JP2010236587A - Fiber-reinforced plastic pressure vessel - Google Patents

Fiber-reinforced plastic pressure vessel Download PDF

Info

Publication number
JP2010236587A
JP2010236587A JP2009083935A JP2009083935A JP2010236587A JP 2010236587 A JP2010236587 A JP 2010236587A JP 2009083935 A JP2009083935 A JP 2009083935A JP 2009083935 A JP2009083935 A JP 2009083935A JP 2010236587 A JP2010236587 A JP 2010236587A
Authority
JP
Japan
Prior art keywords
layer
pressure vessel
frp
laminated structure
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009083935A
Other languages
Japanese (ja)
Inventor
Naoki Yamauchi
直樹 山内
Seiki Kakihara
清貴 柿原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Container Co Ltd
Original Assignee
JFE Container Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Container Co Ltd filed Critical JFE Container Co Ltd
Priority to JP2009083935A priority Critical patent/JP2010236587A/en
Publication of JP2010236587A publication Critical patent/JP2010236587A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-pressure vessel having an FRP laminated structure to have excellent rapture resistance and light in weight. <P>SOLUTION: The FRP pressure vessel is a pressure vessel having an FRP laminated structure formed by winding glass fibers or carbon fibers impregnated with resin on a liner where the outer surface-side layer of the FRP laminated structure is a high angle helical winding layer wound at an orientation angle of 45 degrees to 60 degrees relative to the axial direction of a liner body. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、FRP圧力容器の積層構造に関する。   The present invention relates to a laminated structure of an FRP pressure vessel.

金属またはプラスチック製ライナーに繊維強化プラスチック(以下FRPと呼ぶ)を巻付けて形成された圧力容器は軽量で強度が得られるので、各種の高圧力容器、特に自動車に搭載する天然ガスタンクとしての応用が図られている。   Pressure vessels formed by wrapping fiber reinforced plastic (hereinafter referred to as FRP) around metal or plastic liners are lightweight and strong, so they can be used as various high pressure vessels, especially natural gas tanks mounted on automobiles. It is illustrated.

本圧力容器は、一般に円筒状の胴部とその両端に鏡部を有する円筒タンク形状をしており、この鏡部の一方または両方の略中央部にガスが出入りする開口部が設けられている。   This pressure vessel generally has a cylindrical tank shape having a cylindrical body and mirrors at both ends thereof, and an opening through which gas enters and exits is provided at one or both of the central parts of the mirror. .

ライナーは、圧力容器の内面を形成するもので、通常軽量化の観点からアルミニウム合金が用いられる。この場合のFRPの積層構造は、ライナーの胴部にFRPを巻付けたフープ巻き(ライナー胴部の軸方向に対して約90°の配向角)とライナー全体にFRPを巻付けたヘリカル巻き(ライナー胴部の軸方向に対して約10〜20°の配向角)が知られている。また、これらの巻きパターンを組み合わせた形がとられることが多い。   The liner forms the inner surface of the pressure vessel, and an aluminum alloy is usually used from the viewpoint of weight reduction. In this case, the FRP laminated structure includes a hoop winding (an orientation angle of about 90 ° with respect to the axial direction of the liner barrel) and a helical winding (FRP wound around the entire liner). An orientation angle of about 10 to 20 ° with respect to the axial direction of the liner body is known. In many cases, these winding patterns are combined.

すなわち、円筒形圧力容器は、破壊時の安全性を考慮して、軸方向強度>周方向強度となるように設計され、これを歪比で表すと軸方向歪と周方向歪の比εΑ/εΗは0.9〜1.0となる。そして、この軸方向強度をヘリカル巻き層が、周方向強度をフープ巻き層がそれぞれ担うこととなる。したがって、この場合は、ヘリカル巻き層が崩れるのを防止する目的で最外層はフープ巻き層とするのが一般的である。   That is, the cylindrical pressure vessel is designed so that the strength in the axial direction is greater than the strength in the circumferential direction in consideration of safety at the time of destruction. When this is expressed in terms of strain ratio, the ratio of axial strain to circumferential strain εΑ / εΗ becomes 0.9 to 1.0. The helical wound layer bears the axial strength, and the hoop wound layer bears the circumferential strength. Therefore, in this case, the outermost layer is generally a hoop winding layer for the purpose of preventing the helical winding layer from collapsing.

