JP2010251275A - Ion collective accelerator and application thereof - Google Patents
Ion collective accelerator and application thereof Download PDFInfo
- Publication number
- JP2010251275A JP2010251275A JP2009118006A JP2009118006A JP2010251275A JP 2010251275 A JP2010251275 A JP 2010251275A JP 2009118006 A JP2009118006 A JP 2009118006A JP 2009118006 A JP2009118006 A JP 2009118006A JP 2010251275 A JP2010251275 A JP 2010251275A
- Authority
- JP
- Japan
- Prior art keywords
- electron
- acceleration
- ion
- accelerator
- hollow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Particle Accelerators (AREA)
- Radiation-Therapy Devices (AREA)
Abstract
Description
本発明は、種々のイオン*集団(イオンバンチ)を電子集団(電子バンチ)に閉じ込め、強い強度の高密度電子バンチを生成・加速することで電子バンチに閉じ込められたイオン集団を百MV/m以上の電場強度にて加速する集団加速装置(Collective Acceleration Device)とその応用に関する。In the present invention, various ion * groups (ion bunches) are confined in an electron group (electron bunches), and high-density electron bunches with high strength are generated and accelerated, so that the ion group confined in the electron bunches is 100 MV / m. The present invention relates to a collective acceleration device that accelerates with the above electric field strength and its application.
時間的・空間的に限定された荷電集団(チャージバンチ)を強いビーム強度の電子集団(電子バンチ)によって短距離で数GeVを越える高いエネルギーまで加速する方法は1950年中旬から複数の研究者によってさまざまなバリエーションの発明・提案がなされてきた。(最初の電子集団加速法は米国のベネット(Bennett)によって示唆されていたが、明確で分かり易い提案を最初に行ったのは旧ソ連のベクスラー(Veksler)といえる)。
W.H.Bennett,Phys.Rev.45,890(1934)
V.I.Veksler,Proc.CERN Symposium on High Energy Accelerators and Pion Physics 2,80−83(CERN,Geneva,Switzerland;1956).
G.I.Budker,Relativistic Stabilized Electron Beams,CERN Symposium on High Energy Accelerators,Vol.1,68(1956)
1956年には最初の加速器国際会議がスイスのジュネーブで開催され、旧ソ連のドブナ(Dubna)のベクスラー(V.I.Veksler)やモスクワ科学アカデミーのブドカー(G.J.Budker)らが荷電粒子のあたらしい加速方式として大強度・高密度電子バンチによるイオン加速について、理論および実験について報告した。ベクスラーはさらに1967年のケンブリッジでの加速器会議でバンチ当たり100億個の陽子を15mの距離で1GeVまでの加速をめざしたインダクションライナック(誘導線形加速器)のモデル製作について発表を行っている。
V.I.Veksler et al.,Proc.VI.International Conference on High Energy Accelerators,Cambridge Electron Accelerator,Cambridge,1967,P.289.
*(ここでいうイオンとは陽子を含むすべての荷電粒子を意味しているが、重イオンと呼ぶ時は元素表でヘリウム以上の重さの荷電粒子を指す)Several researchers have been working since mid 1950 to accelerate a charged population (charge bunches) limited in time and space to high energies exceeding several GeV in a short distance by an electron population with high beam intensity (electron bunches). Various variations of inventions and proposals have been made. (The first electron collective acceleration method was suggested by Bennett in the United States, but it was the former Soviet Beksler that first made a clear and easy-to-understand proposal.)
W. H. Bennett, Phys. Rev. 45,890 (1934)
V. I. Veksler, Proc. CERN Symposium on High Energy Accelerators and Pion Physics 2, 80-83 (CERN, Geneva, Switzerland; 1956).
G. I. Budker, Relative Stabilized Electron Beams, CERN Symposium on High Energy Accelerators, Vol. 1,68 (1956)
In 1956, the first Accelerator International Conference was held in Geneva, Switzerland, where the former Soviet Union Dubna Bexler, Moscow Academy of Sciences Budkar and others were charged particles. As a new acceleration method, the theory and experiment on ion acceleration by high-intensity and high-density electron bunches are reported. Bexler also announced at the Accelerator Conference in Cambridge in 1967 about the production of an induction linac (induction linear accelerator) aimed at accelerating 10 billion protons per bunch to 1 GeV at a distance of 15 m.
V. I. Veksler et al. , Proc. VI. International Conference on High Energy Accelerators, Cambridge Electron Accelerator, Cambridge, 1967, p. 289.
* (Ion here means all charged particles including protons, but when called heavy ions, it means charged particles that are heavier than helium in the element table.)
