JP2011061955A - Device for adjusting capacity of battery pack - Google Patents

Device for adjusting capacity of battery pack Download PDF

Info

Publication number
JP2011061955A
JP2011061955A JP2009208172A JP2009208172A JP2011061955A JP 2011061955 A JP2011061955 A JP 2011061955A JP 2009208172 A JP2009208172 A JP 2009208172A JP 2009208172 A JP2009208172 A JP 2009208172A JP 2011061955 A JP2011061955 A JP 2011061955A
Authority
JP
Japan
Prior art keywords
capacity
battery
voltage
soc
unit cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009208172A
Other languages
Japanese (ja)
Other versions
JP5463810B2 (en
Inventor
Yoshimasa Toki
吉正 土岐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009208172A priority Critical patent/JP5463810B2/en
Publication of JP2011061955A publication Critical patent/JP2011061955A/en
Application granted granted Critical
Publication of JP5463810B2 publication Critical patent/JP5463810B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a capacity adjustment device of a battery pack, capable of expanding a usable range of the battery pack. <P>SOLUTION: The capacity adjustment device includes a voltage detection means 24 which detects voltages of unit cells of the battery pack 21 connected with a plurality of unit cells 211 constituting a secondary battery, a deterioration degree detection means 24 which detects the degree of the deterioration of capacities of the unit cells on the basis of the voltage detected by the voltage detection means, a capacity adjustment means 247 which adjusts the battery capacities of the unit cells by performing the discharge processing of the unit cells, and a control means 24 which limits the discharge processing of the unit cells which should be adjusted. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、組電池の容量調整装置に関するものである。   The present invention relates to an assembled battery capacity adjustment device.

複数の単電池(セル)を接続してなる組電池において、各単電池に設けられた容量調整用放電回路を適宜に放電制御することにより、全ての単電池が所定の電圧又は所定の充電状態(SOC,State of Charge)となるように電池容量のバラツキを均一化する容量調整装置が知られている(特許文献1)。   In an assembled battery formed by connecting a plurality of single cells (cells), all the single cells have a predetermined voltage or a predetermined state of charge by appropriately controlling discharge of a capacity adjusting discharge circuit provided in each single cell. There is known a capacity adjustment device that equalizes variation in battery capacity so as to achieve (SOC, State of Charge) (Patent Document 1).

特開2000−83327号公報JP 2000-83327 A

しかしながら、上記従来の容量調整装置では、電圧又はSOCを均一化する容量調整法であるため、調整直後においては容量が均一化されるものの、単電池の容量劣化度合いの個体差によりその後の電圧変化の傾向が異なることがある。   However, since the conventional capacity adjustment device is a capacity adjustment method that equalizes the voltage or SOC, the capacity is equalized immediately after the adjustment, but the subsequent voltage change due to individual differences in the degree of capacity deterioration of the unit cell. Tend to be different.

その結果、すぐにばらつきが生じて過充電又は過放電となるおそれがある。このため、こうした過充電又は過放電を防止すべく組電池の利用可能範囲を制限することが必要とされていた。   As a result, there is a risk that variations occur immediately and overcharge or overdischarge occurs. Therefore, it has been necessary to limit the usable range of the assembled battery in order to prevent such overcharge or overdischarge.

本発明が解決しようとする課題は、組電池の利用可能範囲を拡大できる組電池の容量調整装置を提供することである。 The problem to be solved by the present invention is to provide an assembled battery capacity adjusting device capable of expanding the usable range of the assembled battery.

本発明は、単電池の放電処理を実行して当該単電池の電池容量を調整するにあたり、調整すべき単電池の容量劣化度又は満充電容量に応じて放電処理を制限することによって上記課題を解決する。 In the present invention, when adjusting the battery capacity of the unit cell by executing the discharge process of the unit cell, the problem is solved by limiting the discharge process according to the capacity deterioration degree or the full charge capacity of the unit cell to be adjusted. Resolve.

本発明によれば、調整すべき単電池の容量劣化度又は満充電容量に応じて放電処理を制限するので、容量劣化度が大きく又は満充電容量が小さく、すなわち電圧降下度が大きい単電池に対しては放電処理が制限される。その結果、その後の使用による下限電圧に到達するまでの時間が長くなるので、組電池の利用可能範囲を拡大することができる。   According to the present invention, since the discharge process is limited according to the capacity deterioration degree or the full charge capacity of the unit cell to be adjusted, the unit battery having a large capacity deterioration degree or a small full charge capacity, that is, a large voltage drop degree. On the other hand, the discharge process is limited. As a result, since the time until reaching the lower limit voltage due to subsequent use becomes longer, the usable range of the assembled battery can be expanded.

発明の一実施の形態を適用したハイブリッド自動車を示すブロック図である。1 is a block diagram showing a hybrid vehicle to which an embodiment of the invention is applied. 図1のバッテリ21廻りの詳細を示すブロック図である。FIG. 2 is a block diagram showing details around a battery 21 in FIG. 1. 図1のバッテリ21の容量調整回路の一例を示す電気回路図である。It is an electric circuit diagram which shows an example of the capacity | capacitance adjustment circuit of the battery 21 of FIG. 図1のバッテリコントローラ24の制御手順を示すフローチャートである。3 is a flowchart showing a control procedure of the battery controller 24 of FIG. 1. 図4のステップS1及びS4のバッテリの開放電圧の取得方法の一例を示すグラフである。It is a graph which shows an example of the acquisition method of the open circuit voltage of the battery of step S1 and S4 of FIG. 図4のステップS2及びS5のバッテリの開放電圧からSOCを算出する方法の一例を示すグラフである。It is a graph which shows an example of the method of calculating SOC from the open circuit voltage of the battery of step S2 and S5 of FIG. 図4のステップS11〜S15の容量調整方法の一例を示すグラフである。It is a graph which shows an example of the capacity | capacitance adjustment method of step S11-S15 of FIG. 図4のステップS11〜S15の容量調整方法の一例を示すグラフ(その1)である。5 is a graph (part 1) illustrating an example of a capacity adjustment method in steps S11 to S15 in FIG. 図4のステップS11〜S15の容量調整方法の一例を示すグラフ(その2)である。5 is a graph (part 2) illustrating an example of a capacity adjustment method in steps S11 to S15 in FIG. 図4のステップS11〜S15の容量調整方法の一例を示すグラフ(比較例)である。It is a graph (comparative example) which shows an example of the capacity | capacitance adjustment method of step S11-S15 of FIG.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の一実施の形態を適用したハイブリッド自動車の動力伝達系(パワートレイン)を示すブロック図であり、内燃機関1、モータ2,3、クラッチ4、無段変速機5、減速装置6、差動装置7および駆動輪8から構成されている。モータ3の出力軸と内燃機関1の出力軸とクラッチ4の入力軸は互いに連結されており、また、クラッチ4の出力軸とモータ2の出力軸と無段変速機5の入力軸は互いに連結されている。 FIG. 1 is a block diagram showing a power transmission system (powertrain) of a hybrid vehicle to which an embodiment of the present invention is applied. Internal combustion engine 1, motors 2 and 3, clutch 4, continuously variable transmission 5, speed reducer 6, a differential device 7 and a drive wheel 8. The output shaft of the motor 3, the output shaft of the internal combustion engine 1, and the input shaft of the clutch 4 are connected to each other, and the output shaft of the clutch 4, the output shaft of the motor 2, and the input shaft of the continuously variable transmission 5 are connected to each other. Has been.

