JP2011054892A - Solder bonding using conductive paste - Google Patents
Solder bonding using conductive paste Download PDFInfo
- Publication number
- JP2011054892A JP2011054892A JP2009204838A JP2009204838A JP2011054892A JP 2011054892 A JP2011054892 A JP 2011054892A JP 2009204838 A JP2009204838 A JP 2009204838A JP 2009204838 A JP2009204838 A JP 2009204838A JP 2011054892 A JP2011054892 A JP 2011054892A
- Authority
- JP
- Japan
- Prior art keywords
- conductive paste
- solder
- powder
- copper powder
- aluminum powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
Description
本発明は、銅粉末及び/又はアルミニウム粉末、及びナノサイズの金属粒子を含有した導電性ペーストを焼成した後、当該焼結物にSn-Cu-Ni系鉛フリーはんだを用いてはんだ付けを行い、金属間化合物を形成させるはんだ接合に関する。 In the present invention, after firing a conductive paste containing copper powder and / or aluminum powder and nano-sized metal particles, the sintered product is soldered using Sn—Cu—Ni lead-free solder. The present invention relates to solder bonding for forming an intermetallic compound.
近年、電子部品の実装の接合部分には導電性ペーストが多く用いられている。一般的に、導電性ペーストは加熱により溶剤、分散剤を分解・飛散させ導電性粉末同士を焼結させる高温焼成タイプの導電性ペーストと、ポリマー中に導電性粉末を混合し、より低温の加熱によりポリマーを硬化させるとともに導電性粉末同士を接触させることで導電性を得る加熱硬化タイプの導電性ペーストがあり、加熱硬化タイプの導電性ペーストは導電性接着剤としても利用され、はんだ接合と同様な接合方法として注目され、開発が進められている。 In recent years, a conductive paste is often used for a joint portion for mounting electronic components. In general, conductive paste is mixed with high-temperature firing type conductive paste that decomposes and disperses solvent and dispersant by heating and sinters conductive powder, and conductive powder in polymer, and heats at lower temperature. There is a heat-curing type conductive paste that obtains conductivity by curing the polymer and bringing conductive powders into contact with each other, and the heat-curing type conductive paste is also used as a conductive adhesive, similar to solder bonding As a new bonding method, it is attracting attention and is being developed.
例えば、カーボンナノチューブをコーティングした金属粒子を配合して導電性を向上させた導電性ペースト(特許文献1)が開示されている。
一方、粒子径がナノメートルの非常に微細な導電性微粒子(銀ナノ粒子)が焼成温度を低下させて300℃以下での接合を可能にしたクラッドはんだ(特許文献2)が開示されている。
また、銀ナノ粒子の形骸を残して低温加熱で低抵抗値が得られるように工夫した銀粉末を配合した導電性ペース(特許文献3)や、表面をアミノ酸化合物でコーティングした金属ナノ粒子を配合して、通電性の優れる導電体層の形成が可能となる導電性ナノペースト(特許文献4)が開示されている。
For example, a conductive paste (Patent Document 1) in which conductivity is improved by blending metal particles coated with carbon nanotubes is disclosed.
On the other hand, there is disclosed a clad solder (Patent Document 2) in which very fine conductive fine particles (silver nanoparticles) having a particle diameter of nanometers can be bonded at 300 ° C. or lower by reducing the firing temperature.
In addition, the conductive pace (patent document 3) containing silver powder devised so that a low resistance value can be obtained by low-temperature heating while leaving the shape of silver nanoparticles, and metal nanoparticles coated with an amino acid compound on the surface And the electroconductive nano paste (patent document 4) which can form the electroconductive layer which is excellent in electroconductivity is disclosed.
最近では、電子部品の実装でも高い電気伝導性を求められており、銀ナノ粒子を用いた導電性ペーストが提案されているが、太陽電池等に用いられるモジュールのように高い電気伝導性に加えて耐久性、強い接合強度を有する接合材料が求められている。 Recently, high electrical conductivity is also required for mounting electronic components, and conductive pastes using silver nanoparticles have been proposed. In addition to high electrical conductivity, such as modules used in solar cells, etc. Therefore, there is a demand for a bonding material having durability and strong bonding strength.
本発明の課題は、高い電気伝導性を有すると共に耐久性、強い接合強度を併せ持った特性を有するはんだ接合を低価格で提供することである。 An object of the present invention is to provide a solder joint that has high electrical conductivity and has characteristics of durability and strong joint strength at a low price.