この革新的なイオンの電子集団加速法は欧米の加速器の最前線の研究者の心をしっかりと捕え、世界の主要研究所において、理論と実験の精力的研究が開始された。なかんづく、アメリカのLBL(Lawrence Berkeley Laboratory)では電子リング加速器システム(ERA system)として実証試験加速器の理論および実験・研究が開始された。
D.Keefe et al.,Phys.Rev.Letters 22,558(1969
また大強度の電子ビームの研究のメッカでもあるメリーランド(Maryland)大学のライザー(Reiser)においても同様の研究が開始された。
D.L.Nelson and H.Kim,Studies on Formation of an Electron Ring Using Cylindrical Hollow Beam,Proc.of VII International Conf.on High Energy Accelerators,Yerevan,August 1969,
D.L.Nelson,The Formation of an Electron Ring in a Static Magnetic Field,Ph.D.Thesis,August 1970,Department of Physics & Astronomy,University of Maryland,College Park,MarylandThis innovative method of accelerating electron ensembles captures the minds of researchers at the forefront of accelerators in Europe and the United States, and intensive research into theory and experiment has begun at major research laboratories in the world. In particular, LBL (Lawrence Berkeley Laboratories) in the United States started the theory, experiment and research of the demonstration test accelerator as an electron ring accelerator system (ERA system).
D. Keefe et al. Phys. Rev. Letters 22, 558 (1969)
Similar research has also begun at Reiser at the University of Maryland, which is also the mecca of research on high-intensity electron beams.
D. L. Nelson and H.C. Kim, Studios on Formation of an Electron Ring Using Cylindrical Hollow Beam, Proc. of VII International Conf. on High Energy Accelerators, Yerevan, August 1969,
D. L. Nelson, The Formation of an Electron Ring in a Static Magnetic Field, Ph. D. Thesis, August 1970, Department of Physics & Astronomy, University of Maryland, College Park, Maryland
さらにこの電子リングとインダクションライナックを利用してその発明者のクリストフィロス(Christfilos)が核融合のプロジェクトを国立の軍事研究所であるローレンス リバモア研究所(Lawrence Livermore National Laboratory)で開始したために、電子リング加速器(ERA)方式にたいする研究者の期待が多いに高まった。
N.C.Christfilos,Phys.Rev.Lett.22,830(1969)Furthermore, using this electronic ring and induction linac, the inventor Christfilos started a fusion project at the Lawrence Livermore National Laboratory, a national military institute. Researchers' expectations for the accelerator (ERA) method have increased.
N. C. Christfilos, Phys. Rev. Lett. 22,830 (1969)
大電流のERAは主にベータトロン方式を採用していたが次第にビーム不安定性の問題が明らかになってきた。一方で高エネルギー物理学の時代は数百GeVの陽子加速器の早期実現への要求が高まっている時であったため、技術的により容易で実現性の高い大型のシンクロトロン方式の検討もすすみ
A.Garren,“lattice of the NAL proton synchrotron”,PAC1969
高エネルギー陽子加速器は陽子シンクロトロンが選択され、CERN(ヨーロッパ原子核研究所)のSPSおよびFermilab(Fermi national accelerator laboratory)のシンクロトロンの建設に移行した。The large current ERA mainly employs the betatron system, but the problem of beam instability has gradually become apparent. On the other hand, since the era of high energy physics was the time when the demand for the early realization of proton accelerators of several hundred GeV was increasing, the study of a large synchrotron system that is technically easier and more feasible was also promoted. Garren, “lattice of the NAL proton synchrotron”, PAC1969
The proton synchrotron was selected as the high-energy proton accelerator, and it moved to the construction of the syncrontron of CERN (European Nuclear Research Institute) SPS and Fermilab (Fermental accelerator laboratory).
LBLは早々に撤退したものの、ドイツのガルヒンク(Garching)や旧ソ連時代のドブナ研究所などの様々な研究所でERAの実現に向けて努力が継続された。
D.W.Hudgings et al.,“Trapping of cusp−injected,non neutral,electron ring rings with resistive walls and static mirror coil”,Physical review letters,volume 40,Number 12,march 1978,
C.Andelfinger et al.,“Of the experimental and theoretical investigations in the Garching Electron ring accelerator”,IEEE Transaction on Nuclear Science,1979
E.B.Abubakirov et al.,“Generation and acceleration of high−current annular electron beam in linear induction accelerator and microwave from Cherenkov TWT”,EPAC1990
さらなる高エネルギー化は、円周長27kmの超大型電子シンクロトロンのLEP(Large Electron Positron)加速器や超伝導電磁石のFermilabのTevatronやCERNではさらに高いエネルギーでさらに高磁場の超伝導電磁石のLHC(Large Hadron Collider)のシンクロトロン方式に向かっていった。またLHCの次の次世代の高エネルギー加速器は直線型の電子と陽電子の衝突器であるILC(International Linear Collider)が選択され、電子・陽電子で数百GeVかTeV領域の加速を目指す方針が採択されERAの研究開発は次第に衰退することとなった。Although LBL withdrew early, efforts continued to achieve ERA at various laboratories such as Garching in Germany and the Dobna Institute in the former Soviet era.
