JP2011068776A - Foam-molded article - Google Patents

Foam-molded article Download PDF

Info

Publication number
JP2011068776A
JP2011068776A JP2009221006A JP2009221006A JP2011068776A JP 2011068776 A JP2011068776 A JP 2011068776A JP 2009221006 A JP2009221006 A JP 2009221006A JP 2009221006 A JP2009221006 A JP 2009221006A JP 2011068776 A JP2011068776 A JP 2011068776A
Authority
JP
Japan
Prior art keywords
resin particles
foamed
bulk
foaming
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009221006A
Other languages
Japanese (ja)
Inventor
Seiichi Morimoto
誠一 森本
Koji Mori
浩司 森
Hidekazu Kobayashi
英一 小林
Yoshihisa Yamaji
慶尚 山地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2009221006A priority Critical patent/JP2011068776A/en
Publication of JP2011068776A publication Critical patent/JP2011068776A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin foam-molded article that is produced without the need of a special device or mold or a complicated operation and without accompanying an increase in the production cost, maintains sufficient hardness of a surface layer and has a little dimensional change rate after heating. <P>SOLUTION: The foam-molded article is derived from formed resin particles of the same kind, and has a ratio of an inner bulk foaming rate If to a bulk foaming rate Sf of the surface layer of the molded article satisfying 1.1&le;If/Sf&le;1.8. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、発泡成形体に関する。更に詳しくは、本発明は、発泡成形体の表層の嵩発泡倍率が内部の嵩発泡倍率より低い発泡成形体に関する。   The present invention relates to a foam molded article. More specifically, the present invention relates to a foamed molded product in which the bulk foaming ratio of the surface layer of the foamed molded product is lower than the internal bulk foaming ratio.

近年、軽量化や低コスト化の要望から、樹脂発泡成形体の嵩発泡倍率をより高倍化することが望まれている。しかしながら、一般的に樹脂発泡成形体の嵩発泡倍率をより高倍化させると、樹脂発泡成形体の表面の硬度が低くなり、用途によっては硬度の要求値を満たせないという課題があった。
そこで、樹脂発泡成形体表面の硬度を上げるために、成形体の表面部の略全面に均一かつ高密度で硬いスキン層を有する成形体が知られている(特許文献1)。
また、発泡成形体の表面に一定厚みの無発泡層(スキン層)を形成させ、剛性の向上、表面加飾を可能にする発泡成形体が知られている(特許文献2)。
In recent years, it has been desired to further increase the bulk foaming ratio of a resin foam molded body from the demand for weight reduction and cost reduction. However, generally, when the bulk foaming ratio of the resin foam molded article is further increased, the hardness of the surface of the resin foam molded article is lowered, and there is a problem that the required value of hardness cannot be satisfied depending on applications.
Therefore, in order to increase the hardness of the surface of the resin foam molded body, there is known a molded body having a uniform, high density and hard skin layer on substantially the entire surface portion of the molded body (Patent Document 1).
Further, there is known a foam-molded body in which a non-foamed layer (skin layer) having a constant thickness is formed on the surface of the foam-molded body to improve rigidity and decorate the surface (Patent Document 2).

特許第3859330号公報Japanese Patent No. 3859330 特開平7−285141号公報JP 7-285141 A

しかし、特許文献1および2に記載の樹脂発泡成形体は、前述のように成形体表面に高密度のスキン層や一定厚みの無発泡層を形成させる特殊な成形方法によってのみ得られるものであるので、特別な装置・金型または複雑な操作を必要としかつ製造コストが増加する問題があった。   However, the resin foam molded articles described in Patent Documents 1 and 2 are obtained only by a special molding method for forming a high-density skin layer or a constant-thickness non-foamed layer on the surface of the molded article as described above. Therefore, there is a problem that a special apparatus / mold or complicated operation is required and the manufacturing cost increases.

本発明者らは、上記の課題を解決するため、鋭意研究を重ねた結果、発泡成形体の表層の嵩発泡倍率を内部の嵩発泡倍率より低くすれば、スキン層を設けなくても、所望の表面硬度を確保できることを見出して、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventors have found that the surface foam layer foam foam body has a lower bulk foaming ratio than the internal bulk foaming ratio. Thus, the present invention was completed.

かくして本発明によれば、同一種類の発泡樹脂粒子に由来する発泡成形体であり、前記発泡成形体の表層の嵩発泡倍率Sfと内部の嵩発泡倍率Ifとの比率が、1.1≦If/Sf≦1.8を有する発泡体であることを特徴とする発泡成形体が提供される。   Thus, according to the present invention, it is a foam molded article derived from the same type of foamed resin particle, and the ratio of the bulk foaming magnification Sf of the surface layer of the foamed molded article to the internal bulk foaming magnification If is 1.1 ≦ If. There is provided a foamed molded article characterized by being a foam having /Sf≦1.8.

本発明によれば、硬度の良好な樹脂発泡成形体を提供することができ、さらに、加熱後寸法変化率の小さい樹脂発泡成形体を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the resin foam molded object with favorable hardness can be provided, and also the resin foam molded object with a small dimensional change rate after a heating can be provided.

本発明の発泡成形体は、同一種類の発泡樹脂粒子に由来する発泡成形体であり、前記発泡成形体の表層の嵩発泡倍率Sfと内部の嵩発泡倍率Ifとの比率が、1.1≦If/Sf≦1.8を有する発泡体である。   The foamed molded product of the present invention is a foamed molded product derived from the same type of foamed resin particles, and the ratio of the bulk foaming magnification Sf of the surface layer of the foamed molded product to the internal bulk foaming magnification If is 1.1 ≦. A foam having If / Sf ≦ 1.8.

<発泡樹脂粒子>
本発明の発泡樹脂粒子とは、樹脂粒子に発泡剤を含浸させ、それを所定の嵩密度に発泡させた粒子である。
<Foamed resin particles>
The foamed resin particles of the present invention are particles obtained by impregnating resin particles with a foaming agent and foaming them to a predetermined bulk density.

(樹脂粒子)
樹脂粒子には、同一種類の樹脂粒子が使用される。
樹脂粒子としては、ポリオレフィン系樹脂粒子、ポリスチレン系樹脂粒子、ポリスチレン系樹脂とポリオレフィン系樹脂の複合樹脂粒子が挙げられる。
(Resin particles)
The resin particles of the same type are used for the resin particles.
Examples of the resin particles include polyolefin resin particles, polystyrene resin particles, and composite resin particles of polystyrene resin and polyolefin resin.

上記ポリスチレン系樹脂とポリオレフィン系樹脂の複合樹脂粒子としては、ポリスチレン系樹脂とポリオレフィン系樹脂とを混合した樹脂粒子、ポリオレフィン系樹脂からなる種粒子(マイクロペレット)にスチレン系モノマーを含浸(吸収)させた後、重合させることで得られる樹脂粒子(以下、改質樹脂粒子または改質ポリスチレン系樹脂粒子ともいう)が挙げられる。複合樹脂粒子を構成するポリオレフィン系樹脂はポリプロピレン系樹脂であることが好ましい。   As the composite resin particles of polystyrene resin and polyolefin resin, resin particles obtained by mixing polystyrene resin and polyolefin resin, seed particles (micropellets) made of polyolefin resin are impregnated (absorbed) with styrene monomer. Thereafter, resin particles obtained by polymerization (hereinafter, also referred to as modified resin particles or modified polystyrene resin particles) can be used. The polyolefin resin constituting the composite resin particles is preferably a polypropylene resin.

上記樹脂粒子の内、ポリスチレン系樹脂とポリオレフィン系樹脂の性質を粒子レベルで兼ね備えた複合樹脂粒子が好ましい。特に、改質樹脂粒子が好ましい。以下、改質樹脂粒子について説明する。   Among the resin particles, composite resin particles having properties of polystyrene resin and polyolefin resin at the particle level are preferable. In particular, modified resin particles are preferable. Hereinafter, the modified resin particles will be described.

前記改質樹脂粒子の樹脂材料の1つであるポリオレフィン系樹脂としては、特に限定されず、公知の重合方法で得られた樹脂が使用できるが、中でもポリプロピレン系樹脂が好ましい。また、ポリオレフィン系樹脂は、架橋していてもよい。
ポリプロピレン系樹脂としては、特に限定されず、例えば、プロピレン−エチレン共重合体が用いられる。該プロピレン−エチレン共重合体は、エチレンとプロピレンの共重合体を主成分とするものであるが、エチレンまたはプロピレンと共重合し得る他のモノマーを分子内に含有するものであってもよい。そのようなモノマーとしては、α−オレフィン、環状オレフィン、ジエン系モノマーから選択された一種または二種以上のものが挙げられる。
The polyolefin resin, which is one of the resin materials of the modified resin particles, is not particularly limited, and a resin obtained by a known polymerization method can be used, and among them, a polypropylene resin is preferable. The polyolefin resin may be cross-linked.
The polypropylene resin is not particularly limited, and for example, a propylene-ethylene copolymer is used. The propylene-ethylene copolymer is mainly composed of a copolymer of ethylene and propylene, but may contain other monomers that can be copolymerized with ethylene or propylene in the molecule. Examples of such a monomer include one or more selected from an α-olefin, a cyclic olefin, and a diene monomer.

前記ポリプロピレン系樹脂としては、120〜145℃の範囲の融点を有するものが好ましい。ポリプロピレン系樹脂の融点が120℃より低いと耐熱性が乏しく、改質ポリスチレン系樹脂粒子を用いて製造される改質ポリスチレン系樹脂発泡成形体の耐熱性が低くなることがある。また、融点が145℃より高いと、重合温度が高くなり、良好な重合ができなくなることがある。   As said polypropylene resin, what has melting | fusing point of the range of 120-145 degreeC is preferable. When the melting point of the polypropylene resin is lower than 120 ° C., the heat resistance is poor, and the heat resistance of the modified polystyrene resin foam molded article produced using the modified polystyrene resin particles may be lowered. On the other hand, if the melting point is higher than 145 ° C., the polymerization temperature becomes high and good polymerization may not be possible.

前記ポリプロピレン系樹脂には、必要に応じて、難燃剤、難燃助剤、酸化防止剤、紫外線吸収剤、顔料、着色剤等の添加剤が含まれていてもよい。
改質ポリスチレン系樹脂粒子においては、着色剤は、無機系の顔料であっても、有機系の顔料であってもよい。
無機系の顔料としては、例えば、黄鉛、亜鉛黄、バリウム黄等のクロム酸塩、紺青等のフェロシアン化合物、カドミウムイエロー、カドミウムレッド等の硫化物、鉄黒、紅殻等の酸化物、群青等のケイ酸塩、酸化チタン等が挙げられる。
また、有形系の顔料としては、例えば、モノアゾ顔料、ジスアゾ顔料、アゾレーキ、縮合アゾ顔料、キレートアゾ顔料等のアゾ顔料、フタロシアニン系、アントラキノン系、ペリレン系、ペリノン系、チオインジゴ系、キナクリドン系、ジオキサジン系、イソインドリノン系、キノフタロン系等の多環式顔料が挙げられる。
The polypropylene-based resin may contain additives such as a flame retardant, a flame retardant aid, an antioxidant, an ultraviolet absorber, a pigment, and a colorant as necessary.
In the modified polystyrene resin particles, the colorant may be an inorganic pigment or an organic pigment.
Examples of inorganic pigments include chromates such as chrome yellow, zinc yellow, and barium yellow, ferrocyan compounds such as bitumen, sulfides such as cadmium yellow and cadmium red, oxides such as iron black and red husk, and ultramarine blue. And silicates such as titanium oxide.
Examples of the tangible pigment include azo pigments such as monoazo pigments, disazo pigments, azo lakes, condensed azo pigments, chelate azo pigments, phthalocyanine-based, anthraquinone-based, perylene-based, perinone-based, thioindigo-based, quinacridone-based, dioxazine-based pigments. And polyindole pigments such as isoindolinone and quinophthalone.