本例のハイブリッド自動車は、クラッチ4が締結されると内燃機関1とモータ2が車両の推進源となる一方で、クラッチ4が解放されるとモータ2のみが車両の推進源となる。内燃機関1および/またはモータ2の駆動力は、無段変速機5、減速装置6および差動装置7を介して駆動輪8へ伝達される。 In the hybrid vehicle of this example, the internal combustion engine 1 and the motor 2 become the propulsion source of the vehicle when the clutch 4 is engaged, while only the motor 2 becomes the propulsion source of the vehicle when the clutch 4 is released. The driving force of the internal combustion engine 1 and / or the motor 2 is transmitted to the drive wheels 8 via the continuously variable transmission 5, the speed reduction device 6 and the differential device 7.

モータ2,3は、三相同期電動機または三相誘導電動機などの交流電動機であり、モータ3は主として内燃機関の始動と発電に用いられ、モータ2は主として車両の推進と制動に用いられる。 The motors 2 and 3 are AC motors such as a three-phase synchronous motor or a three-phase induction motor. The motor 3 is mainly used for starting and power generation of the internal combustion engine, and the motor 2 is mainly used for propulsion and braking of the vehicle.

なお、モータ2,3には交流電動機に限らず直流電動機を用いることもできる。また、クラッチ4の締結時に、モータ3を車両の推進と制動に用いることもでき、モータ2を内燃機関1の始動や発電に用いることもできる。   The motors 2 and 3 are not limited to AC motors, and DC motors can also be used. Further, when the clutch 4 is engaged, the motor 3 can be used for propulsion and braking of the vehicle, and the motor 2 can be used for starting the internal combustion engine 1 and generating power.

クラッチ4はパウダークラッチであり、伝達トルクがほぼ励磁電流に比例するので伝達トルクを調節することができる。無段変速機5はベルト式やトロイダル式などの無段変速機であり、変速比を無段階に調節することができる。 The clutch 4 is a powder clutch, and the transmission torque can be adjusted because the transmission torque is substantially proportional to the excitation current. The continuously variable transmission 5 is a continuously variable transmission such as a belt type or a toroidal type, and the gear ratio can be adjusted steplessly.

モータ2,3は、それぞれインバータ22,23により駆動される。なお、モータ2,3に直流電動機を用いる場合には、インバータ22,23に代えてDC/DCコンバーターを用いる。インバータ22,23は共通のDCリンク25を介して二次電池であるバッテリ21に接続されており、バッテリ21の直流充電電力を交流電力に変換してモータ2,3へ供給するとともに、モータ2,3の交流発電電力を直流電力に変換してバッテリ21を充電する。 The motors 2 and 3 are driven by inverters 22 and 23, respectively. When a DC motor is used for the motors 2 and 3, a DC / DC converter is used instead of the inverters 22 and 23. The inverters 22 and 23 are connected to a battery 21 that is a secondary battery via a common DC link 25, and the DC charging power of the battery 21 is converted into AC power and supplied to the motors 2 and 3. , 3 is converted into DC power to charge the battery 21.

なお、インバータ22,23は互いにDCリンク25を介して接続されているので、回生運転中のモータにより発電された電力は、バッテリ21を介さずに直接、力行運転中のモータ2,3へ供給することができる。   Since the inverters 22 and 23 are connected to each other via the DC link 25, the electric power generated by the motor during the regenerative operation is directly supplied to the motors 2 and 3 during the power running operation without going through the battery 21. can do.

バッテリ21はリチウムイオン電池である。なお、バッテリ21には、ニッケル水素電池や鉛電池などの他の種類の電池を用いることができる。 The battery 21 is a lithium ion battery. The battery 21 may be another type of battery such as a nickel metal hydride battery or a lead battery.

コントローラ9は、マイクロコンピュータとその周辺部品や各種アクチュエータなどを備え、内燃機関1の回転速度や出力トルク、クラッチ4の伝達トルク、モータ2,3の回転速度や出力トルク、無段変速機5の変速比、バッテリ21のSOCなどを、エンジンコントローラ11、トランスミッションコントローラ51及びバッテリコントローラ24を介して統括的に制御する。 The controller 9 includes a microcomputer, its peripheral components, various actuators, and the like. The rotation speed and output torque of the internal combustion engine 1, the transmission torque of the clutch 4, the rotation speed and output torque of the motors 2 and 3, and the continuously variable transmission 5 The transmission ratio, the SOC of the battery 21, etc. are comprehensively controlled via the engine controller 11, the transmission controller 51 and the battery controller 24.

図2は、図1のバッテリ21廻りの詳細を示すブロック図である。図2に示すようにバッテリ21にはバッテリコントローラ24が接続されており、このバッテリコントローラ24には、バッテリ21を流れる電流を検出する電流センサ241と、バッテリ21の総電圧を検出する総電圧センサ242と、バッテリ21の温度を検出する温度センサ243と、バッテリ21を構成する組電池のセルコントローラ(不図示)との通信ライン244が接続されている。 FIG. 2 is a block diagram showing details around the battery 21 of FIG. As shown in FIG. 2, a battery controller 24 is connected to the battery 21. The battery controller 24 includes a current sensor 241 that detects a current flowing through the battery 21 and a total voltage sensor that detects a total voltage of the battery 21. 242, a temperature sensor 243 that detects the temperature of the battery 21, and a communication line 244 that connects to a cell controller (not shown) of the assembled battery that constitutes the battery 21 are connected.

図3は、図1及び図2のバッテリ21を構成する組電池の容量調整回路の一例を示す電気回路図である。組電池であるバッテリ21は、二次電池である複数の単電池211が直列及び/又は並列に接続されてなり、同図には複数の単電池211が直列に接続された例を示し、便宜的に単電池211a,211b…で表わす。なお、図1に示すハイブリッド自動車システムに関してはバッテリ21と総称するが、バッテリ21の全体を指す場合は組電池21と称し、当該組電池を構成する個々の電池を指す場合は単電池211と称し、両者を区別するものとする。 FIG. 3 is an electric circuit diagram showing an example of a capacity adjustment circuit of the assembled battery constituting the battery 21 of FIGS. 1 and 2. The battery 21 which is an assembled battery is formed by connecting a plurality of single cells 211 which are secondary batteries in series and / or in parallel, and this figure shows an example in which a plurality of single cells 211 are connected in series. These are represented by single cells 211a, 211b. The hybrid vehicle system shown in FIG. 1 is collectively referred to as a battery 21, but when referring to the entire battery 21, it is referred to as an assembled battery 21, and when referring to individual batteries constituting the assembled battery, it is referred to as a single battery 211. , To distinguish between the two.

