(m)
X:不活性ガス吹き込み領域のタンディッシュ幅方向長さ(m)
と表せる。なお、上記γ、ρおよびVgは、連続鋳造の操業条件およびタンディッシュ設備の仕様によって決まる値である。
Next, the buoyancy F due to the inert gas is proportional to the volume fraction of the bubbles in the molten steel. Here, since the volume fraction of bubbles can be considered constant in the gas blowing region, the buoyancy F is
F = γQ1 · ρ · g / (Vg · W · X) (3)
Where γ: expansion ratio of inert gas in molten steel
Q1: Amount of inert gas blown (standard state conversion) (Nm 3 / s)
ρ: Density of molten steel (kg / m 3 )
g: Gravitational acceleration (= 9.8 m / s 2 )
Vg: Average rising speed of bubbles (m / s)
W: Average width of tundish (m)
X: Length of the inert gas blowing area in the tundish width direction (m)
It can be expressed. In addition, said (gamma), (rho), and Vg are values determined by the operating conditions of continuous casting, and the specification of a tundish installation.
一方、浮力付与時間△tは、堰近傍の溶鋼の水平方向速度Vxと不活性ガス吹き込み領域のタンディッシュ幅方向長さX(m)を用いると、
△t=X/Vx=X・A/Q2
となり、さらに水平方向速度Vxは、
Vx=Q2/A
ここで、Q2:1ストランド当たりの溶鋼流量(m3/s)
A:各堰の流通部の総断面積(m2)
であるから、
△t=X/Vx=X・A/Q2…(4)
となる。
従って、上記した式(2)、式(3)および式(4)より、溶鋼の上昇流速Vyは
Vy∝Ql・A/(Q2・W) …(5)
となる。
On the other hand, as the buoyancy imparting time Δt, when using the horizontal velocity Vx of the molten steel near the weir and the tundish width direction length X (m) of the inert gas blowing region,
Δt = X / Vx = X · A / Q2
And the horizontal speed Vx is
Vx = Q2 / A
Here, Q2: Molten steel flow rate per strand (m 3 / s)
A: Total cross-sectional area (m 2 ) of the circulation part of each weir
Because
Δt = X / Vx = X · A / Q2 (4)
It becomes.
Therefore, from the above equations (2), (3), and (4), the ascending flow velocity Vy of the molten steel is Vy∝Ql · A / (Q2 · W) (5)
It becomes.
上述したとおり、溶鋼中介在物の除去効率およびタンディッシュ浴面の湯面揺らぎによるスラグ巻き込み発生の有無は、上昇流速Vyによって決まることから、不活性ガス流量Ql(m3/s)、堰の流通部の総断面積A(m2)、1ストランド当たりの溶鋼流量Q2(m3/s)およびタンディッシュの平均幅W(m)を調整することによって、不活性ガス吹き込み時のタンディッシュ内介在物の除去能力を最大限にまで引き上げることが可能になる。 As described above, the removal efficiency of inclusions in molten steel and the presence or absence of slag entrainment due to fluctuations in the surface of the tundish bath surface are determined by the rising flow velocity Vy, so that the inert gas flow rate Ql (m 3 / s) By adjusting the total cross-sectional area A (m 2 ) of the flow part, the molten steel flow rate Q2 (m 3 / s) per strand and the average width W (m) of the tundish, the inside of the tundish when the inert gas is blown Inclusion removal capability can be maximized.