特許文献1は、従来のヘリカル巻き層が、口金部まで鏡部全体を覆う構造であったのに対して、ライナー胴部に、胴部の軸方向に対して40〜75°の配向角を有するヘリカル巻き層として鏡部全体を覆わない構造として軽量化を図ったもので、最外層はフープ巻きが施されている。   In Patent Document 1, the conventional helical winding layer has a structure that covers the entire mirror part up to the base part, whereas the liner body part has an orientation angle of 40 to 75 ° with respect to the axial direction of the body part. The helical winding layer has a structure that does not cover the entire mirror part and is lightened. The outermost layer is hoop-wound.

特許文献2は、薄いアルミニウム合金等の軽合金等でできた内殻の軸方向に対して内面側を5〜50°と外面側を75°〜105°の角度で配した補強繊維糸の巻層を形成し、補強繊維糸として炭素繊維糸等、樹脂としてエポキシ樹脂等の熱可塑性樹脂を用いることによって、軽量化し、繰り返し衝撃に対する耐圧性能の向上を図っている。この場合も内面側のヘリカル巻き層を外面側のフープ巻き層が保護する形をとっている。   Patent Document 2 discloses a winding of a reinforcing fiber yarn in which an inner surface side is arranged at an angle of 5 to 50 ° and an outer surface side is arranged at an angle of 75 ° to 105 ° with respect to an axial direction of an inner shell made of a light alloy such as a thin aluminum alloy. By forming a layer and using a thermoplastic fiber such as a carbon fiber yarn as a reinforcing fiber yarn and an epoxy resin as a resin, the weight is reduced and the pressure resistance against repeated impacts is improved. Also in this case, the outer side hoop winding layer protects the inner side helical winding layer.

特開平10−220691号公報Japanese Patent Laid-Open No. 10-220691 特開平9−257193号公報JP-A-9-257193

カーボン繊維を用いた一般高圧ガス用FRP容器の適用法令としては、高圧ガス保安法 容器保安規則に定める技術的要件を満たすものとして「アルミニウム合金ライナー・炭素繊維製一般複合容器の技術基準」(通称KHKS0121(2005))が適用される。当該基準において、高圧容器の耐衝撃性能確認試験として落下試験が規定されている。   Applicable laws and regulations for FRP containers for general high-pressure gas using carbon fiber include “Technical Standards for Aluminum Alloy Liners / Carbon Fiber General Composite Containers” (common name) that meet the technical requirements stipulated in the Container Safety Regulations of the High Pressure Gas Safety Law. KHKS0121 (2005)) applies. In this standard, a drop test is defined as a test for confirming the impact resistance of a high-pressure vessel.

当該試験は、高圧容器を高さ3m以上の高さから容器を垂直にした状態で床面に落下させる垂直落下試験を行い、次に容器を水平にした状態で床面に落下させる水平落下試験を行い、次いで、容器を水平にした状態で床面の鋼製アングル(1辺が38mm以上40mm以下で、厚さが4.8mm以上5mm以下)に落下させる。   The test involves a vertical drop test in which a high-pressure vessel is dropped from a height of 3m or more onto the floor surface with the vessel vertical, and then a horizontal drop test in which the vessel is dropped on the floor surface in a horizontal state. Then, the container is dropped in a steel angle on the floor (one side is 38 mm or more and 40 mm or less, and the thickness is 4.8 mm or more and 5 mm or less) while the container is horizontal.

そして、上記試験後の容器を大気圧と最高充填圧力以上の上限圧力との間で圧力サイクル試験を1000回以上繰り返す。圧力サイクル試験後に破裂試験を実施する。破裂性能は破裂圧力が設計破裂圧力の90%以上であって、破裂の起点が当該容器の胴部であることが必要とされる。   Then, the pressure cycle test is repeated 1000 times or more between the atmospheric pressure and the upper limit pressure equal to or higher than the maximum filling pressure in the container after the test. A burst test is performed after the pressure cycle test. The bursting performance requires that the bursting pressure is 90% or more of the designed bursting pressure, and the starting point of the bursting is the body of the container.