前記改質ポリスチレン系樹脂粒子の樹脂材料の1つであるポリスチレン系樹脂としては、例えば、スチレン、α−メチルスチレン、p−メチルスチレン、t−ブチルスチレン等のスチレン系モノマーを重合させて得られる樹脂が挙げられる。さらに、ポリスチレン系樹脂は、スチレン系モノマーと、該スチレン系モノマーと共重合可能な他のモノマーとの共重合体であってもよい。他のモノマーとしては、ジビニルベンゼンのような多官能性モノマーや、(メタ)アクリル酸ブチルのような構造中にベンゼン環を含まない(メタ)アクリル酸アルキルエステルなどが例示される。これら他のモノマーは、実質的にポリスチレン系樹脂に対して5質量%を超えない範囲で使用してもよい。なお、本明細書では、スチレンおよびスチレンと共重合可能なモノマーもスチレン系モノマーと称している。   The polystyrene resin, which is one of the resin materials of the modified polystyrene resin particles, can be obtained by polymerizing styrene monomers such as styrene, α-methylstyrene, p-methylstyrene, t-butylstyrene, and the like. Resin. Furthermore, the polystyrene resin may be a copolymer of a styrene monomer and another monomer copolymerizable with the styrene monomer. Examples of the other monomers include polyfunctional monomers such as divinylbenzene, and (meth) acrylic acid alkyl esters that do not contain a benzene ring in the structure such as butyl (meth) acrylate. You may use these other monomers in the range which does not exceed 5 mass% substantially with respect to a polystyrene-type resin. In the present specification, styrene and monomers copolymerizable with styrene are also referred to as styrene monomers.

改質ポリスチレン系樹脂粒子は、例えば、ポリオレフィン系樹脂粒子が分散保持された水性媒体中にスチレン系モノマーを加えて重合させることで得られる。改質ポリスチレン系樹脂粒子の製造方法を以下で説明する。   The modified polystyrene resin particles can be obtained, for example, by adding and polymerizing a styrene monomer in an aqueous medium in which polyolefin resin particles are dispersed and held. A method for producing the modified polystyrene resin particles will be described below.

ポリオレフィン系樹脂粒子は、公知の方法で得ることができる。例えば、まず、押出機を使用してポリオレフィン系樹脂を溶融押出した後、水中カット、ストランドカット等により造粒することや、粉砕機で直接樹脂粒子を粉砕することで、ポリオレフィン系樹脂粒子を作製できる。通常、使用するポリオレフィン系樹脂粒子の形状は、例えば、真球状、楕円球状(卵状)、円柱状、角柱状、ペレット状又はグラニュラー状である。以下では、ポリオレフィン系樹脂粒子をマイクロペレットとも記す。このポリオレフィン系樹脂粒子の好ましい樹脂粒径は、0.5mm〜1.5mmの範囲であり、より好ましくは、0.6mm〜1.0mmの範囲である。
また、ポリオレフィン系樹脂としては、下記(A)工程において、融点が100℃〜150℃であるものが好ましく、120℃〜145℃であるものがさらに好ましい。
The polyolefin resin particles can be obtained by a known method. For example, first, polyolefin resin is melt-extruded using an extruder and then granulated by underwater cutting, strand cutting, etc., or resin particles are directly pulverized by a pulverizer to produce polyolefin resin particles. it can. Usually, the shape of the polyolefin resin particles to be used is, for example, a true sphere, an oval sphere (egg), a cylinder, a prism, a pellet, or a granular. Hereinafter, the polyolefin resin particles are also referred to as micropellets. The preferred resin particle size of the polyolefin resin particles is in the range of 0.5 mm to 1.5 mm, and more preferably in the range of 0.6 mm to 1.0 mm.
Moreover, as polyolefin-type resin, what is 100 to 150 degreeC melting | fusing point is preferable in the following (A) process, and what is 120 to 145 degreeC is further more preferable.

ポリオレフィン系樹脂粒子は、タルク、珪酸カルシウム、ステアリン酸カルシウム、合成あるいは天然に産出される二酸化ケイ素、エチレンビスステアリン酸アミド、メタクリル酸エステル系共重合体等の気泡調整剤、トリアリルイソシアヌレート6臭素化物等の難燃剤、カーボンブラック、酸化鉄、グラファイト等の着色剤等を含んでいてもよい。   Polyolefin resin particles include talc, calcium silicate, calcium stearate, synthetic or naturally produced silicon dioxide, ethylene bis-stearic acid amide, methacrylate ester copolymer and other cell regulators, triallyl isocyanurate hexabromide And a flame retardant such as carbon black, iron oxide, and a colorant such as graphite.

次に、ポリオレフィン系樹脂粒子を用い、次の(A)〜(D)の各工程を備えた製造方法により、改質樹脂粒子を効率よく、また歩留まりよく製造することができる。
(A)分散剤を含む水性懸濁液中に、ポリオレフィン系樹脂粒子と、スチレン系モノマーと、重合開始剤とを分散させる工程、
(B)得られた分散液を前記スチレン系モノマーが実質的に重合しない温度に加熱して前記スチレン系モノマーを前記ポリオレフィン系樹脂粒子に含浸させる工程、
(C)前記ポリオレフィン系樹脂粒子の融点をT℃としたとき、(T−10)℃〜(T+20)℃の温度で、前記スチレン系モノマーの第1の重合を行う工程、
(D)前記第1の重合工程に続いて、スチレン系モノマーと、重合開始剤とを加え、かつ、前記ポリオレフィン系樹脂粒子の融点をT℃としたとき、(T−25)℃〜(T+10)℃の温度とすることにより、前記ポリオレフィン系樹脂粒子への前記スチレン系モノマーの含浸および第2の重合を行う工程。
Next, the modified resin particles can be produced efficiently and with a high yield by using the polyolefin resin particles and the production method including the following steps (A) to (D).
(A) A step of dispersing polyolefin resin particles, a styrene monomer, and a polymerization initiator in an aqueous suspension containing a dispersant,
(B) heating the obtained dispersion to a temperature at which the styrenic monomer is not substantially polymerized to impregnate the polyolefin resin particles with the styrenic monomer;
(C) When the melting point of the polyolefin resin particles is T ° C., a step of performing the first polymerization of the styrene monomer at a temperature of (T−10) ° C. to (T + 20) ° C.,
(D) Subsequent to the first polymerization step, when a styrene monomer and a polymerization initiator are added and the melting point of the polyolefin resin particles is T ° C, (T-25) ° C to (T + 10) ) The step of impregnating the polyolefin resin particles with the styrenic monomer and performing the second polymerization by setting the temperature to ° C.

なお、この(A)〜(D)の各工程は、スチレン系モノマーを原料としてビーズ状のポリスチレン系樹脂粒子を製造するポリスチレン系樹脂の懸濁重合法またはシード重合法等の周知の重合方法を行う際に用いられるオートクレーブ重合装置等を用いて行うことができるが、使用する製造装置はこれに限定されない。   Each of the steps (A) to (D) is performed by a well-known polymerization method such as a suspension polymerization method or a seed polymerization method of a polystyrene resin for producing beaded polystyrene resin particles using a styrene monomer as a raw material. Although it can carry out using the autoclave polymerization apparatus etc. which are used when performing, the manufacturing apparatus to be used is not limited to this.

前記(A)工程で用いられる分散剤としては、例えば、部分ケン化ポリビニルアルコール、ポリアクリル酸塩、ポリビニルピロリドン、カルボキシメチルセルロース、メチルセルロース等の有機系分散剤、ピロリン酸マグネシウム、ピロリン酸カルシウム、リン酸カルシウム、炭酸カルシウム、リン酸マグネシウム、炭酸マグネシウム、酸化マグネシウム等の無機系分散剤が挙げられる。この内、無機系分散剤が好ましい。無機系分散剤を用いる場合、界面活性剤を併用することが好ましい。このような界面活性剤としては、例えば、ドデシルベンゼンスルホン酸ソーダ、α−オレフィンスルホン酸ソーダ等が挙げられる。   Examples of the dispersant used in the step (A) include organic dispersants such as partially saponified polyvinyl alcohol, polyacrylate, polyvinyl pyrrolidone, carboxymethyl cellulose, and methyl cellulose, magnesium pyrophosphate, calcium pyrophosphate, calcium phosphate, and carbonic acid. Examples thereof include inorganic dispersants such as calcium, magnesium phosphate, magnesium carbonate, and magnesium oxide. Of these, inorganic dispersants are preferred. When using an inorganic dispersant, it is preferable to use a surfactant in combination. Examples of such surfactants include dodecyl benzene sulfonic acid soda and α-olefin sulfonic acid soda.

また、重合開始剤としては、スチレン系モノマーの重合に汎用されている周知の重合開始剤を使用できる。例えば、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、t−アミルパーオキシオクトエート、t−ブチルパーオキシベンゾエート、t−アミルパーオキシベンゾエート、t−ブチルパーオキシビバレーと、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシアセテート、t−ブチルパーオキシ−3,3,5−トリメチルシクロヘキサノエート、ジ−t−ブチルパーオキシヘキサハイドロテレフタレート、2,2−ジ−t−ブチルパーオキシブタン,ジクミルパーオキサイド等の有機過酸化物、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル等のアゾ化合物が挙げられる。なお、重合開始剤は、単独で用いられても併用されてもよい。   Moreover, as a polymerization initiator, the well-known polymerization initiator currently used widely for superposition | polymerization of a styrene-type monomer can be used. For example, benzoyl peroxide, lauroyl peroxide, t-amyl peroxy octoate, t-butyl peroxybenzoate, t-amyl peroxybenzoate, t-butyl peroxybivalley, t-butyl peroxyisopropyl carbonate, t -Butyl peroxyacetate, t-butylperoxy-3,3,5-trimethylcyclohexanoate, di-t-butylperoxyhexahydroterephthalate, 2,2-di-t-butylperoxybutane, dicumylper Examples thereof include organic peroxides such as oxide, and azo compounds such as azobisisobutyronitrile and azobisdimethylvaleronitrile. In addition, a polymerization initiator may be used independently or may be used together.