D. W. Huggings et al. , “Traping of cust-injected, non neutral, electro rings with resistive walls and static mirror coil, Physical review letter, volume 40, volume 40, volume 40,
C. Andelfinger et al. , “Of the experimental and theoretical innovations in the Garching Electron Accelerator”, IEEE Transaction on Nuclear Science, 1979.
E. B. Abubakirov et al. , “Generation and acceleration of high-current annual electron beam in linear induction accelerator and microwave from Cherenkov TWT”, EPAC 1990.
Higher energies can be achieved with the LEP (Large Electron Postron) accelerator of the super-large electron synchrotron with a circumference of 27 km and the Fermilab Tevatron and CERN of the superconducting magnet, and the LHC (Large) of the superconducting magnet with higher energy and higher magnetic field. Hadron Collider) headed for the synchrotron system. The next-generation high-energy accelerator of LHC is ILC (International Linear Collider), which is a collider of linear electrons and positrons, and a policy of accelerating several hundred GeV or TeV region with electrons and positrons is adopted. ERA research and development gradually declined.
ERAによるイオン加速方式は(1)LBL方式の弱い収束方式の一回(ワンターン)入射でのベータトロン方式でこれを時間的に変化する軸磁場を生成するか、(2)ラスレット・セスラー方式のカソードに於いて大きな電子リングをつくりこれを軸方向に減少する静的な軸磁場に入射するか、(3)メリーランド大学のライザー方式のカソードで大きな中空電子ビームを生成しこれをカスプ磁場に入射するか等いずれかの方式で軸方向に短縮し電子リングを形成するなどの方式が主流であった。 しかしながらいずれの場合も、必要な電流量が高いためにさまざまなビーム不安定性が発生し、当初はブドカーなどによればこの安定性は制御可能と主張されていたが、その電子バンチの安定化は困難を極めた。
J.Lasslett,A.Sessler,”a method of static−field compression in an electron−ring accelerator”,UCRL−18589,PAC1969,
A.Sessler,“collective field acceleration”,UCRL−19242,VII international conference on high energy accelerator,Yerevan,USSR,1969,
J.Lasslett,A.Sessler,”a method of static−field compression in an electron−ring accelerator”,UCRL−18589,PAC1969
A.Sessler,“collective field acceleration”,UCRL−19242,VII international conference on high energy accelerator,Yerevan,USSR,1969The ion acceleration method by ERA can be either (1) a weak focusing method of the LBL method or a betatron method with one-turn incidence to generate an axial magnetic field that changes with time, or (2) a Laslet-Sessler method. Either a large electron ring is created at the cathode and incident on a static axial magnetic field that decreases in the axial direction, or (3) a large hollow electron beam is generated at the riser-type cathode at the University of Maryland and converted into a cusp magnetic field. The mainstream method is to form an electron ring by shortening in the axial direction by any method such as incidence. In either case, however, various beam instabilities occur due to the high amount of current required. Initially, according to Budkar and others, this stability was claimed to be controllable, but the stabilization of the electronic bunch was Extremely difficult.
J. et al. Lasslett, A.M. Sessler, “a method of static-field compression in an electro-ring accelerator”, UCRL-18589, PAC1969,
A. Sessler, “collective field acceleration”, UCRL-19242, VII international conference on high energy accelerator, Yerevan, USSR, 1969,
J. et al. Lasslett, A.M. Sessler, “a method of static-field compression in an electro-ring accelerator”, UCRL-18589, PAC1969.
A. Sessler, “collective field acceleration”, UCRL-19242, VII international conference on high energy accelerator, Yerevan, USSR, 1969.
本発明は、大電流の電子リングのビーム不安定性の問題を抱えた以上のような方式に替わる従来は未解決であったコンパクトかつ大強度の中空電子バンチによる様々なイオン種の集団加速法を提案するものである。The present invention provides a collective acceleration method for various ion species using a compact and large-strength hollow electron bunch, which has been unsolved in the past, instead of the above-described method which has the problem of beam instability of a high-current electron ring. It is what we propose.
その直近の応用として、イオンのエネルギーに応じた距離にて急峻なイオン化現象を誘起するブラッグピーク(Bragg Peak)と同時に陽子線の3倍前後の高い生物効果(RBE)をもつ重粒子線の照射による放射線耐性腫瘍治療のテーブルトップ治療用加速器を実現せしめるものである。(ここでいうテーブルトップ加速器の大きさとは既存の病院の放射線照射室におさまる程度の装置の大きさを意味している)。陽子ビームについてはテーブルトップの開発研究がMIT・Still River Systems の Monarch250PBRT や HiArt・Livermore 研究所の DWA(Dielectric Wall Accelerator)が進行中かつ未完成であるが、重イオンビームではテーブルトップ加速器の提案さえ未だなされていない。
http://www.stillriversystems.com/ (多くは秘密事項でベールに包まれている)
Caporaso et al.,High gradient induction accelerator,Particle Accelerator Conference,2007.PAC.IEEE Volume,Issue,25−29 June 2007 Page(s):857−861As the latest application, irradiation of heavy particle beam with high biological effect (RBE) about 3 times that of proton beam at the same time as Bragg Peak that induces a steep ionization phenomenon at a distance according to the energy of ion. To realize a table top treatment accelerator for radiation resistant tumor treatment. (The size of the table top accelerator here means the size of the device that fits in the radiation room of an existing hospital). For the proton beam, the development of the table top is MIT / Still River Systems's Monarch250PBRT and the HiArt / Livermore Laboratory's DWA (Dielectric Wall Accelerator), but even the heavy ion beam is a table top accelerator proposal It hasn't been done yet.