上記した落下性能を満足するためには、FRP積層を従来の設計値よりも大幅に増やす必要があり、圧力容器の容器重量が増加することとなり、経済性にも問題があった。   In order to satisfy the above-described drop performance, it is necessary to greatly increase the number of FRP layers from the conventional design value, which increases the container weight of the pressure vessel, and there is a problem in economy.

そこで、本発明は、このような問題の解決を図るため、高圧容器の肉厚や重量を増大させることなく、上述した技術基準で定めた落下試験を満足するFRP積層構造を有する高圧容器を提供することを目的とする。   Accordingly, the present invention provides a high-pressure vessel having an FRP laminated structure that satisfies the drop test defined by the above-mentioned technical standards without increasing the thickness and weight of the high-pressure vessel in order to solve such problems. The purpose is to do.

発明者等は、上述した課題を鋭意検討し、発明を完成させたもので、その要旨は以下の通りである。   The inventors have intensively studied the above-described problems and completed the invention, and the gist thereof is as follows.

第一の発明は、樹脂を含浸したガラス繊維またはカーボン繊維をライナーに巻付けて形成したFRP積層構造を有する圧力容器であって、前記FRP積層構造の外面側の層として、ライナー胴部の軸方向に対して、45〜60°の配向角を有する高角度ヘリカル巻き層としたことを特徴とするFRP圧力容器である。   A first invention is a pressure vessel having an FRP laminated structure formed by winding glass fibers or carbon fibers impregnated with a resin around a liner, and as a layer on the outer surface side of the FRP laminated structure, a shaft of a liner body part The FRP pressure vessel is a high-angle helically wound layer having an orientation angle of 45 to 60 ° with respect to the direction.

第二の発明は、前記FRP積層構造を形成する各層は、それぞれ同一繊維で構成され、さらに、前記高角度ヘリカル巻き層は、前記ガラス繊維またはカーボン繊維を少なくとも1回転以上巻付けた層であることを特徴とする第一の発明に記載のFRP圧力容器である。   In the second invention, each layer forming the FRP laminated structure is composed of the same fiber, and the high-angle helically wound layer is a layer in which the glass fiber or the carbon fiber is wound at least one turn or more. The FRP pressure vessel according to the first aspect of the invention.

本発明のFRP圧力容器を得ることによりFRP繊維層の厚みを増大させることなく、強度と耐衝撃性能が大幅に向上し、小型軽量化を図ることができ、落下試験も満足できるようになった。   By obtaining the FRP pressure vessel of the present invention, the strength and impact resistance can be greatly improved without increasing the thickness of the FRP fiber layer, and the size and weight can be reduced, and the drop test can be satisfied. .

本発明のFRP圧力容器を鋼製アングルに落下させたイメージ図である。It is the image figure which dropped the FRP pressure vessel of this invention on the steel angle. 本発明のFRP圧力容器の断面積層構造を示す図である。It is a figure which shows the cross-section laminated structure of the FRP pressure vessel of this invention. 従来のFRP圧力容器を鋼製アングルに落下させたイメージ図である。It is the image figure which dropped the conventional FRP pressure vessel on the steel angle. 従来のFRP圧力容器の断面積層構造を示す図である。It is a figure which shows the cross-section laminated structure of the conventional FRP pressure vessel. 本発明の一実施の形態を示すFRP圧力容器である。It is a FRP pressure vessel which shows one embodiment of the present invention. 従来のFRP圧力容器を示す側面図である。It is a side view which shows the conventional FRP pressure vessel. 配向角度による破裂圧力の変化を示す図である。It is a figure which shows the change of the burst pressure by an orientation angle.

以下、本発明の実施の形態を図面に基づいて説明する。
図6は、従来のFRP圧力容器を示す側面図である。ライナー3はアルミニウム合金製であり、5はその胴部を、6は鏡部を、4は高圧ガスを取り出す口金部である。このライナー3の外面側にヘルカル巻き層2と最外層にフープ巻き層1が積層されている。ヘリカル巻き層は、口金部まで鏡部全体を覆う構造になっており、その配向角も口金/胴部の外径比によって定まるが、概ね10〜20°である。最外層のフープ巻き層1はライナー胴部5上に胴部の軸方向に対して約90°の配向角で巻き付けられている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 6 is a side view showing a conventional FRP pressure vessel. The liner 3 is made of an aluminum alloy, 5 is a barrel portion, 6 is a mirror portion, and 4 is a base portion for taking out high-pressure gas. A helical winding layer 2 is laminated on the outer surface side of the liner 3 and a hoop winding layer 1 is laminated on the outermost layer. The helically wound layer has a structure that covers the entire mirror part up to the base part, and the orientation angle is determined by the outer diameter ratio of the base / body part, but is generally 10 to 20 °. The outermost hoop winding layer 1 is wound on the liner body 5 with an orientation angle of about 90 ° with respect to the axial direction of the body.