また、架橋剤を添加する場合、その添加方法としては、例えば、架橋剤をポリオレフィン系樹脂に直接添加する方法、溶剤、可塑剤またはスチレン系モノマーに架橋剤を溶解させた上で添加する方法、架橋剤を水に分散させた上で添加する方法等が挙げられる。この内、スチレン系モノマーに架橋剤を溶解させた上で添加する方法が好ましい。   In addition, when adding a cross-linking agent, for example, as a method of adding, for example, a method of directly adding a cross-linking agent to a polyolefin-based resin, a method of adding after dissolving the cross-linking agent in a solvent, a plasticizer or a styrene monomer, Examples thereof include a method in which a crosslinking agent is dispersed in water and then added. Among these, the method of adding after dissolving a crosslinking agent in a styrene-type monomer is preferable.

スチレン系モノマーは、ポリオレフィン系樹脂粒子に含浸させるために、水性媒体に、連続的にまたは断続的に添加できる。スチレン系モノマーは、水性媒体中に徐々に添加していくのが好ましい。水性媒体としては、水、水と水溶性媒体(例えば、アルコール)との混合媒体が挙げられる。   The styrenic monomer can be added continuously or intermittently to the aqueous medium in order to impregnate the polyolefin resin particles. The styrenic monomer is preferably added gradually to the aqueous medium. Examples of the aqueous medium include water and a mixed medium of water and a water-soluble medium (for example, alcohol).

前記(B)工程において、(A)工程で得られた分散液を、スチレン系モノマーが実質的に重合しない温度に加熱し、スチレン系モノマーをポリオレフィン系樹脂粒子に含浸させる際の温度は、45℃〜70℃の範囲、好ましくは50℃〜65℃の範囲とする。
この含浸温度が45℃より低いと、スチレン系モノマーの含浸が不十分となってポリスチレンの重合粉末が生成されることがあり、好ましくない。一方、含浸温度が70℃より高いと、スチレン系モノマーがポリオレフィン系樹脂粒子に十分含浸される前に重合してしまうことがあり好ましくない。
In the step (B), the dispersion obtained in the step (A) is heated to a temperature at which the styrene monomer is not substantially polymerized, and the temperature when the polyolefin resin particles are impregnated with the styrene monomer is 45. The range is from 0 to 70 ° C., preferably from 50 to 65 ° C.
When the impregnation temperature is lower than 45 ° C., the impregnation of the styrenic monomer is insufficient and a polymerized polystyrene powder may be generated, which is not preferable. On the other hand, when the impregnation temperature is higher than 70 ° C., polymerization may occur before the styrene monomer is sufficiently impregnated into the polyolefin resin particles.

前記(C)工程、および(D)工程において、重合温度は重要な因子であり、ポリオレフィン系樹脂の融点をT℃としたとき、(C)工程(第1の重合)では、(T−10)℃〜(T+20)℃の温度範囲とし、(D)工程(第2の重合)では、(T−25)℃〜(T+10)℃の温度範囲とする。
前記温度範囲で重合を行うことにより、樹脂粒子の中心部は、ポリスチレン系樹脂の存在量が多く(つまり、表層にポリオレフィン系樹脂の存在量が多い)、その結果として、ポリオレフィン系樹脂とポリスチレン系樹脂のそれぞれの長所が生かされ、剛性、発泡成形性、耐薬品性および耐熱性に優れた改質ポリスチレン系樹脂粒子が得られる。
In the step (C) and the step (D), the polymerization temperature is an important factor. When the melting point of the polyolefin resin is T ° C., in the step (C) (first polymerization), (T-10 ) ° C. to (T + 20) ° C., and in the step (D) (second polymerization), the temperature range is (T−25) ° C. to (T + 10) ° C.
By performing polymerization in the above temperature range, the resin particles have a large amount of polystyrene resin at the center of the resin particles (that is, a large amount of polyolefin resin is present on the surface layer). As a result, polyolefin resin and polystyrene resin are present. By taking advantage of each advantage of the resin, modified polystyrene resin particles having excellent rigidity, foam moldability, chemical resistance and heat resistance can be obtained.

重合容器の形状及び構造としては、従来からスチレン系モノマーの懸濁重合に用いられているものであれば、特に限定されない。
また、撹拌翼の形状についても特に限定はなく、具体的には、V型パドル翼、ファードラー翼、傾斜パドル翼、平パドル翼、プルマージン翼等のパドル翼、タービン翼、ファンタービン翼等のタービン翼、マリンプロペラ翼のようなプロペラ翼等が挙げられる。これら撹拌翼の内では、パドル翼が好ましい。撹拌翼は、単段翼であっても多段翼であってもよい。重合容器に邪魔板(バッフル)を設けてもよい。
得られる改質樹脂粒子の粒子径は、0.2〜2mm程度が好ましく、より好ましくは0.5〜1.8mmである。
The shape and structure of the polymerization vessel are not particularly limited as long as they are conventionally used for suspension polymerization of styrene monomers.
Further, the shape of the stirring blade is not particularly limited, and specifically, a paddle blade such as a V-type paddle blade, a fiddler blade, an inclined paddle blade, a flat paddle blade, a pull margin blade, a turbine blade, a fan turbine blade, etc. Examples include a turbine blade and a propeller blade such as a marine propeller blade. Of these stirring blades, paddle blades are preferred. The stirring blade may be a single stage blade or a multistage blade. A baffle may be provided in the polymerization container.
The particle diameter of the resulting modified resin particles is preferably about 0.2 to 2 mm, more preferably 0.5 to 1.8 mm.

ポリスチレン系樹脂は、改質樹脂粒子中に、ポリオレフィン系樹脂(好ましくはポリプロピレン系樹脂)100質量部に対して、100質量部以上400質量部未満含まれるのが好ましく、120質量部以上300質量部未満含まれるのがより好ましく、150質量部以上250質量部未満含まれるのがさらに好ましい。また、ポリオレフィン系樹脂粒子(好ましくはポリプロピレン系樹脂粒子)100質量部に対するポリスチレン系樹脂の原料のスチレン系モノマーの配合量も、ポリスチレン系樹脂と同じ、100質量部以上400質量部未満である。
ポリスチレン系樹脂の含有量が400質量部より多いと、予備発泡粒子を二次発泡させて得られる発泡成形体の耐薬品性および耐熱性が低下することがあり好ましくない。一方
100質量部より少ないと、予備発泡粒子を二次発泡させて得られる発泡成形体の剛性が低下することがあり好ましくない。
The polystyrene resin is preferably contained in the modified resin particles in an amount of 100 parts by mass or more and less than 400 parts by mass with respect to 100 parts by mass of the polyolefin resin (preferably a polypropylene resin), and 120 parts by mass or more and 300 parts by mass. More preferably, it is more preferably contained in an amount of 150 parts by mass or more and less than 250 parts by mass. Moreover, the compounding quantity of the styrene-type monomer of the raw material of the polystyrene-type resin with respect to 100 mass parts of polyolefin-type resin particles (preferably polypropylene-type resin particle) is also 100 mass parts or more and less than 400 mass parts same as a polystyrene resin.
When the content of the polystyrene-based resin is more than 400 parts by mass, the chemical resistance and heat resistance of the foamed molded product obtained by secondary foaming of the pre-expanded particles may be unfavorable. On the other hand, when the amount is less than 100 parts by mass, the rigidity of the foamed molded product obtained by secondary foaming of the pre-foamed particles may decrease, which is not preferable.

得られる改質樹脂粒子中には、難燃剤、難燃助剤等の添加剤が配合されていてもよい。
難燃剤としては、トリ(2,3−ジボロモプロピル)イソシアネート等が挙げられる。
難燃助剤としては、2,3−ジメチル−2,3−ジフェニルブタン等が挙げられる。
Additives such as flame retardants and flame retardant aids may be blended in the resulting modified resin particles.
Examples of the flame retardant include tri (2,3-diboromopropyl) isocyanate.
Examples of the flame retardant aid include 2,3-dimethyl-2,3-diphenylbutane.

(発泡剤含浸)
発泡剤の含浸は、加圧下又は常圧下、それ自体公知の方法により行うことができる。改質ポリスチレン系樹脂粒子中に発泡剤を含浸させる方法は、発泡剤の種類に応じて適宜変更可能である。例えば、改質ポリスチレン系樹脂粒子が分散している水性媒体中に発泡剤を圧入して、該樹脂中に発泡剤を含浸させる方法、改質ポリスチレン系樹脂粒子を回転混合機に供給し、この回転混合機内に発泡剤を圧入して該樹脂粒子に発泡剤を含浸させる方法などが挙げられる。なお、改質ポリスチレン系樹脂粒子に発泡剤を含浸させる温度は、通常、50℃〜140℃とすることが好ましい。
(Foaming agent impregnation)
The impregnation with the foaming agent can be performed by a method known per se under pressure or normal pressure. The method of impregnating the modified polystyrene resin particles with the foaming agent can be appropriately changed according to the type of the foaming agent. For example, a method in which a foaming agent is pressed into an aqueous medium in which modified polystyrene resin particles are dispersed, and the foaming agent is impregnated in the resin, and the modified polystyrene resin particles are supplied to a rotary mixer. Examples thereof include a method in which a foaming agent is pressed into a rotary mixer and the resin particles are impregnated with the foaming agent. The temperature at which the modified polystyrene resin particles are impregnated with the foaming agent is usually preferably 50 ° C to 140 ° C.

発泡剤としては、沸点が重合体の軟化温度以下であり易揮発性を有するもの、例えば、プロパン、n−ブタン、i−ブタン、n−ペンタン、i−ペンタン、シクロペンタン、炭酸ガス、窒素が挙げられ、これらの発泡剤は、単独もしくは2種以上を併用して用いることができる。易揮発性発泡剤の使用量は、改質ポリスチレン系樹脂粒子100質量部に対して5〜25質量部の範囲とすることが好ましい。   Examples of the foaming agent include those having a boiling point below the softening temperature of the polymer and easily volatile, such as propane, n-butane, i-butane, n-pentane, i-pentane, cyclopentane, carbon dioxide, and nitrogen. These foaming agents can be used alone or in combination of two or more. The amount of the readily volatile foaming agent used is preferably in the range of 5 to 25 parts by mass with respect to 100 parts by mass of the modified polystyrene resin particles.

さらに、発泡助剤を発泡剤と共に用いてもよい。このような発泡助剤としては、例えば、トルエン、キシレン、エチルベンゼン、シクロヘキサン、D−リモネンなどの溶剤、ジイソブチルアジペート、ジアセチル化モノラウレート、やし油などの可塑剤(高沸点溶剤)が挙げられる。なお、発泡助剤の添加量としては、改質ポリスチレン系樹脂粒子100質量部に対して0.1〜2.5質量部が好ましい。   Furthermore, you may use a foaming adjuvant with a foaming agent. Examples of such foaming aids include solvents such as toluene, xylene, ethylbenzene, cyclohexane, and D-limonene, and plasticizers (high-boiling solvents) such as diisobutyl adipate, diacetylated monolaurate, and palm oil. . In addition, as addition amount of a foaming adjuvant, 0.1-2.5 mass parts is preferable with respect to 100 mass parts of modified polystyrene resin particles.

