JP2011060405A - Optical head - Google Patents

Optical head Download PDF

Info

Publication number
JP2011060405A
JP2011060405A JP2009212069A JP2009212069A JP2011060405A JP 2011060405 A JP2011060405 A JP 2011060405A JP 2009212069 A JP2009212069 A JP 2009212069A JP 2009212069 A JP2009212069 A JP 2009212069A JP 2011060405 A JP2011060405 A JP 2011060405A
Authority
JP
Japan
Prior art keywords
light
wavelength
diffraction grating
material layer
diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009212069A
Other languages
Japanese (ja)
Inventor
Koichi Tajima
宏一 田島
Chikashi Takatani
周志 高谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2009212069A priority Critical patent/JP2011060405A/en
Publication of JP2011060405A publication Critical patent/JP2011060405A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Head (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical head which receives three kinds of light different in wavelength, depending on a layout of a light receiving area of a single photodetector. <P>SOLUTION: A wavelength selection diffraction element 10a is disposed only in a return optical path of light of a wavelength λ<SB>1</SB>in a wavelength band of 405 nm, light of a wavelength λ<SB>2</SB>in a wavelength band of 660nm, and light of a wavelength λ<SB>3</SB>in a wavelength band of785 nm, all of which are reflected in the same way on an optical disk. The wavelength selection diffraction element 10a has: a wavelength plate 12 which converts the light of wavelength λ<SB>1</SB>and the light of wavelength λ<SB>2</SB>into perpendicular linear polarized light, a first diffraction grating 13 to diffract the light of wavelength λ<SB>1</SB>but to allow the light of wavelength λ<SB>2</SB>to pass without diffracting, and a second diffraction grating 15 to allow the light of wavelength λ<SB>2</SB>to pass without diffracting while diffracting the light of wavelength λ<SB>1.</SB>The optical head, which is allowed to design each wavelength light receiving area of the photodetector with high degree of freedom, is obtained by using 0th diffraction efficiency high on the light of wavelength λ<SB>3</SB>and independently adjusting diffraction efficiency and a diffraction angle of each wavelength light. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光ストレージを扱う光学系として、CD、DVD、光磁気ディスクなどの光記録媒体および、「Blu−ray」(登録商標:以下、BD)などの高密度光記録媒体(以下、「光ディスク」という)に情報の記録および/または再生(以下、「記録・再生」という。)を行う光ヘッド装置に関する。   The present invention provides an optical recording medium such as a CD, a DVD, a magneto-optical disk, and a high-density optical recording medium (hereinafter referred to as “BD”) such as “Blu-ray” (registered trademark: BD) as an optical system that handles optical storage. The present invention relates to an optical head device for recording and / or reproducing information (hereinafter referred to as “recording / reproducing”) on an optical disc.

近年、CD、DVD、BDなど異なる波長の光を用いて各光ディスクに記録・再生を行う光ヘッド装置が開発されており、このような光ヘッド装置には、複数の異なる波長の光に対して共通して用いる光学部品による部品点数の削減、小型化が求められている。光源となる半導体レーザについても、複数種の発振波長を有する半導体レーザを一体形成する技術を用いて、2波長あるいは3波長を発振する半導体素子を1つのパッケージに収めた、いわゆる2波長レーザ、3波長レーザとよばれる半導体レーザの開発が検討されている。   In recent years, optical head devices for recording / reproducing on / from each optical disk using light of different wavelengths such as CD, DVD, and BD have been developed. There is a demand for reduction in the number of parts and miniaturization by using optical parts in common. Regarding a semiconductor laser as a light source, a so-called two-wavelength laser, in which a semiconductor element that oscillates two or three wavelengths is contained in one package by using a technique for integrally forming semiconductor lasers having a plurality of types of oscillation wavelengths, 3 Development of a semiconductor laser called a wavelength laser has been studied.

また、この他に、光ヘッド装置の部品点数の削減、小型化のため、波長が異なる2つまたは3つの光について、各波長の光に対応したそれぞれの光ディスクに対して球面収差を低減して集光させる対物レンズも開発されている。さらに、各光ディスクの情報記録面で反射した信号光などを検出する光検出器についても、各波長の光に対してそれぞれ独立した受光光学系と光検出器を有する光ヘッド装置から、波長が異なる2つまたは3つの光に対して共通する受光光学系を有し、1つの光検出器で複数の波長の光情報を検出する光ヘッド装置が検討、開発されている。   In addition to this, in order to reduce the number of parts and the size of the optical head device, the spherical aberration is reduced with respect to each optical disc corresponding to the light of each wavelength for two or three lights having different wavelengths. An objective lens for condensing light has also been developed. Further, with respect to the photodetector that detects the signal light reflected by the information recording surface of each optical disc, the wavelength differs from the optical head device having the light receiving optical system and the photodetector independent of each wavelength of light. An optical head device having a light receiving optical system common to two or three lights and detecting optical information of a plurality of wavelengths with one photodetector has been studied and developed.

光検出器は、複数の受光エリアを有し、各光ディスクから反射された光がそれぞれの受光エリアに到達するように配置されている。そして、受光エリアに到達した光の信号(光量)を演算処理することによって、再生RF信号、フォーカスエラー信号、トラッキングエラー信号などを生成する。ここで、各光ディスクの情報記録面から反射された、波長が異なる複数の光を1つの光検出器で受光させる光ヘッド装置として、例えば、BDより反射した光と、HD−DVD/DVD/CDより反射した光とを、それぞれ異なる受光エリア(センサーパターン)で受光させる光ヘッド装置が報告されている(特許文献1)。   The photodetector has a plurality of light receiving areas and is arranged so that light reflected from each optical disk reaches each light receiving area. Then, a reproduction RF signal, a focus error signal, a tracking error signal, and the like are generated by calculating a signal (light amount) of the light reaching the light receiving area. Here, as an optical head device in which a plurality of lights having different wavelengths reflected from the information recording surface of each optical disc are received by a single photodetector, for example, light reflected from a BD and HD-DVD / DVD / CD There has been reported an optical head device that receives more reflected light in different light receiving areas (sensor patterns) (Patent Document 1).

特許文献1で開示される光ヘッド装置は、光ディスクで反射した光の光路中のみに配置されるアナモレンズ(シリンドリカルレンズ)と光検出器との間に、偏光性回折素子を備える。そして、偏光性回折素子は、BDで反射した光と、HD−DVD/DVD/CDで反射された光とが、互いに直交する偏光方向の光として入射したとき、BDで反射した光を回折させ、HD−DVD/DVD/CDで反射した光を透過させて、1つの光検出器においてそれぞれの光がBD用の受光エリア、HD−DVD/DVD/CD用の受光エリアに到達するように調整されている。   The optical head device disclosed in Patent Document 1 includes a polarizing diffraction element between an anamorphic lens (cylindrical lens) disposed only in the optical path of light reflected by an optical disc and a photodetector. The polarizing diffractive element diffracts the light reflected by the BD when the light reflected by the BD and the light reflected by the HD-DVD / DVD / CD are incident as lights having polarization directions orthogonal to each other. The light reflected by the HD-DVD / DVD / CD is transmitted and adjusted so that each light reaches the light receiving area for BD and the light receiving area for HD-DVD / DVD / CD in one photodetector. Has been.

特開2008−47200号公報JP 2008-47200 A

しかし、特許文献1の光ヘッド装置では、異なる受光エリアに到達させる光毎、互いに直交する偏光状態として偏光性回折素子に入射させなければならない、という制限があった。さらに、従来の偏光性回折素子は、互いに直交するS偏光の光と、P偏光の光として偏光性回折素子に入射させて、光を偏光毎に、2つの方向に分岐させることができるが、例えば、各光ディスクによって信号処理が異なり、3つの波長の光に対して各々独立に受光エリアを有する光検出器を用いた光ヘッド装置に適用することができない。また、波長が異なる2つの光について同一の受光エリアに到達させる場合、偏光性回折素子を直進透過した、つまり0次回折光の延長方向の配置としなければならない、という制限があった。   However, the optical head device of Patent Document 1 has a limitation that each light that reaches different light receiving areas must be incident on the polarizing diffraction element in a polarization state orthogonal to each other. Furthermore, the conventional polarizing diffractive element can be incident on the polarizing diffractive element as S-polarized light and P-polarized light orthogonal to each other to split the light into two directions for each polarization, For example, signal processing differs depending on each optical disc, and it cannot be applied to an optical head device using a photodetector having a light receiving area independently for light of three wavelengths. Further, when two lights having different wavelengths reach the same light receiving area, there is a restriction that the polarizing diffraction element must be transmitted in a straight line, that is, arranged in the extending direction of the 0th-order diffracted light.

本発明は、従来技術のかかる問題を解決するためになされたものであり、波長が異なる3つの光それぞれに対応した光ディスクから反射される信号光を、1つの光検出器のうちそれぞれの光に対応した受光エリアに到達させるために、波長選択回折素子を用いて、光検出器における受光エリアのレイアウトの自由度が高くかつ、小型化をともなって、記録・再生ができる光ヘッド装置を提供することを目的とする。   The present invention has been made to solve such a problem of the prior art. Signal light reflected from an optical disk corresponding to each of three lights having different wavelengths is supplied to each light of one photodetector. Provided is an optical head device that uses a wavelength selective diffraction element in order to reach a corresponding light receiving area, has a high degree of freedom in layout of the light receiving area in the photodetector, and can be recorded / reproduced with downsizing. For the purpose.

本発明は、405nm波長帯である波長λの光と、660nm波長帯である波長λの光と、785nm波長帯である波長λの光を発射する光源と、前記波長λの光、前記波長λの光および前記波長λの光を光ディスクに集光する対物レンズと、前記光ディスクから反射した光を光検出器に偏向させるビームスプリッタと、を備えた光ヘッド装置において、前記ビームスプリッタと前記光検出器との間の前記波長λの光、前記波長λの光および前記波長λの光が共通する光路中に波長選択回折素子を有し、前記波長選択回折素子は、前記ビームスプリッタ側より、波長板、第1の回折格子、第2の回折格子の順にそれぞれ少なくとも有し、前記波長板は、透過する前記波長λの光および前記波長λの光を、互いに直交する第1の直線偏光の光と第2の直線偏光の光とし、前記第1の回折格子は波長λの光と波長λの光のうち、いずれか一方を回折させず透過させるとともに、他方を回折させ、前記第2の回折格子は、前記波長λの光と前記波長λの光のうち、前記第1の回折格子で回折させる方の光を回折させずに透過させるとともに、他方を回折させる光ヘッド装置を提供する。 The present invention includes a light source that emits light having a wavelength λ 1 that is a 405 nm wavelength band, light having a wavelength λ 2 that is a 660 nm wavelength band, light having a wavelength λ 3 that is a 785 nm wavelength band, and light having the wavelength λ 1 . An optical head device comprising: an objective lens that condenses the light of the wavelength λ 2 and the light of the wavelength λ 3 onto an optical disc; and a beam splitter that deflects the light reflected from the optical disc to a photodetector. beam splitter and has the wavelength lambda 1 of the light, wavelength-selective diffraction element in an optical path in which the wavelength lambda 2 of the light and the wavelength lambda 3 of the light is common between the photodetector, the wavelength selection diffractive element Includes at least a wavelength plate, a first diffraction grating, and a second diffraction grating in this order from the beam splitter side, and the wavelength plate transmits the light having the wavelength λ 1 and the light having the wavelength λ 2 to be transmitted. , Orthogonal to each other A first linear polarized light and the light of second linearly polarized light, the first diffraction grating of the wavelength lambda 1 of light and the wavelength lambda 2 of the light, and to reflect without diffracting either, other The second diffraction grating transmits the light diffracted by the first diffraction grating out of the light of the wavelength λ 1 and the light of the wavelength λ 2 without diffracting the light, An optical head device for diffracting light is provided.

また、前記波長板は、光学軸が厚さ方向に揃った複屈折性材料からなり、前記波長λの光に対してλの整数倍に略等しいリタデーション値を有するとともに、前記波長λの光に対してλ/2の奇数倍に略等しいリタデーション値を有する上記の光ヘッド装置を提供する。 The wavelength plate is made of a birefringent material having optical axes aligned in the thickness direction, has a retardation value substantially equal to an integral multiple of λ 1 with respect to the light of the wavelength λ 1 , and the wavelength λ 2 providing the optical head device having a substantially equal retardation values on an odd multiple of lambda 2/2 to light.

また、前記第1の回折格子は、複屈折性材料からなる第1の複屈折性材料層と、等方性材料からなる第1の等方性材料層によって、周期的な凹凸を有し、前記第1の複屈折性材料層の常光屈折率をno1、異常光屈折率をne1(no1≠ne1)とし、前記等方性材料の屈折率をns1とするとき、前記ns1は、前記no1または前記ne1に略等しい上記の光ヘッド装置を提供する。 In addition, the first diffraction grating has periodic unevenness by a first birefringent material layer made of a birefringent material and a first isotropic material layer made of an isotropic material, When the ordinary refractive index of the first birefringent material layer is n o1 , the extraordinary refractive index is n e1 (n o1 ≠ n e1 ), and the refractive index of the isotropic material is n s1 , the n s1 provides approximately equal above optical head device to the n o1 or the n e1.

また、前記第2の回折格子は、複屈折性材料からなる第2の複屈折性材料層と、等方性材料からなる第2の等方性材料層によって、周期的な凹凸を有し、前記第2の複屈折性材料層の常光屈折率をno2、異常光屈折率をne2(no2≠ne2)とし、前記第2の等方性材料層の屈折率をns2とするとき、前記ns2は、前記no2または前記ne2に略等しい上記の光ヘッド装置を提供する。 In addition, the second diffraction grating has periodic unevenness by a second birefringent material layer made of a birefringent material and a second isotropic material layer made of an isotropic material, The ordinary refractive index of the second birefringent material layer is n o2 , the extraordinary refractive index is n e2 (n o2 ≠ n e2 ), and the refractive index of the second isotropic material layer is n s2 . The n s2 provides the optical head device as described above, which is substantially equal to the no 2 or the ne 2 .

また、前記第2の回折格子は、透明基板の平面上に等方性材料からなる第2の等方性材料層によって周期的な凹凸を有し、前記第2の等方性材料層の屈折率をns2、高さをdとするとき、(ns2−1)×dが波長λの整数倍または波長λの整数倍に略等しい上記の光ヘッド装置を提供する。 The second diffraction grating has periodic irregularities due to the second isotropic material layer made of an isotropic material on the plane of the transparent substrate, and the second isotropic material layer is refracted. Provided is the above optical head device in which (n s2 −1) × d A is substantially equal to an integral multiple of the wavelength λ 1 or an integral multiple of the wavelength λ 2 where the rate is n s2 and the height is d A.

また、前記第1の回折格子および前記第2の回折格子の断面形状は、矩形状である上記の光ヘッド装置を提供する。   Further, the optical head device is provided in which the first diffraction grating and the second diffraction grating have a rectangular cross-sectional shape.