図5は本発明の1実施の形態を表したもので、最外層はライナー胴部の軸方向に対して、45〜60°の配向角を有する高角度ヘリカル巻き層2を表したものである。   FIG. 5 shows one embodiment of the present invention, and the outermost layer shows a high-angle helical winding layer 2 having an orientation angle of 45 to 60 ° with respect to the axial direction of the liner body. .

図3は、従来のFRP圧力容器のFRP積層構造を有する圧力容器を水平にして、鋼製アングル上へ落下試験を行った例を示す。図4は、図3に使用したFRP圧力容器のFRP積層構造の断面図で、内層側からフープ巻き層(90°)1.2mm厚、中間層はヘリカル巻き層(12°)0.9mm、外層はフープ巻き層(90°)1.1mmと、積層厚は3.2mmである。   FIG. 3 shows an example of performing a drop test on a steel angle with a pressure vessel having an FRP laminated structure of a conventional FRP pressure vessel being horizontal. 4 is a cross-sectional view of the FRP laminated structure of the FRP pressure vessel used in FIG. 3, from the inner layer side to the hoop winding layer (90 °) 1.2 mm thickness, the intermediate layer is the helical winding layer (12 °) 0.9 mm, The outer layer has a hoop winding layer (90 °) of 1.1 mm, and the lamination thickness is 3.2 mm.

鋼製アングルの角部は鋭角のため、フープ巻き層の奥深く、そのダメージ範囲12は中間層であるヘリカル巻き層までおよんでいる(図3、図4)。よって、落下後に強度を担う層は内面側のフープ巻き層と中間のヘリカル巻き層の2層13となる。従って本積層構造をとる場合は、落下によるダメージを小さくするには、最外層のフープ巻き層を更に厚くする必要がある。   Since the corner portion of the steel angle is an acute angle, it is deep in the hoop winding layer, and its damage range 12 extends to the helical winding layer as an intermediate layer (FIGS. 3 and 4). Therefore, the layer that bears the strength after dropping becomes the two layers 13 of the hoop winding layer on the inner surface side and the intermediate helical winding layer. Therefore, in the case of adopting this laminated structure, it is necessary to further increase the thickness of the outermost hoop winding layer in order to reduce damage caused by dropping.

図1は、本発明に係るFRP積層構造を有する圧力容器を水平にして、鋼製アングル上へ落下試験を行った一実施の形態を示す例である。本発明例は、フープ巻きと12°の配向角を有するヘリカル巻きとの中間に当たる高角度ヘリカル巻き(配向角45〜60°)を最外層にクロスに巻いた例である。なお、配向角の取り方は容器軸方向に対しての角度となる。図2に、FRPの積層構造の断面の一実施の形態を示す。内層側からフープ巻き層(90°)0.8mm厚、中間層はヘリカル巻き層(12°)1.2mmとフープ巻き層(90°)0.8mm、最外層は高角度ヘリカル巻き層(55°)0.4mmと、積層厚は3.2mmと従来例と同じ厚さである。   FIG. 1 is an example showing an embodiment in which a pressure vessel having an FRP laminated structure according to the present invention is leveled and a drop test is performed on a steel angle. The example of the present invention is an example in which a high-angle helical winding (orientation angle of 45 to 60 °), which is intermediate between a hoop winding and a helical winding having an orientation angle of 12 °, is wound in a cloth on the outermost layer. The orientation angle is determined with respect to the container axis direction. FIG. 2 shows an embodiment of a cross section of a laminated structure of FRP. From the inner layer side, the hoop winding layer (90 °) is 0.8 mm thick, the intermediate layer is a helical winding layer (12 °) 1.2 mm and the hoop winding layer (90 °) 0.8 mm, and the outermost layer is a high angle helical winding layer (55 °) 0.4 mm, the lamination thickness is 3.2 mm, which is the same thickness as the conventional example.