また、発泡性改質ポリスチレン系樹脂粒子には、結合防止剤、融着促進剤、帯電防止剤、展着剤などの表面処理剤を添加してもよい。
結合防止剤は、発泡性改質ポリスチレン系樹脂粒子を予備発泡させる際の予備発泡粒子同士の合着を防止する役割を果たす。ここで、合着とは、予備発泡粒子の複数個が合一して一体化することをいう。具体例としては、タルク、炭酸カルシウム、ステアリン酸亜鉛、水酸化アルミニウム、エチレンビスステアリン酸アミド、第三リン酸カルシウム、ジメチルポリシロキサンなどが挙げられる。
In addition, a surface treatment agent such as a binding inhibitor, a fusion accelerator, an antistatic agent, or a spreading agent may be added to the expandable modified polystyrene resin particles.
The anti-bonding agent serves to prevent the pre-expanded particles from being bonded to each other when the expandable modified polystyrene resin particles are pre-expanded. Here, coalescence means that a plurality of pre-expanded particles are united and integrated. Specific examples include talc, calcium carbonate, zinc stearate, aluminum hydroxide, ethylene bis stearamide, tricalcium phosphate, dimethylpolysiloxane, and the like.

融着促進剤は、予備発泡粒子を二次発泡成形する際の予備発泡粒子同士の融着を促進させる役割を果たす。具体例としては、ステアリン酸、ステアリン酸トリグリセリド、ヒドロキシステアリン酸トリグリセリド、ステアリン酸ソルビタンエステルなどが挙げられる。
帯電防止剤としては、ポリオキシエチレンアルキルフェノールエーテル、ステアリン酸モノグリセリド等が挙げられる。展着剤としては、ポリブテン、ポリエチレングリコール、シリコンオイルなどが挙げられる。なお、前記表面処理剤の総添加量は、改質ポリスチレン系樹脂粒子100質量部に対して0.01〜2.0質量部が好ましい。
The fusion accelerator plays a role of promoting fusion between the pre-foamed particles when the pre-foamed particles are subjected to secondary foam molding. Specific examples include stearic acid, stearic acid triglyceride, hydroxystearic acid triglyceride, sorbitan stearate, and the like.
Examples of the antistatic agent include polyoxyethylene alkylphenol ether and stearic acid monoglyceride. Examples of the spreading agent include polybutene, polyethylene glycol, and silicone oil. In addition, as for the total addition amount of the said surface treating agent, 0.01-2.0 mass parts is preferable with respect to 100 mass parts of modified polystyrene resin particles.

(発泡樹脂粒子製造)
発泡剤が含浸された樹脂粒子(発泡性樹脂粒子)を、必要に応じて、水蒸気等の加熱媒体を用いて加熱して所定の嵩密度に予備発泡させることで、発泡樹脂粒子を得ることができる。
前記以外の発泡樹脂粒子の製造方法として、発泡樹脂粒子は、押出発泡法でも得ることができる。ここで、押出発泡法とは、樹脂を押出機に供給し、押出機内で樹脂を溶融し、溶融した樹脂に発泡剤を含ませ、発泡剤含有の溶融樹脂を押出機から低圧領域へ押し出して、押し出すと同時に樹脂を発泡させて発泡樹脂粒子とする方法である。また、押出機に供給する樹脂は2種類以上でもよい。
(Manufacturing foamed resin particles)
The resin particles impregnated with the foaming agent (expandable resin particles) are heated using a heating medium such as water vapor as necessary to be pre-foamed to a predetermined bulk density, thereby obtaining foamed resin particles. it can.
As a method for producing foamed resin particles other than the above, the foamed resin particles can also be obtained by an extrusion foaming method. Here, the extrusion foaming method refers to supplying resin to an extruder, melting the resin in the extruder, including a foaming agent in the melted resin, and extruding a molten resin containing the foaming agent from the extruder to a low pressure region. In this method, the resin is foamed to form foamed resin particles at the same time as the extrusion. Two or more kinds of resins may be supplied to the extruder.

発泡樹脂粒子は、嵩倍数5〜60倍(嵩密度0.016〜0.2g/cm3)を有していることが好ましい。嵩倍数が60倍より大きいと、発泡粒子の独立気泡率が低下して、発泡樹脂粒子を発泡させて得られる発泡成形体の強度が低下することがある。一方、5倍より小さいと、発泡樹脂粒子を発泡させて得られる発泡成形体の重量が増加することがある。 The foamed resin particles preferably have a bulk multiple of 5 to 60 times (bulk density 0.016 to 0.2 g / cm 3 ). If the bulk multiple is larger than 60 times, the closed cell ratio of the foamed particles is lowered, and the strength of the foamed molded product obtained by foaming the foamed resin particles may be lowered. On the other hand, if it is less than 5 times, the weight of the foamed molded product obtained by foaming the foamed resin particles may increase.

発泡樹脂粒子の形態は、その後の型内発泡成形に影響を与えないものであれば、特に限定されない。例えば、真球状、楕円球状(卵状)、円柱状、角柱状などが挙げられる。この内、成形型のキャビティ内への充填が容易である真球状、楕円球状が好ましい。   The form of the foamed resin particles is not particularly limited as long as it does not affect the subsequent in-mold foam molding. For example, a true spherical shape, an elliptical spherical shape (egg shape), a cylindrical shape, a prismatic shape, and the like can be given. Of these, a true spherical shape and an elliptical spherical shape, which can be easily filled into the cavity of the mold, are preferable.

この発泡樹脂粒子は、添加剤を含んでいてもよい。添加剤としては、タルク、珪酸カルシウム、エチレンビスステアリン酸アミド、メタクリル酸エステル系共重合体などの発泡核剤、合成あるいは天然に産出される二酸化ケイ素などの充填剤、ヘキサブロモシクロドデカン、トリアリルイソシアヌレート6臭素化合物などの難燃剤、ジイソブチルアジペート、流動パラフィン、グリセリンジアセトモノラウレート、やし油などの可塑剤、カーボンブラック、グラファイトなどの着色剤、紫外線吸収剤、酸化防止剤などが挙げられる。   The foamed resin particles may contain an additive. Additives include foaming nucleating agents such as talc, calcium silicate, ethylene bis-stearic acid amide, methacrylic ester copolymers, fillers such as synthetic or naturally produced silicon dioxide, hexabromocyclododecane, triallyl Flame retardants such as isocyanurate 6 bromine compounds, plasticizers such as diisobutyl adipate, liquid paraffin, glycerin diacetomonolaurate and coconut oil, colorants such as carbon black and graphite, UV absorbers, antioxidants, etc. .

<発泡成形体>
更に、発泡樹脂粒子は通常24時間程度保管し熟成させる。その後、金型内に発泡樹脂粒子を充填し、再度加熱して発泡樹脂粒子を型内発泡させて粒子同士を熱融着させ、冷却を行うことで発泡成形体を得ることができる。加熱用の媒体は、ゲージ圧力0.05〜0.45MPaの水蒸気が好適に使用され、水蒸気を導入する時間は10〜180秒が好ましい。
<Foamed molded product>
Further, the foamed resin particles are usually stored and aged for about 24 hours. Thereafter, the resin mold is filled with foamed resin particles, heated again to foam the foamed resin particles in the mold, the particles are thermally fused, and cooled to obtain a foamed molded article. As the heating medium, water vapor having a gauge pressure of 0.05 to 0.45 MPa is preferably used, and the time for introducing water vapor is preferably 10 to 180 seconds.

発泡成形体は、嵩倍数5〜60倍(嵩密度0.016〜0.2g/cm3)を有していることが好ましい。嵩倍数が60倍より大きいと、発泡成形体の強度が低下することがある。一方、5倍より小さいと、発泡成形体の重量が増加することがある。 The foamed molded article preferably has a bulk multiple of 5 to 60 times (bulk density 0.016 to 0.2 g / cm 3 ). If the bulk multiple is larger than 60 times, the strength of the foamed molded product may be lowered. On the other hand, if it is less than 5 times, the weight of the foamed molded product may increase.

本発明において、発泡成形体の表層および内部とは、発泡成形体の厚みが少なくとも20mm以上あり、表皮を含む30mm×30mm以上の水平な面を有する任意の部分から、厚みの1/3の長さを一変とする立方体を厚み方向に3等分に分割したときに、その3等分した立方体のうちの、発泡成形体の表皮を含む上下の分割片を表層、表皮を含まない前記表層に挟まれた分割片を内部という。   In the present invention, the surface layer and the inside of the foamed molded product are a length of 1/3 of the thickness from an arbitrary part having a horizontal surface of 30 mm × 30 mm or more including the skin, wherein the thickness of the foamed molded product is at least 20 mm or more. When a cube whose thickness is to be changed is divided into three equal parts in the thickness direction, the upper and lower divided pieces including the skin of the foam molded body of the three equally divided cubes are the surface layer and the surface layer not including the skin. The sandwiched piece is called the inside.

得られる発泡成形体の表層の嵩発泡倍率Aと内部の嵩発泡倍率Bの比率は、1.1≦B/A≦1.8であり、好ましくは1.15≦B/A≦1.7である。   The ratio of the bulk foaming magnification A of the surface layer of the foamed molded article to the internal bulk foaming magnification B is 1.1 ≦ B / A ≦ 1.8, preferably 1.15 ≦ B / A ≦ 1.7. It is.

さらに、得られる発泡成形体は、見かけの嵩発泡倍率(全体における嵩発泡倍率)が15〜60倍の範囲にあり、その表面硬度(CS硬度)Yと嵩発泡倍率Xとの関係が下記式(1):
−0.95X+90≦Y≦100・・・(1)
を満たすものが好ましく、下記式(2):
−0.90X+90≦Y≦95・・・(2)
を満たすものがさらに好ましい。
Further, the obtained foamed molded article has an apparent bulk foaming ratio (bulk foaming ratio in the whole) in the range of 15 to 60 times, and the relationship between the surface hardness (CS hardness) Y and the bulk foaming ratio X is expressed by the following formula. (1):
−0.95X + 90 ≦ Y ≦ 100 (1)
Satisfying the following formula (2):
-0.90X + 90 ≦ Y ≦ 95 (2)
It is more preferable to satisfy the above.

得られた発泡成形体は、家電製品等の緩衝材(クッション材)、電子部品、各種工業資材、食品等の搬送容器、自動車関連部品(例えば、車輌用バンパーの芯材、ドア内装緩衝材等の衝撃エネルギー吸収材等)等に用いることができる。特に、自動車内装材(例えば、下肢部衝撃吸収材やフロア嵩上げ材、ツールボックス等)に好適に用いることができる。   The obtained foamed molded products are used as cushioning materials (cushioning materials) for home appliances, electronic parts, various industrial materials, food containers, etc., automobile-related parts (for example, bumpers for automobiles, door cushioning materials, etc.) For example, an impact energy absorbing material. In particular, it can be suitably used for automobile interior materials (for example, lower limb impact absorbing materials, floor raising materials, tool boxes, etc.).