各単電池211の両端子には一対の電圧検出線245の一端が接続され、その他端は例えばバッテリコントローラ24(又はセルコントローラ)のAD変換ポートに接続され、これによりバッテリコントローラ24で直接セル電圧が検出される。 One end of a pair of voltage detection lines 245 is connected to both terminals of each unit cell 211, and the other end is connected to an AD conversion port of the battery controller 24 (or cell controller), for example. Is detected.

一対の電圧検出線245の間には、トランジスタなどのスイッチング素子246と、単電池211の電力を消費して容量を調整するための抵抗247とが接続されている。そして、バッテリコントローラ24によって各単電池211の容量のばらつき調整が必要と判断されたときは、バッテリコントローラ24からスイッチング素子246(トランジスタのベース)にスイッチングON/OFF信号を所定時間だけ入力することで、調整対象の単電池211の電力を抵抗247により放電させる。 Between the pair of voltage detection lines 245, a switching element 246 such as a transistor and a resistor 247 for adjusting the capacity by consuming the electric power of the unit cell 211 are connected. When the battery controller 24 determines that it is necessary to adjust the variation in the capacity of each unit cell 211, a switching ON / OFF signal is input from the battery controller 24 to the switching element 246 (base of the transistor) for a predetermined time. The electric power of the cell 211 to be adjusted is discharged by the resistor 247.

次に本例の容量調整方法について説明する。   Next, the capacity adjustment method of this example will be described.

図4は、図1のバッテリコントローラ24で実行される制御手順を示すフローチャートである。   FIG. 4 is a flowchart showing a control procedure executed by the battery controller 24 of FIG.

ステップS1では、単電池211ごとの開放電圧を取得する。ここでいう開放電圧とは、a)バッテリ21が無負荷状態である場合に実測して得られる開放電圧Ea、b)充放電時にサンプリングされた電流値及び電圧値から得られるI−V特性の外挿、すなわちパワー演算により推定される開放電圧Eb、またはc)充放電時に実測された電流値及び総電圧値に基づいて、Ec=(総電圧)+(電流値)×(温度及び劣化補正された内部抵抗)により推定される開放電圧Ecのいずれも採用することができる。   In step S1, an open circuit voltage for each cell 211 is acquired. The open circuit voltage referred to here is a) an open circuit voltage Ea obtained by actual measurement when the battery 21 is in a no-load state, and b) an IV characteristic obtained from a current value and a voltage value sampled during charge / discharge. Ec = (total voltage) + (current value) × (temperature and deterioration correction) based on extrapolation, that is, open circuit voltage Eb estimated by power calculation, or c) current value and total voltage value actually measured during charging / discharging Any of the open circuit voltage Ec estimated by the internal resistance) can be adopted.

開放電圧Eaの計測は無負荷時に行うものであるため、自動車を起動する際の無負荷時(強電系統をONする前)やキーをOFFする際に計測することができる。これに対して、開放電圧EbやEcは無負荷時でなくても計測することができるので、これらを適宜選択して開放電圧を取得する。   Since the open circuit voltage Ea is measured when there is no load, it can be measured at the time of no load when starting the automobile (before turning on the high power system) or when the key is turned off. On the other hand, since the open circuit voltages Eb and Ec can be measured even when there is no load, the open circuit voltages are acquired by appropriately selecting them.

一例として開放電圧Ebの取得手順について説明する。開放電圧Ebは、自動車の走行時などにおいて単電池211の電流変化を捉え、図5に示すように電流値I及び電圧値Vを複数サンプリングする。同図の丸×印が計測されたサンプリング点であり、このI−V特性のサンプリングデータをIV座標において一次回帰演算して特性直線L(=R・I+Eb)を求める。特性直線Lと縦軸(電圧軸)との交点が開放電圧Ebとなる。なお、オームの法則により特性直線Lの傾きRがその単電池211の内部抵抗である。   As an example, the procedure for obtaining the open circuit voltage Eb will be described. The open circuit voltage Eb captures a change in the current of the cell 211 when the vehicle is running, and samples a plurality of current values I and voltage values V as shown in FIG. The circle X in the figure is the measured sampling point, and the characteristic straight line L (= R · I + Eb) is obtained by performing a linear regression operation on the IV data sampling data in the IV coordinates. The intersection of the characteristic line L and the vertical axis (voltage axis) is the open circuit voltage Eb. Note that the slope R of the characteristic line L is the internal resistance of the unit cell 211 according to Ohm's law.

ステップS2では、バッテリコントローラ24のメモリ領域に設定されている単電池の開放電圧−SOCマップを参照して、単電池211ごとのSOCを算出する。図6は単電池211の開放電圧とSOCとの相関関係を示すグラフであり、単電池211の温度や容量劣化度が変化しても不変の関係である。したがって、バッテリコントローラ24に設定された、図5に示す開放電圧−SOCマップを参照し、ステップS1で取得した開放電圧EからSOCを算出する。   In step S <b> 2, the SOC for each unit cell 211 is calculated with reference to the open-circuit voltage-SOC map of the unit cell set in the memory area of the battery controller 24. FIG. 6 is a graph showing the correlation between the open circuit voltage of the unit cell 211 and the SOC, and the relationship is unchanged even if the temperature and capacity degradation degree of the unit cell 211 change. Therefore, the SOC is calculated from the open-circuit voltage E acquired in step S1 with reference to the open-circuit voltage-SOC map shown in FIG. 5 set in the battery controller 24.

ステップS1及びS2は、組電池を構成する全ての単電池211a,211b…について実行する。   Steps S1 and S2 are executed for all the unit cells 211a, 211b,.

ステップS3では、ステップS2で算出された各単電池211のSOCに基づいて、容量調整が必要な単電池211があるか否かを判断し、容量調整が必要な単電池211がある場合にはステップ4へ進み、容量調整が必要な単電池211がない場合にはステップS4〜S15を実行せずに処理を終了する。   In step S3, based on the SOC of each unit cell 211 calculated in step S2, it is determined whether there is a unit cell 211 that requires capacity adjustment. If there is a unit cell 211 that requires capacity adjustment, Proceeding to step 4, if there is no unit cell 211 that requires capacity adjustment, the process is terminated without executing steps S4 to S15.

ステップS3にて判断される容量調整の必要性については、たとえば各単電池211のSOCの平均値を求め、この平均値との差が所定値以上の単電池がある場合には容量調整を行なったり、各単電池211の最小SOCと最大SOCとの差が所定値以上にばらついている場合は容量調整を行ったり、その他これに類する判断基準で実行することができる。   Regarding the necessity of capacity adjustment determined in step S3, for example, the average value of the SOC of each unit cell 211 is obtained, and if there is a unit cell whose difference from this average value is a predetermined value or more, the capacity adjustment is performed. If the difference between the minimum SOC and the maximum SOC of each unit cell 211 varies beyond a predetermined value, the capacity can be adjusted, or other similar criteria can be used.