さらに、前記波長選択回折素子は、入射する波長λの光の光量を100%とするとき、直進透過する波長λの光が70%以上となる上記の光ヘッド装置を提供する。 Furthermore, the wavelength selective diffractive element provides the above-described optical head device in which the light having the wavelength λ 3 that is transmitted in a straight line is 70% or more when the amount of incident light having the wavelength λ 3 is 100%.

本発明は、複数の異なる波長の光を用いて、各光ディスクを記録・再生する光ヘッド装置において、各光ディスクの情報記録面から反射された光信号を最適に処理し、かつ、小型化が実現できる効果を有する光ヘッド装置を提供することができる。   The present invention optimally processes an optical signal reflected from the information recording surface of each optical disc and realizes miniaturization in an optical head device that records and reproduces each optical disc using a plurality of light beams having different wavelengths. An optical head device having an effect that can be achieved can be provided.

光ヘッド装置の構成例を示す模式図Schematic diagram showing a configuration example of an optical head device 第1の実施の形態に係る波長選択回折素子の断面模式図Sectional schematic diagram of the wavelength selective diffraction element according to the first embodiment 第2の実施の形態に係る波長選択回折素子の断面模式図Sectional schematic diagram of wavelength selective diffraction element according to the second embodiment 他の波長選択回折素子の断面模式図Cross-sectional schematic diagram of another wavelength selective diffraction element 入射する光の偏光方向と波長板の光学軸(遅相軸)との関係を示す模式図Schematic diagram showing the relationship between the polarization direction of incident light and the optical axis (slow axis) of the wave plate

(第1の実施形態)
図1は、3つの異なる波長の光を用い、それぞれの規格の光ディスクの記録・再生を行う互換性のある光ヘッド装置100の模式図である。光ヘッド装置100を構成する各光学部品(要素)について、光源101a、101bから発射する光の光路を辿りながら説明する。また、光ヘッド装置100において、光源101aは、405nm波長帯の光を発射する半導体レーザ等であり、光源101bは、660nm波長帯の光と785nm波長帯の光の両方を発射するハイブリッド型またはモノシリック型の半導体レーザ等である。なお、405nm波長帯は385nm〜430nm、660nm波長帯は630nm〜690nm、785nm波長帯は760nm〜810nmの範囲とする。
(First embodiment)
FIG. 1 is a schematic diagram of a compatible optical head device 100 that uses light of three different wavelengths and performs recording and reproduction of optical discs of respective standards. Each optical component (element) constituting the optical head device 100 will be described while following the optical path of light emitted from the light sources 101a and 101b. In the optical head device 100, the light source 101a is a semiconductor laser or the like that emits light in the 405 nm wavelength band, and the light source 101b is a hybrid type or monolithic that emits both light in the 660 nm wavelength band and light in the 785 nm wavelength band. Type semiconductor laser. Note that the wavelength band of 405 nm is 385 nm to 430 nm, the wavelength band of 660 nm is 630 nm to 690 nm, and the wavelength band of 785 nm is 760 nm to 810 nm.

光ヘッド装置100において、半導体レーザ等の光源101aからX方向に発射された405nm波長帯の光は、グレーティング素子102aで回折されて3ビームとなり、ダイクロイックプリズム103、そして偏光ビームスプリッタ104を透過し、コリメータレンズ105で平行光となる。そして、ダイクロイックプリズム106によってZ方向に偏向され1/4波長板108aを透過して対物レンズ109aによって光ディスク110aの情報記録面に集光する。なお、光源から光ディスクに至るまでの光路を「往路」とし、(反射して)光ディスクから光検出器に至るまでの光路を「復路」と定義する。   In the optical head device 100, the light in the 405 nm wavelength band emitted in the X direction from the light source 101a such as a semiconductor laser is diffracted by the grating element 102a into three beams, and passes through the dichroic prism 103 and the polarization beam splitter 104. The collimator lens 105 becomes parallel light. Then, it is deflected in the Z direction by the dichroic prism 106, passes through the quarter-wave plate 108a, and is condensed on the information recording surface of the optical disc 110a by the objective lens 109a. The optical path from the light source to the optical disk is defined as “outward path”, and the optical path from the optical disk to the optical detector (reflected) is defined as “return path”.

ダイクロイックプリズム103は、405nm波長帯の光を透過し、660nm波長帯の光および785nm波長帯の光を反射する機能を有する。一方、ダイクロイックプリズム106は、405nm波長帯の光を反射し、660nm波長帯の光および785nm波長帯の光を透過する機能を有する。また、対物レンズ109aは、BD用の405nm波長帯の光に対して集光性があり、対物レンズ109bは、DVD用の660nm波長帯の光およびCD用の785nm波長帯の光に対していずれも、集光性を有する。   The dichroic prism 103 has a function of transmitting light in the 405 nm wavelength band and reflecting light in the 660 nm wavelength band and light in the 785 nm wavelength band. On the other hand, the dichroic prism 106 has a function of reflecting light in the 405 nm wavelength band and transmitting light in the 660 nm wavelength band and light in the 785 nm wavelength band. The objective lens 109a is condensing with respect to light in the 405 nm wavelength band for BD, and the objective lens 109b is suitable for either light in the 660 nm wavelength band for DVD and light in the 785 nm wavelength band for CD. Also has a light collecting property.

光源101bから発射された660nm波長帯の光は、グレーティング素子102bで回折されて3ビームとなり、ダイクロイックプリズム103で反射し、偏光ビームスプリッタ104を透過する。また、光源101bから発射された785nm波長帯の光は、グレーティング素子102bで回折されて3ビームとなり、ダイクロイックプリズム103で反射し、偏光ビームスプリッタ104を透過する。偏光ビームスプリッタ104を透過した660nm波長帯の光および785nm波長帯の光は、ミラー107で反射され、1/4波長板108bを透過して対物レンズ109bによって光ディスク110bの情報記録面に集光する。ここで、光ディスク110aはBDに相当し、光ディスク110bは、DVDまたはCDに相当する。   The light in the 660 nm wavelength band emitted from the light source 101 b is diffracted by the grating element 102 b into three beams, reflected by the dichroic prism 103, and transmitted through the polarization beam splitter 104. In addition, light in the 785 nm wavelength band emitted from the light source 101b is diffracted by the grating element 102b into three beams, reflected by the dichroic prism 103, and transmitted through the polarization beam splitter 104. The light in the 660 nm wavelength band and the light in the 785 nm wavelength band transmitted through the polarization beam splitter 104 are reflected by the mirror 107, pass through the quarter wavelength plate 108b, and are condensed on the information recording surface of the optical disk 110b by the objective lens 109b. . Here, the optical disc 110a corresponds to a BD, and the optical disc 110b corresponds to a DVD or a CD.

また、グレーティング素子102a、102bは、0次回折光(直進透過光)と±1次回折光を発生させ3ビーム法を用いて記録・再生を行うものであるが、光ヘッド装置100が±1次回折光を発生させない1ビーム法を用いて記録・再生を行う場合は、グレーティング素子102aまたは102bを配置しなくてもよい。また、例えば、DVD用の660nm波長帯の光に対して1ビーム法、CD用の785nm波長帯の光に対して3ビーム法を用いる場合、グレーティング102bとして、一方の波長帯の光のみを回折する波長選択性のグレーティングを用いてもよい。   The grating elements 102a and 102b generate 0th order diffracted light (straight forward transmitted light) and ± 1st order diffracted light and perform recording / reproduction using the 3-beam method. However, the optical head device 100 provides ± 1st order diffracted light. In the case of performing recording / reproduction using the one-beam method that does not generate the grating, the grating element 102a or 102b may not be arranged. Also, for example, when using the 1-beam method for light in the 660 nm wavelength band for DVD and the 3-beam method for light in the 785 nm wavelength band for CD, the grating 102b diffracts only light in one wavelength band. Alternatively, a wavelength selective grating may be used.

光ディスク110aを反射した405nm波長帯の復路の光は、対物レンズ109aを透過し、1/4波長板108aを透過した際に往路の直線偏光(例えばS偏光)の光と直交する直線偏光(例えばP偏光)の光となり、ダイクロイックプリズム106で反射され、コリメータレンズ105を透過し、偏光ビームスプリッタ104で反射する。そして、シリンドリカルレンズ111を透過し、後述する波長選択回折素子10を透過して光検出器112に到達する。また、光ディスク110bを反射した660nm波長帯、785nm波長帯の復路の光は、対物レンズ109bを透過し、1/4波長板108bを透過した際に往路の直線偏光(例えばS偏光)の光と直交する直線偏光(例えばP偏光)の光となり、反射ミラー107で反射し、ダイクロイックプリズム106、コリメータレンズ105を透過し、偏光ビームスプリッタ104で反射する。そして、シリンドリカルレンズ111を透過し、後述する波長選択回折素子10を透過して光検出器112に到達する。なお、図1では、便宜的にBD用の405nm波長帯の光の軌跡は実線、DVD用の660nm波長帯およびCD用の785nm波長帯の光の軌道は点線で示し、光軸を一点鎖線で示す。   The light of the return path in the 405 nm wavelength band reflected from the optical disk 110a is transmitted through the objective lens 109a and is linearly polarized (for example, orthogonal to the light of the forward polarized light (for example, S-polarized light) when transmitted through the quarter-wave plate 108a. P-polarized light is reflected by the dichroic prism 106, passes through the collimator lens 105, and is reflected by the polarization beam splitter 104. Then, it passes through the cylindrical lens 111, passes through the wavelength selective diffraction element 10 described later, and reaches the photodetector 112. In addition, the light of the return path in the 660 nm wavelength band and the 785 nm wavelength band reflected from the optical disk 110b is transmitted through the objective lens 109b and is transmitted through the quarter wavelength plate 108b as the linearly polarized light in the forward path (for example, S-polarized light). The light becomes orthogonally linearly polarized light (for example, P-polarized light), is reflected by the reflection mirror 107, passes through the dichroic prism 106 and the collimator lens 105, and is reflected by the polarization beam splitter 104. Then, it passes through the cylindrical lens 111, passes through the wavelength selective diffraction element 10 described later, and reaches the photodetector 112. In FIG. 1, for convenience, the locus of light in the 405 nm wavelength band for BD is indicated by a solid line, the trajectory of light in the 660 nm wavelength band for DVD and the 785 nm wavelength band for CD is indicated by a dotted line, and the optical axis is indicated by a one-dot chain line. Show.

次に、光ヘッド装置100に用いる、波長選択回折素子10について具体的に説明する。図2(a)、図2(b)は、図1の波長選択回折素子10に相当する波長選択回折素子10a、10bそれぞれの構成を示す断面模式図であり、波長板12、第1の回折格子13および第2の回折格子15がこの順に有する。波長板12は、透明基板11aの一方の面に有し、入射する3つの波長の光の位相をそれぞれ所望の値に変調する機能を有する。波長板12は、光学軸が厚さ方向に揃った複屈折性材料からなる層や、光学軸が厚さ方向にツイストした複屈折性材料からなる層によって構成される。また、波長板12として、複屈折性材料からなるこれらの層を、光学軸の方向が異なるように複数重ねて構成するものであってもよい。透明基板としては、入射する光に対して透明であれば、樹脂板、樹脂フィルムなど種々の材料を用いることができるが、ガラスや石英ガラスなどの光学的等方性材料を用いると、透過光に複屈折性の影響を与えないため好ましい。   Next, the wavelength selective diffraction element 10 used in the optical head device 100 will be specifically described. FIGS. 2A and 2B are schematic cross-sectional views showing configurations of wavelength selective diffraction elements 10a and 10b corresponding to the wavelength selective diffraction element 10 of FIG. The grating 13 and the second diffraction grating 15 have in this order. The wave plate 12 is provided on one surface of the transparent substrate 11a and has a function of modulating the phases of incident light of three wavelengths to desired values. The wave plate 12 is composed of a layer made of a birefringent material with optical axes aligned in the thickness direction, or a layer made of a birefringent material with optical axes twisted in the thickness direction. Further, the wave plate 12 may be formed by stacking a plurality of these layers made of a birefringent material so that the directions of the optical axes are different. As the transparent substrate, various materials such as a resin plate and a resin film can be used as long as they are transparent to incident light. However, when an optically isotropic material such as glass or quartz glass is used, transmitted light is used. This is preferable because it does not affect birefringence.

波長板12は、例えば、液晶を高分子化した高分子液晶、あるいは延伸して複屈折性を誘起したポリカーボネート、ポリオレフィン、PVA等の有機材料を使用してもよく、また水晶、LiNbO、LiTaO、KDP等の光学異方性を有する単結晶を使用してもよい。また、高分子液晶からなる場合、図示しない配向膜が施されていてもよく、例えば、厚さ方向に光学軸をツイストしてなる高分子液晶とする場合、高分子液晶を挟持する配向膜の配向方向が異なるようにする。また、波長板12は、異なる3つの波長の光のうち、同じ偏光方向で入射する、少なくとも2つの直線偏光の光に対して互いに直交する直線偏光の光に変調させるように各波長の光に対する位相差を調整したものである。波長板12の具体的な光学特性については後述する。 The wave plate 12 may be made of, for example, a polymer liquid crystal obtained by polymerizing liquid crystal, or an organic material such as polycarbonate, polyolefin, PVA or the like that has been stretched to induce birefringence. Also, quartz, LiNbO 3 , LiTaO 3. Single crystals having optical anisotropy such as KDP may be used. In the case of a polymer liquid crystal, an alignment film (not shown) may be provided. For example, in the case of a polymer liquid crystal in which the optical axis is twisted in the thickness direction, the alignment film sandwiching the polymer liquid crystal is used. The orientation directions are different. In addition, the wave plate 12 is configured to modulate light of each wavelength so as to modulate light of three different wavelengths, which is incident in the same polarization direction, into linearly polarized light orthogonal to at least two linearly polarized light. The phase difference is adjusted. Specific optical characteristics of the wave plate 12 will be described later.

第1の回折格子13は、透明基板11b上に、複屈折性材料からなり第1の複屈折材料層13aに相当する凸部と、等方性材料からなり第1の等方性材料層14に相当する凹部とが、周期的に配置された回折格子構造を有する。第1の等方性材料層14は、第1の複屈折材料層13aを覆うように形成されてもよいが第1の複屈折材料層13aと同じ高さで交互に配置されてもよい。   The first diffraction grating 13 is made of a birefringent material on the transparent substrate 11b and has a convex portion corresponding to the first birefringent material layer 13a, and an isotropic material made of the first isotropic material layer 14. And a concave portion corresponding to the above has a diffraction grating structure periodically arranged. The first isotropic material layers 14 may be formed so as to cover the first birefringent material layers 13a, but may be alternately arranged at the same height as the first birefringent material layers 13a.