本発明者は、ナノレベルサイズの金属超微粒子がその金属の融点よりも格段に低い温度で焼結するという特性に着目して鋭意検討した結果、ナノサイズの金属粒子と銅粉末及び/又はアルミニウム粉末を組合せて配合することにより、通電性に優れた導電性ペーストが得られ、当該導電性ペーストを用いて銅粉末及び/又はアルミニウム粉末を焼成して焼結物を形成した後、当該焼結物にSn-Cu-Ni系組成の鉛フリーのはんだを用いてはんだ付けを行うことにより、銅粉末及び/又はアルミニウム粉末の焼結物とはんだ層間に強固な金属間化合物を形成させることが可能となり、高い電気伝導性を有し、接合強度及び耐熱性を向上させたはんだ接合及びはんだ接合物、はんだ継手の提供を可能とした。 As a result of intensive investigations focusing on the property that nano-sized metal ultrafine particles are sintered at a temperature much lower than the melting point of the metal, the inventors have found that nano-sized metal particles and copper powder and / or aluminum By combining and blending the powder, a conductive paste with excellent electrical conductivity is obtained, and after sintering the copper powder and / or aluminum powder using the conductive paste to form a sintered product, the sintering is performed. It is possible to form a strong intermetallic compound between the sintered product of copper powder and / or aluminum powder and the solder layer by soldering to the product using lead-free solder of Sn-Cu-Ni system composition Thus, it has become possible to provide solder joints, solder joints, and solder joints having high electrical conductivity and improved joint strength and heat resistance.
本発明の導電性ペーストを用いることにより、電子部品等の接合において低コストで電気伝導度を向上させることが可能となる。
また、Sn-Cu-Ni系組成の鉛フリーのはんだを用いてはんだ付けを行うことにより、強固な金属間化合物が形成するため、高い電気伝導性を有し、耐熱性及び接合強度を向上させることができ、太陽電池等に広く応用が可能となる。
By using the conductive paste of the present invention, it is possible to improve electrical conductivity at low cost in joining electronic components and the like.
In addition, a strong intermetallic compound is formed by soldering using a lead-free solder having a Sn—Cu—Ni-based composition, so that it has high electrical conductivity and improves heat resistance and bonding strength. Therefore, it can be widely applied to solar cells and the like.
以下に、本発明を詳細に説明する。
本発明の導電性ペーストは、図1の概念図で示すように、銅粉末及び/又はアルミニウム粉末、金属ナノ粒子、及びバインダーより構成される。
The present invention is described in detail below.
The electrically conductive paste of this invention is comprised from a copper powder and / or aluminum powder, a metal nanoparticle, and a binder, as shown with the conceptual diagram of FIG.
図2は、本発明の導電性ペーストの構成成分である銅粉末及び/又はアルミニウム粉末、金属ナノ粒子、バインダーについて、ペースト中での銅粉末及び/又はアルミニウム粉末、金属ナノ粒子、バインダーの状態を拡大して表現した概念図であり、当該導電性ペースト中では銅粉末及び/又はアルミニウム粉末と金属ナノ粒子がバインダーを介在して概念図のように存在していると考えられる。 FIG. 2 shows the state of copper powder and / or aluminum powder, metal nanoparticles, and binder in the paste with respect to copper powder and / or aluminum powder, metal nanoparticles, and binder, which are constituents of the conductive paste of the present invention. It is a conceptual diagram expressed in an enlarged manner, and it is considered that copper powder and / or aluminum powder and metal nanoparticles are present as shown in the conceptual diagram with a binder interposed in the conductive paste.
図3は、本発明の導電性ペーストを焼成し、銅粉末及び/又はアルミニウム粉末を焼結させた状態を表す概念図であり、図3で示すように、銀の介在の下で銅粉末及び/又はアルミニウム粉末が焼成し、焼結物となる。
図4は、本発明の電導性ペーストを焼成させて焼結物を形成した後、当該焼結物にSn-Cu-Ni系組成の鉛フリーのはんだを用いてはんだ付けを行なった状態を表す概念図を示す。
図5は、図4で示すはんだ付けによって、銅粉末及び/又はアルミニウム粉末が焼成してできた焼結物とはんだ層間に強固な金属間化合物が形成された状態を示す。
FIG. 3 is a conceptual diagram showing a state in which the conductive paste of the present invention is fired to sinter copper powder and / or aluminum powder. As shown in FIG. / Or the aluminum powder is fired to form a sintered product.