http: // www. stillriverssystems. com / (many are veiled with secrets)
Caporaso et al. , High gradient induction accelerator, Particle Accelerator Conference, 2007. PAC. IEEE Volume, Issue, 25-29 June 2007 Page (s): 857-861
本発明では大強度電子ビームの不安定性を回避する為に電子集団(電子バンチ、電子雲)を瞬時に生成する方法を取る。即ち従来の方式のように電子銃のカソードで電子を生成したのちこれを真空容器に打ち込むスローな方式ではなく、電子銃に相当する電子の発生源近傍に於いてイオンを捕獲する構造をもった発生過程からしてコンパクトな電子集団を生成する。この方式はLBL方式の電子リング等の複雑な打ち込み(インジェクション)工程を不要にする。In the present invention, in order to avoid the instability of the high-intensity electron beam, a method of instantaneously generating an electron population (electron bunch, electron cloud) is adopted. That is, it is not a slow method in which electrons are generated at the cathode of an electron gun and then injected into a vacuum vessel as in the conventional method, but has a structure in which ions are captured in the vicinity of an electron generation source corresponding to an electron gun. A compact electron population is generated from the generation process. This method eliminates the need for a complicated injection process such as an LBL electronic ring.
電子集団は中空の電子リングまたは中空の円筒状の電子雲の形状をなす。電子雲の両端は閉じた状態または開いた状態である。この中空部分に加速すべきイオンを強いクーロンポテンシャルにて捕獲する。これを以後、“中空電子雲”と呼ぶ。円筒状の長さが短い場合には、従来のERA方式の電子リング形状に一致する。この中空電子雲と捕獲されたイオンは高電場RF電場等によって瞬時に引き出され加速されたのち、ベクスラーらが提案した方式等にて電子雲とイオンは電磁気的に分離される。The electron population is in the form of a hollow electron ring or a hollow cylindrical electron cloud. Both ends of the electron cloud are closed or open. Ions to be accelerated in this hollow part are captured with a strong Coulomb potential. This is hereinafter referred to as “hollow electron cloud”. When the cylindrical length is short, it matches the conventional ERA type electronic ring shape. The hollow electron cloud and the trapped ions are instantaneously extracted and accelerated by a high electric field RF electric field or the like, and then the electron cloud and ions are electromagnetically separated by a method proposed by Bexler et al.
このような中空電子雲の生成は最近の大出力レーザー等の極短パルス高出力技術の進歩によってようやく可能となったもので、ERAの研究開発が白熱していた60〜70年代に於いては技術的には不可能であった。
以下に中空電子雲を実現する具体的な方法を3種類ほど列挙する。以下に示す方法は基本的にはベクスラーが提示した方法を援用する。しかしながら以下に示すように多くの重要な点でこれを改良したものである。ベクスラーとの相違点は電子ビームとイオンの生成方法である。電子リングの付随装置、たとえば、磁場による電子リングのコンプレッション(軸方向での圧縮)用のコイルなどはこれを実装する。The generation of such a hollow electron cloud was finally made possible by recent advances in ultrashort pulse high power technology such as high power lasers, and in the 60s and 70s when ERA research and development was incandescent. Technically impossible.
Three specific methods for realizing the hollow electron cloud are listed below. The method shown below basically uses the method presented by Bexler. However, this is an improvement over many important points as described below. The difference from Bexler is the method of generating electron beams and ions. An electronic ring accompanying device, for example, a coil for compression (axial compression) of an electronic ring by a magnetic field, etc. is mounted.
第一の方法は電子とイオンの同心円状発生構造の中空の静的円筒電子雲(ホロービーム)イオンビームの生成方法である。同心円の外側部分はカソード電極の形状をリング状にして静電場によって大電流電子ビームを引き出す。カソード本体にイオン発生のない状態で大電流のホロービーム源はすでに実験的に実証されている方式で、著者らの発明によるCBS(Cold Beam synchrotron Source)方式の電子冷却部で実現されている。中空の電子リングにすることで空間電荷効果制限を緩和してより強い大電流のホロービームが可能となっている。
E.Levichev,V.Kiselev,V.Parkhomchuk,V.Reva,S.Sinyatkin,V.Vostrikov,LATTICE STUDY FOR THE CARBON ION SYNCHROTRON FOR CANCER THERAPY WITH ELECTRON COOLING,EPAC08
E.B. Levichev et al.,“Carbon Ion Accelerator Facility for Cancer Therapy”,Proceedings of RuPAC,2006,Novosibirsk,Russia,pp.363−365.