そこで、Ql・A/(Q2・W)の値を種々に変化させて、溶鋼中介在物の除去効率および浴面の湯面揺らぎの発生との関係を調査した。その結果を、後述する実施例において図7として示すように、Ql・A/(Q2・W)の値が0.00025を超える条件下に不活性ガスの吹き込みを行うと、タンディッシュ浴面が大きく揺らぎ浴面スラグの巻き込みや溶鋼の飛散を引き起こしてしまう。一方、不活性ガスの吹き込み時の条件によってQl・A/(Q2・W)の値が0.00014未満になると、溶鋼の浮上が弱すぎて介在物を十分に除去できなくなる。 Therefore, the value of Ql · A / (Q2 · W) was changed in various ways, and the relationship between the removal efficiency of inclusions in the molten steel and the occurrence of hot water surface fluctuation on the bath surface was investigated. The result is shown in FIG. 7 in an example described later, and when the inert gas is blown under the condition that Ql · A / (Q2 · W) exceeds 0.00025, the tundish bath surface greatly fluctuates. It will cause entrainment of bath slag and splash of molten steel. On the other hand, if the value of Ql · A / (Q2 · W) is less than 0.00014 depending on the conditions when the inert gas is blown, the floating of the molten steel is too weak and the inclusions cannot be removed sufficiently.
なお、上記した溶鋼の流通部の総断面積Aは、堰において溶鋼が流通できる部分の断面積の総和とする。例えば、図3に示す形状の堰5である場合、複数の円形流通部6aの面積の合計と浴面より堰上端が低いことによる矩形状流通部6bの面積との総和が流通部の断面積Aとなる。
In addition, let the total cross-sectional area A of the above-mentioned distribution part of molten steel be the sum total of the cross-sectional area of the part which can distribute molten steel in a weir. For example, in the case of the
また、タンディッシュの平均幅Wは、図1に示した堰の場合を例として図4に示すように、堰5bを設けた位置における溶鋼3が占める全断面積S(図4中に斜線で表示した部分)を当該部分の溶鋼深さHで除した値(W=S/H)と定義する。
ちなみに、タンディッシュの側壁は必ずしも垂直である必要はない。タンディッシュの側壁に傾斜がある場合や側壁が曲面形状である場合も上記と同様に全断面積Sおよび深さHを用いて、W=S/Hから平均幅を求めればよい。
In addition, the average width W of the tundish is, as shown in FIG. 4 taking the case of the weir shown in FIG. The displayed part) is defined as a value (W = S / H) obtained by dividing the part by the molten steel depth H.
Incidentally, the side wall of the tundish does not necessarily have to be vertical. When the side wall of the tundish is inclined or the side wall is curved, the average width may be obtained from W = S / H using the total cross-sectional area S and the depth H in the same manner as described above.
さらに、安定して介在物の除去を行うために、不活性ガスの吹き込み位置は、設備的に干渉の問題がない限りなるべく堰の近くにする方がよく、具体的には、堰から不活性ガス吹き込み位置までの距離を1000mm以内とすることが望ましい。この不活性ガスには、アルゴンや窒素などを単独または複合して用いればよい。 Furthermore, in order to remove inclusions stably, it is better to place the inert gas blow position as close to the weir as possible unless there is a problem of interference in terms of equipment. The distance to the gas blowing position is preferably within 1000 mm. As the inert gas, argon, nitrogen, or the like may be used alone or in combination.
堰の高さや幅、流通部の開口形状などは、流通部の面積Aに関して、上述の式(1)が満足されるならば、どのような形状でもよいが、堰の流通部が大きすぎると不活性ガス吹き込み領域の溶鋼流れが偏り、安定した溶鋼の浮上特性を得られなくなる、おそれがあるため、堰断面の全断面積Sに対して流通部の面積AがA/S<0.5を満たす範囲に規制することが望ましい。 The height and width of the weir, the opening shape of the circulation part, etc. may be any shape as long as the above formula (1) is satisfied with respect to the area A of the circulation part, but if the circulation part of the weir is too large Since the flow of molten steel in the inert gas blowing region is uneven and stable floating characteristics of the molten steel may not be obtained, the area A of the flow section satisfies A / S <0.5 with respect to the total cross-sectional area S of the weir cross section. It is desirable to regulate the range.