FIG. 4 shows a state in which the conductive paste of the present invention is fired to form a sintered product, and then the sintered product is soldered with a lead-free solder having a Sn—Cu—Ni-based composition. A conceptual diagram is shown.
FIG. 5 shows a state in which a strong intermetallic compound is formed between a sintered product obtained by firing copper powder and / or aluminum powder and a solder layer by soldering shown in FIG.
本発明の導電性ペーストに係る銅粉末及びアルミニウム粉末は、本発明の効果を有する範囲において特に制限はないが、粒子サイズとしては1〜100μmの範囲が好ましく、形状に関して平板状、球状、不定形等が例示できるが、これらに限定されるものではない。 The copper powder and the aluminum powder according to the conductive paste of the present invention are not particularly limited in the range having the effects of the present invention, but the particle size is preferably in the range of 1 to 100 μm, and the shape is flat, spherical, and irregular. However, the present invention is not limited to these examples.
本発明の導電性ペーストに係る金属ナノ粒子は、本発明の効果を有する範囲において特に制限はないが、粒子サイズとしては1nm〜500nmが好ましく特に10nm〜100nmが好ましい。
また、金属ナノ粒子の組成としては金,銀,銅,白金,ニッケル,アルミニウムが例示でき、中でも、銀ナノ粒子が特に好ましい。
The metal nanoparticles according to the conductive paste of the present invention are not particularly limited within the range having the effects of the present invention, but the particle size is preferably 1 nm to 500 nm, particularly preferably 10 nm to 100 nm.
Examples of the composition of the metal nanoparticles include gold, silver, copper, platinum, nickel, and aluminum. Among these, silver nanoparticles are particularly preferable.
本発明の導電性ペーストに係る銅粉末及び/又はアルミニウム粉末、及び金属ナノ粒子の配合量は、本発明の効果を有する範囲において特に制限はないが、銅粉末及び/又はアルミニウム粉末と金属ナノ粒子の重量比率(銅粉末又はアルミニウム粉末或いは銅粉末及びアルミニウム粉末混合物/金属ナノ粒子)の割合は95/5〜70/30の範囲が好ましい。
また、本発明の導電性ペーストに係る銅粉末又はアルミニウム粉末或いは銅粉末及びアルミニウム粉末混合物と金属ナノ粒子の合計は、本発明の導電性ペーストを100重量%とした場合、1重量%〜95重量%の範囲が好ましい。
なお、銅粉末及びアルミニウム粉末混合物の混合割合は本発明の効果を有する範囲において特に制限はない。
The compounding amount of the copper powder and / or aluminum powder and the metal nanoparticles in the conductive paste of the present invention is not particularly limited within the range having the effects of the present invention, but the copper powder and / or aluminum powder and the metal nanoparticles are not limited. The weight ratio (copper powder or aluminum powder or copper powder and aluminum powder mixture / metal nanoparticles) is preferably in the range of 95/5 to 70/30.
The total of the copper powder or aluminum powder or the copper powder and aluminum powder mixture and the metal nanoparticles according to the conductive paste of the present invention is 1 wt% to 95 wt% when the conductive paste of the present invention is 100 wt%. % Range is preferred.
The mixing ratio of the copper powder and aluminum powder mixture is not particularly limited as long as it has the effects of the present invention.
本発明の導電性ペーストに係る金属ナノ粒子は、本発明の効果を損なわない範囲において、当該金属ナノ粒子表面に焼成温度を制御する効果を有する物質による被覆処理等を行ない、焼成温度を制御することも可能である。 In the metal nanoparticles related to the conductive paste of the present invention, the surface of the metal nanoparticles is coated with a substance having an effect of controlling the firing temperature, and the firing temperature is controlled within a range that does not impair the effects of the present invention. It is also possible.
本発明の導電性ペーストに係るバインダーは、本発明の効果を損なわない範囲において、組成や性状等に関して特に制限はない。
例えば、樹脂、溶剤からなる系において、樹脂としてはエポキシ樹脂、アクリル樹脂、ポリエステル樹脂、ポリビニルアルコール等が例示できるが、これらに限定されるものではない。
また、溶剤としては、トルエン等の芳香物炭化水素、酢酸ブチル等のエステル類、エチレングリコールモノブチルエーテル等のエーテル類、及びこれらの混合物が例示できるが、これらに限定されるものではない。
There is no restriction | limiting in particular regarding a composition, a property, etc. in the range which does not impair the effect of this invention for the binder which concerns on the electrically conductive paste of this invention.