以下、実施例を挙げて更に説明するが、本発明はこれら実施例によって限定されるものではない。実施例に記載した各種測定法及び製造条件を以下で説明する。
<予備発泡条件>
スチームで予熱したPSX40予備発泡機(笠原工業社製)に発泡剤を含浸させた樹脂粒子(発泡性樹脂粒子)を0.5〜1.5kg投入し、撹拌しながらゲージ圧力0.005〜0.09MPaの設定でスチームを導入し、20〜180秒間で所定の嵩密度(嵩倍数)まで発泡させて発泡樹脂粒子を得る。
Hereinafter, although an example is given and explained further, the present invention is not limited by these examples. Various measurement methods and production conditions described in the examples will be described below.
<Pre-foaming conditions>
A PSX40 pre-foaming machine (manufactured by Kasahara Kogyo Co., Ltd.) preheated with steam is charged with 0.5 to 1.5 kg of resin particles impregnated with a foaming agent (foaming resin particles), and the gauge pressure is 0.005 to 0 while stirring. Steam is introduced at a setting of 0.09 MPa and foamed to a predetermined bulk density (bulk multiple) in 20 to 180 seconds to obtain foamed resin particles.

<発泡樹脂粒子の嵩密度及び嵩倍数>
約5gの発泡樹脂粒子の重量(a)を小数以下2位まで秤量する。次に、最小メモリ単位が5cm3である500cm3メスシリンダーに秤量した発泡樹脂粒子を入れ、これにメスシリンダーの口径よりやや小さい円形の樹脂板であって、その中心に巾約1.5cm、長さ約30cmの棒状の樹脂板が直立して固定された押圧具をあてて、発泡樹脂粒子の体積(b)を読み取り、式(a)/(b)により発泡樹脂粒子の嵩密度(g/cm3)を求める。なお、嵩倍数は嵩密度の逆数、すなわち式(b)/(a)とする。
<Bulk density and bulk multiple of foamed resin particles>
The weight (a) of about 5 g of expanded resin particles is weighed to the second decimal place. Next, weighed foamed resin particles in a 500 cm 3 graduated cylinder with a minimum memory unit of 5 cm 3 , and this is a round resin plate slightly smaller than the caliber of the graduated cylinder, about 1.5 cm wide at the center, The volume (b) of the foamed resin particles is read by applying a pressing tool in which a rod-shaped resin plate having a length of about 30 cm is fixed upright, and the volume density (g) of the foamed resin particles is expressed by the formula (a) / (b). / Cm 3 ). The bulk multiple is the reciprocal of the bulk density, that is, the formula (b) / (a).

<発泡成形体の嵩密度及び嵩倍数>
発泡成形体の嵩密度は、発泡成形後に得られる発泡成形体の見かけの体積(cm3)(c)と、その重量(g)(d)を測定し、式(d)/(c)により発泡樹脂粒子の嵩密度(g/cm3)を求める。発泡成形体の見かけの体積は成形後の収縮を考慮しなければ、例えば発泡成形体が得られた時点での金型キャビティ内の体積に等しく、金型図面寸法から算出できる。なお、嵩倍数は嵩密度の逆数、すなわち式(c)/(d)とする。
<Bulk density and bulk multiple of foam molded article>
The bulk density of the foam-molded product was determined by measuring the apparent volume (cm 3 ) (c) and weight (g) (d) of the foam-molded product obtained after foam molding, and using the formula (d) / (c) The bulk density (g / cm 3 ) of the expanded resin particles is determined. If the shrinkage after molding is not taken into account, the apparent volume of the foam molded body is equal to the volume in the mold cavity at the time when the foam molded body is obtained, and can be calculated from the dimensions of the mold drawing. The bulk multiple is the reciprocal of the bulk density, that is, the formula (c) / (d).

<発泡成形体の表面硬度>
測定装置として、高分子計器(株)製 アスカーゴム硬度計CS型(押針形状:高さ2.54mm、φ10mm円筒形)を用い、発泡成形体の表面硬度を測定する。
発泡成形体の厚みが少なくとも20mm以上あり、表皮を含む30mm×30mm以上の水平な面から任意に選択した部分にCS硬度計を設置し、垂直に荷重がかかるように荷重5kgのおもりを用いて試験体表面に対し、5秒間CS硬度計を押し付けることによって発泡成形体の表面硬度を測定した。同様に計20点分の測定を行い、平均値を発泡成形体の表面硬度とする。
ただし、発泡成形体の厚みが20mm未満の場合や、表面を含む水平な面が30mm×30mm未満の場合はこれらの数値を測定に支障なき程度まで減らすことができる。
また、発泡成形体の形状により計20点分の測定が困難な場合は、測定可能な数まで測定数を減らすことができる。
<Surface hardness of foam molding>
As a measuring device, an Asker rubber hardness meter CS type (manufactured by Kobunshi Keiki Co., Ltd.) (needle shape: height 2.54 mm, φ10 mm cylindrical shape) is used to measure the surface hardness of the foamed molded product.
A foam hardness is at least 20 mm or more, and a CS hardness meter is installed at a part arbitrarily selected from a horizontal surface of 30 mm × 30 mm or more including the skin, and a weight of 5 kg is used so that a load is applied vertically. The surface hardness of the foamed molded product was measured by pressing a CS hardness meter against the surface of the test body for 5 seconds. Similarly, measurement for a total of 20 points is performed, and the average value is defined as the surface hardness of the foamed molded product.
However, when the thickness of the foam molded body is less than 20 mm, or when the horizontal surface including the surface is less than 30 mm × 30 mm, these numerical values can be reduced to a level that does not hinder measurement.
Moreover, when it is difficult to measure a total of 20 points due to the shape of the foam molded article, the number of measurements can be reduced to a measurable number.

<発泡成形体の表層、内部の嵩発泡倍率>
発泡成形体の厚みが少なくとも20mm以上あり、表皮を含む30mm×30mm以上の水平な面を有する任意の部分から、厚みの1/3の長さを1辺とする立方体を厚み方向に3等分して切削する。3等分した立方体のうち、発泡成形体の表皮を含む、厚み方向から見て上または下の試験片を試験片A、中央の試験片を試験片Bとする。例えば、発泡成形体から任意に選択した部分の厚みが30mmの場合、試験片Aは発泡成形体の表皮を含む1辺10mmの立方体となり、試験片Bは発泡成形体の表皮を含まない1辺10mmの立方体となる。
この試験片Aの嵩発泡倍率の測定を行い、同様に測定した計10点分の平均値を発泡成形体の表層の嵩発泡倍率(Sf)とした。また、試験片Bの嵩発泡倍率の測定を行い、同様に測定した計10点分の平均値を発泡成形体の内部の嵩発泡倍率(If)とする。
ただし、発泡成形体の厚みが20mm未満の場合や、表面を含む水平な面が30mm×30mm未満の場合はこれらの数値を測定に支障なき程度まで減らすことができる。
また、発泡成形体の形状により計10点分の測定が困難な場合は、測定可能な数まで測定数を減らすことができる。
測定した発泡成形体の表層および内部の嵩発泡倍率から内部/表層(If/Sf)の比を算出する。
<Surface layer of foam molded article, bulk foaming ratio inside>
A cube having a thickness of at least 20 mm or more and having a horizontal surface of 30 mm × 30 mm or more including the outer skin is divided into three equal parts in the thickness direction with a length of 1/3 of the thickness as one side. And cut. Of the cube divided into three equal parts, the upper or lower test piece including the skin of the foam-molded product as viewed from the thickness direction is taken as test piece A, and the central test piece is taken as test piece B. For example, when the thickness of the part arbitrarily selected from the foam molded body is 30 mm, the test piece A is a cube of 10 mm on one side including the skin of the foam molded body, and the test piece B is one side not including the skin of the foam molded body. It becomes a 10 mm cube.
The bulk foaming ratio of this test piece A was measured, and the average value for a total of 10 points measured in the same manner was used as the bulk foaming ratio (Sf) of the surface layer of the foam molded article. Moreover, the bulk foaming magnification of the test piece B is measured, and the average value of 10 points measured in the same manner is defined as the bulk foaming magnification (If) inside the foamed molded product.
However, when the thickness of the foam molded body is less than 20 mm, or when the horizontal surface including the surface is less than 30 mm × 30 mm, these numerical values can be reduced to a level that does not hinder measurement.
Moreover, when it is difficult to measure a total of 10 points due to the shape of the foam molded article, the number of measurements can be reduced to a measurable number.
The ratio of internal / surface layer (If / Sf) is calculated from the surface layer of the foamed molded article and the internal bulk foaming ratio.

<発泡成形体の加熱後寸法変化率>
JIS K 6767:1999K「発泡プラスチック−ポリエチレン−試験方法」記載のB法により測定した。尚、試験片は、150mm×150mm×30mm(厚さ)としてその中央部に縦及び横方向にそれぞれ互いに平行に3本の直線を50mm間隔になるよう記入し、80℃の熱風循環式乾燥機の中に168時間置いた後に取り出し、標準状態の場所に1時間放置後、縦及び横線の寸法を下記式によって測定する。
S=(L1−L0)/L0×100
式中、Sは加熱後寸法変化率(%)、L1は加熱後の平均寸法(mm)、L0は初めの平均寸法(mm)をそれぞれ表す。
<Dimensional change rate after heating of foamed molded product>
Measured by the method B described in JIS K 6767: 1999K “Foamed Plastics-Polyethylene Test Method”. The test piece is 150 mm x 150 mm x 30 mm (thickness), and three straight lines are written in the center and parallel to each other in the vertical and horizontal directions at intervals of 50 mm. After 168 hours, the product is taken out, left in a standard state for 1 hour, and the vertical and horizontal line dimensions are measured by the following formula.
S = (L1-L0) / L0 × 100
In the formula, S represents a dimensional change rate (%) after heating, L1 represents an average dimension (mm) after heating, and L0 represents an initial average dimension (mm).