ステップS4では、バッテリ21、すなわち組電池全体の開放電圧を取得する。ここで言う開放電圧も上記ステップS1にて既述した開放電圧Ea,Eb,Ecのいずれをも採用することができる。たとえば、図5に示すように、充放電時にサンプリングされた電流値及び電圧値から得られるI−V特性の外挿演算をすることで組電池全体の開放電圧Ebを取得することができる。   In step S4, the open voltage of the battery 21, that is, the entire assembled battery is acquired. Any of the open-circuit voltages Ea, Eb, and Ec described in step S1 can be used as the open-circuit voltage here. For example, as shown in FIG. 5, the open voltage Eb of the entire assembled battery can be obtained by extrapolating the IV characteristics obtained from the current value and voltage value sampled during charging and discharging.

ステップS5では、バッテリコントローラ24のメモリ領域に設定されている組電池の開放電圧−SOCマップを参照して、組電池全体のSOCを算出する。この演算も上記ステップS2と同様に、予め設定された図6に示すようなマップを参照することによりSOCを算出することができる。   In step S5, the SOC of the entire assembled battery is calculated with reference to the open voltage-SOC map of the assembled battery set in the memory area of the battery controller 24. In this calculation as well, the SOC can be calculated by referring to a preset map as shown in FIG.

ステップS6では、組電池全体の容量劣化度を算出する。ここでいう容量劣化度とは電池の初期容量Cに対する現在の容量の劣化度合いを示す特性値であって、容量が劣化した割合を示す容量劣化率または残存容量の割合を示す容量維持率の両者を含む意味である。すなわち、組電池の容量劣化率β(%)及び容量維持率γ(%)は、組電池の初期容量をC、現在の電池容量をC、基準温度に対する温度補正係数をαとすると、
[式1]
β=100−(αC/C)×100
[式2]
γ=100−β=(αC/C)×100
で表わされる。
In step S6, the capacity deterioration degree of the entire assembled battery is calculated. The degree of capacity deterioration here is a characteristic value indicating the degree of deterioration of the current capacity with respect to the initial capacity C 0 of the battery, and is a capacity deterioration rate indicating the ratio of capacity deterioration or a capacity maintenance ratio indicating the ratio of remaining capacity. It means to include both. That is, the capacity deterioration rate β (%) and the capacity maintenance rate γ (%) of the assembled battery are expressed as follows: the initial capacity of the assembled battery is C 0 , the current battery capacity is C, and the temperature correction coefficient with respect to the reference temperature is α.
[Formula 1]
β = 100− (αC / C 0 ) × 100
[Formula 2]
γ = 100−β = (αC / C 0 ) × 100
It is represented by

ここで、現在の組電池の電池容量Cは、図6に示す放電開始時の開放電圧E1及びSOC1から放電終了時の開放電圧E2及びSOC2に至る放電電流の積算値ΔAhとすると、
[式3]
C=100×ΔAh/(SOC1−SOC2)=100×ΔAh/ΔSOC
で表わすことができる。
Here, the battery capacity C of the current assembled battery is the integrated value ΔAh of the discharge current from the open circuit voltage E1 and SOC1 at the start of discharge shown in FIG. 6 to the open circuit voltage E2 and SOC2 at the end of discharge.
[Formula 3]
C = 100 × ΔAh / (SOC1−SOC2) = 100 × ΔAh / ΔSOC
It can be expressed as

上記式1において温度補正係数α及び組電池の初期容量Cは既知である。また上記式3においてΔAhは図2に示す電流センサ241により検出された電流値の時間積分値として計測され、ΔSOCは放電開始時の開放電圧E1と放電終了時の開放電圧E2とから算出することができる。 In the above formula 1, the temperature correction coefficient α and the initial capacity C 0 of the assembled battery are known. In Equation 3, ΔAh is measured as a time integral value of the current value detected by the current sensor 241 shown in FIG. 2, and ΔSOC is calculated from the open circuit voltage E1 at the start of discharge and the open circuit voltage E2 at the end of discharge. Can do.

これにより、組電池の容量劣化率β又は容量維持率γを算出することができる。   Thereby, the capacity deterioration rate β or the capacity maintenance rate γ of the assembled battery can be calculated.

ステップS7では、組電池の内部抵抗増加率を算出する。内部抵抗RはステップS4にて組電池の開放電圧Eを取得した際に一次回帰直線Lの傾きとして算出することができ、内部抵抗増加率は初期内部抵抗をRとするとR/Rとして算出することができる。 In step S7, the internal resistance increase rate of the assembled battery is calculated. The internal resistance R can be calculated as the slope of the primary regression line L when the open circuit voltage E of the assembled battery is acquired in step S4, and the internal resistance increase rate is R / R 0 when the initial internal resistance is R 0. Can be calculated.

ステップS8では、ステップ5で算出した組電池のSOCから、予め設定された組電池のSOCの下限値SOCminまでのΔSOC=SOC−SOCminを算出する。なお、ここでは組電池のSOCの下限値について車両要求条件がある場合を示すが、システムによってはSOCの下限値に代えて車両性能の管理ポイントとなる任意のSOCまでのΔSOCを算出してもよい。また、放電側だけでなく、充電側、すなわちSOCの上限値SOCmaxで同様の判定をしてもよい。 In step S8, ΔSOC = SOC−SOC min is calculated from the SOC of the assembled battery calculated in step 5 to a preset lower limit SOC min of the assembled battery SOC. Here, the case where there is a vehicle requirement condition for the lower limit value of the SOC of the assembled battery is shown, but depending on the system, ΔSOC up to an arbitrary SOC that becomes a management point of vehicle performance may be calculated instead of the lower limit value of the SOC. Good. Further, the same determination may be made not only on the discharge side but also on the charge side, that is, the upper limit SOC max of the SOC.

そして、算出されたΔSOCに対して、ステップ6で取得した組電池の容量劣化率β(又は組電池の容量維持率γ)と組電池の初期容量Cを掛け合わせて、放電下限までに使用する電池容量をたとえばAh単位で算出する。なお、以下の説明ではAh単位での算出として説明するが、Wh単位による計算でもよい。 The calculated ΔSOC is multiplied by the assembled battery capacity deterioration rate β (or assembled battery capacity maintenance rate γ) obtained in step 6 by the assembled battery initial capacity C 0 and used up to the lower limit of discharge. The battery capacity to be calculated is calculated in units of Ah, for example. In the following description, the calculation is performed in units of Ah, but may be performed in units of Wh.