For example, in a system composed of a resin and a solvent, examples of the resin include an epoxy resin, an acrylic resin, a polyester resin, and polyvinyl alcohol, but are not limited thereto.
Examples of the solvent include aromatic hydrocarbons such as toluene, esters such as butyl acetate, ethers such as ethylene glycol monobutyl ether, and mixtures thereof, but are not limited thereto.
本発明の導電性ペーストを焼成させる温度としては、金属ナノ粒子の組成や表面処理、配合量によりコントロールが可能で、接合する対象物に合わせて設定が適宜可能である。
一般的には、300℃以下で焼成が可能であり、銀ナノ粒子を用いた場合は、200℃付近での焼成温度で焼結も可能となるよう調整できる。
The temperature at which the conductive paste of the present invention is baked can be controlled by the composition, surface treatment, and blending amount of the metal nanoparticles, and can be appropriately set according to the objects to be joined.
In general, firing can be performed at 300 ° C. or lower, and when silver nanoparticles are used, the sintering can be performed at a firing temperature around 200 ° C.
次に、銅粉末を用いた本発明の導電性ペーストを用いた場合を例示して説明する。
具体的には、本発明の銅粉末を用いた導電性ペーストを基盤等に塗布した後、当該導電性ペーストを焼成させて銅焼結物を形成し、その後、当該銅焼結物にSn-Cu-Ni系鉛フリーはんだを用いてはんだ付けを行い、金属間化合物を形成させるはんだ接合について説明する。
Next, the case where the conductive paste of the present invention using copper powder is used will be described as an example.
Specifically, after applying a conductive paste using the copper powder of the present invention to a substrate or the like, the conductive paste is fired to form a copper sintered product, and then Sn— A description will be given of solder bonding in which an intermetallic compound is formed by performing soldering using a Cu—Ni-based lead-free solder.
本発明の銅粉末含有導電性ペーストを用いて金属間化合物を形成させるはんだ接合において、用いることができるSn-Cu-Ni系鉛フリーはんだは、本発明の効果を有する範囲において特に制限はなく、接合対象となる電子部品等によってSn-Cu-Ni組成単独でもよく、Ge,Ga,Mn,Co,Zn,Fe,Cr,In,Bi,P,Si,Sb,Pd,Pt,Ag,Au等を適宜添加しても構わない。
なお、アルミニウム粉末を含む導電性ペーストの場合、接合物の耐腐食性の関係より、Geを添加したSn-Cu-Ni系鉛フリーはんだ組成を使用する方が好ましい。
また、はんだ接合に用いることができる基板に関して、本発明の効果を有する範囲において特に制限はなく、ガラス製、セラミック製、樹脂製等が例示できる。
Sn-Cu-Ni-based lead-free solder that can be used in solder bonding in which an intermetallic compound is formed using the copper powder-containing conductive paste of the present invention is not particularly limited as long as it has the effects of the present invention. Depending on the electronic parts to be joined, the Sn—Cu—Ni composition alone may be used, such as Ge, Ga, Mn, Co, Zn, Fe, Cr, In, Bi, P, Si, Sb, Pd, Pt, Ag, Au, etc. May be added as appropriate.
In the case of a conductive paste containing aluminum powder, it is preferable to use a Sn—Cu—Ni-based lead-free solder composition to which Ge is added, because of the corrosion resistance of the joined product.
Moreover, regarding the board | substrate which can be used for solder joining, there is no restriction | limiting in particular in the range which has the effect of this invention, The product made from glass, the product made from a ceramic, resin, etc. can be illustrated.
そして、Sn-Cu-Ni系鉛フリーはんだを用いてはんだ付けを行う場合、予め本発明の銅粉末含有導電性ペーストを焼成させて形成した銅焼結物の表面に網の目状にマスキングを施し、当該Sn-Cu-Ni系鉛フリーはんだを網の目状にはんだ付けして、金属間化合物の形成を制御することも可能である。
なお、はんだ付けの条件は、特に制限はなく公知の方法、それ以外の方法においてもはんだ付けができれば支障はない。
And when soldering using Sn-Cu-Ni lead-free solder, the surface of the copper sintered body formed by firing the copper powder-containing conductive paste of the present invention in advance is masked in a mesh shape. It is also possible to control the formation of the intermetallic compound by soldering the Sn—Cu—Ni-based lead-free solder into a mesh.