Masayuki Kumada,Vasily V.Parkhomchuk,B.I.Grishanov,E.B.Leivichev,F.V.Podgorny,S.A.Rastigeev,V.B.Reva,A.N.Skrinsky,V.A.Vostriko,THE CBS−THE MOST COST EFFECTIVE AND HIGH PERFORMANCE CARBON BEAM SOURCE DEDICATED FOR A NEW GENERATION CANCER THERAPY,PAC 205,Koxville,Tennessee
加速すべきイオンバンチはこのカソードの中央に超小型のイオン源を挿入する。この構造によりイオンの生成と電子リングの生成のタイミングが調整可能となる。The first method is a method for generating a hollow static cylindrical electron cloud (hollow beam) ion beam having a concentric generation structure of electrons and ions. The outer part of the concentric circle draws a large-current electron beam by an electrostatic field with the cathode electrode shaped like a ring. A high-current hollow beam source with no generation of ions in the cathode body has already been experimentally verified, and is realized by a CBS (Cold Beam Synchrotron Source) type electronic cooling unit according to the present invention. By using a hollow electron ring, the space charge effect restriction can be relaxed, and a stronger and higher current hollow beam can be realized.
E. Levichev, V.M. Kiselev, V.M. Parkhomchuk, V.M. Reva, S .; Sinyatkin, V.M. VOSTRIKOV, LATTICE STUDY FOR THE CARBON ION SYNCHROTRON FOR CANCER THERAPY WITH ELECTRON COOLING, EPAC08
E. B. Levichev et al. "Carbon Ion Accelerator Facility for Cancer Therapy", Proceedings of RuPAC, 2006, Novosibirsk, Russia, pp. 363-365.
Masayuki Kumada, Vasili V. Parkhomchuk, B.M. I. Grishanov, E .; B. Levichev, F.M. V. Podgorny, S.M. A. Rastigeev, V.M. B. Reva, A .; N. Skrinsky, V.M. A. VESTRIKO, THE CBS-THE MOST COST EFFECTIVE AND HIGH PERFORMANCE CARBON BEAM SOURCE DEDICTED FOR A NEW GENERATION CANCER THERAPY, PAC 205, Koxville
The ion bunch to be accelerated inserts a micro ion source in the center of the cathode. With this structure, the generation timing of ions and the generation of electron rings can be adjusted.
第二の方法では駆動ビームの中空電子雲と被駆動ビームのイオンバンチをそれぞれ独立の高出力レーザーにて生成する。この場合、レーザーの標的となる電極は同心円構造が望ましく、内側にはイオンの発生源となる固体材料を外側には電子ビームの発生源となるフォトカソード材料を配置する。レーザーの波長はイオンの発生に適した波長と電子の波長に適した独立したかつ波長の異なる2本のレーザーを用いる事が望ましい。また、電子ビーム生成用の中空ビームを生成するためには、レーザービームの断面の強度分布が中心で弱い分布のレーザービームを用いる。中空レーザービームはレンズの材質や幾何的な構造の適切な設計によって可能である。電子雲とイオンの空間的・時間的位置関係は二本のレーザービームの時間と空間構造によって設定を行う。生成されたイオンを閉じ込めた中空電子雲は、RF電子銃で電子を引き出すのと同様の方法で瞬時に光の速度まで加速が可能となる。このときのイオンのエネルギーは主に電子雲の電子数できめられるイオンの保持ポテンシャルで決められる。In the second method, the hollow electron cloud of the driving beam and the ion bunch of the driven beam are generated by independent high-power lasers. In this case, the laser target electrode preferably has a concentric circular structure, and a solid material serving as an ion generation source is disposed inside and a photocathode material serving as an electron beam generation source is disposed outside. It is desirable to use two independent lasers with different wavelengths suitable for the generation of ions and the wavelength of electrons. In order to generate a hollow beam for generating an electron beam, a laser beam having a weak distribution centering on the intensity distribution of the cross section of the laser beam is used. Hollow laser beams are possible by appropriate design of lens material and geometric structure. The spatial and temporal positional relationship between the electron cloud and ions is set by the time and spatial structure of the two laser beams. The hollow electron cloud in which the generated ions are confined can be instantaneously accelerated to the speed of light in the same manner as that for extracting electrons with an RF electron gun. The energy of the ions at this time is determined mainly by the holding potential of the ions determined by the number of electrons in the electron cloud.