[実施例1]
ポリプロピレン系樹脂(プライムポリマー社製、商品名「F−744NP」、融点:140℃)2000gを押出機に供給して溶融混練してストランドカットにより造粒ペレット化することにより、球状(卵状)のポリプロピレン系樹脂粒子を得た。
このときのポリプロピレン系樹脂粒子を100粒あたり60mg、平均粒子径約1mmに調整した。
次に、撹拌機付5Lオートクレーブに、前記ポリプロピレン系樹脂粒子800gを入れ、水性媒体として純水2kg、ピロリン酸マグネシウム20g、ドデシルベンゼンスルホン酸ソーダ0.5gを加え、撹拌して水性媒体中に懸濁させ、10分間保持し、その後60℃に昇温して水系懸濁液とした。
次に、この懸濁液中にジクミルパーオキサイド0.7gを溶解させたスチレンモノマー340gを30分で滴下した。滴下後30分保持し、ポリプロピレン系樹脂粒子にスチレンモノマーを吸収させた。
次に、反応系の温度をポリプロピレン系樹脂粒子の融点と同じ140℃に昇温して2時間保持し、スチレンモノマーをポリプロピレン系樹脂粒子中で重合(第1の重合)させた。
次に、第1の重合の反応液をポリプロピレン系樹脂粒子の融点より20℃低い120℃にして、この懸濁液中に、ドデシルベンゼンスルホン酸ソーダ1.5gを加えた後、重合開始剤としてジクミルパーオキサイド3.6gを溶解したスチレンモノマー体860gを4時間かけて滴下し、ポリプロピレン系樹脂粒子に吸収させながら重合(第2の重合)を行った。
この滴下終了後、120℃で1時間保持した後に140℃に昇温し、3時間保持して重合を完結し、改質樹脂粒子を得た。
[Example 1]
By supplying 2000 g of polypropylene resin (manufactured by Prime Polymer Co., Ltd., trade name “F-744NP”, melting point: 140 ° C.) to an extruder, melt-kneading and granulating pellets by strand cutting, spherical (egg) Polypropylene resin particles were obtained.
The polypropylene resin particles at this time were adjusted to 60 mg per 100 particles and an average particle diameter of about 1 mm.
Next, 800 g of the polypropylene resin particles are put into a 5 L autoclave with a stirrer, and 2 kg of pure water, 20 g of magnesium pyrophosphate, and 0.5 g of sodium dodecylbenzenesulfonate are added as an aqueous medium, and the mixture is stirred and suspended in the aqueous medium. The mixture was made turbid and held for 10 minutes, and then heated to 60 ° C. to obtain an aqueous suspension.
Next, 340 g of styrene monomer in which 0.7 g of dicumyl peroxide was dissolved in this suspension was dropped in 30 minutes. After dropping, the mixture was held for 30 minutes, and the styrene monomer was absorbed by the polypropylene resin particles.
Next, the temperature of the reaction system was raised to 140 ° C., which is the same as the melting point of the polypropylene resin particles, and maintained for 2 hours to polymerize the styrene monomer in the polypropylene resin particles (first polymerization).
Next, the reaction liquid of the first polymerization is set to 120 ° C. that is 20 ° C. lower than the melting point of the polypropylene resin particles, and 1.5 g of sodium dodecylbenzenesulfonate is added to this suspension, and then the polymerization initiator is used. 860 g of a styrene monomer body in which 3.6 g of dicumyl peroxide was dissolved was dropped over 4 hours, and polymerization (second polymerization) was performed while absorbing the polypropylene resin particles.
After the completion of the dropping, the mixture was held at 120 ° C. for 1 hour, then heated to 140 ° C. and held for 3 hours to complete the polymerization, and modified resin particles were obtained.

その後、反応系の温度を60℃にして、この懸濁液中に、難燃剤としてトリ(2,3−
ジブロモプロピル)イソシアネート(日本化成社製)20gと、難燃助剤として2,3−
ジメチル−2,3−ジフェニルブタン(化薬アクゾ社製)10gとを投入し、投入後、反
応系の温度を130℃に昇温し、2時間撹拌を続け、次に、常温まで冷却し、改質樹脂粒子を5Lオートクレーブから取り出した。取り出し後の改質樹脂粒子2kgと水2Lを再び撹拌機付5Lオートクレーブに投入し、発泡剤としてブタン300gを撹拌機付5Lオートクレーブに注入した。注入後、70℃に昇温し、4時間撹拌を続けた。
その後、常温まで冷却して5Lオートクレーブから取り出し、脱水乾燥した後に発泡剤が含浸された樹脂粒子(発泡性樹脂粒子)を得た。
Thereafter, the temperature of the reaction system is set to 60 ° C., and tri (2,3-
20 g of dibromopropyl) isocyanate (manufactured by Nippon Kasei Co., Ltd.) and 2,3-
10 g of dimethyl-2,3-diphenylbutane (manufactured by Kayaku Akzo) was added, and after the addition, the temperature of the reaction system was raised to 130 ° C., stirring was continued for 2 hours, and then cooled to room temperature. The modified resin particles were taken out from the 5 L autoclave. 2 kg of modified resin particles and 2 L of water after taking out were again put into a 5 L autoclave with a stirrer, and 300 g of butane as a blowing agent was injected into the 5 L autoclave with a stirrer. After the injection, the temperature was raised to 70 ° C. and stirring was continued for 4 hours.
Then, it cooled to normal temperature, took out from the 5L autoclave, and after dehydrating and drying, the resin particle (foamable resin particle) which the foaming agent was impregnated was obtained.

次に、得られた発泡性樹脂粒子を嵩発泡倍数20倍に予備発泡させ、発泡樹脂粒子を得た。
さらに、得られた発泡樹脂粒子を1日間室温に放置した後、400mm×300mm×30mmの大きさのキャビティを有する成形型の該キャビティ内に充填し、成形型に0.25MPaの水蒸気を50秒間導入して加熱し、その後、発泡成形体の最高面圧が0.001MPaに低下するまで冷却して、発泡成形体を得た。
この成形条件により外観、融着とも良好な発泡成形体を得た。
そして、得られた発泡成形体を用いて、発泡成形体全体、表層および内部における見かけの嵩発泡倍率、CS硬度、加熱後寸法変化率の測定を行った。
各種測定結果を表1に示す。
Next, the obtained expandable resin particles were pre-expanded to a bulk expansion ratio of 20 times to obtain expanded resin particles.
Further, the obtained foamed resin particles were allowed to stand at room temperature for one day, and then filled into the cavity of a mold having a cavity of 400 mm × 300 mm × 30 mm, and 0.25 MPa of water vapor was added to the mold for 50 seconds. It was introduced and heated, and then cooled until the maximum surface pressure of the foamed molded product was reduced to 0.001 MPa to obtain a foamed molded product.
Under these molding conditions, a foamed molded article having good appearance and fusion was obtained.
Then, using the obtained foamed molded article, the bulk foamed article, the apparent bulk foaming ratio, the CS hardness, and the dimensional change rate after heating were measured.
Various measurement results are shown in Table 1.

[実施例2]
実施例1と同様にして形成した発泡性樹脂粒子を、嵩発泡倍数40倍に予備発泡したこと以外は実施例1と同様にして、発泡成形体を作製した。
各種測定結果を表1に示す。
[Example 2]
A foamed molded article was produced in the same manner as in Example 1 except that the expandable resin particles formed in the same manner as in Example 1 were pre-expanded to a bulk expansion ratio of 40 times.
Various measurement results are shown in Table 1.

[実施例3]
実施例1と同様にして形成した発泡性樹脂粒子を、嵩発泡倍数50倍に予備発泡したことと、成形型に0.20MPaの水蒸気を50秒間導入して成形を行ったこと以外は実施例1と同様にして、発泡成形体を作製した。
各種測定結果を表1に示す。
[Example 3]
Example except that foamable resin particles formed in the same manner as Example 1 were pre-expanded to a bulk expansion ratio of 50 times, and 0.20 MPa of water vapor was introduced into the mold for 50 seconds. In the same manner as in Example 1, a foam molded article was produced.
Various measurement results are shown in Table 1.

[実施例4]
ポリプロピレン系樹脂(プライムポリマー社製、商品名「F−744NP」、融点:140℃)2000gを押出機に供給して溶融混練してストランドカットにより造粒ペレット化することにより、球状(卵状)のポリプロピレン系樹脂粒子を得た。
このときのポリプロピレン系樹脂粒子を100粒あたり60mg、平均粒子径約1mmに調整した。
前記ポリプロピレン系樹脂粒子600gを撹拌機付5Lオートクレーブに入れ、水性媒体として純水2kg、ピロリン酸マグネシウム20g、ドデシルベンゼンスルホン酸ソーダ0.5gを加え、撹拌して水性媒体中に懸濁させ、10分間保持し、その後60℃に昇温して水系懸濁液とした。
この懸濁液中に、ジクミルパーオキサイド0.5gを溶解させたスチレンモノマー250gを30分で滴下した。滴下後30分保持し、ポリプロピレン系樹脂粒子にスチレンモノマーを吸収させた。
次に、反応系の温度をポリプロピレン系樹脂粒子の融点と同じ140℃に昇温して2時間保持し、スチレンモノマーをポリプロピレン系樹脂粒子中で重合(第1の重合)させた。
第1重合段階の反応液をポリプロピレン系樹脂粒子の融点より20℃低い120℃にして、この懸濁液中に、ドデシルベンゼンスルホン酸ソーダ1.5gを加えた後、ジクミルパーオキサイド4.2gを溶解したスチレンモノマー1150gを5.5時間かけて滴下し、ポリプロピレン系樹脂粒子に吸収させながら重合を行った。
この滴下終了後、120℃で1時間保持した後に140℃に昇温し、3時間保持して重合を完結し(第2重合段階)、改質樹脂粒子を得た。
[Example 4]
By supplying 2000 g of polypropylene resin (manufactured by Prime Polymer Co., Ltd., trade name “F-744NP”, melting point: 140 ° C.) to an extruder, melt-kneading and granulating pellets by strand cutting, spherical (egg) Polypropylene resin particles were obtained.
The polypropylene resin particles at this time were adjusted to 60 mg per 100 particles and an average particle diameter of about 1 mm.
600 g of the polypropylene resin particles are placed in a 5 L autoclave with a stirrer, and 2 kg of pure water, 20 g of magnesium pyrophosphate, and 0.5 g of sodium dodecylbenzenesulfonate are added as an aqueous medium, and the mixture is stirred and suspended in an aqueous medium. The mixture was held for 1 minute, and then heated to 60 ° C. to obtain an aqueous suspension.
To this suspension, 250 g of styrene monomer in which 0.5 g of dicumyl peroxide was dissolved was dropped in 30 minutes. After dropping, the mixture was held for 30 minutes, and the styrene monomer was absorbed by the polypropylene resin particles.
Next, the temperature of the reaction system was raised to 140 ° C., which is the same as the melting point of the polypropylene resin particles, and maintained for 2 hours to polymerize the styrene monomer in the polypropylene resin particles (first polymerization).
The reaction solution in the first polymerization stage is set to 120 ° C., which is 20 ° C. lower than the melting point of the polypropylene resin particles, and 1.5 g of sodium dodecylbenzenesulfonate is added to this suspension, and then 4.2 g of dicumyl peroxide is added. Polymerization was carried out while 1150 g of a styrene monomer in which was dissolved was dropped over 5.5 hours and absorbed by polypropylene resin particles.
After completion of the dropping, the temperature was maintained at 120 ° C. for 1 hour, and then the temperature was increased to 140 ° C. and maintained for 3 hours to complete the polymerization (second polymerization stage) to obtain modified resin particles.