The soldering conditions are not particularly limited, and there is no problem as long as soldering can be performed by a known method and other methods.
上記の如く本発明の導電性ペーストを用いて銅焼結物を形成した後、当該銅焼結物にSn-Cu-Ni系鉛フリーはんだを用いてはんだ付けを行うと、はんだ接合部に形成する金属間化合物の組成は、(Cu,Ni)6Sn5組成であるため、強固な金属間化合物が形成される。
従って、本発明の導電性ペーストを用いて銅焼結物を形成した後、当該銅焼結物にSn-Cu-Ni系鉛フリーはんだを用いてはんだ付けを行なった場合、強固な金属間化合物が形成されるため、高い電気伝導性を有した銅焼結物に接合強度及び耐熱性を向上させたはんだ接合が可能となり、高い電気伝導性を有し、しかも接合強度及び耐熱性に優れたはんだ接合物、はんだ継手の提供が可能である。
また、はんだ接合部に形成した金属間化合物にエージング処理等を行いうことによって金属間化合物層を更に成長させて、より強固な接合強度を保持することも可能である。
After forming a copper sintered product using the conductive paste of the present invention as described above, if soldering is performed on the copper sintered product using a Sn—Cu—Ni-based lead-free solder, a solder joint is formed. Since the composition of the intermetallic compound is (Cu, Ni) 6 Sn 5 composition, a strong intermetallic compound is formed.
Therefore, when a copper sintered product is formed using the conductive paste of the present invention and then soldered to the copper sintered product using Sn—Cu—Ni-based lead-free solder, a strong intermetallic compound is obtained. Therefore, it is possible to perform solder bonding with improved bonding strength and heat resistance on a copper sintered product having high electric conductivity, which has high electric conductivity and excellent bonding strength and heat resistance. It is possible to provide solder joints and solder joints.
It is also possible to further grow the intermetallic compound layer by performing an aging treatment or the like on the intermetallic compound formed in the solder joint portion, and to maintain a stronger joint strength.
1 金属ナノ粒子
2 銅粉末又はアルミニウム粉末
3 バインダー
4 銀
5 Sn-Cu-Ni系鉛フリーはんだ
6 基板
7 金属間化合物
DESCRIPTION OF
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009204838A JP2011054892A (en) | 2009-09-04 | 2009-09-04 | Solder bonding using conductive paste |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009204838A JP2011054892A (en) | 2009-09-04 | 2009-09-04 | Solder bonding using conductive paste |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011054892A true JP2011054892A (en) | 2011-03-17 |
Family
ID=43943578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009204838A Pending JP2011054892A (en) | 2009-09-04 | 2009-09-04 | Solder bonding using conductive paste |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011054892A (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5129898B1 (en) * | 2012-08-02 | 2013-01-30 | 株式会社谷黒組 | Parts having electrode corrosion prevention layer and manufacturing method thereof |
CH705327A1 (en) * | 2011-07-19 | 2013-01-31 | Alstom Technology Ltd | Lot for high-temperature soldering and method of repairing or manufacturing components using this solder. |
US9520377B2 (en) | 2013-10-29 | 2016-12-13 | Samsung Electronics Co., Ltd. | Semiconductor device package including bonding layer having Ag3Sn |
CN106271177A (en) * | 2016-09-23 | 2017-01-04 | 哈尔滨工业大学深圳研究生院 | A kind of interconnection solder and interconnection manufacturing process thereof |
US9686871B2 (en) | 2013-03-21 | 2017-06-20 | Tanigurogumi Corporation | Soldering device, soldering method, and substrate and electronic component produced by the soldering device or the soldering method |
US9695521B2 (en) | 2010-07-19 | 2017-07-04 | Universiteit Leiden | Process to prepare metal nanoparticles or metal oxide nanoparticles |
WO2018144322A1 (en) * | 2017-02-01 | 2018-08-09 | Hrl Laboratories, Llc | Nanoparticle composite welding filler materials, and methods for producing the same |
US10648082B1 (en) | 2014-09-21 | 2020-05-12 | Hrl Laboratories, Llc | Metal-coated reactive powders and methods for making the same |
US10682699B2 (en) | 2015-07-15 | 2020-06-16 | Hrl Laboratories, Llc | Semi-passive control of solidification in powdered materials |
US10787728B2 (en) | 2014-05-26 | 2020-09-29 | Hrl Laboratories, Llc | Hydride-coated microparticles and methods for making the same |