第三の方法は、高エネルギー電子ビームのレーザー駆動加速器の方法に準じた薄膜(フォイル)をレーザービームで照射する方式のものである。これらはすでに電子のエネルギーでGeV級の質のよい電子ビームが実現され始めている。これらの方法では高出力レーザーをフォイルに照射することでイオンの加速も可能となってきているがまだ数MeVの陽子にとどまっていて、実用的なエネルギーのものは得られていない。
C.−M.Ma et al.,Development of a laser−driven proton accelerator for cancer therapy,Laser phyicics,ISSN 1054−660X(print) 1555−6611(Online),Volume 16,Number 4/2006,page 639−646
これらのイオン加速も集団加速の一種と考えられるが、本発明では、第二の方法と同じように、ビーム断面強度がリング状のレーザービームをフォイルに照射することで電子リングビームを生成する案は初めてである。その時、レーザービームは一本でよいが断面の強度分布は中心強度は必ずしもゼロでなく弱くかつ外の円周の部分の強度が強い構造でもよい。またレーザービーム強度分布を一様にして、フォイルの標的部のほうに厚み分布をつけても同様の効果が期待できる。
このようにレーザー駆動加速器にERA方式を採用することから、本方式は従来の力まかせ(brute force)のレーザー駆動の陽子線方式と異なり、電子リング構造のために、加速効率の大幅な改善が可能となり、必要なレーザーパワーも少なくてすみ、レーザーを含む装置全体もコンパクト化せしめる。The third method is a method of irradiating a thin film (foil) with a laser beam according to the method of a laser driven accelerator of a high energy electron beam. These have already begun to realize GeV class high-quality electron beams with the energy of electrons. In these methods, it is possible to accelerate ions by irradiating the foil with a high-power laser. However, only a few MeV protons have been obtained, and no practical energy has been obtained.
C. -M. Ma et al. , Development of a laser-drive proton accelerator for cancer therapy, Laser physics, ISSN 1054-660X (print) 1555-6611 (Online), Volume 646, 39 6
These ion accelerations are also considered as a kind of collective acceleration. In the present invention, as in the second method, an electron ring beam is generated by irradiating a foil with a ring-shaped laser beam having a beam cross-sectional intensity. Is the first time. At this time, one laser beam may be used, but the cross-sectional intensity distribution may have a structure in which the central intensity is not necessarily zero but weak and the intensity of the outer circumferential portion is strong. A similar effect can be expected by making the laser beam intensity distribution uniform and providing a thickness distribution toward the target portion of the foil.
Since the ERA method is adopted for the laser-driven accelerator in this way, this method is different from the conventional force-driven laser-driven proton beam method, and the acceleration efficiency can be greatly improved due to the electron ring structure. Therefore, less laser power is required and the entire device including the laser is made compact.
以上のいずれかの方法で生成されたコンパクトな電子リング、たとえば、ドーナツのリングの大半径がR、小半径a、バンチの中の電子数をNeとするとこの電子リングでできる電場の大きさEmaxは(holding powerあるいは保持力とも呼ばれる)
電荷および誘電率の値を代入して
本発明で可能と考えられるパラメター、R=0.46cm,a=0.1cm,N=1013を代入するとEmax=1,000MV/mを得る。これは電子雲の保持力の電場に対応し、これに閉じ込められたイオンのエネルギーの最大値を示す。イオンを内蔵した電子リングの加速は従来提案されている直接引き出しのRF電場またはmagnetic expansion accelerationのいずれかあるいは両方を用いる。
また、実際には、電子リング中の電子の分布が一様でない影響などもあり、有効電場はフォームファクターf(f〜1/2)を乗じた値が妥当である。
電荷と質量の比が2の場合には例えば、完全電離の炭素イオンの場合では、500MV/mの電場に相当し加速される炭素イオンのエネルギーは1mの長さにて核子あたり250MeV/u/m程度のイオンエネルギーが得られる。Magnitude of the electric field which can in which more compact electronic rings generated in any manner, for example, the electron ring when major radius of the donut rings R, minor radius a, the number of electrons in the bunch, and N e E max (also called holding power or holding power)
Substituting charge and dielectric constant values
Substituting parameters considered possible in the present invention, R = 0.46 cm, a = 0.1 cm, N = 10 13 , gives E max = 1,000 MV / m. This corresponds to the electric field of the coercive force of the electron cloud and indicates the maximum value of the energy of ions confined in this. Acceleration of an electron ring containing ions uses either a direct extraction RF field or a magnetic expansion acceleration, which has been conventionally proposed, or both.
In practice, the distribution of electrons in the electron ring is not uniform, and the effective electric field is a value obtained by multiplying the form factor f (f to 1/2).
When the charge to mass ratio is 2, for example, in the case of a fully ionized carbon ion, the energy of the accelerated carbon ion corresponding to an electric field of 500 MV / m is 250 MeV / u / n per nucleon at a length of 1 m. An ion energy of about m can be obtained.