ステップS9では、ステップS3で判断された容量調整が必要とされる単電池211の容量劣化率β´(又は容量維持率γ´)を算出する。なお、ステップS3において容量調整が必要とされる単電池が複数ある場合には、それぞれの単電池211に対して容量劣化率β´(又は容量維持率γ´)を算出する。また、容量調整が必要とされる単電池211が複数ある場合には、以下のステップS10〜S15の処理はそれぞれの単電池211に対して実行するものとする。   In step S9, the capacity deterioration rate β ′ (or capacity maintenance rate γ ′) of the cell 211 that requires the capacity adjustment determined in step S3 is calculated. If there are a plurality of cells that require capacity adjustment in step S3, a capacity deterioration rate β ′ (or capacity maintenance rate γ ′) is calculated for each cell 211. In addition, when there are a plurality of unit cells 211 whose capacity needs to be adjusted, the following steps S10 to S15 are executed for each unit cell 211.

この単電池211についての容量劣化率β´又は容量維持率γ´の算出は、上述したステップS6の組電池21の容量劣化率β又は容量維持率γの算出と同様に、対象となる単電池211についての式1〜式3により求めることができる。   The calculation of the capacity deterioration rate β ′ or the capacity maintenance rate γ ′ for the single battery 211 is the same as the calculation of the capacity deterioration rate β or the capacity maintenance rate γ of the assembled battery 21 in step S6 described above. It can be obtained by Equations 1 to 3 for 211.

ステップS10では、容量調整が必要とされる対象単電池211の内部抵抗増加率を算出する。この内部抵抗増加率についても、上述したステップS7の組電池21の内部抵抗増加率の算出と同様に、内部抵抗RはステップS1にて単電池211の開放電圧Eを取得した際に一次回帰直線Lの傾きとして算出することができ、内部抵抗増加率は初期内部抵抗をRとするとR/Rとして算出することができる。 In step S10, the rate of increase in internal resistance of the target cell 211 that requires capacity adjustment is calculated. As for the internal resistance increase rate, as with the calculation of the internal resistance increase rate of the assembled battery 21 in step S7 described above, the internal resistance R is a linear regression line when the open circuit voltage E of the cell 211 is acquired in step S1. The internal resistance increase rate can be calculated as R / R 0 when the initial internal resistance is R 0 .

ステップS11では、容量調整が必要とされる単電池の電池容量(Ah)からステップ8で算出した組電池21の電池容量(Ah)を減算する。これにより、組電池21のSOC下限値における単電池211の電池容量(Ah)が求められる。   In step S11, the battery capacity (Ah) of the assembled battery 21 calculated in step 8 is subtracted from the battery capacity (Ah) of the single battery that requires capacity adjustment. Thereby, the battery capacity (Ah) of the unit cell 211 at the SOC lower limit value of the assembled battery 21 is obtained.

ステップS12では、ステップS11で求めた組電池21のSOC下限値での単電池211毎の電池容量(Ah)と、ステップS9で求めた単電池211毎の容量維持率γ´(又は100−容量劣化率β´)と、単電池211の初期容量Cを乗算し、組電池21のSOC下限値における単電池211のSOCを算出する。 In step S12, the battery capacity (Ah) for each cell 211 at the SOC lower limit value of the assembled battery 21 obtained in step S11, and the capacity maintenance rate γ ′ for each cell 211 obtained in step S9 (or 100−capacity). The deterioration rate β ′) is multiplied by the initial capacity C 0 of the single battery 211 to calculate the SOC of the single battery 211 at the SOC lower limit value of the assembled battery 21.

ステップS13では、この状態で車両要求などに応じた放電をした際の単電池211の負荷電圧を計算する。この負荷電圧の計算にあたっては、放電負荷と初期内部抵抗および内部抵抗増加率(ステップS10)から推測する。   In step S13, the load voltage of the cell 211 when discharging according to the vehicle request in this state is calculated. In calculating the load voltage, the load voltage is estimated from the discharge load, the initial internal resistance, and the internal resistance increase rate (step S10).

ステップS14では、ステップS13で算出された負荷電圧に基づいて、容量調整が必要とされる対象単電池211が、単電池211の放電下限電圧に達するか否かを判断する。なお、この放電下限電圧はSOC=0%に設定することもできるし、それ以下又はそれ以上の値に設定することもできる。   In step S14, based on the load voltage calculated in step S13, it is determined whether or not the target single cell 211 that requires capacity adjustment reaches the discharge lower limit voltage of the single cell 211. In addition, this discharge lower limit voltage can also be set to SOC = 0%, and can also be set to the value below it or more.

ステップS14にて放電下限電圧に達する単電池211が存在しないと判断された場合はステップS15へ進んで容量調整を実行するが、放電下限電圧に達する単電池が存在したときは、その単電池211については容量調整を実行せずに本ルーチンを終了し、過放電を防止する。   When it is determined in step S14 that there is no unit cell 211 that reaches the discharge lower limit voltage, the process proceeds to step S15 to perform capacity adjustment. However, when there is a unit cell that reaches the discharge lower limit voltage, the unit cell 211 is reached. In this case, the routine is terminated without adjusting the capacity to prevent overdischarge.

ステップS15では、容量調整が必要とされ、かつ容量調整を実行しても過放電とならない単電池211のSOCを調整する。このときのSOCの調整量は、組電池21のSOC下限値の状態において、車両要求などに応じた放電を行っても、容量調整の対象単電池211が下限電圧に到達しない電池容量を最大の調整量として適宜SOCの調整量を設定するものとする。   In step S15, the SOC of the unit cell 211 that requires capacity adjustment and does not overdischarge even when the capacity adjustment is executed is adjusted. The SOC adjustment amount at this time is the battery capacity at which the target cell 211 for capacity adjustment does not reach the lower limit voltage even when discharging according to the vehicle request is performed in the state of the SOC lower limit value of the assembled battery 21. It is assumed that the SOC adjustment amount is appropriately set as the adjustment amount.

以上の容量調整の考え方を図7及び図8A〜図8Cを参照して説明する。   The concept of the above capacity adjustment will be described with reference to FIGS. 7 and 8A to 8C.

図7は電池容量に対するSOCの関係を示すグラフであり、組電池21平均Aと単電池Bの容量劣化率β,β´が相違している場合を示す。すなわち、単電池Bの容量劣化率β´は組電池平均Aとしての容量劣化率βより大きい(劣化度合いが大きい)ものとする。したがって、同図に示すように組電池平均としての利用可能範囲(Ah)に対し、単電池Bの利用可能範囲(Ah)は狭くなる。   FIG. 7 is a graph showing the relationship of the SOC with respect to the battery capacity, and shows a case where the capacity deterioration rates β and β ′ of the assembled battery 21 average A and the cell B are different. That is, it is assumed that the capacity deterioration rate β ′ of the cell B is larger (the degree of deterioration is larger) than the capacity deterioration rate β as the assembled battery average A. Therefore, as shown in the figure, the usable range (Ah) of the unit cell B becomes narrower than the usable range (Ah) as the assembled battery average.

こうした組電池Aと単電池Bのある時点におけるSOCが、図8Aに示す状態にあり、単電池Bについて容量調整が必要とされたものとする。   It is assumed that the SOC of the assembled battery A and the single battery B at a certain point is in the state shown in FIG. 8A and the capacity adjustment of the single battery B is required.