第1の回折格子13は、第1の複屈折性材料層13aが、常光屈折率no1と異常光屈折率ne1との差の絶対値で表される屈折率異方性Δn(=|ne1−no1|>0)を有し、第1の等方性材料層14の屈折率ns1が、ne1またはno1のいずれか一方と略等しくなる材料の組み合わせとする。なお、第1の等方性材料層14にはUV硬化型の透明な接着剤などが利用できる。このようにすることで、例えば、ns1≒no1の場合(ns1≠ne1)、第1の回折格子13に入射する光のうち、第1の複屈折性材料層13aの進相軸方向となる光は、屈折率が略一致しているので第1の回折格子13を直進透過し、一方、遅相軸方向となる光は、屈折率が一致しないので少なくとも一部は回折する。また、第1の複屈折性材料層13aと第1の等方性材料層14を構成する材料は、屈折率の波長分散特性を考慮する。 In the first diffraction grating 13, the first birefringent material layer 13a has a refractive index anisotropy Δn 1 (=) represented by an absolute value of a difference between the ordinary light refractive index n o1 and the extraordinary light refractive index n e1. | n e1 -n o1 |> 0 ) has a refractive index n s1 of the first isotropic material layer 14, a combination of substantially equal material and either n e1 or n o1. For the first isotropic material layer 14, a UV curable transparent adhesive or the like can be used. In this way, for example, in the case of n s1 ≒ n o1 (n s1 ≠ n e1), of the light incident on the first diffraction grating 13, the fast axis of the first birefringent material layer 13a The light in the direction has substantially the same refractive index and therefore passes straight through the first diffraction grating 13, while the light in the slow axis direction does not match the refractive index and is at least partially diffracted. Further, the materials constituting the first birefringent material layer 13a and the first isotropic material layer 14 take into consideration the wavelength dispersion characteristics of the refractive index.

第1の複屈折性材料層13aは、複屈折性材料によって形成されていればよく、屈折率異方性Δnが大きいことなどから液晶モノマーを硬化させた高分子液晶を用いるのが好ましい。また、高分子液晶は、第1の回折格子13の凹凸の長手方向と液晶の配向方向に相当する遅相軸と、を異ならせて自由に設定できることもできる。したがって、図2(a)の波長選択回折素子10aは、第1の回折格子13の長手方向をY軸方向としているが、光を透過または回折して到達させる光検出器の受光エリアのレイアウトに応じて、X−Y平面内の長手方向を自由に設定することができる。また、光が入射する有効領域内において、第1の回折格子13は、回折格子の長手方向が1方向の領域のみに限らず、長手方向が異なる複数の領域から構成されて、各領域に入射した光毎、異なる方向に回折させてもよい。 First birefringent material layer 13a may be formed by a birefringent material, and the like larger refractive index anisotropy [Delta] n 1 to use a polymer liquid crystal obtained by curing the liquid crystal monomer preferably. Further, the polymer liquid crystal can be freely set by making the longitudinal direction of the unevenness of the first diffraction grating 13 different from the slow axis corresponding to the alignment direction of the liquid crystal. Therefore, in the wavelength selective diffraction element 10a of FIG. 2A, the longitudinal direction of the first diffraction grating 13 is the Y-axis direction, but the light receiving area layout of the photodetector that transmits or diffracts the light is used. Accordingly, the longitudinal direction in the XY plane can be freely set. Further, in the effective region where light enters, the first diffraction grating 13 is not limited to a region where the longitudinal direction of the diffraction grating is only one direction, but is composed of a plurality of regions having different longitudinal directions, and enters each region. The light may be diffracted in different directions.

次に、第2の回折格子15について説明する。第2の回折格子15も、第1の回折格子13と同様に、透明基板11c上に、複屈折性材料からなり第2の複屈折材料層15aに相当する凸部と、等方性材料からなり第2の等方性材料層16に相当する凹部とが、周期的に配置された回折格子構造を有する。第2の等方性材料層16は、第1の複屈折材料層15aを覆うように形成されてもよいが第2の複屈折材料層15aと同じ高さで交互に配置されてもよい。   Next, the second diffraction grating 15 will be described. Similarly to the first diffraction grating 13, the second diffraction grating 15 is made of a birefringent material on the transparent substrate 11 c and a convex portion corresponding to the second birefringent material layer 15 a and an isotropic material. The concave portion corresponding to the second isotropic material layer 16 has a diffraction grating structure that is periodically arranged. The second isotropic material layers 16 may be formed so as to cover the first birefringent material layers 15a, but may be alternately arranged at the same height as the second birefringent material layers 15a.

第2の回折格子15は、第2の複屈折性材料層15aが、常光屈折率no2と異常光屈折率ne2との差の絶対値で表される屈折率異方性Δn(=|ne2−no2|>0)を有し、第2の等方性材料層16の屈折率ns2が、ne2またはno2のいずれか一方と略等しくなる材料の組み合わせとする。このようにすることで、例えば、ns2≒no2の場合(ns2≠ne2)、第2の回折格子15に入射する光のうち、第2の複屈折性材料層15aの進相軸方向となる光は、屈折率が略一致しているので第2の回折格子15を直進透過し、一方、遅相軸方向となる光は、屈折率が一致しないので少なくとも一部は回折する。また、第2の複屈折性材料層15aと第2の等方性材料層16を構成する材料は、屈折率の波長分散特性を考慮する。 In the second diffraction grating 15, the second birefringent material layer 15 a has a refractive index anisotropy Δn 2 (=) represented by an absolute value of a difference between the ordinary light refractive index n o2 and the extraordinary light refractive index n e2. | N e2 −n o2 |> 0), and the refractive index n s2 of the second isotropic material layer 16 is a combination of materials substantially equal to either ne 2 or no 2 . In this way, for example, in the case of n s2 ≒ n o2 (n s2 ≠ n e2), of the light incident on the second diffraction grating 15, the fast axis of the second birefringent material layer 15a The light in the direction has substantially the same refractive index and therefore passes straight through the second diffraction grating 15, while the light in the slow axis direction does not have the same refractive index and is at least partially diffracted. The materials constituting the second birefringent material layer 15a and the second isotropic material layer 16 take into account the wavelength dispersion characteristics of the refractive index.

第2の複屈折性材料層15aも、屈折率異方性Δnが大きいことなどから高分子液晶を用いるのが好ましい。また、ns1≒no1およびns2≒no2の場合、第1の複屈折性材料層13aの液晶の配向方向と、第2の複屈折性材料層15aの液晶の配向方向とは直交させる。例えば、図2(a)において、第1の複屈折性材料層13aの配向方向をY軸方向、第2の複屈折性材料層15aの配向方向をX軸方向とする。また、第1の複屈折性材料層13a、第2の複屈折性材料層15a配向方向の組み合わせはこれに限らず、ns1≒ne1およびns2≒ne2の場合、第1の複屈折性材料層13aの配向方向をX軸方向、第2の複屈折性材料層15aの配向方向をY軸方向としてもよい。 The second birefringent material layer 15a is also preferably made of a polymer liquid crystal because the refractive index anisotropy Δn 2 is large. In the case of n s1 ≈no 1 and n s2 ≈no 2, the liquid crystal alignment direction of the first birefringent material layer 13a is orthogonal to the liquid crystal alignment direction of the second birefringent material layer 15a. . For example, in FIG. 2A, the orientation direction of the first birefringent material layer 13a is the Y-axis direction, and the orientation direction of the second birefringent material layer 15a is the X-axis direction. The combination of the orientation directions of the first birefringent material layer 13a and the second birefringent material layer 15a is not limited to this, and the first birefringence is obtained when n s1 ≈n e1 and n s2 ≈ne 2. The orientation direction of the conductive material layer 13a may be the X-axis direction, and the orientation direction of the second birefringent material layer 15a may be the Y-axis direction.

さらに、例えばns1≒no1およびns2≒ne2の場合、第1の複屈折性材料層13aおよび第2の複屈折性材料層15aの配向方向がいずれもX軸方向であるかまたは、いずれもY軸方向であってもよい。つまり、入射するX軸方向の直線偏光の光およびY軸方向の直線偏光の光のうち、第1の回折格子13は一方の直線偏光の光を透過するとともに他方の直線偏光の光を回折し、第2の回折格子15は一方の直線偏光の光を回折するとともに他方の直線偏光の光を透過するように構成される。言い換えると、X軸方向の直線偏光の光は第1の回折格子13と第2の回折格子15のうち、一方でのみ回折し、Y軸方向の直線偏光の光は、他方でのみ回折する。また、第2の回折格子15の長手方向も、上記の第1の回折格子13と同様にY軸方向に限らず、また、長手方向が異なる複数の領域から構成されて、各領域に入射した光毎、異なる方向に回折させてもよい。さらに、領域は、回折格子の長手方向によって区分するものに限らず、例えば、回折格子の長手方向が同一であっても、格子ピッチが異なる複数の領域があったり、または、回折格子の長手方向および格子ピッチが同一であっても、回折格子の高さが異なる複数の領域があったりしてもよい。 Furthermore, for example, in the case of n s1n o1 and n s2n e2, or the alignment direction of the first birefringent material layer 13a and the second birefringent material layer 15a is both the X-axis direction or, Either may be in the Y-axis direction. That is, of the incident linearly polarized light in the X-axis direction and linearly polarized light in the Y-axis direction, the first diffraction grating 13 transmits one linearly polarized light and diffracts the other linearly polarized light. The second diffraction grating 15 is configured to diffract one linearly polarized light and transmit the other linearly polarized light. In other words, the linearly polarized light in the X-axis direction is diffracted only in one of the first diffraction grating 13 and the second diffraction grating 15, and the linearly polarized light in the Y-axis direction is diffracted only in the other. Further, the longitudinal direction of the second diffraction grating 15 is not limited to the Y-axis direction as in the case of the first diffraction grating 13, and is composed of a plurality of regions having different longitudinal directions and is incident on each region. Each light may be diffracted in different directions. Further, the region is not limited to the one divided by the longitudinal direction of the diffraction grating. For example, even if the longitudinal direction of the diffraction grating is the same, there are a plurality of regions having different grating pitches, or the longitudinal direction of the diffraction grating. Even if the grating pitch is the same, there may be a plurality of regions having different diffraction grating heights.

波長選択回折素子は、図2(a)の波長選択回折素子10aのように回折格子の断面形状が矩形状に限らず、図2(b)に示す波長選択回折素子10bのように、第1の回折格子13および第2の回折格子15両方の断面形状がブレーズ形状またはブレーズ形状を階段状に近似した擬似ブレーズ形状であってもよく、いずれか一方が(擬似)ブレーズ形状で他方が矩形状であってもよい。また、第1の回折格子13および第2の回折格子15両方の断面形状が(擬似)ブレーズ形状の場合、一つの断面における斜め方向の傾きが異なってもよい。波長選択回折素子10bは、第1の複屈折性材料層13bおよび第2の複屈折性材料層15bをブレーズ形状とした例であり、それ以外は、波長選択回折素子10aと同じ番号を付して、説明の重複を避ける。この場合、入射した光に対して1方向に高い回折効率で回折させることができる。また、第1の回折格子13および第2の回折格子15の断面形状は、矩形状と(擬似)ブレーズ形状との組み合わせであってもよい。さらに、第1の回折格子13、第2の回折格子15は、回折格子の長手方向が異なる複数の領域から構成されている場合、断面形状が、矩形状となる回折格子の領域と、(擬似)ブレーズ形状となる回折格子の領域と、の組み合わせを有してもよい。   The wavelength selective diffractive element is not limited to the rectangular cross-sectional shape of the diffraction grating as in the wavelength selective diffractive element 10a in FIG. 2A, but the first in the wavelength selective diffractive element 10b illustrated in FIG. The cross-sectional shapes of both the diffraction grating 13 and the second diffraction grating 15 may be a blazed shape or a pseudo-blazed shape approximating the blazed shape to a staircase shape, one of which is a (pseudo) blaze shape and the other is a rectangular shape. It may be. Further, when the cross-sectional shapes of both the first diffraction grating 13 and the second diffraction grating 15 are (pseudo) blazed shapes, the inclination in the oblique direction in one cross-section may be different. The wavelength selective diffractive element 10b is an example in which the first birefringent material layer 13b and the second birefringent material layer 15b are blazed, and the other numbers are the same as those of the wavelength selective diffractive element 10a. Avoid duplicating explanations. In this case, the incident light can be diffracted in one direction with high diffraction efficiency. Further, the cross-sectional shapes of the first diffraction grating 13 and the second diffraction grating 15 may be a combination of a rectangular shape and a (pseudo) blaze shape. Furthermore, when the first diffraction grating 13 and the second diffraction grating 15 are composed of a plurality of regions having different longitudinal directions of the diffraction grating, the first diffraction grating 13 and the second diffraction grating 15 have a diffraction grating region whose cross-sectional shape is rectangular, ) You may have the combination with the area | region of the diffraction grating used as a blaze | braze shape.

次に、波長選択回折素子に入射する、波長が異なる3つの光に対する光学作用について説明する。図2(c)は、波長選択回折素子10aにZ軸方向に進行する3つの波長の光、即ち、波長λの光、波長λの光、波長λの光がいずれもY軸方向の直線偏光の光として入射するときの様子を模式的に示したものである。なお、波長λは405nm波長帯、波長λは660nm波長帯、波長λは785nm波長帯とする。 Next, an optical action for three lights having different wavelengths incident on the wavelength selective diffraction element will be described. FIG. 2 (c), three wavelength light traveling in the Z-axis direction in the wavelength selective diffraction element 10a, i.e., the wavelength lambda 1 of the light, the wavelength lambda 2 of the light, the wavelength lambda 3 of both light Y axis direction FIG. 2 schematically shows a state when the light is incident as linearly polarized light. The wavelength λ 1 is a 405 nm wavelength band, the wavelength λ 2 is a 660 nm wavelength band, and the wavelength λ 3 is a 785 nm wavelength band.

波長板12は、波長λの光に対して、λの整数倍に略等しいリタデーション値となる、いわゆるλ板となるように、複屈折性材料および厚さが調整されている。なお、波長λの光に対するリタデーション値Rd(λ)は(mは、1〜3の整数)、波長板12が、光学軸が厚さ方向に揃った1層の複屈折性材料で構成されている場合、波長λの光に対する複屈折性材料の屈折率異方性Δn(λ)と、波長板12の厚さdとの積で表される。つまり、この場合、Rd(λ)≒pλ(p≧1の整数)とする。さらに、波長板12は、波長λの光に対してλ板となる特性に加え、波長λの光に対してλ/2の奇数倍に略等しいリタデーション値となる、いわゆる1/2波長板となるように調整されている。つまり、Rd(λ)≒(2q−1)λ/2(q≧1の整数)とする。これより、波長板12を透過する波長λの光がY軸方向の直線偏光の光のまま変わらず、波長λの光がX軸方向の直線偏光の光となる。 The birefringent material and the thickness of the wave plate 12 are adjusted so that the wave plate 12 is a so-called λ plate that has a retardation value substantially equal to an integral multiple of λ 1 with respect to light having the wavelength λ 1 . The retardation value Rd (λ m ) for light of wavelength λ m is (m is an integer of 1 to 3), and the wave plate 12 is composed of a single-layer birefringent material whose optical axes are aligned in the thickness direction. Is expressed by the product of the refractive index anisotropy Δn (λ m ) of the birefringent material with respect to light of wavelength λ m and the thickness d of the wave plate 12. That is, in this case, Rd (λ 1 ) ≈pλ 1 (an integer of p ≧ 1). Further, the wavelength plate 12, in addition to the properties that make lambda plate with respect to the wavelength lambda 1 of the light becomes substantially equal to the retardation value to an odd multiple of lambda 2/2 with respect to the wavelength lambda 2 of light, so-called 1/2 It is adjusted to be a wave plate. That, and Rd (λ 2) ≒ (2q -1) λ 2/2 (q ≧ 1 integer). As a result, the light of wavelength λ 1 that passes through the wave plate 12 remains unchanged as linearly polarized light in the Y-axis direction, and the light of wavelength λ 2 becomes linearly polarized light in the X-axis direction.