本発明は極めて短い加速器の長さにて人間のがん治療装置にふさわしい。身体の深部(30cm弱)での放射線耐性腫瘍の重粒子線治療には核子あたりの重粒子線のエネルギーには400MeV/u強あればよいので本方式の加速器の完成の際には加速器本体の部分の長さが2m程度に収まる。このため放射線遮蔽の強化を行う事で、既設の病院に重粒子線治療装置を設置することを可能せしめる。また、加速装置がライナック方式であるのでイオンビームの出射の繰り返し回数も上げられるため、その結果、パルス当たりの粒子数は少なくてよい。加速電場の強さを減少させる一因となるビームローディング(beam loading)の影響は小さくすることが可能とする。The present invention is suitable for a human cancer treatment apparatus with a very short accelerator length. For heavy-dose radiotherapy of radiation-resistant tumors in the deep part of the body (less than 30 cm), the energy of the heavy-particle beam per nucleon should be 400 MeV / u or more, so when the accelerator of this method is completed, The length of the part is about 2m. For this reason, by strengthening radiation shielding, it is possible to install a heavy particle beam therapy system in an existing hospital. Further, since the acceleration device is a linac system, the number of repetitions of ion beam extraction can be increased, and as a result, the number of particles per pulse may be small. It is possible to reduce the influence of beam loading, which contributes to reducing the strength of the acceleration electric field.
以上、本発明では、従来の方法では困難なコンパクトな高密度電子リングを強度分布がリング型のレーザー光の出力形態を有する高出力レーザーにより、瞬時に生成し、電子リンングの強いポテンシャル場にイオンを閉じ込め、電子雲にイオンを載せて瞬時に軸方向に加速して不安定性を回避する集団加速の3つの具体的方法について述べ、がんの重粒子線治療のテーブルトップ装置の実現を可能とする方法を説明した。As described above, in the present invention, a compact high-density electron ring, which is difficult with the conventional method, is instantaneously generated by a high-power laser whose intensity distribution has a ring-type laser beam output form, and ions are generated in a potential field with strong electron ringing. Three specific methods of collective acceleration that confine traps and place ions in the electron cloud and accelerate in the axial direction instantly to avoid instability are described, enabling the realization of a tabletop device for heavy ion radiotherapy for cancer Explained how to do.
加えて、本装置は重粒子ビームと電子ビームを独立に切り替えられる。このことからこれを標的に照射することで、電子ビームからX線の発生が可能となり、これを位置確認、位置モニター、臓器の動きのモニタリングなどに適用可能で治療時の1)位置決め、2)リアルタイムモニターリング、3)治療の3つの機能を持たせしめる特徴を有する。In addition, the apparatus can switch between heavy particle beams and electron beams independently. From this, it is possible to generate X-rays from an electron beam by irradiating it to the target, which can be applied to position confirmation, position monitoring, organ movement monitoring, etc. 1) positioning, 2) during treatment Real-time monitoring 3) It has the feature of giving three functions of treatment.
最後に、一般のテーブルトップ加速器装置は患者の周囲を回転するrotating gantry方式が主流である。これらは加速器一台に照射装置が一台の構成となっている。これと比べて従来のサイクロトロンやシンクロトロン方式では複数の照射室の設置が可能で、高価な装置を治療室の数を増やす事で有効利用を図っている。この場合、固定ビームで照射室を増やすときに偏向電磁石を使ったビームラインを必要とされるので、それぞれが大きな曲率半径を必要とし、イオンビームを偏向するためにビームラインの大幅なコストが加算されざるを得ない。本方式は短く軽量な線形加速器(電子ライナック)に近い構造な為、回転ガントリー化が容易であるだけでなく、平面上で自分自身を簡単に回転できるため、固定ビームラインに偏向電磁石を使わないですむという大きな利点を有する。Finally, a general table top accelerator device is mainly a rotating gantry system that rotates around a patient. These have one irradiation device for one accelerator. In contrast, the conventional cyclotron or synchrotron system can be equipped with a plurality of irradiation chambers, and the use of expensive devices is increased by increasing the number of treatment rooms. In this case, when increasing the irradiation chamber with a fixed beam, a beam line using a deflecting electromagnet is required, so each requires a large radius of curvature, and the significant cost of the beam line is added to deflect the ion beam. It must be done. This system is similar to a short and lightweight linear accelerator (electronic linac), so it is not only easy to make a rotating gantry, but it can easily rotate itself on a flat surface, so no deflection electromagnet is used for the fixed beam line. It has the great advantage of saving.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009118006A JP2010251275A (en) | 2009-04-20 | 2009-04-20 | Ion collective accelerator and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009118006A JP2010251275A (en) | 2009-04-20 | 2009-04-20 | Ion collective accelerator and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010251275A true JP2010251275A (en) | 2010-11-04 |
Family
ID=43313377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009118006A Pending JP2010251275A (en) | 2009-04-20 | 2009-04-20 | Ion collective accelerator and application thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010251275A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101477983B1 (en) | 2013-10-21 | 2015-01-02 | 전남대학교산학협력단 | Communication Method and System using Neutrino Created by Laser |