さらに、図5に示すように、タンディッシュの溶鋼3の流出孔4が1個所である場合は、堰5は注入点Pの流出孔4側に単独で設け、堰5の流出孔4側のタンディッシュ底部の吹き込み口8から不活性ガス7を噴き込めばよい。
Furthermore, as shown in FIG. 5, when there is one
以上に従って、不活性ガスの吹き込み量を調整するに当たって、連続鋳造中の鋳造速度を監視し、鋳造速度に応じて溶鋼流量を算出し、上記した式(1)を満たすように不活性ガスの吹き込み量を調整することが好ましい。なぜなら、実際の連続鋳造の操業では、取鍋交換やスラブ幅変更などのため鋳造速度が変化することがあり、それにともなってタンディッシュに流入する溶鋼流量も時々刻々と変化する場合がある。そこで、不活性ガス流量も時々の溶鋼流量条件に合わせて最適値に変化させていくことにより、その時々の操業条件に応じた最適な介在物除去条件を保つことが可能となる。
なお、鋳造速度に応じて溶鋼流量を求める方法は、公知の方法を用いればよいが、例えば、以下の方法が利用できる。すなわち、連続鋳造機の鋳造速度をVc(m/s)、スラブ幅をWc(m)、スラブ厚をDc(m)としたとき、1ストランド当たりの溶鋼流量Q2(m3/s)は
Q2=Vc×Wc×Dc
として算出できる。
In adjusting the amount of inert gas blown in accordance with the above, the casting speed during continuous casting is monitored, the molten steel flow rate is calculated according to the casting speed, and the inert gas blown so as to satisfy the above-described equation (1). It is preferable to adjust the amount. This is because in an actual continuous casting operation, the casting speed may change due to ladle exchange or slab width change, and the flow rate of molten steel flowing into the tundish may change from moment to moment. Therefore, by changing the inert gas flow rate to the optimum value in accordance with the molten steel flow rate condition, it is possible to maintain the optimum inclusion removal condition according to the operation condition at that time.
In addition, although the method of calculating | requiring a molten steel flow volume according to a casting speed should just use a well-known method, the following methods can be utilized, for example. That is, when the casting speed of the continuous casting machine is Vc (m / s), the slab width is Wc (m), and the slab thickness is Dc (m), the molten steel flow rate Q2 (m 3 / s) per strand is Q2. = Vc x Wc x Dc
Can be calculated as
溶鋼容量が75tおよび48tの2機のタンディッシュを用いて、溶鋼の連続鋳造を実施し、タンディッシュ内の浴面揺らぎの有無と鋳型への介在物流出量を調査した。タンディッシュ内の浴面揺らぎの有無は、この実施例における観察結果である。一方の鋳型への介在物流出量は、後述する数値解析方法により算出した。なぜなら、得られたスラブから介在物量を求めると、不活性ガス以外の要因も含まれてしまい、かような測定結果では本発明による効果が不明瞭となる為である。 Using two tundishes with molten steel capacities of 75t and 48t, continuous casting of the molten steel was carried out, and the presence or absence of bath surface fluctuations in the tundish and the amount of inclusions flowing into the mold were investigated. The presence or absence of bath surface fluctuation in the tundish is an observation result in this example. The amount of inclusions flowing into one mold was calculated by a numerical analysis method described later. This is because, when the amount of inclusions is obtained from the obtained slab, factors other than the inert gas are included, and the effect of the present invention becomes unclear in such measurement results.
ここで、タンディッシュに関する条件は、図6に示すように注入点Pに近い側に浴面まで覆う大型堰5aおよび5bを配置した。大型堰から見てタンディッシュ幅方向600mm流出孔側のタンディッシュ底部に、多孔質レンガによる吹込み口8aおよび8bを設け、そこからアルゴンを吹き込んだ。
なお、1ストランド当たりの溶鋼流量は、75tタンディッシュが0.0119m3/sおよび48tタンディッシュが0.00660m3/sとした。タンディッシュの幅は、75tタンディッシュが0.107mおよび48tタンディッシュが0.106mであり、また大型堰の流通部総面積は75tタンディッシュが0.0728m2および48tタンディッシュが0.0776m2である。
Here, the conditions regarding the tundish were
Incidentally, the molten steel flow per strand, 75t tundish 0.0119m 3 / s and 48t tundish was 0.00660m 3 / s. The width of the tundish is 75t tundish 0.107m and 48t tundish 0.106M, also circulation portion the total area of the large weir 75t tundish is 0.0728M 2 and 48t tundish is 0.0776m 2.