また、波長板12は、波長λの光と波長λの光に対してそれぞれ、優先的に所望のリタデーション値になるように調整するとよいが、さらに、例えば、波長λの光に対して、X軸方向もしくはY軸方向の成分の光強度が大きい楕円偏光の光とすることによって、波長選択回折素子10aの0次回折光(直進透過光)の回折効率を高めることができる。このように、波長λの光に対して、第1の回折格子13と第2の回折格子15による回折特性を考慮し、高い0次回折効率が得られるように波長板12を透過する偏光状態を調整するとよい。なお、波長板12は、波長λの光に対してλ板、波長λの光に対して1/2波長板としたが、波長λの光に対して1/2波長板、波長λの光に対してλ板とし、波長板12を透過する波長λの光がX軸方向の直線偏光の光となり、波長λの光がY軸方向の直線偏光の光のまま変わらないように調整してもよい。 Further, the wavelength plate 12 may be adjusted so as to have a desired retardation value preferentially for the light of wavelength λ 1 and the light of wavelength λ 2 , but for example, for the light of wavelength λ 3 Thus, the diffraction efficiency of the 0th-order diffracted light (straight forward transmitted light) of the wavelength selective diffraction element 10a can be increased by using elliptically polarized light having a large light intensity in the X-axis direction or Y-axis direction. Thus, with respect to the wavelength lambda 3 of the light, the polarization of the first diffraction grating 13 in consideration of the diffraction characteristics of the second diffraction grating 15, passes through the wavelength plate 12 as high zero-order diffraction efficiency is obtained It is good to adjust the state. The wavelength plate 12, lambda plate with respect to the wavelength lambda 1 of the light, although a half-wave plate for the wavelength lambda 2 of light, a half-wave plate for the wavelength lambda 1 of the light, wavelength A λ plate is used for the light of λ 2, the light of wavelength λ 1 transmitted through the wave plate 12 becomes linearly polarized light in the X-axis direction, and the light of wavelength λ 2 remains unchanged as linearly polarized light in the Y-axis direction. You may adjust so that it may not.

次に、図2(c)より、波長板12を透過した光の、第1の回折格子13および第2の回折格子15における光学作用について説明する。波長λの光、波長λの光および波長λの光は、それぞれY軸方向の直線偏光の光としてZ軸方向に進行しながら波長選択回折素子10aに入射する。上記の説明のように、波長板12を透過した波長λの光はY軸方向の直線偏光の光のまま、波長λの光はX軸方向の直線偏光の光、波長λの光は楕円偏光の光となって第1の回折格子13に入射する。また、第1の回折格子13は、第1の複屈折性材料層13aの液晶がY軸方向に平行に配向され、ns1≒no1であるので、波長λの光の一部は回折し、波長λの光は回折せず直進透過する。また、波長λの光は、楕円偏光の光のうちX軸方向の直線偏光の光の成分は直進透過し、Y軸方向の直線偏光の光の成分の一部は回折する。 Next, referring to FIG. 2C, the optical action of the light transmitted through the wave plate 12 in the first diffraction grating 13 and the second diffraction grating 15 will be described. Light of the wavelength lambda 1 of the light, the wavelength lambda 2 of the light and the wavelength lambda 3 are incident on the wavelength-selective diffraction element 10a while traveling in the Z-axis direction as light in the Y-axis direction of the linearly polarized light, respectively. As described above, the light of wavelength λ 1 that has passed through the wave plate 12 remains linearly polarized light in the Y-axis direction, the light of wavelength λ 2 is the light of linearly polarized light in the X-axis direction, and the light of wavelength λ 3 . Becomes elliptically polarized light and enters the first diffraction grating 13. In the first diffraction grating 13, since the liquid crystal of the first birefringent material layer 13a is aligned parallel to the Y-axis direction and n s1 ≈no1 , a part of the light of wavelength λ 1 is diffracted. and, light of the wavelength lambda 2 is straightly transmitted without being diffracted. Further, light of wavelength lambda 3, the components of the linearly polarized light in the X-axis direction of the light elliptically polarized light is straightly transmitted, part of the light component in the Y-axis direction of the linearly polarized light is diffracted.

一方、第2の回折格子15は、第2の複屈折性材料層15aの液晶がX軸方向に平行に配向され、ns2≒no2であるので、波長λの光は回折せずに直進透過し、波長λの光の一部は回折する。また、波長λの光は、楕円偏光の光のうちY軸方向の直線偏光の光の成分は直進透過し、X軸方向の直線偏光の光の成分の一部は回折する。 On the other hand, in the second diffraction grating 15, the liquid crystal of the second birefringent material layer 15 a is aligned parallel to the X-axis direction and n s2 ≈no 2 , so that the light of wavelength λ 1 is not diffracted. straight passes, part of the wavelength lambda 2 of light is diffracted. Further, light of wavelength lambda 3, the components of the linearly polarized light in the Y-axis direction of the light elliptically polarized light is straightly transmitted, part of the light component in the X-axis direction of the linearly polarized light is diffracted.

また、回折格子の格子ピッチと回折角との関係として、透明基板面に垂直に波長λの光が格子ピッチPの回折格子に入射するとき、透明基板面の法線(=光の進行方向)に対するQ次回折光(Q=±1、±2、・・・)の回折角θ[°]は、
θ=Sin−1(Qλ/P)
であるので、光ヘッド装置100における光検出器112の仕様、各受光エリアの位置に合わせて各波長の光の回折効率および回折角度を調整するとよい。
Further, as a relation between the grating pitch and the diffraction angle of the diffraction grating, when light having a wavelength λ is incident on the diffraction grating having the grating pitch P perpendicular to the transparent substrate surface, the normal of the transparent substrate surface (= light traveling direction) The diffraction angle θ [°] of the Q-order diffracted light (Q = ± 1, ± 2,...) With respect to
θ = Sin −1 (Qλ / P)
Therefore, it is preferable to adjust the diffraction efficiency and diffraction angle of light of each wavelength in accordance with the specification of the photodetector 112 in the optical head device 100 and the position of each light receiving area.

このように、波長選択回折素子10aは、波長板12、波長λの光と波長λの光のうち、いずれか一方を回折させず透過させるとともに、他方を回折する第1の回折格子13と、第1の回折格子13で回折させる方の光を回折させずに透過させるとともに、他方を回折させる第2の回折格子15を有するので、これら2つの波長の光に対してそれぞれ独立に所望の回折効率、回折角度で回折させることができる。このため、例えば、光検出器の受光エリアのうち、BD用の受光エリアとDVD用の受光エリアを共有させる場合でも、第1の回折格子13および第2の回折格子15の構成により調整できる。 Thus, the wavelength selective diffraction element 10a, the wavelength plate 12, out of the wavelength lambda 1 of light and the wavelength lambda 2 of the light, and to reflect not diffract either the first diffraction grating 13 for diffracting the other And the second diffraction grating 15 that allows the light diffracted by the first diffraction grating 13 to pass through without being diffracted and diffracts the other, so that each of the two wavelengths of light is independently desired. Can be diffracted at the diffraction efficiency and diffraction angle. Therefore, for example, even when the light receiving area for BD and the light receiving area for DVD are shared among the light receiving areas of the photodetector, the adjustment can be made by the configurations of the first diffraction grating 13 and the second diffraction grating 15.

CD用の波長λの光は、第1の回折格子13および第2の回折格子15で回折されたQ次回折光(Q=±1、±2、・・・)を、光検出器112において光検出の対象にせず、2つの回折格子を直進透過する0次回折光のみを検出することがある。そのため、この場合、波長λの光に対して、第1の回折格子13および第2の回折格子15において0次回折効率が高いことが好ましく、これら2つの回折格子を直進透過する光のトータルの0次回折効率は70%以上であればよく、80%以上であればより好ましい。例えば、光ヘッド装置100が、CD用の波長λの光に対して往路の光路中にて3ビームとする3ビーム法を利用する場合、復路の光路中のみに配置される波長選択回折素子10aによって、往復した3ビームの光利用効率を低下させずに光検出器112に到達させることができる。 The light of wavelength λ 3 for CD is Q-order diffracted light (Q = ± 1, ± 2,...) Diffracted by the first diffraction grating 13 and the second diffraction grating 15 in the photodetector 112. In some cases, only the 0th-order diffracted light that passes straight through the two diffraction gratings is detected without being subjected to light detection. Therefore, in this case, it is preferable that the first diffraction grating 13 and the second diffraction grating 15 have high zero-order diffraction efficiency with respect to light having the wavelength λ 3 , and the total amount of light that passes straight through these two diffraction gratings. The 0th-order diffraction efficiency may be 70% or more, and more preferably 80% or more. For example, when the optical head device 100 uses the three-beam method in which three beams are used in the forward optical path for the light of wavelength λ 3 for CD, the wavelength selective diffraction element disposed only in the return optical path 10a makes it possible to reach the photodetector 112 without reducing the light utilization efficiency of the reciprocated three beams.

(第2の実施の形態)
第2の実施の形態は、光ヘッド装置100に用いる波長選択回折素子10として、第1の実施の形態の波長選択回折素子10aと異なる、波長選択回折素子20a、20bを備えるものである。図3(a)、図3(b)は、それぞれ波長選択回折素子20a、20bの構成を示す断面模式図であり、波長板22、第1の回折格子23および第2の回折格子25が備えられている。
(Second Embodiment)
The second embodiment includes wavelength selective diffraction elements 20a and 20b different from the wavelength selective diffraction element 10a of the first embodiment as the wavelength selective diffraction element 10 used in the optical head device 100. FIGS. 3A and 3B are schematic cross-sectional views showing the configurations of the wavelength selective diffraction elements 20a and 20b, respectively. The wavelength plate 22, the first diffraction grating 23, and the second diffraction grating 25 are provided. It has been.

波長板22は、透明基板21aの一方の面に備えられ、第1の実施の形態の波長板12と同様の機能を有する。第1の回折格子23は、透明基板21b上に、複屈折性材料からなり複屈折材料層23aに相当する凸部と、等方性材料からなり第1の等方性材料層24に相当する凹部とが、周期的に配置された回折格子構造を有する。第1の等方性材料層24は、複屈折材料層23aを覆うように形成されてもよいが複屈折材料層23aと同じ高さで交互に配置されてもよい。なお、第1の回折格子23は、第1の実施の形態の第1の回折格子13と同様の機能を有する。つまり、複屈折材料層23aの常光屈折率no1と異常光屈折率ne1のうち、いずれか一方は、等方性材料層24の屈折率ns1と略等しい材料の組み合わせとなっている。 The wave plate 22 is provided on one surface of the transparent substrate 21a, and has the same function as the wave plate 12 of the first embodiment. The first diffraction grating 23 corresponds to the first isotropic material layer 24 made of an isotropic material and a convex portion corresponding to the birefringence material layer 23a on the transparent substrate 21b. The concave portion has a diffraction grating structure arranged periodically. The first isotropic material layers 24 may be formed so as to cover the birefringent material layers 23a, but may be alternately arranged at the same height as the birefringent material layers 23a. The first diffraction grating 23 has a function similar to that of the first diffraction grating 13 of the first embodiment. That is, one of the ordinary light refractive index n o1 and the extraordinary light refractive index n e1 of the birefringent material layer 23 a is a combination of materials substantially equal to the refractive index n s1 of the isotropic material layer 24.

また、波長選択回折素子は、図3(a)の波長選択回折素子20aのように回折格子の断面形状が矩形状に限らず、図3(b)に示す波長選択回折素子20bのように、第1の回折格子23の断面形状が(擬似)ブレーズ形状であってもよい。波長選択回折素子20bは、複屈折性材料層23bをブレーズ形状とした例であり、それ以外は、波長選択回折素子20aと同じ番号を付したものである。   Further, the wavelength selective diffraction element is not limited to the rectangular cross-sectional shape of the diffraction grating as in the wavelength selective diffraction element 20a in FIG. 3A, but as in the wavelength selective diffraction element 20b in FIG. The cross-sectional shape of the first diffraction grating 23 may be a (pseudo) blazed shape. The wavelength selective diffraction element 20b is an example in which the birefringent material layer 23b has a blazed shape, and other than that, the same number as the wavelength selective diffraction element 20a is attached.

次に、第2の回折格子25について説明する。第2の回折格子25は、等方性材料からなり第2の等方性材料層25aに相当する凸部が離隔して周期的に配置された回折格子構造を有する。なお、第2の等方性材料層25aとなる等方性材料は、透明基板21bと同じ材料であってもよく、例えば、透明基板21bの表面を凹凸状に加工して、第2の等方性材料層25aを得るものであってもよい。また、等方性材料層25aの周辺の媒質は空気(屈折率=1)であるところが、第1の実施の形態に係る波長選択回折素子10aとは異なる。したがって、等方性材料層25aと空気との間には屈折率の差が生じるので、第2の回折格子25は、下記のように設計する。   Next, the second diffraction grating 25 will be described. The second diffraction grating 25 is made of an isotropic material and has a diffraction grating structure in which convex portions corresponding to the second isotropic material layer 25a are periodically spaced apart. Note that the isotropic material that becomes the second isotropic material layer 25a may be the same material as the transparent substrate 21b. For example, the surface of the transparent substrate 21b is processed into a concavo-convex shape to obtain the second isotropic material layer 25a. The anisotropic material layer 25a may be obtained. The medium around the isotropic material layer 25a is air (refractive index = 1), which is different from the wavelength selective diffraction element 10a according to the first embodiment. Accordingly, since a difference in refractive index occurs between the isotropic material layer 25a and air, the second diffraction grating 25 is designed as follows.

第2の等方性材料層25aの屈折率をns2とし、第2の回折格子25で回折させない波長の光をλ、第2の等方性材料層25aの高さをdとすると、(ns2−1)×dがλの整数倍に略等しくなるように、調整するとよい。このようにすることで、第2の回折格子を透過する波長λの光の波面が変化せずに直進透過する。 If the refractive index of the second isotropic material layer 25a is n s2 , light having a wavelength that is not diffracted by the second diffraction grating 25 is λ A , and the height of the second isotropic material layer 25a is d A. , (N s2 −1) × d A may be adjusted so as to be approximately equal to an integral multiple of λ A. By doing so, the wavefront of the light of the wavelength lambda A that passes through the second diffraction grating is straightly transmitted without being changed.