その後、反応系の温度を60℃にして、この懸濁液中に、トリ(2,3−ジブロモプロピル)イソシアネート(日本化成社製)20gと、2,3−ジメチル−2,3−ジフェニルブタン(化薬アクゾ社製)10gを投入し、投入後、反応系の温度を130℃に昇温し、2時間撹拌を続け、次に、常温まで冷却し、改質樹脂粒子を5Lオートクレーブから取り出した。取り出し後の改質樹脂粒子2kgと水2Lを再び撹拌機付5Lオートクレーブに投入し、発泡剤としてブタン300gを撹拌機付5Lオートクレーブに注入した。注入後、70℃に昇温し、4時間撹拌を続けた。
その後、常温まで冷却して5Lオートクレーブから取り出し、脱水乾燥した後に発泡性樹脂粒子を得た。
この発泡性樹脂粒子を、嵩発泡倍数40倍に予備発泡したこと以外は、実施例1と同様にして、発泡成形体を作製した。
各種測定結果を表1に示す。
Thereafter, the temperature of the reaction system was set to 60 ° C., and 20 g of tri (2,3-dibromopropyl) isocyanate (manufactured by Nippon Kasei Co., Ltd.) and 2,3-dimethyl-2,3-diphenylbutane were added to this suspension. 10 g (made by Kayaku Akzo Co., Ltd.) is charged, and after the charging, the temperature of the reaction system is raised to 130 ° C., stirring is continued for 2 hours, then cooled to room temperature, and the modified resin particles are removed from the 5 L autoclave. It was. 2 kg of modified resin particles and 2 L of water after taking out were again put into a 5 L autoclave with a stirrer, and 300 g of butane as a blowing agent was injected into the 5 L autoclave with a stirrer. After the injection, the temperature was raised to 70 ° C. and stirring was continued for 4 hours.
Then, it cooled to normal temperature, took out from the 5L autoclave, dehydrated and dried, and obtained expandable resin particles.
A foamed molded article was produced in the same manner as in Example 1 except that the foamable resin particles were prefoamed to a bulk foaming ratio of 40 times.
Various measurement results are shown in Table 1.

[実施例5]
ポリプロピレン系樹脂(プライムポリマー社製、商品名「F−744NP」、融点:140℃)2000gを押出機に供給して溶融混練してストランドカットにより造粒ペレット化することにより、球状(卵状)のポリプロピレン系樹脂粒子を得た。
このときのポリプロピレン系樹脂粒子を100粒あたり60mg、平均粒子径約1mmに調整した。
前記ポリプロピレン系樹脂粒子1000gを撹拌機付5Lオートクレーブに入れ、水性媒体として純水2kg、ピロリン酸マグネシウム20g、ドデシルベンゼンスルホン酸ソーダ0.5gを加え、撹拌して水性媒体中に懸濁させ、10分間保持し、その後60℃に昇温して水系懸濁液とした。
この懸濁液中に、ジクミルパーオキサイド0.8gを溶解させたスチレンモノマー420gを30分で滴下した。滴下後30分保持し、ポリプロピレン系樹脂粒子にスチレンモノマーを吸収させた。
次に、反応系の温度をポリプロピレン系樹脂粒子の融点と同じ140℃に昇温して2時間保持し、スチレンモノマーをポリプロピレン系樹脂粒子中で重合(第1の重合)させた。
第1重合段階の反応液をポリプロピレン系樹脂粒子の融点より20℃低い120℃にして、この懸濁液中に、ドデシルベンゼンスルホン酸ソーダ1.5gを加えた後、ジクミルパーオキサイド3gを溶解したスチレンモノマー580gを2.75時間かけて滴下し、ポリプロピレン系樹脂粒子に吸収させながら重合を行った。
この滴下終了後、120℃で1時間保持した後に140℃に昇温し、3時間保持して重合を完結し(第2重合段階)、改質樹脂粒子を得た。
[Example 5]
By supplying 2000 g of polypropylene resin (manufactured by Prime Polymer Co., Ltd., trade name “F-744NP”, melting point: 140 ° C.) to an extruder, melt-kneading and granulating pellets by strand cutting, spherical (egg) Polypropylene resin particles were obtained.
The polypropylene resin particles at this time were adjusted to 60 mg per 100 particles and an average particle diameter of about 1 mm.
1000 g of the polypropylene resin particles are put in a 5 L autoclave with a stirrer, and 2 kg of pure water, 20 g of magnesium pyrophosphate and 0.5 g of sodium dodecylbenzenesulfonate are added as an aqueous medium, and the mixture is stirred and suspended in an aqueous medium. The mixture was held for 1 minute, and then heated to 60 ° C. to obtain an aqueous suspension.
To this suspension, 420 g of a styrene monomer in which 0.8 g of dicumyl peroxide was dissolved was dropped in 30 minutes. After dropping, the mixture was held for 30 minutes, and the styrene monomer was absorbed by the polypropylene resin particles.
Next, the temperature of the reaction system was raised to 140 ° C., which is the same as the melting point of the polypropylene resin particles, and maintained for 2 hours to polymerize the styrene monomer in the polypropylene resin particles (first polymerization).
The reaction solution in the first polymerization stage is set to 120 ° C., which is 20 ° C. lower than the melting point of the polypropylene resin particles, 1.5 g of sodium dodecylbenzenesulfonate is added to this suspension, and then 3 g of dicumyl peroxide is dissolved. The styrene monomer 580g was dripped over 2.75 hours, and it superposed | polymerized, making it absorb to a polypropylene resin particle.
After completion of the dropping, the temperature was maintained at 120 ° C. for 1 hour, and then the temperature was increased to 140 ° C. and maintained for 3 hours to complete the polymerization (second polymerization stage) to obtain modified resin particles.

その後、反応系の温度を60℃にして、この懸濁液中に、トリ(2,3−ジブロモプロピル)イソシアネート(日本化成社製)20gと、2,3−ジメチル−2,3−ジフェニルブタン(化薬アクゾ社製)10gを投入し、投入後、反応系の温度を130℃に昇温し、2時間撹拌を続け、次に、常温まで冷却し、改質樹脂粒子を5Lオートクレーブから取り出した。取り出し後の改質樹脂粒子2kgと水2Lを再び撹拌機付5Lオートクレーブに投入し、発泡剤としてブタン300gを撹拌機付5Lオートクレーブに注入した。注入後、70℃に昇温し、4時間撹拌を続けた。
その後、常温まで冷却して5Lオートクレーブから取り出し、脱水乾燥した後に発泡性樹脂粒子を得た。
この発泡性樹脂粒子を、嵩発泡倍数30倍に予備発泡したこと以外は、実施例1と同様にして、発泡成形体を作製した。
各種測定結果を表1に示す。
Thereafter, the temperature of the reaction system was set to 60 ° C., and 20 g of tri (2,3-dibromopropyl) isocyanate (manufactured by Nippon Kasei Co., Ltd.) and 2,3-dimethyl-2,3-diphenylbutane were added to this suspension. 10 g (made by Kayaku Akzo Co., Ltd.) is charged, and after the charging, the temperature of the reaction system is raised to 130 ° C., stirring is continued for 2 hours, then cooled to room temperature, and the modified resin particles are removed from the 5 L autoclave. It was. 2 kg of modified resin particles and 2 L of water after taking out were again put into a 5 L autoclave with a stirrer, and 300 g of butane as a blowing agent was injected into the 5 L autoclave with a stirrer. After the injection, the temperature was raised to 70 ° C. and stirring was continued for 4 hours.
Then, it cooled to normal temperature, took out from the 5L autoclave, dehydrated and dried, and obtained expandable resin particles.
A foamed molded article was produced in the same manner as in Example 1 except that the foamable resin particles were prefoamed to a bulk foaming ratio of 30 times.
Various measurement results are shown in Table 1.

[実施例6]
実施例2と同様にして得られた嵩発泡倍数40倍の発泡樹脂粒子を1日間室温に放置した後、400mm×300mm×50mmの大きさのキャビティを有する成形型の該キャビティ内に充填し、成形型に0.25MPaの水蒸気を50秒間導入して加熱し、その後、発泡成形体の最高面圧が0.001MPaに低下するまで冷却して、発泡成形体を作製した。
各種測定結果を表1に示す。
[Example 6]
The foamed resin particles having a bulk expansion ratio of 40 times obtained in the same manner as in Example 2 were allowed to stand at room temperature for 1 day, and then filled into the cavity of a mold having a cavity of 400 mm × 300 mm × 50 mm, 0.25 MPa of water vapor was introduced into the mold for 50 seconds and heated, and then cooled until the maximum surface pressure of the foamed article was reduced to 0.001 MPa to produce a foamed article.
Various measurement results are shown in Table 1.

[実施例7]
実施例6と同様にして得られた嵩発泡倍数40倍の発泡樹脂粒子を1日間室温に放置した後、400mm×300mm×100mmの大きさのキャビティを有する成形型の該キャビティ内に充填し、成形型に0.25MPaの水蒸気を50秒間導入して加熱し、その後、発泡成形体の最高面圧が0.001MPaに低下するまで冷却して、発泡成形体を作製した。
各種測定結果を表1に示す。
[Example 7]
The foamed resin particles having a bulk expansion ratio of 40 times obtained in the same manner as in Example 6 were allowed to stand at room temperature for 1 day, and then filled into the cavity of a mold having a cavity of 400 mm × 300 mm × 100 mm, 0.25 MPa of water vapor was introduced into the mold for 50 seconds and heated, and then cooled until the maximum surface pressure of the foamed article was reduced to 0.001 MPa to produce a foamed article.
Various measurement results are shown in Table 1.

[比較例1]
実施例1と同様にして形成した発泡性樹脂粒子を、嵩発泡倍数50倍に予備発泡したことと、成形型に0.15MPaの水蒸気を50秒間導入して成形を行ったこと以外は実施例1と同様にして、発泡成形体を作製した。
各種測定結果を表1に示す。
[Comparative Example 1]
Example except that foamable resin particles formed in the same manner as in Example 1 were pre-expanded to a bulk expansion ratio of 50 times, and 0.15 MPa of water vapor was introduced into the mold for 50 seconds. In the same manner as in Example 1, a foam molded article was produced.
Various measurement results are shown in Table 1.

[比較例2]
実施例1と同様にして形成した発泡性樹脂粒子を、嵩発泡倍数30倍に予備発泡したことと、成形型に0.13MPaの水蒸気を50秒間導入して成形を行ったこと以外は実施例1と同様にして、発泡成形体を作製した。
各種測定結果を表1に示す。
[Comparative Example 2]
Except that foamable resin particles formed in the same manner as in Example 1 were pre-expanded to a bulk expansion ratio of 30 times, and 0.13 MPa of water vapor was introduced into the mold for 50 seconds to perform the example. In the same manner as in Example 1, a foam molded article was produced.
Various measurement results are shown in Table 1.

Figure 2011068776
Figure 2011068776

表1に記した結果より、発泡成形体の内部と表層の見かけの嵩発泡倍率の比(内部/表層)が大きくなった実施例1〜7は、加熱後寸法変化率の小さい、良好な発泡成形体を得ることができ、得られた発泡成形体の表面のCS硬度も良好な結果が得られた。
一方、発泡成形体の内部と表層の見かけの嵩発泡倍率の比(内部/表層)が、小さくなった比較例1は、発泡成形体全体の見かけの嵩発泡倍率がほぼ同等の実施例3と比較して、発泡成形体の表面のCS硬度が低くなった。
また、比較例1と同様、発泡成形体の内部と表層の見かけの嵩発泡倍率の比(内部/表層)が小さくなった比較例2は、実施例2と比較して発泡成形体全体の見かけの嵩発泡倍率が10以上低いにも関わらず、同程度のCS硬度しか発揮することができなかった。
From the results shown in Table 1, Examples 1 to 7 in which the ratio of the apparent bulk foaming ratio between the inside of the foamed molded product and the surface layer (internal / surface layer) was large, the foaming rate was small and the good foaming rate was small. A molded product could be obtained, and good results were obtained for the CS hardness of the surface of the obtained foamed molded product.
On the other hand, Comparative Example 1 in which the ratio of the apparent bulk foaming ratio between the inside and the surface layer of the foamed molded body (internal / surface layer) became smaller was the same as Example 3 in which the apparent bulk foaming ratio of the entire foamed molded body was substantially the same. In comparison, the CS hardness of the surface of the foamed molded product was low.
Further, as in Comparative Example 1, Comparative Example 2 in which the ratio of the apparent bulk foaming ratio between the inside and the surface layer of the foamed molded product (internal / surface layer) is smaller is the apparent appearance of the entire foamed molded product compared to Example 2. Although the bulk foaming ratio was 10 or more, only the same CS hardness could be exhibited.