US10808297B2 (en) | 2016-11-16 | 2020-10-20 | Hrl Laboratories, Llc | Functionally graded metal matrix nanocomposites, and methods for producing the same |
US11053571B2 (en) | 2017-02-01 | 2021-07-06 | Hrl Laboratories, Llc | Aluminum with grain refiners, and methods for making and using the same |
US11052460B2 (en) | 2017-02-01 | 2021-07-06 | Hrl Laboratories, Llc | Methods for nanofunctionalization of powders, and nanofunctionalized materials produced therefrom |
US11117193B2 (en) | 2017-02-01 | 2021-09-14 | Hrl Laboratories, Llc | Additive manufacturing with nanofunctionalized precursors |
CN113977130A (en) * | 2021-11-24 | 2022-01-28 | 广东中实金属有限公司 | High-temperature-resistant soldering paste capable of being sintered at low temperature under no pressure and preparation method and use method thereof |
US11286543B2 (en) | 2017-02-01 | 2022-03-29 | Hrl Laboratories, Llc | Aluminum alloy components from additive manufacturing |
US11396687B2 (en) | 2017-08-03 | 2022-07-26 | Hrl Laboratories, Llc | Feedstocks for additive manufacturing, and methods of using the same |
CN114799616A (en) * | 2022-04-28 | 2022-07-29 | 桂林电子科技大学 | High-entropy intermetallic compound material, preparation method thereof and electronic solder |
US11578389B2 (en) | 2017-02-01 | 2023-02-14 | Hrl Laboratories, Llc | Aluminum alloy feedstocks for additive manufacturing |
US11674204B2 (en) | 2017-02-01 | 2023-06-13 | Hrl Laboratories, Llc | Aluminum alloy feedstocks for additive manufacturing |
CN116604221A (en) * | 2023-07-19 | 2023-08-18 | 长春理工大学 | Infrared detection window solder material and preparation method thereof |
US11779894B2 (en) | 2017-02-01 | 2023-10-10 | Hrl Laboratories, Llc | Systems and methods for nanofunctionalization of powders |
US11998978B1 (en) | 2017-02-01 | 2024-06-04 | Hrl Laboratories, Llc | Thermoplastic-encapsulated functionalized metal or metal alloy powders |
US12012646B1 (en) | 2017-02-01 | 2024-06-18 | Hrl Laboratories, Llc | Additively manufacturing components containing nickel alloys, and feedstocks for producing the same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006202604A (en) * | 2005-01-20 | 2006-08-03 | Matsushita Electric Ind Co Ltd | Conductive paste, wiring board using the same, and manufacturing method of multilayered board and electronic parts mounted body |
JP2007123664A (en) * | 2005-10-31 | 2007-05-17 | Alps Electric Co Ltd | Junction structure between substrate and component and its manufacturing method |
WO2009051255A1 (en) * | 2007-10-19 | 2009-04-23 | Nihon Superior Sha Co., Ltd. | Solder joint |
-
2009
- 2009-09-04 JP JP2009204838A patent/JP2011054892A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006202604A (en) * | 2005-01-20 | 2006-08-03 | Matsushita Electric Ind Co Ltd | Conductive paste, wiring board using the same, and manufacturing method of multilayered board and electronic parts mounted body |
JP2007123664A (en) * | 2005-10-31 | 2007-05-17 | Alps Electric Co Ltd | Junction structure between substrate and component and its manufacturing method |
WO2009051255A1 (en) * | 2007-10-19 | 2009-04-23 | Nihon Superior Sha Co., Ltd. | Solder joint |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9695521B2 (en) | 2010-07-19 | 2017-07-04 | Universiteit Leiden | Process to prepare metal nanoparticles or metal oxide nanoparticles |
CH705327A1 (en) * | 2011-07-19 | 2013-01-31 | Alstom Technology Ltd | Lot for high-temperature soldering and method of repairing or manufacturing components using this solder. |
US8881965B2 (en) | 2011-07-19 | 2014-11-11 | Alstom Technology Ltd. | Braze alloy for high-temperature brazing and methods for repairing or producing components using a braze alloy |
WO2014020751A1 (en) * | 2012-08-02 | 2014-02-06 | 株式会社谷黒組 | Component having electrode dissolution prevention layer, and manufacturing method therefor |
JP5129898B1 (en) * | 2012-08-02 | 2013-01-30 | 株式会社谷黒組 | Parts having electrode corrosion prevention layer and manufacturing method thereof |