WO2015163607A1 (en) * | 2014-04-23 | 2015-10-29 | 기초과학연구원 | Cryogenic performance testing apparatus for heavy ion acceleration tube |
KR101590062B1 (en) | 2014-11-11 | 2016-02-01 | 기초과학연구원 | SSR1 cryomodule of heavy ion accelerator |
KR101595769B1 (en) | 2014-09-12 | 2016-02-22 | 기초과학연구원 | HWR cryomodule of heavy ion accelerator |
KR20160025123A (en) | 2014-08-26 | 2016-03-08 | 기초과학연구원 | QWR cryomodule of heavy ion accelerator |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005011750A (en) * | 2003-06-20 | 2005-01-13 | Toshiba Corp | Electron beam cooling device |
JP2006294575A (en) * | 2005-04-08 | 2006-10-26 | Kumada Hitomi | Low-temperature charged particle beam treatment accelerator |
JP2009014671A (en) * | 2007-07-09 | 2009-01-22 | Hamamatsu Photonics Kk | Target for laser plasma ion source, and laser plasma ion generating apparatus |
-
2009
- 2009-04-20 JP JP2009118006A patent/JP2010251275A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005011750A (en) * | 2003-06-20 | 2005-01-13 | Toshiba Corp | Electron beam cooling device |
JP2006294575A (en) * | 2005-04-08 | 2006-10-26 | Kumada Hitomi | Low-temperature charged particle beam treatment accelerator |
JP2009014671A (en) * | 2007-07-09 | 2009-01-22 | Hamamatsu Photonics Kk | Target for laser plasma ion source, and laser plasma ion generating apparatus |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101477983B1 (en) | 2013-10-21 | 2015-01-02 | 전남대학교산학협력단 | Communication Method and System using Neutrino Created by Laser |
WO2015163607A1 (en) * | 2014-04-23 | 2015-10-29 | 기초과학연구원 | Cryogenic performance testing apparatus for heavy ion acceleration tube |
KR20150122833A (en) | 2014-04-23 | 2015-11-03 | 기초과학연구원 | Apparatus for testing performance of heavy ion accelerator at very low temperature |
KR101595767B1 (en) | 2014-04-23 | 2016-02-22 | 기초과학연구원 | Apparatus for testing performance of heavy ion accelerator at very low temperature |
KR20160025123A (en) | 2014-08-26 | 2016-03-08 | 기초과학연구원 | QWR cryomodule of heavy ion accelerator |
KR101595769B1 (en) | 2014-09-12 | 2016-02-22 | 기초과학연구원 | HWR cryomodule of heavy ion accelerator |
KR101590062B1 (en) | 2014-11-11 | 2016-02-01 | 기초과학연구원 | SSR1 cryomodule of heavy ion accelerator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2416439C2 (en) | Electron beam and x-ray beam generator for interstitial and intraoperative radiation therapy | |
JP5450602B2 (en) | Tumor treatment device for treating tumor using charged particles accelerated by synchrotron | |
US5073913A (en) | Apparatus for acceleration and application of negative ions and electrons | |
US10362666B2 (en) | Compac carbon ion LINAC | |
JP2796071B2 (en) | Radiation generation method using electron storage ring and electron storage ring | |
WO2015169011A1 (en) | Extra high energy electron beam or photon beam radiotherapy robot system | |
TWI423738B (en) | A method and apparatus for generating high density hollow electron cloud instantaneously by laser | |
US20130178689A1 (en) | Targets for generating ions and treatment apparatuses using the targets | |
WO2004039133A1 (en) | Electron accelerator and radiotherapy apparatus using same | |
JP2010251275A (en) | Ion collective accelerator and application thereof | |
JP6126153B2 (en) | Charged particle beam acceleration method and apparatus as part of a charged particle cancer treatment system | |
WO2021113323A1 (en) | Linear accelerator for generating high x-ray doses | |
Boucher et al. | Transformative technology for FLASH radiation therapy: A snowmass 2021 white paper | |
Garonna et al. | Cyclinac medical accelerators using pulsed C6+/H2+ ion sources | |
JP2004132718A (en) | Inertial electrostatic confinement nuclear fusion system | |
JPWO2017145259A1 (en) | Heavy ion radiotherapy equipment | |
Uesaka et al. | Advanced accelerators for medical applications | |
Schippers | Proton accelerators | |
Podgorsak et al. | Particle accelerators in medicine | |
Coutrakon | Accelerators for heavy-charged-particle radiation therapy | |
Bulanov et al. | Feasibility of using laser ion accelerators in proton therapy | |
JP3839652B2 (en) | Charged particle acceleration magnet using permanent magnet and high magnetic field circular charged particle accelerator | |
JP2008286742A (en) | Device and method for controlling ion beam | |
Florea et al. | Basic principles of conventional and laser driven therapy accelerators | |
Chen et al. | Compact proton accelerator for cancer therapy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20120412 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130821 |
|
A131 | Notification of reasons for refusal |
Effective date: 20130910 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140128 |