ここで従来の容量調整方法では、図8Aに示すように単電池Bの充電状態SOC−Bを容量調整する場合には、たとえば図8Cに示すように、目標SOCを組電池Aの充電状態SOC−Aに設定し、単電池BのSOC−BがSOC−Aになるまで放電処理を実行する。   Here, in the conventional capacity adjustment method, when adjusting the capacity of the state of charge SOC-B of the cell B as shown in FIG. 8A, the target SOC is set to the state of charge SOC of the battery pack A as shown in FIG. 8C, for example. -A is set, and the discharge process is executed until the SOC-B of the battery B becomes SOC-A.

ところが、単電池Bの容量劣化率β´は組電池平均Aの容量劣化率βより大きいので、単電池Bがその後の放電によりSOC下限値SOCminに達するまでの範囲(電池容量)が、組電池平均Aのそれより小さくなる。すなわち、図8Cに示すように組電池平均Aに対して最大の負荷要求があると単電池Bは下限値SOCminを下回り、過放電することになる。換言すれば、過放電を防止するために組電池としてその車両からの負荷要求には対応することができない。   However, since the capacity deterioration rate β ′ of the battery B is larger than the capacity deterioration rate β of the battery pack average A, the range (battery capacity) until the battery B reaches the SOC lower limit SOCmin by the subsequent discharge is the battery pack. It is smaller than that of average A. That is, as shown in FIG. 8C, when there is a maximum load request for the battery pack average A, the cell B falls below the lower limit SOCmin and is overdischarged. In other words, in order to prevent overdischarge, the assembled battery cannot meet the load demand from the vehicle.

これに対して本例の容量調整では、容量調整すべき単電池Bの容量劣化率β´(図8Aの特性直線の傾きに相当する)に応じて、図8Cに示すようにSOC−Aまで放電処理を行わず、図8Bに示すように放電処理を途中までに制限する。つまり、充電状態SOC−BをSOC−B1に制限し、SOC−B1とSOC−Aをゼロにしないこととしている。   On the other hand, in the capacity adjustment of this example, depending on the capacity deterioration rate β ′ (corresponding to the slope of the characteristic line in FIG. 8A) of the unit cell B whose capacity is to be adjusted, as shown in FIG. The discharge process is not performed and the discharge process is limited to the middle as shown in FIG. 8B. That is, the state of charge SOC-B is limited to SOC-B1, and SOC-B1 and SOC-A are not set to zero.

この制限量は、たとえば図8Bに示すように、その後の車両要求に対して組電池平均Aが対応できる範囲と一致するように回帰する値又はそれ以上の値とすることができる。   For example, as shown in FIG. 8B, this limit amount can be a value that returns so as to match the range in which the assembled battery average A can correspond to the subsequent vehicle request, or a value greater than that.

なお、上述した実施形態では、容量調整すべき単電池211の容量劣化率β´又はこれと補間関係にある容量維持率γ´に応じて容量調整量を制限することとしたが、容量劣化率β´及び容量維持率γ´は、単電池211の満充電の容量、すなわちSOCが100%のときの電池容量(Ah)に相関する。したがって、容量劣化率β´及び容量維持率γ´に代えて、単電池211の満充電の電池容量に応じて容量調整量を制限してもよい。   In the above-described embodiment, the capacity adjustment amount is limited according to the capacity deterioration rate β ′ of the cell 211 to be capacity-adjusted or the capacity maintenance rate γ ′ that is interpolated with the capacity deterioration rate. β ′ and the capacity maintenance rate γ ′ are correlated with the fully charged capacity of the unit cell 211, that is, the battery capacity (Ah) when the SOC is 100%. Therefore, instead of the capacity deterioration rate β ′ and the capacity maintenance rate γ ′, the capacity adjustment amount may be limited according to the fully charged battery capacity of the unit cell 211.

以上のとおり、本例の組電池の容量調整によれば、調整すべき単電池211の容量劣化率β´、容量維持率γ´又は満充電容量に応じて放電処理を制限するので、容量劣化率が大きく又は容量維持率若しくは満充電容量が小さく、すなわち電圧降下度が大きい単電池211に対しては放電処理が制限され、所定量の電池容量が余分に確保される。   As described above, according to the capacity adjustment of the assembled battery of this example, the discharge process is limited according to the capacity deterioration rate β ′, the capacity maintenance rate γ ′ or the full charge capacity of the cell 211 to be adjusted. The discharge process is restricted for the unit cell 211 having a large rate or a small capacity maintenance rate or a small full charge capacity, that is, a large degree of voltage drop, and a predetermined amount of battery capacity is secured.

この結果、その後の使用による下限電圧に到達するまでの時間が長くなり、組電池21の利用可能範囲を拡大することができる。   As a result, it takes a long time to reach the lower limit voltage due to subsequent use, and the usable range of the assembled battery 21 can be expanded.

なお、上記バッテリコントローラ24が本発明の電圧検出手段、劣化度検出手段、制御手段及び負荷電圧算出手段に相当し、上記スイッチング素子246、抵抗247及びバッテリコントローラが本発明の容量調整手段に相当する。   The battery controller 24 corresponds to voltage detection means, deterioration degree detection means, control means and load voltage calculation means of the present invention, and the switching element 246, resistor 247 and battery controller correspond to capacity adjustment means of the present invention. .

1…内燃機関
2,3…モータ
4…クラッチ
5…無段変速機
6…減速装置
7…差動装置
8…駆動輪
9…コントローラ
21…バッテリ(組電池)
211…単電池
22,23…インバータ
24…バッテリコントローラ
241…電流センサ
242…電圧センサ
243…温度センサ
244…通信ライン
245…電圧検出線
246…スイッチング素子
247…抵抗
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 2, 3 ... Motor 4 ... Clutch 5 ... Continuously variable transmission 6 ... Deceleration device 7 ... Differential gear 8 ... Drive wheel 9 ... Controller 21 ... Battery (assembled battery)
211 ... Single cells 22, 23 ... Inverter 24 ... Battery controller 241 ... Current sensor 242 ... Voltage sensor 243 ... Temperature sensor 244 ... Communication line 245 ... Voltage detection line 246 ... Switching element 247 ... Resistance

Claims (6)