次に、図3(c)より、波長選択回折素子20aを透過した光の、第2の回折格子25における光学作用について説明する。波長λは405nm波長帯、波長λは660nm波長帯、波長λは785nm波長帯とし、波長選択回折素子20aに入射する、波長λの光、波長λの光および波長λの光は、それぞれY軸方向の直線偏光の光としてZ軸方向に進行しながら波長選択回折素子20aに入射する。波長板24および第1の回折格子23を透過する各波長の光の状態は、第1の実施の形態の波長選択回折素子10aと同じ効果を有する。つまり、第1の回折格子23では、Y軸方向の直線偏光の光である波長λの光の一部は回折し、X軸方向の直線偏光の光である波長λの光はほぼ直進透過する。また、楕円偏光の光である波長λの光は、X軸方向の直線偏光の光の成分は直進透過し、Y軸方向の直線偏光の光の成分の一部は回折する。 Next, the optical action in the second diffraction grating 25 of the light transmitted through the wavelength selective diffraction element 20a will be described with reference to FIG. Wavelength lambda 1 is 405nm wavelength range, the wavelength lambda 2 is 660nm waveband, the wavelength lambda 3 and 785nm wavelength range, and enters the wavelength selection diffraction element 20a, the wavelength lambda 1 light, the wavelength lambda 2 of the light and the wavelength lambda 3 The light enters the wavelength selective diffraction element 20a while traveling in the Z-axis direction as linearly polarized light in the Y-axis direction. The state of light of each wavelength that passes through the wave plate 24 and the first diffraction grating 23 has the same effect as the wavelength selective diffraction element 10a of the first embodiment. That is, in the first diffraction grating 23, a portion of the Y-axis direction of the linearly polarized light of wavelength lambda 1 is light light is diffracted, light of the wavelength lambda 2 is light in the X axis direction of the linearly polarized light is substantially straight To Penetrate. In addition, in the light of wavelength λ 3 that is elliptically polarized light, the linearly polarized light component in the X-axis direction passes straight through, and a part of the linearly polarized light component in the Y-axis direction is diffracted.

第2の回折格子25は、(ns2−1)×dが波長λの整数倍に略等しく、好ましくは波長λの偶数倍に略等しく、より好ましくは波長λの2倍に略等しくなるように、ns2およびdが設定されている。ここで、波長λは、BD用の405nm波長帯としており、かつ、(ns2−1)×d≒2λとした場合、CD用の785nm波長帯に相当する波長λの光も、(ns2−1)×d≒λと近似できる。そのため、第2の回折格子25では、波長λの光に対する1次以上の回折光の光量を小さくして、直進透過する0次回折効率を高くできるので、光検出器112における光利用効率を高くすることもできる。 The second diffraction grating 25, (n s2 -1) × d A is approximately equal to an integral multiple of the wavelength lambda 1, preferably approximately equal to an even multiple of the wavelength lambda 1, more preferably 2 times the wavelength lambda 1 N s2 and d A are set so as to be substantially equal. Here, the wavelength λ 1 is a 405 nm wavelength band for BD, and when (n s2 −1) × d A ≈2λ 1 , light having a wavelength λ 3 corresponding to the 785 nm wavelength band for CD is also used. , (N s2 −1) × d A ≈λ 3 . Therefore, in the second diffraction grating 25, by reducing the amount of the primary or higher order diffracted light with respect to wavelength lambda 3 of the light, it is possible to increase the zero-order diffraction efficiency of straightly transmitted, the light utilization efficiency of the optical detector 112 It can also be raised.

一方、上記のように、第2の回折格子25を(ns2−1)×d≒2λとした場合、(ns2−1)×d≠mλであるので(m≧1の整数)、第2の回折格子25で、波長λの光の一部は回折する。このように、波長選択回折素子20aは、波長板22、波長λの光を回折し、波長λの光を透過する第1の回折格子23、波長λの光を回折し、波長λの光を透過する第2の回折格子25を有するので、これら2つの波長の光に対してそれぞれ独立に所望の回折効率、回折角度で回折させることができる。なお、第2の回折格子25は、凸部となる部分が第2の等方性材料層25aとしたが、複屈折性材料であってもよく、その場合、波長λの光で入射するY軸方向の直線偏光の光に対する屈折率(常光屈折率または異常光屈折率)を考慮してdを与えるとよい。 On the other hand, as described above, when the second diffraction grating 25 is (n s2 −1) × d A ≈2λ 1 , (n s2 −1) × d A ≠ mλ 2 (m ≧ 1) integer), the second diffraction grating 25, a part of the wavelength lambda 2 of light is diffracted. Thus, the wavelength selective diffraction element 20a, the wavelength plate 22, and diffracts the light of wavelength lambda 1, the first diffraction grating 23 which transmits light of the wavelength lambda 2, diffracted light having a wavelength lambda 2, the wavelength lambda Since the second diffraction grating 25 that transmits one light is included, the light of these two wavelengths can be diffracted independently at a desired diffraction efficiency and diffraction angle. The second diffraction grating 25 is part which is convex portion has a second isotropic material layer 25a, may be a birefringent material, in which case the incident light having a wavelength of lambda 1 It is preferable to give d A in consideration of the refractive index (normal light refractive index or extraordinary light refractive index) for linearly polarized light in the Y-axis direction.

また、第1および第2の実施の形態に係る波長選択回折素子には、波長λの光、波長λの光、波長λの光がいずれもY軸方向の直線偏光の光として入射するものとしたが、いずれもX軸方向の直線偏光の光として入射するものであってもよく、波長λの光と波長λの光とが同じ偏光方向の直線偏光の光であって、波長λの光がそれに対して直交した直線偏光の光であってもよい。入射する各波長の光のうち、波長λの光および波長λの光を2つの回折格子によってそれぞれ独立に回折させることができればよい。 In addition, the wavelength selective diffraction element according to the first and second embodiments receives light of wavelength λ 1 , light of wavelength λ 2 , and light of wavelength λ 3 as linearly polarized light in the Y-axis direction. it is assumed that both may be one as a light in the X axis direction of the linearly polarized light, and the wavelength lambda 1 of light and the wavelength lambda 2 of light a linearly polarized light of the same polarization direction may be a light of linear polarization light of the wavelength lambda 3 is orthogonal to it. Of the incident light of each wavelength, it is only necessary that the light of wavelength λ 1 and the light of wavelength λ 2 can be diffracted independently by the two diffraction gratings.

また、第1の実施の形態および第2の実施の形態に係る波長選択回折素子とは異なるものとして、波長板と1つの回折格子からなる波長選択回折素子を用いることもできる。図4(a)は、第1の実施の形態に係る波長選択回折素子10aのうち、透明基板11aと透明基板11bとに挟持された部分により構成される波長選択回折素子30を示す断面模式図であり、波長選択回折素子30を構成する各部は、波長選択回折素子10aと同じ番号を付して、説明の重複を避ける。   Further, as a different from the wavelength selective diffraction element according to the first embodiment and the second embodiment, a wavelength selective diffraction element comprising a wave plate and one diffraction grating can be used. FIG. 4A is a schematic cross-sectional view showing the wavelength selective diffraction element 30 constituted by a portion sandwiched between the transparent substrate 11a and the transparent substrate 11b in the wavelength selective diffraction element 10a according to the first embodiment. The parts constituting the wavelength selective diffraction element 30 are given the same numbers as the wavelength selective diffraction element 10a to avoid duplication of explanation.

図4(b)は、波長λの光、波長λの光および波長λの光は、それぞれY軸方向の直線偏光の光としてZ軸方向に進行しながら波長選択回折素子30に入射したときの作用を示す模式図である。この場合、(第1の)回折格子13において、波長λの光を回折させ、波長λの光を回折させずに透過させる。例えば、光ヘッド装置100が、DVD用の波長λの光およびCD用の波長λの光に対して往路の光路中にて3ビームとする3ビーム法を利用する場合、復路の光路中のみに配置される波長選択回折素子30によって、往復した3ビームの光利用効率を低下させずに光検出器112に到達させることができる。 FIG. 4B shows that light of wavelength λ 1 , light of wavelength λ 2 and light of wavelength λ 3 are incident on the wavelength selective diffraction element 30 while traveling in the Z-axis direction as linearly polarized light in the Y-axis direction. It is a schematic diagram which shows an effect | action when it does. In this case, the (first) diffraction grating 13 diffracts the light having the wavelength λ 1 and transmits the light having the wavelength λ 2 without diffracting it. For example, when the optical head device 100 uses the three-beam method in which three beams are used in the forward optical path for the light having the wavelength λ 2 for DVD and the light having the wavelength λ 3 for CD, The wavelength selective diffraction element 30 disposed only on the light source can reach the photodetector 112 without lowering the light utilization efficiency of the reciprocated three beams.

(実施例1)
本実施例は、図2(a)に示す第1の実施形態に係る波長選択回折素子10aの具体的な設計例および光学特性について説明する。
Example 1
In this example, a specific design example and optical characteristics of the wavelength selective diffraction element 10a according to the first embodiment shown in FIG. 2A will be described.

まず、透明基板11aとして石英ガラス基板を洗浄、乾燥し、石英ガラス基板の一方の面に真空蒸着法を用いて反射防止膜を形成する。次に、石英ガラス基板の他方の面に、ポリイミドを塗布してできたポリイミド膜をラビングして配向膜を形成する。そして、配向膜上に複屈折性を有する液晶モノマーを均一に塗布し、UV光を照射することによって、液晶分子の長軸方向が均一で厚さ方向に揃った高分子液晶からなる厚さ9.1μmの波長板12を作製する。なお、波長板12の高分子液晶の各波長の光に対する常光/異常光屈折率およびリタデーション値は表1に示すとおりである。   First, a quartz glass substrate is washed and dried as the transparent substrate 11a, and an antireflection film is formed on one surface of the quartz glass substrate using a vacuum deposition method. Next, a polyimide film formed by applying polyimide is rubbed on the other surface of the quartz glass substrate to form an alignment film. Then, a liquid crystal monomer having birefringence is uniformly applied on the alignment film and irradiated with UV light, whereby the thickness 9 of the polymer liquid crystal in which the major axis direction of the liquid crystal molecules is uniform and aligned in the thickness direction. A 1 μm wave plate 12 is produced. The normal light / abnormal light refractive index and retardation value with respect to light of each wavelength of the polymer liquid crystal of the wave plate 12 are as shown in Table 1.

Figure 2011060405
Figure 2011060405

次に、透明基板11bとして石英ガラス基板を洗浄、乾燥し、石英ガラス基板の一方の面に、ポリイミドを塗布してできたポリイミド膜をラビングして配向膜を形成する。そして、配向膜上に複屈折性を有する液晶モノマーを均一に塗布し、UV光を照射することによって、液晶分子の長軸方向が均一で厚さ方向に揃った高分子液晶からなる厚さ1.3μmの高分子液晶膜を作製する。その後、回折格子の長手方向と高分子液晶の配向方向(遅相軸方向)とが一致するように、フォトリソグラフィとエッチング技術を用いて断面が矩形状の周期的な凹凸を有する回折格子形状に加工して、第1の複屈折性材料層13aを有する第1の回折格子13を得る。このとき、第1の回折格子13のピッチPは1.6μmであり、ピッチPに対して第1の複屈折性材料層13aの幅は0.8μm(Duty比:0.5)とする。なお、第1の複屈折性材料層13aとなる高分子液晶は、波長板12の高分子液晶と同じ材料であって、各波長の光に対する常光/異常光屈折率は表1に示すとおりである。   Next, the quartz glass substrate is washed and dried as the transparent substrate 11b, and a polyimide film formed by applying polyimide is rubbed on one surface of the quartz glass substrate to form an alignment film. Then, a liquid crystal monomer having birefringence is uniformly applied on the alignment film and irradiated with UV light, whereby the thickness 1 of the polymer liquid crystal in which the major axis direction of the liquid crystal molecules is uniform and aligned in the thickness direction. A 3 μm polymer liquid crystal film is prepared. Then, using a photolithography and etching technique, the cross-sectional shape of the diffraction grating has a rectangular irregularity so that the longitudinal direction of the diffraction grating and the alignment direction (slow axis direction) of the polymer liquid crystal coincide. Processing is performed to obtain the first diffraction grating 13 having the first birefringent material layer 13a. At this time, the pitch P of the first diffraction grating 13 is 1.6 μm, and the width of the first birefringent material layer 13 a with respect to the pitch P is 0.8 μm (Duty ratio: 0.5). The polymer liquid crystal used as the first birefringent material layer 13a is the same material as the polymer liquid crystal of the wave plate 12, and the ordinary / abnormal light refractive index for light of each wavelength is as shown in Table 1. is there.

次に、透明基板11cとして石英ガラス基板を洗浄、乾燥し、石英ガラス基板の一方の面に真空蒸着法を用いて反射防止膜を形成する。次に、石英ガラス基板の他方の面に、ポリイミドを塗布してできたポリイミド膜をラビングして配向膜を形成する。そして、配向膜上に複屈折性を有する液晶モノマーを均一に塗布し、UV光を照射することによって、液晶分子の長軸方向が均一で厚さ方向に揃った高分子液晶からなる厚さ2.8μmの高分子液晶膜を作製する。その後、回折格子の長手方向と高分子液晶の配向方向と直交する方向(進相軸方向)とが一致するように、フォトリソグラフィとエッチング技術を用いて断面が矩形状の周期的な凹凸を有する回折格子形状に加工して、第2の複屈折性材料層15aを有する第2の回折格子15を得る。このとき、第2の回折格子15のピッチPは2.4μmであり、ピッチPに対して複屈折性材料層15aの幅は1.2μm(Duty比:0.5)とする。なお、第2の複屈折性材料層15aとなる高分子液晶は、波長板12の高分子液晶と同じ材料であって、各波長の光に対する常光/異常光屈折率は表1に示すとおりである。   Next, the quartz glass substrate is washed and dried as the transparent substrate 11c, and an antireflection film is formed on one surface of the quartz glass substrate using a vacuum deposition method. Next, a polyimide film formed by applying polyimide is rubbed on the other surface of the quartz glass substrate to form an alignment film. Then, a liquid crystal monomer having birefringence is uniformly coated on the alignment film and irradiated with UV light, whereby the thickness 2 of the polymer liquid crystal in which the major axis direction of the liquid crystal molecules is uniform and aligned in the thickness direction. A polymer liquid crystal film of 8 μm is prepared. After that, it has periodic irregularities with a rectangular cross section using photolithography and etching technology so that the longitudinal direction of the diffraction grating and the direction orthogonal to the alignment direction of the polymer liquid crystal (the fast axis direction) coincide with each other. By processing into a diffraction grating shape, a second diffraction grating 15 having a second birefringent material layer 15a is obtained. At this time, the pitch P of the second diffraction grating 15 is 2.4 μm, and the width of the birefringent material layer 15 a with respect to the pitch P is 1.2 μm (Duty ratio: 0.5). The polymer liquid crystal used as the second birefringent material layer 15a is the same material as the polymer liquid crystal of the wave plate 12, and the ordinary light / abnormal light refractive index for light of each wavelength is as shown in Table 1. is there.