各タンディッシュにおいて、アルゴンの吹き込み量を変えて連続鋳造を行った。その際のタンディッシュ内の浴面揺らぎの有無を目視にて観察した。 In each tundish, continuous casting was performed by changing the blowing amount of argon. At that time, the presence or absence of fluctuation of the bath surface in the tundish was visually observed.
一方、介在物流出量は、上記タンディッシュの条件下において、溶鋼流動解析と介在物粒子軌道解析とにより鋳型への介在物流出個数を計算し、この計算した介在物流出個数から介在物指数を算出し、これを介在物流出量として比較した。
すなわち、溶鋼流動解析では、k−ε乱流モデルを用い、表1の溶鋼流量にしたがって注入点と流出孔にそれぞれ流入・流出境界条件を与え、溶鋼流動を計算した。介在物粒子軌道解析では、注入点より50μmの介在物粒子を投入し、溶鋼流動解析結果に従って介在物粒子の運動軌跡を計算した。この際、上記の目視観察により湯面揺らぎが起こっている試験条件(表1の試験No.1、2、9および10が該当)では、Arガス吹き込み位置上部の湯面の介在物吸着は起こらないとして、介在物粒子軌道解析を行っている。また、湯面揺らぎが起こっていない試験条件(表1の試験No.3、4、5、6、7、8、11、12および13が該当)では、湯面に到達した介在物が全て浴面スラグに吸着するとして、介在物粒子軌道解析を行っている。この介在物粒子起動解析結果から、鋳型へ流入する介在物個数を、それぞれの試験条件において算出した。
On the other hand, the amount of inclusion spillage is calculated by calculating the number of inclusions spilled into the mold by molten steel flow analysis and inclusion particle trajectory analysis under the above tundish conditions. This was calculated and compared as the amount of inclusion outflow.
That is, in the molten steel flow analysis, an inflow / outflow boundary condition was given to the injection point and the outflow hole in accordance with the molten steel flow rate shown in Table 1 using the k-ε turbulent model, and the molten steel flow was calculated. In the inclusion particle trajectory analysis, 50 μm inclusion particles were injected from the injection point, and the motion trajectory of the inclusion particles was calculated according to the molten steel flow analysis results. At this time, under the test conditions in which the molten metal surface fluctuation is caused by the above-mentioned visual observation (Test Nos. 1, 2, 9 and 10 in Table 1 are applicable), the inclusion adsorption on the molten metal surface above the Ar gas blowing position does not occur. No inclusion particle trajectory analysis is performed. In addition, under the test conditions in which no molten metal surface fluctuation occurred (Test Nos. 3, 4, 5, 6, 7, 8, 11, 12, and 13 in Table 1 apply), all the inclusions that reached the molten metal surface were bathed. Inclusion particle trajectory analysis is performed as adsorbed on the surface slag. From the inclusion particle activation analysis result, the number of inclusions flowing into the mold was calculated under each test condition.
さらに、介在物指数の求め方は以下の通りである。下記の表1におけるNo.8の条件、すなわち75tタンディッシュにおいて、不活性ガスを吹き込まない条件を基準条件とした。そして、この基準条件において50μm介在物が鋳型へ流出する個数を基準値(指数1)とした。その他の条件は基準値に対する介在物流出個数の比として表し、これを介在物指数とした。
各試験条件、Ql・A/(Q2・W)の値、タンディッシュ内の浴面揺らぎの有無およびタンディッシュから鋳型へ介在物が流出した介在物指数を、それぞれ表1に示す。さらに、表1の各試験条件において鋳造した際、タンディッシュから鋳型へ介在物が流出した介在物指数と、Ql・A/(Q2・W)の値との関係をグラフ化して図7に示す。
Furthermore, the method for obtaining the inclusion index is as follows. The condition of No. 8 in Table 1 below, that is, the condition in which inert gas was not blown in the 75 t tundish was used as the reference condition. The number of 50 μm inclusions flowing out into the mold under this reference condition was defined as a reference value (index 1). The other conditions were expressed as a ratio of the number of inclusion outflows to the reference value, and this was used as the inclusion index.