二次電池である複数の単電池が接続された組電池の、前記単電池の電圧を検出する電圧検出手段と、
前記電圧検出手段により検出された電圧に基づいて前記単電池の容量劣化度を検出する劣化度検出手段と、
前記単電池の放電処理を実行して当該単電池の電池容量を調整する容量調整手段と、
前記劣化度検出手段により検出された単電池の容量劣化度に応じて、調整すべき単電池の放電処理を制限する制御手段と、を備えた組電池の容量調整装置。
Voltage detection means for detecting a voltage of the unit cell of a battery pack to which a plurality of unit cells which are secondary batteries are connected;
A deterioration degree detecting means for detecting a capacity deterioration degree of the unit cell based on the voltage detected by the voltage detecting means;
Capacity adjusting means for adjusting the battery capacity of the unit cell by executing discharge processing of the unit cell;
A battery pack capacity adjustment apparatus comprising: control means for restricting discharge processing of the unit cell to be adjusted according to the degree of capacity degradation of the unit cell detected by the deterioration degree detection unit.
請求項1に記載の組電池の容量調整装置において、
前記制御手段は、前記劣化度検出手段により検出された単電池の容量劣化度が相対的に小さい単電池の容量調整後の電圧又はSOCに対し、容量劣化度が相対的に大きい単電池の容量調整後の電圧又はSOCが所定量だけ大きくなるように、容量劣化度が相対的に大きい単電池の放電処理を制限する組電池の容量調整装置。
The capacity adjustment apparatus for an assembled battery according to claim 1,
The control means has a capacity of a single cell having a relatively large capacity deterioration degree with respect to a voltage or SOC after the capacity adjustment of the single battery having a relatively small capacity deterioration degree detected by the deterioration degree detecting means. A battery pack capacity adjustment device that limits discharge processing of a single battery having a relatively large capacity deterioration degree so that the adjusted voltage or SOC is increased by a predetermined amount.
請求項2に記載の組電池の容量調整装置において、
組電池の負荷から要求される負荷電圧を算出する負荷電圧算出手段を備え、
前記制御手段は、前記負荷電圧算出手段により算出された負荷電圧が要求された場合に、前記容量劣化度が相対的に小さい単電池の電圧又はSOCと前記容量劣化度が相対的に大きい単電池の電圧又はSOCが所定の下限値に到達するまでの時間が一致するように、前記所定量を設定する組電池の容量調整装置。
The capacity adjustment device for an assembled battery according to claim 2,
Load voltage calculation means for calculating a load voltage required from the load of the assembled battery is provided,
When the load voltage calculated by the load voltage calculating unit is requested, the control unit is configured to have a relatively small cell voltage or SOC that has a relatively low capacity deterioration degree and a single cell that has a relatively large capacity deterioration degree. The battery pack capacity adjustment apparatus sets the predetermined amount so that the time until the voltage or SOC reaches a predetermined lower limit coincides.
二次電池である複数の単電池が接続された組電池の、前記単電池の電圧を検出する電圧検出手段と、
前記電圧検出手段により検出された電圧に基づいて前記単電池の満充電状態における電池容量を検出する満充電容量検出手段と、
前記単電池の放電処理を実行して当該単電池の電池容量を調整する容量調整手段と、
前記満充電容量検出手段により検出された単電池の満充電容量に応じて、調整すべき単電池の放電処理を制限する制御手段と、を備えた組電池の容量調整装置。
Voltage detection means for detecting a voltage of the unit cell of a battery pack to which a plurality of unit cells which are secondary batteries are connected;
A full charge capacity detection means for detecting a battery capacity in a fully charged state of the unit cell based on the voltage detected by the voltage detection means;
Capacity adjusting means for adjusting the battery capacity of the unit cell by executing discharge processing of the unit cell;
A battery pack capacity adjustment apparatus comprising: control means for restricting discharge processing of the single cell to be adjusted according to the full charge capacity of the single battery detected by the full charge capacity detection means.
請求項4に記載の組電池の容量調整装置において、
前記制御手段は、前記満充電容量検出手段により検出された単電池の満充電容量が相対的に小さい単電池の容量調整後の電圧又はSOCに対し、満充電容量が相対的に大きい単電池の容量調整後の電圧又はSOCが所定量だけ大きくなるように、満充電容量が相対的に大きい単電池の放電処理を制限する組電池の容量調整装置。
The capacity adjustment device for an assembled battery according to claim 4,
The control means includes a single battery having a relatively large full charge capacity with respect to the voltage or SOC after the capacity adjustment of the single battery having a relatively small full charge capacity detected by the full charge capacity detecting means. A capacity adjustment device for a battery pack that limits discharge processing of a single battery having a relatively large full charge capacity so that a voltage or SOC after capacity adjustment is increased by a predetermined amount.
請求項5に記載の組電池の容量調整装置において、
組電池の負荷から要求される負荷電圧を算出する負荷電圧算出手段を備え、
前記制御手段は、前記負荷電圧算出手段により算出された負荷電圧が要求された場合に、前記満充電容量が相対的に小さい単電池の電圧又はSOCと前記満充電容量が相対的に大きい単電池の電圧又はSOCが所定の下限値に到達するまでの時間が一致するように、前記所定量を設定する組電池の容量調整装置。
In the capacity adjustment apparatus of the assembled battery according to claim 5,
Load voltage calculation means for calculating a load voltage required from the load of the assembled battery is provided,
When the load voltage calculated by the load voltage calculation means is requested, the control means is a single battery voltage or SOC that has a relatively small full charge capacity and a single battery that has a relatively large full charge capacity. The battery pack capacity adjustment apparatus sets the predetermined amount so that the time until the voltage or SOC reaches a predetermined lower limit coincides.
JP2009208172A 2009-09-09 2009-09-09 Battery pack capacity adjustment device Active JP5463810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009208172A JP5463810B2 (en) 2009-09-09 2009-09-09 Battery pack capacity adjustment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009208172A JP5463810B2 (en) 2009-09-09 2009-09-09 Battery pack capacity adjustment device

Publications (2)

Publication Number Publication Date
JP2011061955A true JP2011061955A (en) 2011-03-24
JP5463810B2 JP5463810B2 (en) 2014-04-09

Family

ID=43948925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009208172A Active JP5463810B2 (en) 2009-09-09 2009-09-09 Battery pack capacity adjustment device

Country Status (1)