第1の等方性材料層14として透明な接着剤を用いて、波長板12と、第1の回折格子13との間を充填するように接着する。このとき、透明基板11a側からみて第1の複屈折性材料層13aの配向方向を基準にして、波長板12の高分子液晶の配向方向(遅相軸方向)のなす角度αが45[°]または−45[°]になるように接着する。なお、角度αの符号は、第1の複屈折性材料層13aの配向方向を基準に時計回りをプラス(+)とする。   Using a transparent adhesive as the first isotropic material layer 14, bonding is performed so as to fill the space between the wave plate 12 and the first diffraction grating 13. At this time, the angle α formed by the alignment direction (slow axis direction) of the polymer liquid crystal of the wave plate 12 with reference to the alignment direction of the first birefringent material layer 13a when viewed from the transparent substrate 11a side is 45 [°. ] Or -45 [°]. The sign of the angle α is plus (+) clockwise with respect to the orientation direction of the first birefringent material layer 13a.

そして、第2の等方性材料層16として透明な接着剤を用いて、透明基板11bの平坦な面と、第2の回折格子15との間を充填するように接着する。このとき、第2の回折格子15の長手方向は、第1の回折格子13の長手方向と一致するように接着し、波長選択回折素子10aを得る第1の等方性材料層14を形成する第1の等方性材料(接着剤)および、第2の等方性材料層16を形成する第2の等方性材料(接着剤)の、各波長の光に対する屈折率(ns1、ns2)は表2に示すとおりである。 Then, a transparent adhesive is used as the second isotropic material layer 16 so that the space between the flat surface of the transparent substrate 11 b and the second diffraction grating 15 is filled. At this time, the first isotropic material layer 14 for obtaining the wavelength selective diffraction element 10a is formed by bonding so that the longitudinal direction of the second diffraction grating 15 coincides with the longitudinal direction of the first diffraction grating 13. Refractive indices (n s1 , n) of light of each wavelength of the first isotropic material (adhesive) and the second isotropic material (adhesive) forming the second isotropic material layer 16 s2 ) is as shown in Table 2.

Figure 2011060405
Figure 2011060405

作製した波長選択回折素子10aに対して、第1の回折格子13および第2の回折格子15の長手方向に平行な直線偏光の光を入射する。このとき、図2(c)に示すように、入射する光は、第1の回折格子13および第2の回折格子15の長手方向に相当する、Y軸方向の直線偏光の光としてZ方向に進行させる。また、図5は、入射する光の(直線)偏光方向と、波長板12の光学軸(遅相軸)との関係を示す模式図であり、Y軸方向で入射する光の偏光方向40と、波長板12の高分子液晶の配向方向12aとの角度αを示したものであり、本実施例ではαが45[°]である。なお、入射する光は、波長405nmの光、波長660nmの光、波長785nmの光とする。   Linearly polarized light parallel to the longitudinal direction of the first diffraction grating 13 and the second diffraction grating 15 is made incident on the manufactured wavelength selective diffraction element 10a. At this time, as shown in FIG. 2C, incident light is linearly polarized light in the Y-axis direction corresponding to the longitudinal direction of the first diffraction grating 13 and the second diffraction grating 15 in the Z direction. Make it progress. FIG. 5 is a schematic diagram showing the relationship between the (linear) polarization direction of incident light and the optical axis (slow axis) of the wave plate 12, and the polarization direction 40 of light incident in the Y-axis direction. The angle α between the wavelength plate 12 and the alignment direction 12a of the polymer liquid crystal is shown. In this embodiment, α is 45 [°]. The incident light is light having a wavelength of 405 nm, light having a wavelength of 660 nm, and light having a wavelength of 785 nm.

Y軸方向の直線偏光の光として波長405nmの光を入射すると、波長板12を、ほぼ100%Y軸方向の直線偏光の光のまま透過する。波長板12を透過した波長405nmの光は、第1の回折格子13の高分子液晶の異常光屈折率の方向であるので、回折する。このときの回折効率は、0次回折効率が81.9[%]、±1次回折効率が8.7[%]となる。次に、第1の回折格子13を透過/回折した波長405nmの光は、第2の回折格子15に入射するが、第2の回折格子15の高分子液晶の常光屈折率の方向であって、第2の等方性材料の屈折率と一致するので、回折せずに直進透過するので、0次回折効率η(405)が81.8[%]、±1次回折効率η±1(405)が8.7[%]となる。 When light having a wavelength of 405 nm is incident as linearly polarized light in the Y-axis direction, the light passes through the wave plate 12 as linearly polarized light in the Y-axis direction. The light having a wavelength of 405 nm transmitted through the wave plate 12 is diffracted because it is in the direction of the extraordinary refractive index of the polymer liquid crystal of the first diffraction grating 13. In this case, the diffraction efficiency is 81.9 [%] for the 0th order diffraction efficiency and 8.7 [%] for the ± 1st order diffraction efficiency. Next, light having a wavelength of 405 nm transmitted / diffracted through the first diffraction grating 13 is incident on the second diffraction grating 15, and is in the direction of the ordinary refractive index of the polymer liquid crystal of the second diffraction grating 15. Since the refractive index coincides with the refractive index of the second isotropic material, it transmits straight without being diffracted, so that the 0th-order diffraction efficiency η 0 (405) is 81.8 [%], ± 1st-order diffraction efficiency η ± 1 (405) becomes 8.7 [%].

次いで、Y軸方向の直線偏光の光として波長660nmの光を入射すると、波長板12は、1/2波長板として作用するので、ほぼX軸方向の直線偏光の光に変調される。具体的に、波長板12に入射する前の光量を100[%]とすると、X軸方向の直線偏光の光の成分が99.6[%]となる。波長板12を透過した波長660nmの光のうち、X軸方向の直線偏光の光は、第1の回折格子13の高分子液晶の常光屈折率の方向であるので、第1の回折格子13では回折せずに直進透過し、第2の回折格子15に入射する。第2の回折格子15に入射する波長660nmの光のうち、X軸方向の直線偏光の光は、第2の回折格子15の高分子液晶の異常光屈折率の方向であるので、回折する。このとき、X軸方向の直線偏光の光に対する0次回折効率が84.1[%]、±1次回折効率が7.9[%]となる。ここで、波長板12透過前後による波長660nmの光のうちのX軸方向の直線偏光の光の成分が99.6[%]であるので、±1次回折効率η±1(660)=7.8[%]となる。 Next, when light having a wavelength of 660 nm is incident as linearly polarized light in the Y-axis direction, the wave plate 12 acts as a half-wave plate, and is thus modulated into linearly polarized light in the X-axis direction. Specifically, if the amount of light before entering the wave plate 12 is 100 [%], the linearly polarized light component in the X-axis direction is 99.6 [%]. Of the light having a wavelength of 660 nm transmitted through the wave plate 12, the linearly polarized light in the X-axis direction is in the direction of the ordinary refractive index of the polymer liquid crystal of the first diffraction grating 13. The light travels straight without being diffracted and enters the second diffraction grating 15. Of the light having a wavelength of 660 nm incident on the second diffraction grating 15, the linearly polarized light in the X-axis direction is diffracted because it is in the direction of the extraordinary light refractive index of the polymer liquid crystal of the second diffraction grating 15. At this time, the zero-order diffraction efficiency for the linearly polarized light in the X-axis direction is 84.1 [%], and the ± first-order diffraction efficiency is 7.9 [%]. Here, since the component of linearly polarized light in the X-axis direction among the light having a wavelength of 660 nm before and after transmitting through the wave plate 12 is 99.6 [%], ± 1st-order diffraction efficiency η ± 1 (660) = 7 .8 [%].

一方、波長板12を透過した波長660nmの光のうち、Y軸方向の直線偏光の光は、第1の回折格子13の高分子液晶の異常光屈折率の方向であるので、回折する。このとき、Y軸方向の直線偏光の光に対する、第1の回折格子13の0次回折効率が95.7[%]、±1次回折効率が2.1[%]となる。ただし、波長板12透過前後による波長660nmの光のうちのY軸方向の直線偏光の光の成分が0.4[%]であるので、第1の回折格子13で回折される光はほぼ0である。また、波長660nmの光のうち、第1の回折格子13を直進透過したY軸方向の直線偏光の光は、第2の回折格子では、0次回折効率が99.9[%]となる。これより、波長板12を透過した波長660nmの光のうち、X軸方向の直線偏光の光の0次回折効率および、Y軸方向の直線偏光の光の0次回折効率を合計すると、0次回折効率η(660)=84.1[%]となる。 On the other hand, among the light having a wavelength of 660 nm transmitted through the wave plate 12, the linearly polarized light in the Y-axis direction is diffracted because it is in the direction of the extraordinary refractive index of the polymer liquid crystal of the first diffraction grating 13. At this time, the zero-order diffraction efficiency of the first diffraction grating 13 for the linearly polarized light in the Y-axis direction is 95.7 [%], and the ± first-order diffraction efficiency is 2.1 [%]. However, since the component of linearly polarized light in the Y-axis direction among the light having a wavelength of 660 nm before and after transmitting through the wave plate 12 is 0.4 [%], the light diffracted by the first diffraction grating 13 is almost 0. It is. Of the light having a wavelength of 660 nm, the linearly polarized light in the Y-axis direction that travels straight through the first diffraction grating 13 has a zero-order diffraction efficiency of 99.9 [%] in the second diffraction grating. As a result, when the 0th-order diffraction efficiency of the linearly polarized light in the X-axis direction and the 0th-order diffraction efficiency of the linearly polarized light in the Y-axis direction out of the light having a wavelength of 660 nm transmitted through the wave plate 12 is zero, Folding efficiency η 0 (660) = 84.1 [%].

次いで、Y軸方向の直線偏光の光として波長785nmの光を入射する。波長板12に入射する前の光量を100%とすると、X軸方向の直線偏光の光の成分が94.2%となる。波長板12を透過した波長785nmの光のうち、X軸方向の直線偏光の光は、第1の回折格子13の高分子液晶の常光屈折率の方向であるので、第1の回折格子13では回折せずにほぼ直進透過し、第2の回折格子15に入射する。第2の回折格子15に入射する波長785nmの光のうち、X軸方向の直線偏光の光は、第2の回折格子15の高分子液晶の異常光屈折率の方向であるので、回折する。このとき、X軸方向の直線偏光の光に対する、第2の回折格子15の0次回折効率が89.6[%]、±1次回折効率が5.1[%]となる。ここで、波長板12透過前後による波長785nmの光のうちのX軸方向の直線偏光の光の成分が94.2[%]となる。なお、±1次回折効率η±1(785)=4.9[%]である。 Next, light having a wavelength of 785 nm is incident as linearly polarized light in the Y-axis direction. Assuming that the amount of light before entering the wave plate 12 is 100%, the component of linearly polarized light in the X-axis direction is 94.2%. Of the light having a wavelength of 785 nm transmitted through the wave plate 12, the linearly polarized light in the X-axis direction is in the direction of the ordinary refractive index of the polymer liquid crystal of the first diffraction grating 13. The light passes through almost straight without being diffracted and enters the second diffraction grating 15. Of the light having a wavelength of 785 nm incident on the second diffraction grating 15, the linearly polarized light in the X-axis direction is diffracted because it is in the direction of the extraordinary refractive index of the polymer liquid crystal of the second diffraction grating 15. At this time, the zero-order diffraction efficiency of the second diffraction grating 15 for the linearly polarized light in the X-axis direction is 89.6 [%], and the ± first-order diffraction efficiency is 5.1 [%]. Here, the component of linearly polarized light in the X-axis direction among the light having a wavelength of 785 nm before and after transmitting through the wave plate 12 is 94.2 [%]. Note that ± first-order diffraction efficiency η ± 1 (785) = 4.9 [%].

一方、波長板12を透過した波長785nmの光のうち、Y軸方向の直線偏光の光は、第1の回折格子13の高分子液晶の異常光屈折率の方向であるので、回折する。このとき、Y軸方向の直線偏光の光に対する0次回折効率が97.2[%]、±1次回折効率が1.4[%]となる。ただし、波長板12透過前後による波長785nmの光のうちのY軸方向の直線偏光の光の成分が5.8[%]であるので、第1の回折格子13で回折される光はほぼ0である。また、波長785nmの光のうち、第1の回折格子13を直進透過したY軸方向の直線偏光の光は、第2の回折格子では、0次回折効率が99.9[%]となる。これより、波長板12を透過した波長785nmの光のうち、X軸方向の直線偏光の光の0次回折効率および、Y軸方向の直線偏光の光の0次回折効率を合計すると、0次回折効率η(785)=90.0[%]となる。本実施例における、各波長における0次回折効率および±1次回折効率を表3にまとめた。 On the other hand, among the light with a wavelength of 785 nm transmitted through the wave plate 12, the linearly polarized light in the Y-axis direction is diffracted because it is in the direction of the extraordinary light refractive index of the polymer liquid crystal of the first diffraction grating 13. At this time, the 0th-order diffraction efficiency for linearly polarized light in the Y-axis direction is 97.2 [%], and the ± 1st-order diffraction efficiency is 1.4 [%]. However, since the component of linearly polarized light in the Y-axis direction out of the light having a wavelength of 785 nm before and after transmitting through the wave plate 12 is 5.8 [%], the light diffracted by the first diffraction grating 13 is almost 0. It is. Of the light with a wavelength of 785 nm, the linearly polarized light in the Y-axis direction that travels straight through the first diffraction grating 13 has a zero-order diffraction efficiency of 99.9 [%] in the second diffraction grating. As a result, of the light having a wavelength of 785 nm transmitted through the wave plate 12, the zeroth order diffraction efficiency of the linearly polarized light in the X-axis direction and the zeroth-order diffraction efficiency of the linearly polarized light in the Y-axis direction Folding efficiency η 0 (785) = 90.0 [%]. Table 3 summarizes the zero-order diffraction efficiency and ± first-order diffraction efficiency at each wavelength in this example.

Figure 2011060405
Figure 2011060405

このような光学特性を有する波長選択回折素子10aを、図1の光ヘッド装置100の波長選択回折素子10の位置に配置させると、波長405nmの光および波長660nmの光に対して所望の回折効率で、光検出器112の各受光エリアのパターンに応じて光を到達させることができるとともに、波長785nmの光に対して、高い0次回折効率を得ることができる。したがって、波長選択回折素子を用いることで、BD、DVDおよびCDの記録・再生を行う受光光学系において高い制御性を有する光ヘッド装置を実現できる。   When the wavelength-selective diffraction element 10a having such optical characteristics is arranged at the position of the wavelength-selective diffraction element 10 of the optical head device 100 in FIG. 1, desired diffraction efficiency for light with a wavelength of 405 nm and light with a wavelength of 660 nm. Thus, light can be made to reach according to the pattern of each light receiving area of the photodetector 112, and high zero-order diffraction efficiency can be obtained for light with a wavelength of 785 nm. Therefore, by using the wavelength selective diffraction element, it is possible to realize an optical head device having high controllability in a light receiving optical system for recording / reproducing BD, DVD and CD.

(実施例2)
本実施例は、図3(a)に示す第2の実施形態に係る波長選択回折素子20aの具体的な設計例および光学特性について説明する。
(Example 2)
In this example, a specific design example and optical characteristics of the wavelength selective diffraction element 20a according to the second embodiment shown in FIG.