Table 1 shows each test condition, Ql · A / (Q2 · W), presence / absence of bath surface fluctuation in the tundish, and inclusion index from which inclusions flowed out from the tundish to the mold. Further, FIG. 7 is a graph showing the relationship between the inclusion index at which inclusions flow out from the tundish to the mold and the value of Ql · A / (Q2 · W) when casting is performed under each test condition in Table 1. .
表1および図7の介在物指数が大きいほど、タンディッシュから鋳型へ介在物が多く流出したことを意味する。本発明の範囲では、介在物指数が低く抑えられている。また、Ql・A/(Q2・W)の値が本発明範囲より小さいところでは、介在物の浮上不足によって介在物流出が起こっており、Ql・A/(Q2・W)の値が本発明範囲より大きなところでは、タンディッシュ内の浴面揺らぎによって介在物流出が起きている。 The larger the inclusion index in Table 1 and FIG. 7, the more inclusions flowed from the tundish to the mold. In the scope of the present invention, the inclusion index is kept low. In addition, where the value of Ql · A / (Q2 · W) is smaller than the range of the present invention, the outflow of inclusion occurs due to insufficient floating of the inclusion, and the value of Ql · A / (Q2 · W) is the present invention. Above the range, inclusion spillage occurs due to bath surface fluctuations in the tundish.
以上より、本発明の範囲を満たす条件で不活性ガスを吹き込めば、浴面の揺らぎを引き起こすことなく最良な介在物の除去性能を達成できることが確認できた。 From the above, it was confirmed that the best inclusion removal performance could be achieved without causing the fluctuation of the bath surface if the inert gas was blown in the conditions satisfying the scope of the present invention.
本発明の介在物除去方法は溶鋼に限らず、鋼以外のアルミニウムやチタン等の非鉄金属にも適用可能である。 The inclusion removal method of the present invention is not limited to molten steel, but can also be applied to non-ferrous metals such as aluminum and titanium other than steel.
1 タンディッシュ
2 注入ノズル
3 溶鋼
4a、4b 流出孔
5、5a、5b 堰
6 流通部
7 不活性ガス
8a、8b 吹き込み口
DESCRIPTION OF SYMBOLS 1
Claims (2)
記
0.00014≦Ql・A/(Q2・W)≦0.00025・・・(1)
但し、
Ql:1ストランド当たりの不活性ガス吹き込み流量(標準状態換算Nm3/s)
Q2:1ストランド当たりの溶鋼流量(m3/s)
A:堰の流通部の総断面積(m2)
W:堰の位置におけるタンディッシュの平均幅(m) In a tundish for continuous casting in which molten metal is injected, a weir is disposed between the injection point of the molten metal and an outflow hole through which the molten metal is led out to the mold, and the injection is performed through a flow section provided in the weir. When the molten metal flow is guided from the point side to the outflow hole side, an inert gas is blown into the molten metal from the bottom of the tundish on the outflow hole side of the weir under the condition satisfying the following formula (1). Inclusion removal method in tundish for continuous casting.