Country Link
JP (1) JP5463810B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012143996A1 (en) * 2011-04-18 2014-07-28 日立ビークルエナジー株式会社 Power storage device
WO2015072061A1 (en) * 2013-11-13 2015-05-21 パナソニックIpマネジメント株式会社 Equalizing apparatus
WO2016004327A1 (en) * 2014-07-02 2016-01-07 Emerson Network Power, Energy Systems, North America Inc. Systems and methods for matching end of life for multiple batteries and/or battery backup units
JP2016025820A (en) * 2014-07-24 2016-02-08 矢崎総業株式会社 State-of-charge leveling device and power supply system
US9906072B2 (en) 2014-08-04 2018-02-27 Vertiv Energy Systems, Inc. Systems and methods for matching an end of discharge for multiple batteries
US10557893B2 (en) 2014-11-19 2020-02-11 Gs Yuasa International Ltd. Management device for secondary battery, and method of managing secondary battery
JP7509118B2 (en) 2021-11-04 2024-07-02 トヨタ自動車株式会社 Battery pack deterioration diagnostic device and battery pack deterioration diagnostic method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10322925A (en) * 1997-05-12 1998-12-04 Nissan Motor Co Ltd Adjusting device for set battery cell-to-cell charging rate
JP2000040530A (en) * 1998-07-22 2000-02-08 Nissan Motor Co Ltd Pack battery cell capacity adjusting method
JP2000150003A (en) * 1998-11-10 2000-05-30 Nissan Motor Co Ltd Method and device for charged amount calculation for hybrid vehicle
JP2000261901A (en) * 1999-03-09 2000-09-22 Nissan Motor Co Ltd Calculating method for battery capacity deterioration of secondary battery
JP2002243813A (en) * 2001-02-16 2002-08-28 Nissan Motor Co Ltd Arithmetic unit for computing deterioration of capacity of secondary battery
JP2003284253A (en) * 2002-03-22 2003-10-03 Shin Kobe Electric Mach Co Ltd Method of adjusting capacity of secondary battery
JP2004014205A (en) * 2002-06-05 2004-01-15 Nissan Motor Co Ltd Detection system of battery abnormality and degradation
JP2004031191A (en) * 2002-06-27 2004-01-29 Nissan Motor Co Ltd Capacity adjusting device and method for battery pack
JP2004031012A (en) * 2002-06-24 2004-01-29 Nissan Motor Co Ltd Capacity adjusting device and method for battery pack
JP2007110841A (en) * 2005-10-14 2007-04-26 Nissan Motor Co Ltd Capacity adjusting device for battery pack
JP2007244058A (en) * 2006-03-07 2007-09-20 Nissan Motor Co Ltd Capacity adjusting device of battery pack

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10322925A (en) * 1997-05-12 1998-12-04 Nissan Motor Co Ltd Adjusting device for set battery cell-to-cell charging rate
JP2000040530A (en) * 1998-07-22 2000-02-08 Nissan Motor Co Ltd Pack battery cell capacity adjusting method
JP2000150003A (en) * 1998-11-10 2000-05-30 Nissan Motor Co Ltd Method and device for charged amount calculation for hybrid vehicle
JP2000261901A (en) * 1999-03-09 2000-09-22 Nissan Motor Co Ltd Calculating method for battery capacity deterioration of secondary battery
JP2002243813A (en) * 2001-02-16 2002-08-28 Nissan Motor Co Ltd Arithmetic unit for computing deterioration of capacity of secondary battery
JP2003284253A (en) * 2002-03-22 2003-10-03 Shin Kobe Electric Mach Co Ltd Method of adjusting capacity of secondary battery
JP2004014205A (en) * 2002-06-05 2004-01-15 Nissan Motor Co Ltd Detection system of battery abnormality and degradation
JP2004031012A (en) * 2002-06-24 2004-01-29 Nissan Motor Co Ltd Capacity adjusting device and method for battery pack
JP2004031191A (en) * 2002-06-27 2004-01-29 Nissan Motor Co Ltd Capacity adjusting device and method for battery pack
JP2007110841A (en) * 2005-10-14 2007-04-26 Nissan Motor Co Ltd Capacity adjusting device for battery pack
JP2007244058A (en) * 2006-03-07 2007-09-20 Nissan Motor Co Ltd Capacity adjusting device of battery pack

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9293937B2 (en) 2011-04-18 2016-03-22 Hitachi Automotive Systems, Ltd. Electric storage device
JP5668136B2 (en) * 2011-04-18 2015-02-12 日立オートモティブシステムズ株式会社 Power storage device
JPWO2012143996A1 (en) * 2011-04-18 2014-07-28 日立ビークルエナジー株式会社 Power storage device
US9979210B2 (en) 2013-11-13 2018-05-22 Panasonic Intellectual Property Management Co., Ltd. Equalizing apparatus
CN105706330A (en) * 2013-11-13 2016-06-22 松下知识产权经营株式会社 Equalizing apparatus
JPWO2015072061A1 (en) * 2013-11-13 2017-03-16 パナソニックIpマネジメント株式会社 Equalization processing device
WO2015072061A1 (en) * 2013-11-13 2015-05-21 パナソニックIpマネジメント株式会社 Equalizing apparatus
WO2016004327A1 (en) * 2014-07-02 2016-01-07 Emerson Network Power, Energy Systems, North America Inc. Systems and methods for matching end of life for multiple batteries and/or battery backup units
JP2016025820A (en) * 2014-07-24 2016-02-08 矢崎総業株式会社 State-of-charge leveling device and power supply system
US10658849B2 (en) 2014-07-24 2020-05-19 Yazaki Corporation Charging rate leveling device and power supply system
US9906072B2 (en) 2014-08-04 2018-02-27 Vertiv Energy Systems, Inc. Systems and methods for matching an end of discharge for multiple batteries
US10557893B2 (en) 2014-11-19 2020-02-11 Gs Yuasa International Ltd. Management device for secondary battery, and method of managing secondary battery
JP7509118B2 (en) 2021-11-04 2024-07-02 トヨタ自動車株式会社 Battery pack deterioration diagnostic device and battery pack deterioration diagnostic method

Also Published As

Publication number Publication date
JP5463810B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP3716619B2 (en) Battery remaining capacity meter
US9963043B2 (en) Control system and vehicle power supply
JP6445190B2 (en) Battery control device
JP5463810B2 (en) Battery pack capacity adjustment device
EP2596375B1 (en) Vehicle control device and vehicle control method
US8497661B2 (en) Equalization device, equalization processing program, battery system, electric vehicle and equalization processing method
JP4745879B2 (en) Hybrid vehicle control system, hybrid vehicle control method, and vehicle storage battery control system
JP6822300B2 (en) Charge rate estimation method and in-vehicle battery system
JP5482056B2 (en) Battery pack capacity adjustment device
WO2011105083A1 (en) Battery control apparatus, battery system, electrically driven vehicle, charge control apparatus, charger, moving body, power supply system, power storage apparatus, and power supply apparatus
JP5397013B2 (en) Battery control device
JP2011177011A (en) Device for adjusting state of charge, battery system with the same, electric vehicle, moving body, power storage device, power supply device, and program for processing state of charge adjustment
WO2015037292A1 (en) Rotary electric machine driving system for electric vehicle, battery system, and rotary electric machine control device
JP3543662B2 (en) SOC calculation method for secondary battery for electric vehicle
CN107852002A (en) Method and system for balancing battery group
JP6879136B2 (en) Charge / discharge control device for secondary batteries
JP6834757B2 (en) Battery system
US10899247B2 (en) System and method for online vehicle battery capacity diagnosis
JP2004015924A (en) Battery pack controller and control system
JP2008166025A (en) Battery pack and battery module as well as hybrid car using it
KR102640065B1 (en) Battery system
JP2018179684A (en) Device for estimating degradation state of secondary battery and cell system and electric vehicle having the same
JP5741189B2 (en) VEHICLE CHARGE CONTROL DEVICE AND CHARGE CONTROL METHOD
JP4149682B2 (en) Battery pack state control method for hybrid vehicles
JP3750567B2 (en) Apparatus and method for calculating output deterioration of secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140106

R151 Written notification of patent or utility model registration

Ref document number: 5463810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151