まず、透明基板21aとして石英ガラス基板を洗浄、乾燥し、石英ガラス基板の一方の面に真空蒸着法を用いて反射防止膜を形成する。次に、石英ガラス基板の他方の面に、ポリイミドを塗布してできたポリイミド膜をラビングして配向膜を形成する。そして、配向膜上に複屈折性を有する液晶モノマーを均一に塗布し、UV光を照射することによって、液晶分子の長軸方向が均一で厚さ方向に揃った高分子液晶からなる厚さ9.1μmの波長板22を作製する。なお、波長板22の高分子液晶の各波長の光に対する常光/異常光屈折率およびリタデーション値は、実施例と同様に、表1に示すとおりである。   First, a quartz glass substrate is washed and dried as the transparent substrate 21a, and an antireflection film is formed on one surface of the quartz glass substrate using a vacuum deposition method. Next, a polyimide film formed by applying polyimide is rubbed on the other surface of the quartz glass substrate to form an alignment film. Then, a liquid crystal monomer having birefringence is uniformly applied on the alignment film and irradiated with UV light, whereby the thickness 9 of the polymer liquid crystal in which the major axis direction of the liquid crystal molecules is uniform and aligned in the thickness direction. A 1 μm wave plate 22 is produced. In addition, the ordinary light / abnormal light refractive index and the retardation value with respect to light of each wavelength of the polymer liquid crystal of the wave plate 22 are as shown in Table 1 as in the example.

次に、透明基板21bとして石英ガラス基板を洗浄、乾燥し、石英ガラス基板の一方の面に、真空蒸着法により二酸化珪素を1.67μmの厚さ成膜する。その後、フォトリソグラフィとエッチング技術を用いて断面が矩形状の周期的な凹凸を有する回折格子形状に加工して、(第2の)等方性材料層25aを有する第2の回折格子25を得る。このとき、第2の回折格子25のピッチPは14.0μmであり、ピッチPに対して(第2の)等方性材料層25aの幅は7.0μm(Duty比:0.5)とする。その後、石英ガラス基板のうち、二酸化珪素を回折格子形状に加工した面に真空蒸着法を用いて多層膜からなる反射防止膜を形成する。   Next, the quartz glass substrate is washed and dried as the transparent substrate 21b, and a silicon dioxide film having a thickness of 1.67 μm is formed on one surface of the quartz glass substrate by vacuum deposition. Thereafter, the second diffraction grating 25 having the (second) isotropic material layer 25a is obtained by processing into a diffraction grating shape having a periodic unevenness with a rectangular cross section using photolithography and etching techniques. . At this time, the pitch P of the second diffraction grating 25 is 14.0 μm, and the width of the (second) isotropic material layer 25 a with respect to the pitch P is 7.0 μm (Duty ratio: 0.5). To do. Thereafter, an antireflection film made of a multilayer film is formed on the surface of the quartz glass substrate processed with silicon dioxide into a diffraction grating shape by using a vacuum deposition method.

次に、透明基板21bのうち、二酸化珪素からなる回折格子を形成した面と反対の面に、ポリイミドを塗布してできたポリイミド膜をラビングして配向膜を形成する。そして、配向膜上に複屈折性を有する液晶モノマーを均一に塗布し、UV光を照射することによって、液晶分子の長軸方向が均一で厚さ方向に揃った高分子液晶からなる厚さ1.3μmの高分子液晶膜を作製する。その後、回折格子の長手方向と高分子液晶の配向方向(遅相軸方向)とが一致するように、フォトリソグラフィとエッチング技術を用いて断面が矩形状の周期的な凹凸を有する回折格子形状に加工して、第1の複屈折性材料層23aを有する第1の回折格子23を得る。このとき、第1の回折格子23のピッチPは9.0μmであり、ピッチPに対して第1の複屈折性材料層13aの幅は4.5μm(Duty比:0.5)とする。また、第1の回折格子23の長手方向は、第2の回折格子25の長手方向と平行するように加工する。なお、第1の複屈折性材料層23aとなる高分子液晶の各波長の光に対する常光/異常光屈折率は表2に示すとおりである。   Next, on the surface of the transparent substrate 21b opposite to the surface on which the diffraction grating made of silicon dioxide is formed, a polyimide film formed by applying polyimide is rubbed to form an alignment film. Then, a liquid crystal monomer having birefringence is uniformly applied on the alignment film and irradiated with UV light, whereby the thickness 1 of the polymer liquid crystal in which the major axis direction of the liquid crystal molecules is uniform and aligned in the thickness direction. A 3 μm polymer liquid crystal film is prepared. Then, using a photolithography and etching technique, the cross-sectional shape of the diffraction grating has a rectangular irregularity so that the longitudinal direction of the diffraction grating and the alignment direction (slow axis direction) of the polymer liquid crystal coincide. Processing is performed to obtain the first diffraction grating 23 having the first birefringent material layer 23a. At this time, the pitch P of the first diffraction grating 23 is 9.0 μm, and the width of the first birefringent material layer 13 a with respect to the pitch P is 4.5 μm (Duty ratio: 0.5). Further, the first diffraction grating 23 is processed so that the longitudinal direction thereof is parallel to the longitudinal direction of the second diffraction grating 25. The ordinary light / abnormal light refractive index with respect to light of each wavelength of the polymer liquid crystal serving as the first birefringent material layer 23a is as shown in Table 2.

そして、第1の等方性材料層24として透明な接着剤を用いて、波長板22と、第1の回折格子23との間を充填するように接着し、波長選択回折素子10a得る。このとき、透明基板21a側からみて第1の複屈折性材料層23aの配向方向を基準にして、波長板22の高分子液晶の配向方向(遅相軸方向)のなす角度αが45[°]になるように接着する。なお、図4に示すように、角度αの符号は、第1の複屈折性材料層23aの配向方向を基準に時計回りをプラス(+)とする。なお、第1の等方性材料層24を形成する第1の等方性材料(接着剤)および、第2の回折格子25を形成する第2の等方性材料(二酸化珪素)の、各波長の光に対する屈折率(ns1、ns2)は表4に示すとおりである。 Then, a transparent adhesive is used as the first isotropic material layer 24 and is bonded so as to fill the space between the wave plate 22 and the first diffraction grating 23 to obtain the wavelength selective diffraction element 10a. At this time, the angle α formed by the alignment direction (slow axis direction) of the polymer liquid crystal of the wave plate 22 with respect to the alignment direction of the first birefringent material layer 23a when viewed from the transparent substrate 21a side is 45 [°. Adhere so that As shown in FIG. 4, the sign of the angle α is positive (+) clockwise with respect to the orientation direction of the first birefringent material layer 23a. Each of the first isotropic material (adhesive) for forming the first isotropic material layer 24 and the second isotropic material (silicon dioxide) for forming the second diffraction grating 25 is used. Table 4 shows the refractive indices (n s1 , n s2 ) for light of a wavelength.

Figure 2011060405
Figure 2011060405

作製した波長選択回折素子20aに対して、第1の回折格子23および第2の回折格子25の長手方向に平行な直線偏光の光を入射する。このとき、図3(c)に示すように、入射する光は、第1の回折格子23および第2の回折格子25の長手方向に相当する、Y軸方向の直線偏光の光としてZ方向に進行させる。また、本実施例では、αを45[°]、入射する光は、波長405nmの光、波長660nmの光、波長785nmの光とする。   Linearly polarized light parallel to the longitudinal direction of the first diffraction grating 23 and the second diffraction grating 25 is made incident on the manufactured wavelength selective diffraction element 20a. At this time, as shown in FIG. 3C, incident light is linearly polarized light in the Y-axis direction corresponding to the longitudinal direction of the first diffraction grating 23 and the second diffraction grating 25 in the Z direction. Make it progress. In this embodiment, α is 45 °, and incident light is light having a wavelength of 405 nm, light having a wavelength of 660 nm, and light having a wavelength of 785 nm.

Y軸方向の直線偏光の光として波長405nmの光を入射すると、波長板22を、ほぼ100%Y軸方向の直線偏光の光のまま通過する。波長板22を透過した波長405nmの光は、第1の回折格子23の高分子液晶の異常光屈折率の方向であるので、回折する。このときの回折効率は、0次回折効率が79.0[%]、±1次回折効率が8.7[%]となる。次に、第1の回折格子23を透過/回折した波長405nmの光は、第2の回折格子25に入射するが、第2の回折格子25を構成する第2の等方性材料層25aと空気(屈折率=1)との屈折率差、第2の等方性材料層25aの高さ(d)の関係から、0次回折効率が88.8[%]となる。これより、波長板22に入射する前の光量を100[%]とすると、0次回折効率η(405)=70.1[%]、±1次回折効率η±1(405)=7.7[%]となる。 When light having a wavelength of 405 nm is incident as linearly polarized light in the Y-axis direction, the light passes through the wave plate 22 with almost 100% linearly polarized light in the Y-axis direction. The light having a wavelength of 405 nm transmitted through the wave plate 22 is diffracted because it is in the direction of the extraordinary refractive index of the polymer liquid crystal of the first diffraction grating 23. In this case, the diffraction efficiency is 79.0 [%] for the 0th order diffraction efficiency and 8.7 [%] for the ± 1st order diffraction efficiency. Next, light having a wavelength of 405 nm transmitted / diffracted through the first diffraction grating 23 is incident on the second diffraction grating 25, and the second isotropic material layer 25 a constituting the second diffraction grating 25 and From the relationship between the refractive index difference from air (refractive index = 1) and the height (d A ) of the second isotropic material layer 25a, the 0th-order diffraction efficiency is 88.8 [%]. Accordingly, assuming that the amount of light before entering the wave plate 22 is 100 [%], 0th-order diffraction efficiency η 0 (405) = 70.1 [%], ± 1st-order diffraction efficiency η ± 1 (405) = 7 .7 [%].

次いで、Y軸方向の直線偏光の光として波長660nmの光を入射すると、波長板22は、1/2波長板として作用するので、ほぼX軸方向の直線偏光の光に変調される。具体的に、波長板12に入射する前の光量を100[%]とすると、X軸方向の直線偏光の光の成分が99.6[%]となる。波長板22を透過した波長660nmの光のうち、X軸方向の直線偏光の光は、第1の回折格子23の高分子液晶の常光屈折率の方向であるので、第1の回折格子23では回折せずに直進透過し、第2の回折格子25に入射する。第2の回折格子25に入射する波長660nmの光は、第2の回折格子25を構成する第2の等方性材料層25aと空気(屈折率=1)との屈折率差、第2の等方性材料層25aの高さ(d)の関係から、0次回折効率が72.5[%]、±1次回折効率が8.7[%]となる。ここで、波長板22透過前後による波長660nmの光のうちの第1の回折格子23を直進透過する、X軸方向の直線偏光の光の成分が99.6[%]であるので、±1次回折効率η±1(660)=8.6[%]となる。 Next, when light having a wavelength of 660 nm is incident as linearly polarized light in the Y-axis direction, the wave plate 22 functions as a half-wave plate, and thus is modulated to linearly polarized light in the X-axis direction. Specifically, if the amount of light before entering the wave plate 12 is 100 [%], the linearly polarized light component in the X-axis direction is 99.6 [%]. Of the light having a wavelength of 660 nm transmitted through the wave plate 22, linearly polarized light in the X-axis direction is in the direction of the ordinary refractive index of the polymer liquid crystal of the first diffraction grating 23. The light travels straight without being diffracted and enters the second diffraction grating 25. The light having a wavelength of 660 nm incident on the second diffraction grating 25 has a difference in refractive index between the second isotropic material layer 25a constituting the second diffraction grating 25 and air (refractive index = 1), the second From the relationship of the height (d A ) of the isotropic material layer 25a, the zero-order diffraction efficiency is 72.5 [%] and the ± first-order diffraction efficiency is 8.7 [%]. Here, the component of linearly polarized light in the X-axis direction that passes straight through the first diffraction grating 23 out of light having a wavelength of 660 nm before and after transmitting through the wave plate 22 is 99.6 [%], so ± 1 Next diffraction efficiency η ± 1 (660) = 8.6 [%].

一方、波長板22を透過した波長660nmの光のうち、Y軸方向の直線偏光の光は、第1の回折格子23の高分子液晶の異常光屈折率の方向であるので、回折する。このとき、Y軸方向の直線偏光の光に対する0次回折効率が94.9[%]、±1次回折効率が2.1[%]となる。ただし、波長板22透過前後による波長660nmの光のうちのY軸方向の直線偏光の光の成分が0.4[%]であるので、第1の回折格子23で回折される光はほぼ0である。また、波長660nmの光のうち、第1の回折格子23を直進透過したY軸方向の直線偏光の光は、第2の回折格子では、0次回折効率が71.9[%]、±1次回折効率が8.8[%]であるので、波長板22を透過した波長660nmの光のうち、X軸方向の直線偏光の光の0次回折効率および、Y軸方向の直線偏光の光の0次回折効率を合計すると、0次回折効率η(660)=72.4[%]となる。 On the other hand, among the light having a wavelength of 660 nm transmitted through the wave plate 22, the linearly polarized light in the Y-axis direction is diffracted because it is in the direction of the extraordinary refractive index of the polymer liquid crystal of the first diffraction grating 23. At this time, the 0th-order diffraction efficiency for linearly polarized light in the Y-axis direction is 94.9 [%], and the ± 1st-order diffraction efficiency is 2.1 [%]. However, since the component of linearly polarized light in the Y-axis direction of light having a wavelength of 660 nm before and after transmitting through the wave plate 22 is 0.4 [%], the light diffracted by the first diffraction grating 23 is almost 0. It is. Of the light having a wavelength of 660 nm, the linearly polarized light in the Y-axis direction that has been transmitted straight through the first diffraction grating 23 has a zero-order diffraction efficiency of 71.9 [%] and ± 1 in the second diffraction grating. Since the second-order diffraction efficiency is 8.8 [%], out of the light having a wavelength of 660 nm transmitted through the wave plate 22, the zero-order diffraction efficiency of the linearly polarized light in the X-axis direction and the linearly-polarized light in the Y-axis direction. When the zero-order diffraction efficiencies are added up, the zero-order diffraction efficiency η 0 (660) = 72.4 [%].

次いで、Y軸方向の直線偏光の光として波長785nmの光を入射する。波長板22に入射する前の光量を100%とすると、X軸方向の直線偏光の光の成分が94.2%となる。波長板22を透過した波長785nmの光のうち、X軸方向の直線偏光の光は、第1の回折格子23の高分子液晶の常光屈折率の方向であるので、第1の回折格子23では回折せずにほぼ直進透過し、第2の回折格子25に入射する。第2の回折格子25に入射する波長785nmの光は、第2の回折格子25を構成する第2の等方性材料層25aと空気(屈折率=1)との屈折率差、第2の等方性材料層25aの高さ(d)の関係から、0次回折効率が87.1[%]となる。ここで、波長板22透過前後による波長785nmの光のうちの第1の回折格子23を直進透過する、X軸方向の直線偏光の光の成分が94.2[%]であるので、0次回折効率が82.0[%]となる。 Next, light having a wavelength of 785 nm is incident as linearly polarized light in the Y-axis direction. Assuming that the amount of light before entering the wave plate 22 is 100%, the component of linearly polarized light in the X-axis direction is 94.2%. Of the light having a wavelength of 785 nm transmitted through the wave plate 22, the linearly polarized light in the X-axis direction is in the direction of the ordinary refractive index of the polymer liquid crystal of the first diffraction grating 23. The light passes through almost straight without being diffracted and enters the second diffraction grating 25. The light having a wavelength of 785 nm incident on the second diffraction grating 25 has a difference in refractive index between the second isotropic material layer 25a constituting the second diffraction grating 25 and air (refractive index = 1), the second From the relationship of the height (d A ) of the isotropic material layer 25a, the zero-order diffraction efficiency is 87.1 [%]. Here, the component of linearly polarized light in the X-axis direction that passes straight through the first diffraction grating 23 out of light having a wavelength of 785 nm before and after transmission through the wave plate 22 is 94.2 [%]. The folding efficiency is 82.0 [%].