Record
0.00014 ≦ Ql · A / (Q2 · W) ≦ 0.00025 (1)
However,
Ql: Inert gas blowing flow rate per strand (standard state conversion Nm 3 / s)
Q2: Molten steel flow rate per strand (m 3 / s)
A: Total cross-sectional area (m 2 ) of the circulation part of the weir
W: Average width of tundish at the weir position (m)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010006058A JP2011143449A (en) | 2010-01-14 | 2010-01-14 | Method for removing inclusion in tundish for continuous casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010006058A JP2011143449A (en) | 2010-01-14 | 2010-01-14 | Method for removing inclusion in tundish for continuous casting |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011143449A true JP2011143449A (en) | 2011-07-28 |
Family
ID=44458769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010006058A Withdrawn JP2011143449A (en) | 2010-01-14 | 2010-01-14 | Method for removing inclusion in tundish for continuous casting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011143449A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019044292A1 (en) * | 2017-08-30 | 2019-03-07 | Jfeスチール株式会社 | Continuous casting method for steel and method for manufacturing thin steel plate |
JP2019214057A (en) * | 2018-06-11 | 2019-12-19 | 日本製鉄株式会社 | Continuous casting method |
JP2021013944A (en) * | 2019-07-11 | 2021-02-12 | 日本製鉄株式会社 | Continuous casting process |
JP2021517070A (en) * | 2018-03-30 | 2021-07-15 | 宝山鋼鉄股▲分▼有限公司 | Flow-controlled tundish structure that can filter inclusions in molten steel |
WO2023210201A1 (en) | 2022-04-26 | 2023-11-02 | Jfeスチール株式会社 | Tundish and continuous casting method using same |
-
2010
- 2010-01-14 JP JP2010006058A patent/JP2011143449A/en not_active Withdrawn
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019044292A1 (en) * | 2017-08-30 | 2019-03-07 | Jfeスチール株式会社 | Continuous casting method for steel and method for manufacturing thin steel plate |
JP2021517070A (en) * | 2018-03-30 | 2021-07-15 | 宝山鋼鉄股▲分▼有限公司 | Flow-controlled tundish structure that can filter inclusions in molten steel |
JP7171756B2 (en) | 2018-03-30 | 2022-11-15 | 宝山鋼鉄股▲分▼有限公司 | Flow control type tundish structure that can filter inclusions in molten steel |
JP2019214057A (en) * | 2018-06-11 | 2019-12-19 | 日本製鉄株式会社 | Continuous casting method |
JP7238275B2 (en) | 2018-06-11 | 2023-03-14 | 日本製鉄株式会社 | Continuous casting method |
JP2021013944A (en) * | 2019-07-11 | 2021-02-12 | 日本製鉄株式会社 | Continuous casting process |
JP7234837B2 (en) | 2019-07-11 | 2023-03-08 | 日本製鉄株式会社 | Continuous casting method |
WO2023210201A1 (en) | 2022-04-26 | 2023-11-02 | Jfeスチール株式会社 | Tundish and continuous casting method using same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5807719B2 (en) | High cleanliness steel slab manufacturing method and tundish | |
EP1996353B1 (en) | Distributor device for use in metal casting | |
JP2011143449A (en) | Method for removing inclusion in tundish for continuous casting | |
JP2005131661A (en) | Method and equipment for continuously casting high cleanness steel by tundish | |
JP5510047B2 (en) | Continuous casting method and continuous casting apparatus | |
JP2017177178A (en) | Tundish for continuous casting, and continuous casting method using the tundish | |
JP4714539B2 (en) | Tundish for continuous casting | |
JP5751078B2 (en) | Manufacturing method of high cleanliness steel slab by continuous casting | |
Hackl et al. | Innovative Flow Control Refractory Products for the Continuous Casting Process | |
JP4474948B2 (en) | Steel continuous casting method | |
JP4220848B2 (en) | Tundish for continuous casting of steel with heating function | |
JP4998705B2 (en) | Steel continuous casting method | |
JP5510061B2 (en) | Continuous casting method | |
JP5673162B2 (en) | Continuous casting method and continuous casting apparatus | |
JP5053226B2 (en) | Tundish for continuous casting | |
JP4725245B2 (en) | Continuous casting tundish and slab manufacturing method | |
JP2000202602A (en) | Method for removing inclusion in tundish for continuos casting | |
JP5450205B2 (en) | Pouring nozzle | |
JP2024120517A (en) | Continuous Casting Equipment | |
JP5009033B2 (en) | Steel continuous casting method and continuous casting apparatus | |
Gushchin et al. | Technical solutions for controlling flows of melts in the tundishes of continuous casters. | |
JP2023066986A (en) | nozzle system | |
JP2020171955A (en) | Continuous casting method for steel | |
JP2008132504A (en) | Tundish for continuous casting | |
JP2024119445A (en) | Continuous Casting Equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20130402 |