US9686871B2 (en) | 2013-03-21 | 2017-06-20 | Tanigurogumi Corporation | Soldering device, soldering method, and substrate and electronic component produced by the soldering device or the soldering method |
US9520377B2 (en) | 2013-10-29 | 2016-12-13 | Samsung Electronics Co., Ltd. | Semiconductor device package including bonding layer having Ag3Sn |
US10787728B2 (en) | 2014-05-26 | 2020-09-29 | Hrl Laboratories, Llc | Hydride-coated microparticles and methods for making the same |
US11091826B2 (en) | 2014-05-26 | 2021-08-17 | Hrl Laboratories, Llc | Hydride-coated microparticles and methods for making the same |
US11053575B2 (en) | 2014-05-26 | 2021-07-06 | Hrl Laboratories, Llc | Hydride-coated microparticles and methods for making the same |
US11542605B1 (en) | 2014-09-21 | 2023-01-03 | Hrl Laboratories, Llc | Metal-coated reactive powders and methods for making the same |
US10648082B1 (en) | 2014-09-21 | 2020-05-12 | Hrl Laboratories, Llc | Metal-coated reactive powders and methods for making the same |
US11446735B2 (en) | 2015-07-15 | 2022-09-20 | Hrl Laboratories, Llc | Semi-passive control of solidification in powdered materials |
US10682699B2 (en) | 2015-07-15 | 2020-06-16 | Hrl Laboratories, Llc | Semi-passive control of solidification in powdered materials |
CN106271177A (en) * | 2016-09-23 | 2017-01-04 | 哈尔滨工业大学深圳研究生院 | A kind of interconnection solder and interconnection manufacturing process thereof |
US11591671B2 (en) | 2016-11-16 | 2023-02-28 | Hrl Laboratories, Llc | Functionally graded metal matrix nanocomposites, and methods for producing the same |
US10927434B2 (en) | 2016-11-16 | 2021-02-23 | Hrl Laboratories, Llc | Master alloy metal matrix nanocomposites, and methods for producing the same |
US10808297B2 (en) | 2016-11-16 | 2020-10-20 | Hrl Laboratories, Llc | Functionally graded metal matrix nanocomposites, and methods for producing the same |
US10865464B2 (en) | 2016-11-16 | 2020-12-15 | Hrl Laboratories, Llc | Materials and methods for producing metal nanocomposites, and metal nanocomposites obtained therefrom |
US11434546B2 (en) | 2016-11-16 | 2022-09-06 | Hrl Laboratories, Llc | Master alloy metal matrix nanocomposites, and methods for producing the same |
US11390934B2 (en) | 2016-11-16 | 2022-07-19 | Hrl Laboratories, Llc | Materials and methods for producing metal nanocomposites, and metal nanocomposites obtained therefrom |
US11117193B2 (en) | 2017-02-01 | 2021-09-14 | Hrl Laboratories, Llc | Additive manufacturing with nanofunctionalized precursors |
US11701709B2 (en) | 2017-02-01 | 2023-07-18 | Hrl Laboratories, Llc | Methods for nanofunctionalization of powders, and nanofunctionalized materials produced therefrom |
US11998978B1 (en) | 2017-02-01 | 2024-06-04 | Hrl Laboratories, Llc | Thermoplastic-encapsulated functionalized metal or metal alloy powders |
US11286543B2 (en) | 2017-02-01 | 2022-03-29 | Hrl Laboratories, Llc | Aluminum alloy components from additive manufacturing |
US11052460B2 (en) | 2017-02-01 | 2021-07-06 | Hrl Laboratories, Llc | Methods for nanofunctionalization of powders, and nanofunctionalized materials produced therefrom |
US11779894B2 (en) | 2017-02-01 | 2023-10-10 | Hrl Laboratories, Llc | Systems and methods for nanofunctionalization of powders |
WO2018144322A1 (en) * | 2017-02-01 | 2018-08-09 | Hrl Laboratories, Llc | Nanoparticle composite welding filler materials, and methods for producing the same |
CN110461535A (en) * | 2017-02-01 | 2019-11-15 | Hrl实验室有限责任公司 | Nanocomposites welding filling material and its production method |
US11053571B2 (en) | 2017-02-01 | 2021-07-06 | Hrl Laboratories, Llc | Aluminum with grain refiners, and methods for making and using the same |
US10960497B2 (en) | 2017-02-01 | 2021-03-30 | Hrl Laboratories, Llc | Nanoparticle composite welding filler materials, and methods for producing the same |
US11578389B2 (en) | 2017-02-01 | 2023-02-14 | Hrl Laboratories, Llc | Aluminum alloy feedstocks for additive manufacturing |