以上のことから、表層と内部の嵩発泡倍率の比率が1.1≦内部/表層≦1.8、好ましくは1.15≦内部/表層≦1.7である発泡成形体は、その表面の硬度が良好で加熱後寸法変化率が小さいので、優れていることが判る。   From the above, the foamed molded article having a ratio of the bulk foaming ratio between the surface layer and the inside of 1.1 ≦ internal / surface layer ≦ 1.8, preferably 1.15 ≦ internal / surface layer ≦ 1.7, Since the hardness is good and the dimensional change rate after heating is small, it can be seen that it is excellent.

Claims (6)

同一種類の発泡樹脂粒子に由来する発泡成形体であり、前記発泡成形体の表層の嵩発泡倍率Sfと内部の嵩発泡倍率Ifとの比率が、1.1≦If/Sf≦1.8を有する発泡体であることを特徴とする発泡成形体。   It is a foamed molded product derived from the same type of foamed resin particles, and the ratio of the bulk foaming magnification Sf of the surface layer of the foamed molded product to the internal bulk foaming magnification If is 1.1 ≦ If / Sf ≦ 1.8. A foamed molded product, characterized by being a foamed product. 前記比率If/Sfが、1.15〜1.7である請求項1に記載の発泡成形体。   The foamed molded product according to claim 1, wherein the ratio If / Sf is 1.15 to 1.7. 前記発泡樹脂粒子が、ポリプロピレン系樹脂100質量部に対して、ポリスチレン系樹脂を100質量部以上400質量部未満含有する発泡樹脂粒子である請求項1または2に記載の発泡成形体。   The foamed molded product according to claim 1 or 2, wherein the foamed resin particles are foamed resin particles containing 100 parts by mass or more and less than 400 parts by mass of a polystyrene resin with respect to 100 parts by mass of the polypropylene resin. 前記発泡成形体が、その全体において15〜60倍の嵩発泡倍率を有し、下記式(1)
−0.95X+90≦Y≦100・・・(1)
(式中、Yは表面硬度(CS硬度)、Xは嵩発泡倍率である)
を満たす請求項1〜3のいずれか1つに記載の発泡成形体。
The foamed molded article has a bulk foaming ratio of 15 to 60 times in its entirety, and the following formula (1)
−0.95X + 90 ≦ Y ≦ 100 (1)
(Where Y is the surface hardness (CS hardness) and X is the bulk foaming ratio)
The foaming molding as described in any one of Claims 1-3 which satisfy | fills.
前記表面硬度Yと前記嵩発泡倍率Xとが、下記式(2)
−0.90X+90≦Y≦95・・・(2)
を満たす請求項4に記載の発泡成形体。
The surface hardness Y and the bulk foaming magnification X are expressed by the following formula (2).
-0.90X + 90 ≦ Y ≦ 95 (2)
The foaming molding of Claim 4 which satisfy | fills.
JIS K6767:1999KのB法により測定された80℃、168時間での加熱後寸法変化率が絶対値で1.0%以下を満たす請求項1〜5いずれか1つに記載の発泡成形体。   JIS K6767: The foamed molded product according to any one of claims 1 to 5, wherein a dimensional change rate after heating at 80 ° C and 168 hours measured by B method of 1999K satisfies 1.0% or less in absolute value.
JP2009221006A 2009-09-25 2009-09-25 Foam-molded article Pending JP2011068776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009221006A JP2011068776A (en) 2009-09-25 2009-09-25 Foam-molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009221006A JP2011068776A (en) 2009-09-25 2009-09-25 Foam-molded article

Publications (1)

Publication Number Publication Date
JP2011068776A true JP2011068776A (en) 2011-04-07

Family

ID=44014356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009221006A Pending JP2011068776A (en) 2009-09-25 2009-09-25 Foam-molded article

Country Status (1)

Country Link
JP (1) JP2011068776A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014043497A (en) * 2012-08-24 2014-03-13 Sekisui Plastics Co Ltd Foam molded body and resin foam container
JP2014043498A (en) * 2012-08-24 2014-03-13 Sekisui Plastics Co Ltd Foam molded body and resin foam container
JP2014043496A (en) * 2012-08-24 2014-03-13 Sekisui Plastics Co Ltd Foam molded body and resin foam container
WO2016052387A1 (en) * 2014-09-30 2016-04-07 積水化成品工業株式会社 Amide elastomer foam particles, method for producing same, foam molded body and method for producing foam molded body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042433A (en) * 1983-08-16 1985-03-06 Japan Styrene Paper Co Ltd Expanded synthetic resin in-mold molding and its production
JP2008094886A (en) * 2006-10-06 2008-04-24 Mitsubishi Chemicals Corp Foamed article made from biomass resource-derived polyester, and method for producing the same
JP2008239794A (en) * 2007-03-27 2008-10-09 Sekisui Plastics Co Ltd Self-extinguishing carbon-containing modified polystyrene resin particle, expandable self-extinguishing carbon-containing modified polystyrene resin particle, self-extinguishing carbon-containing modified polystyrene resin foamed particle, self-extinguishing carbon-containing modified polystyrene resin foamed molded product, and manufacturing methods therefor
JP2008239793A (en) * 2007-03-27 2008-10-09 Sekisui Plastics Co Ltd Modified polystyrene resin particle, expandable modified polystyrene resin particle, modified polystyrene resin foamed particle, modified polystyrene resin foamed molded product, and manufacturing methods therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042433A (en) * 1983-08-16 1985-03-06 Japan Styrene Paper Co Ltd Expanded synthetic resin in-mold molding and its production
JP2008094886A (en) * 2006-10-06 2008-04-24 Mitsubishi Chemicals Corp Foamed article made from biomass resource-derived polyester, and method for producing the same
JP2008239794A (en) * 2007-03-27 2008-10-09 Sekisui Plastics Co Ltd Self-extinguishing carbon-containing modified polystyrene resin particle, expandable self-extinguishing carbon-containing modified polystyrene resin particle, self-extinguishing carbon-containing modified polystyrene resin foamed particle, self-extinguishing carbon-containing modified polystyrene resin foamed molded product, and manufacturing methods therefor
JP2008239793A (en) * 2007-03-27 2008-10-09 Sekisui Plastics Co Ltd Modified polystyrene resin particle, expandable modified polystyrene resin particle, modified polystyrene resin foamed particle, modified polystyrene resin foamed molded product, and manufacturing methods therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014043497A (en) * 2012-08-24 2014-03-13 Sekisui Plastics Co Ltd Foam molded body and resin foam container
JP2014043498A (en) * 2012-08-24 2014-03-13 Sekisui Plastics Co Ltd Foam molded body and resin foam container
JP2014043496A (en) * 2012-08-24 2014-03-13 Sekisui Plastics Co Ltd Foam molded body and resin foam container
WO2016052387A1 (en) * 2014-09-30 2016-04-07 積水化成品工業株式会社 Amide elastomer foam particles, method for producing same, foam molded body and method for producing foam molded body
JP6081674B2 (en) * 2014-09-30 2017-02-15 積水化成品工業株式会社 Amide-based elastomer expanded particles, method for producing the same, foamed molded article, and method for producing the same

Similar Documents

Publication Publication Date Title
JP4718645B2 (en) Styrene modified polypropylene resin particles, expandable styrene modified polypropylene resin particles, styrene modified polypropylene resin foam particles, and method for producing styrene modified polypropylene resin foam molded article
JP5138254B2 (en) Modified polystyrene resin particles containing self-extinguishing carbon, Modified polystyrene resin particles containing foam, self-extinguishing carbon, Modified polystyrene resin foam particles containing self-extinguishing carbon, Modified polystyrene resin foam containing self-extinguishing carbon Molded body and method for producing the same
JP5254103B2 (en) Carbon-containing modified polystyrene resin foamed particles and method for producing the same, carbon-containing modified polystyrene resin foamed article and method for producing the same
JP5345329B2 (en) Carbon-containing modified polystyrene resin particles, expandable carbon-containing modified polystyrene resin particles, carbon-containing modified polystyrene resin foam particles, carbon-containing modified polystyrene resin foam moldings and methods for producing them
JP5232397B2 (en) Method for producing modified polystyrene resin particles, expandable modified polystyrene resin particles, modified polystyrene resin foam particles, modified polystyrene resin foam molding
JP5053675B2 (en) Modified polystyrene resin particles, expandable modified polystyrene resin particles, modified polystyrene resin foam particles, modified polystyrene resin foam moldings
JP2011068776A (en) Foam-molded article
JP2008260928A (en) Method for producing styrene modified polyethylene based resin pre-expansion particle
JP5545972B2 (en) Method for producing foam molded article
JP5664238B2 (en) Styrene-modified polyethylene resin pre-expanded particles and foam-molded article comprising the styrene-modified polyethylene resin pre-expanded particles
JP5731428B2 (en) Styrene-modified polyethylene resin particles, expandable composite resin particles, pre-expanded particles, foam-molded article and method for producing pre-expanded particles
JP5337442B2 (en) Foam molded body and method for producing the same
JP2009263639A (en) Foamable styrene-modified polyolefin-based resin particle, its production method, prefoamed particle, and foam molded body
JP5422970B2 (en) Method for producing pre-expanded particles of styrene-modified polyethylene resin
JP2013117037A (en) Foam molding body
WO2013147040A1 (en) Composite resin particles, expandable composite resin particles, pre-expanded particles, molded foam, and core material for bumper
JP5731368B2 (en) Seed particles, composite resin particles, methods for producing the same, composite resin particles, expandable particles, pre-expanded particles, and foam molded article
JP2009102632A (en) Styrene modified polyethylene based resin prefoamed particle, and foam formed of the prefoamed particle
JP5809902B2 (en) MODIFIED POLYPROPYLENE RESIN PARTICLE, ITS PREFOAMED PARTICLE, PROCESS FOR PRODUCING THE SAME, AND METHOD FOR PRODUCING FOAM MOLD
JP5642003B2 (en) Method for producing pre-expanded resin particles containing polypropylene resin
JP2018141087A (en) Method for producing foamed particle and method for producing foam molded body
JP5732299B2 (en) Composite resin particles, expandable composite resin particles, pre-expanded particles and foamed molded body
JP5785735B2 (en) Interior materials for railway vehicles
JP6209116B2 (en) Composite resin particles and production method thereof, expandable composite resin particles, pre-expanded composite resin particles, and composite resin foam molded article
JP2012188642A (en) Preliminary foamed particle of modified polypropylene-based resin and method of manufacturing expansion molding body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131029