一方、波長板22を透過した波長785nmの光のうち、Y軸方向の直線偏光の光は、第1の回折格子23の高分子液晶の異常光屈折率の方向であるので、回折する。このとき、Y軸方向の直線偏光の光に対する0次回折効率が96.6[%]、±1次回折効率が1.4[%]となる。ただし、波長板22透過前後による波長785nmの光のうちのY軸方向の直線偏光の光の成分が5.8[%]であるので、第1の回折格子23で回折される光はほぼ0である。また、波長785nmの光のうち、第1の回折格子23を直進透過したY軸方向の直線偏光の光は、第2の回折格子では、0次回折効率が87.7[%]であるので、波長板22を透過した波長785nmの光のうち、X軸方向の直線偏光の光の0次回折効率および、Y軸方向の直線偏光の光の0次回折効率を合計すると、0次回折効率η(785)=86.9[%]となる。なお、±1次回折効率η±1(785)=0.5[%]である。本実施例における、各波長における0次回折効率および±1次回折効率を表5にまとめた。 On the other hand, among the light with a wavelength of 785 nm transmitted through the wave plate 22, the linearly polarized light in the Y-axis direction is diffracted because it is in the direction of the extraordinary refractive index of the polymer liquid crystal of the first diffraction grating 23. At this time, the 0th-order diffraction efficiency for linearly polarized light in the Y-axis direction is 96.6 [%], and the ± 1st-order diffraction efficiency is 1.4 [%]. However, since the component of linearly polarized light in the Y-axis direction out of light having a wavelength of 785 nm before and after transmission through the wave plate 22 is 5.8 [%], the light diffracted by the first diffraction grating 23 is almost 0. It is. Of the light with a wavelength of 785 nm, linearly polarized light in the Y-axis direction that has been transmitted straight through the first diffraction grating 23 has a 0th-order diffraction efficiency of 87.7 [%] in the second diffraction grating. Of the light having a wavelength of 785 nm transmitted through the wave plate 22, the zero-order diffraction efficiency of the zero-order diffraction efficiency of the linearly polarized light in the X-axis direction and the zero-order diffraction efficiency of the linearly-polarized light in the Y-axis direction is η 0 (785) = 86.9 [%]. Note that ± first-order diffraction efficiency η ± 1 (785) = 0.5 [%]. Table 5 summarizes the zero-order diffraction efficiency and ± first-order diffraction efficiency at each wavelength in this example.

Figure 2011060405
Figure 2011060405

このような光学特性を有する波長選択回折素子20aを、図1の光ヘッド装置100の波長選択回折素子10の位置に配置させると、波長405nmの光および波長660nmの光に対して所望の回折効率で、光検出器112の各受光エリアのパターンに応じて光を到達させることができるとともに、波長785nmの光に対して、高い0次回折効率を得ることができる。したがって、波長選択回折素子を用いることで、BD、DVDおよびCDの記録・再生を行う受光光学系において高い制御性を有する光ヘッド装置を実現できる。   When the wavelength selective diffraction element 20a having such optical characteristics is arranged at the position of the wavelength selective diffraction element 10 of the optical head device 100 in FIG. 1, desired diffraction efficiency for light having a wavelength of 405 nm and light having a wavelength of 660 nm. Thus, light can be made to reach according to the pattern of each light receiving area of the photodetector 112, and high zero-order diffraction efficiency can be obtained for light with a wavelength of 785 nm. Therefore, by using the wavelength selective diffraction element, it is possible to realize an optical head device having high controllability in a light receiving optical system for recording / reproducing BD, DVD and CD.

以上のように、本発明は、入射するBD用の波長の光、DVD用の波長の光およびCD用の波長の光に対して、それぞれ所望の回折効率で透過/回折する波長選択回折素子を用いることで、光検出器の受光エリアのレイアウトの自由度が高く、かつ、小型化が実現できる効果を有する光ヘッド装置を提供することができるものである。   As described above, the present invention provides a wavelength-selective diffraction element that transmits / diffracts light with a desired diffraction efficiency for incident BD wavelength light, DVD wavelength light, and CD wavelength light, respectively. By using the optical head device, it is possible to provide an optical head device that has a high degree of freedom in the layout of the light receiving area of the photodetector and has an effect of realizing miniaturization.

10、10a、10b、20a、20b、30 波長選択回折素子
11a、11b、11c、21a、21b 透明基板
12、22 波長板
12a 波長板の光学軸(遅相軸)の方向
13、23 第1の回折格子
13a、23a、23b、25b 複屈折性材料層
14、24 (第1の)等方性材料層
15、25 第2の回折格子
15b 等方性材料層
25a (第2の)等方性材料層
40 入射する光の直線偏光の方向
100 光ヘッド装置
101a、101b 光源
102a、102b グレーティング素子
103、106 ダイクロイックプリズム
104 偏光ビームスプリッタ
105 コリメータレンズ
107 ミラー
108a、108b 1/4波長板
109a、109b 対物レンズ
110a、110b 光ディスク
111 シリンドリカルレンズ
112 光検出器
10, 10a, 10b, 20a, 20b, 30 Wavelength selective diffraction element 11a, 11b, 11c, 21a, 21b Transparent substrate 12, 22 Wave plate 12a Direction of optical axis (slow axis) of wave plate 13, 23 First Diffraction gratings 13a, 23a, 23b, 25b Birefringent material layers 14, 24 (first) isotropic material layer 15, 25 Second diffraction grating 15b Isotropic material layer 25a (second) isotropic Material layer 40 Direction of linear polarization of incident light 100 Optical head device 101a, 101b Light source 102a, 102b Grating element 103, 106 Dichroic prism 104 Polarizing beam splitter 105 Collimator lens 107 Mirror 108a, 108b 1/4 wavelength plates 109a, 109b Objective Lens 110a, 110b Optical disk 111 Cylindrical lens 112 Optical inspection Vessel

Claims (7)

405nm波長帯である波長λの光と、660nm波長帯である波長λの光と、785nm波長帯である波長λの光を発射する光源と、前記波長λの光、前記波長λの光および前記波長λの光を光ディスクに集光する対物レンズと、前記光ディスクから反射した光を光検出器に偏向させるビームスプリッタと、を備えた光ヘッド装置において、
前記ビームスプリッタと前記光検出器との間の前記波長λの光、前記波長λの光および前記波長λの光が共通する光路中に波長選択回折素子を有し、
前記波長選択回折素子は、前記ビームスプリッタ側より、波長板、第1の回折格子、第2の回折格子の順にそれぞれ少なくとも有し、
前記波長板は、透過する前記波長λの光および前記波長λの光を、互いに直交する第1の直線偏光の光と第2の直線偏光の光とし、
前記第1の回折格子は波長λの光と波長λの光のうち、いずれか一方を回折させず透過させるとともに、他方を回折させ、
前記第2の回折格子は、前記波長λの光と前記波長λの光のうち、前記第1の回折格子で回折させる方の光を回折させずに透過させるとともに、他方を回折させる光ヘッド装置。
A light source that emits light of wavelength λ 1 that is 405 nm wavelength band, light of wavelength λ 2 that is 660 nm wavelength band, light of wavelength λ 3 that is 785 nm wavelength band, light of wavelength λ 1 , and wavelength λ In an optical head device comprising: an objective lens that condenses the light of 2 and the light of the wavelength λ 3 on an optical disc; and a beam splitter that deflects the light reflected from the optical disc to a photodetector.
A wavelength-selective diffractive element in an optical path between the light of the wavelength λ 1 , the light of the wavelength λ 2 , and the light of the wavelength λ 3 between the beam splitter and the photodetector;
The wavelength selective diffraction element has at least a wavelength plate, a first diffraction grating, and a second diffraction grating, respectively, from the beam splitter side.
The wave plate converts the light having the wavelength λ 1 and the light having the wavelength λ 2 to be transmitted as first linearly polarized light and second linearly polarized light that are orthogonal to each other,
The first diffraction grating transmits one of the light of wavelength λ 1 and the light of wavelength λ 2 without diffracting, and diffracts the other,
The second diffraction grating transmits the light diffracted by the first diffraction grating out of the light having the wavelength λ 1 and the light having the wavelength λ 2 without diffracting the light and diffracting the other light. Head device.
前記波長板は、光学軸が厚さ方向に揃った複屈折性材料からなり、前記波長λの光に対してλの整数倍に略等しいリタデーション値を有するとともに、前記波長λの光に対してλ/2の奇数倍に略等しいリタデーション値を有する請求項1に記載の光ヘッド装置。 The wave plate is made of a birefringent material having optical axes aligned in the thickness direction, has a retardation value substantially equal to an integral multiple of λ 1 with respect to the light with the wavelength λ 1 , and has the light with the wavelength λ 2 the optical head device according to claim 1 having a substantially equal retardation values on an odd multiple of lambda 2/2 relative. 前記第1の回折格子は、複屈折性材料からなる第1の複屈折性材料層と、等方性材料からなる第1の等方性材料層によって、周期的な凹凸を有し、
前記第1の複屈折性材料層の常光屈折率をno1、異常光屈折率をne1(no1≠ne1)とし、前記等方性材料の屈折率をns1とするとき、前記ns1は、前記no1または前記ne1に略等しい請求項1または請求項2に記載の光ヘッド装置。
The first diffraction grating has periodic unevenness by a first birefringent material layer made of a birefringent material and a first isotropic material layer made of an isotropic material,
When the ordinary refractive index of the first birefringent material layer is n o1 , the extraordinary refractive index is n e1 (n o1 ≠ n e1 ), and the refractive index of the isotropic material is n s1 , the n s1, the optical head apparatus according to claim 1 or claim 2 substantially equal to said n o1 or the n e1.
前記第2の回折格子は、複屈折性材料からなる第2の複屈折性材料層と、等方性材料からなる第2の等方性材料層によって、周期的な凹凸を有し、
前記第2の複屈折性材料層の常光屈折率をno2、異常光屈折率をne2(no2≠ne2)とし、前記第2の等方性材料層の屈折率をns2とするとき、前記ns2は、前記no2または前記ne2に略等しい請求項3に記載の光ヘッド装置。
The second diffraction grating has periodic irregularities by a second birefringent material layer made of a birefringent material and a second isotropic material layer made of an isotropic material,
The ordinary refractive index of the second birefringent material layer is n o2 , the extraordinary refractive index is n e2 (n o2 ≠ n e2 ), and the refractive index of the second isotropic material layer is n s2 . 4. The optical head device according to claim 3, wherein the n s2 is substantially equal to the no 2 or the ne 2 .
前記第2の回折格子は、透明基板の平面上に等方性材料からなる第2の等方性材料層によって周期的な凹凸を有し、
前記第2の等方性材料層の屈折率をns2、高さをdとするとき、(ns2−1)×dが波長λの整数倍または波長λの整数倍に略等しい請求項3に記載の光ヘッド装置。
The second diffraction grating has periodic irregularities due to a second isotropic material layer made of an isotropic material on the plane of the transparent substrate,
When the refractive index of the second isotropic material layer is n s2 and the height is d A , ( ns 2 −1) × d A is approximately an integral multiple of the wavelength λ 1 or an integral multiple of the wavelength λ 2. The optical head device according to claim 3 which is equal.
前記第1の回折格子および前記第2の回折格子の断面形状は、矩形状である請求項1〜5いずれか1項に記載の光ヘッド装置。   6. The optical head device according to claim 1, wherein cross-sectional shapes of the first diffraction grating and the second diffraction grating are rectangular. 前記波長選択回折素子は、入射する波長λの光の光量を100%とするとき、直進透過する波長λの光が70%以上となる請求項1〜6いずれか1項に記載の光ヘッド装置。 The wavelength selection diffraction element, when the amount of incident wavelength lambda 3 of the light is 100%, the light according to any one of claims 1 to 6, light of the wavelength lambda 3 to straightly transmitted is 70% or more Head device.
JP2009212069A 2009-09-14 2009-09-14 Optical head Pending JP2011060405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009212069A JP2011060405A (en) 2009-09-14 2009-09-14 Optical head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009212069A JP2011060405A (en) 2009-09-14 2009-09-14 Optical head

Publications (1)

Publication Number Publication Date
JP2011060405A true JP2011060405A (en) 2011-03-24

Family

ID=43947849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009212069A Pending JP2011060405A (en) 2009-09-14 2009-09-14 Optical head

Country Status (1)

Country Link
JP (1) JP2011060405A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013012273A (en) * 2011-06-29 2013-01-17 Asahi Glass Co Ltd Reflection type wideband wavelength plate and optical head device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013012273A (en) * 2011-06-29 2013-01-17 Asahi Glass Co Ltd Reflection type wideband wavelength plate and optical head device

Similar Documents

Publication Publication Date Title
US7463569B2 (en) Optical disk apparatus with a wavelength plate having a two-dimensional array of birefringent regions
JP2005339766A (en) Optical disk apparatus
JP2006351086A (en) Optical path compensation apparatus and optical pickup using the same
US7710849B2 (en) Optical head device and optical information recording or reproducing device
JP4560906B2 (en) Optical head device
JP4518009B2 (en) Three-wavelength diffraction element, three-wavelength diffraction element with phase plate, and optical head device
JP2006236549A (en) Optical head apparatus, wide band phase plate, and polarization diffraction element
JP4300784B2 (en) Optical head device
KR101097078B1 (en) Diffraction element and optical head device
JP2003288733A (en) Aperture-limiting element and optical head device
JPH11306581A (en) Broadband polarized light separating element and optical head using this broadband polarized light separating element
JP4478398B2 (en) Polarizing optical element, optical element unit, optical head device, and optical disk drive device
JP2011060405A (en) Optical head
JP2012009096A (en) Wavelength selection wavelength plate, wavelength selection diffraction element and optical head device
JP3711652B2 (en) Polarization diffraction element and optical head device using the same
JP2011233208A (en) Wavelength selective wave plate, wavelength selective diffraction element and optical head device
JP5131244B2 (en) Laminated phase plate and optical head device
JP4337510B2 (en) Diffraction element and optical head device
WO2004044905A1 (en) Double-wavelength light source unit and optical head device
JP4626026B2 (en) Optical head device
KR100990347B1 (en) Phase plate and optical information recording/reproducing device
JP2001014714A (en) Optical element and optical disk device
JP2002365416A (en) Polarization diffraction element and optical head device
JP2010238350A (en) Optical head device
JP2010165450A (en) Wide band phase plate, polarization diffraction element, and laminated optical element