EP3576902A4 (en) * | 2017-02-01 | 2020-09-09 | HRL Laboratories, LLC | Nanoparticle composite welding filler materials, and methods for producing the same |
US11674204B2 (en) | 2017-02-01 | 2023-06-13 | Hrl Laboratories, Llc | Aluminum alloy feedstocks for additive manufacturing |
US11919085B2 (en) | 2017-02-01 | 2024-03-05 | Hrl Laboratories, Llc | Additive manufacturing with nanofunctionalized precursors |
US12012646B1 (en) | 2017-02-01 | 2024-06-18 | Hrl Laboratories, Llc | Additively manufacturing components containing nickel alloys, and feedstocks for producing the same |
US11396687B2 (en) | 2017-08-03 | 2022-07-26 | Hrl Laboratories, Llc | Feedstocks for additive manufacturing, and methods of using the same |
CN113977130A (en) * | 2021-11-24 | 2022-01-28 | 广东中实金属有限公司 | High-temperature-resistant soldering paste capable of being sintered at low temperature under no pressure and preparation method and use method thereof |
CN114799616A (en) * | 2022-04-28 | 2022-07-29 | 桂林电子科技大学 | High-entropy intermetallic compound material, preparation method thereof and electronic solder |
CN114799616B (en) * | 2022-04-28 | 2023-10-20 | 桂林电子科技大学 | High-entropy intermetallic compound material, preparation method thereof and electronic solder |
CN116604221B (en) * | 2023-07-19 | 2023-10-13 | 长春理工大学 | Infrared detection window solder material and preparation method thereof |
CN116604221A (en) * | 2023-07-19 | 2023-08-18 | 长春理工大学 | Infrared detection window solder material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011054892A (en) | Solder bonding using conductive paste | |
JP6337909B2 (en) | Manufacturing method of electronic component module | |
JP5887086B2 (en) | Conductive material | |
JP4973830B2 (en) | Conductive composition, conductive paste and conductive film | |
WO2017033911A1 (en) | Metal paste having excellent low-temperature sinterability and method for producing the metal paste | |
JP4848674B2 (en) | Resin metal composite conductive material and method for producing the same | |
JP2013251256A (en) | Low silver content paste composition, and method of making conductive film from said low silver content paste composition | |
WO2001064807A1 (en) | Conductive adhesive, apparatus for mounting electronic component, and method for mounting the same | |
JP6099472B2 (en) | Metal nanoparticle dispersion, method for producing metal nanoparticle dispersion, and bonding method | |
JP2019091927A (en) | Electronic component | |
TWI417399B (en) | Composite lead-free solder alloy composition having nano-particles | |
JP4876979B2 (en) | Joining member and joining method | |
JP2010013726A (en) | Copper powder for electroconductive paste, and electroconductive paste | |
JP2008004651A (en) | Bonding material using anisotropic fine particles | |
WO2015125855A1 (en) | Lead-free solder alloy, solder material, and joined structure | |
JP2011038141A (en) | Composite metal-particulate material, metal film, method for producing metal film, printed circuit board and electric wire cable | |
JP2011006740A (en) | Copper powder for conductive paste, and conductive paste | |
JPWO2013145258A1 (en) | Copper filler-containing composite nanometal paste and bonding method | |
KR101639614B1 (en) | Multi-functional nano/micro solders and their methods for preparing the same | |
JP5442566B2 (en) | Conductive bonding agent and bonding method thereof | |
KR20130101980A (en) | Copper powder for electrically conductive paste, and electrically conductive paste | |
JP2009199746A (en) | Heat-generating glass, and its manufacturing method of the same | |
JP6669420B2 (en) | Bonding composition | |
JP2006257408A (en) | Conductive adhesive | |
KR101157515B1 (en) | Conductive adhesive and connection method between terminal employing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120822 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130827 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130924 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140304 |