落下試験のダメージ範囲12は、図2に示すように、最外層の高角度ヘリカル巻き層で止まっており、落下後に強度を担う層は内面側のフープ巻き層(90°)と中間のヘリカル巻き層(12°)とフープ巻き層(90°)の3層13となる。本発明例によれば、積層厚を厚くすることなく落下衝撃を軽減することができる。   As shown in FIG. 2, the damage range 12 of the drop test is stopped at the outermost high-angle helical winding layer, and the layer responsible for strength after dropping is the hoop winding layer (90 °) on the inner surface side and the intermediate helical winding. It becomes three layers 13 of a layer (12 °) and a hoop winding layer (90 °). According to the example of the present invention, it is possible to reduce the drop impact without increasing the stacking thickness.

次に、図7にヘリカル巻き層の配向角度を変化させた場合の落下試験後の破裂圧力の変化を調査した結果を示す。試験は、最外層までは同じ積層構造で、最外層のみの巻き角度を変えた容器について落下試験・破裂試験を実施した。落下試験・破裂試験は、「アルミニウム合金ライナー・炭素繊維製一般複合容器の技術基準」(通称KHKS0121(2005))に従って落下試験を行った後に、破裂試験をおこなった。   Next, FIG. 7 shows the result of investigating the change in burst pressure after the drop test when the orientation angle of the helical wound layer is changed. In the test, a drop test and a burst test were performed on a container having the same laminated structure up to the outermost layer and changing the winding angle of only the outermost layer. In the drop test and the burst test, a burst test was performed after performing a drop test in accordance with “Technical Standard for Aluminum Composite Liner / Carbon Fiber General Composite Container” (commonly called KHKS0121 (2005)).

横軸は、最外層ヘリカル巻き層の巻き角度を、縦軸は落下試験後の破裂圧力の変化を非落下試験材の破裂圧力に対する比率で表した。なお「アルミニウム合金ライナー・炭素繊維製一般複合容器の技術基準」(通称KHKS0121(2005))によると、「容器は最高充填圧力における炭素繊維の応力が、最小破裂圧力における炭素繊維の応力の3/10以下となる肉厚を有すること」と規定されており、本試験で使用した試験体においては当該規定を満足する角度範囲は44度以上である。   The horizontal axis represents the winding angle of the outermost helical winding layer, and the vertical axis represents the change in burst pressure after the drop test as a ratio to the burst pressure of the non-drop test material. According to the “Technical Standards for Aluminum Composite Liner / Carbon Fiber General Composite Containers” (commonly known as KHKS0121 (2005)), “the container has a carbon fiber stress at the maximum filling pressure of 3% of the carbon fiber stress at the minimum burst pressure. In the specimen used in this test, the angle range satisfying the regulation is 44 degrees or more.

よって、配向角が45度未満では、設計における応力基準を満足しないこととなる。また60度超えでは、落下試験後の破裂圧力が70%以下に低下する。従って、応力解析と落下試験・破裂試験結果からヘリカル巻き層の配向角を45〜60°とするのが好ましい角度であることがわかる。配向角が40〜60°の範囲であれば落下後の破裂性能は通常の破裂圧力の70%までを確保できる。   Therefore, when the orientation angle is less than 45 degrees, the stress standard in the design is not satisfied. Moreover, if it exceeds 60 degree | times, the burst pressure after a drop test will fall to 70% or less. Therefore, it can be seen from the stress analysis and the drop test / burst test results that the preferred angle of the helical wound layer is 45-60 °. If the orientation angle is in the range of 40 to 60 °, the burst performance after dropping can ensure up to 70% of the normal burst pressure.

最外層の高角度ヘリカル巻き層は、ガラス繊維またはカーボン繊維で1層以上巻き付けた層とすることが望ましい。耐衝撃性を増すことができるからであり、望ましくは、1層以上巻き付けるのがよい。高角度ヘリカルは、繊維と垂直方向に刺さるアングルの衝撃に対して最も強い巻き方である。   The outermost high-angle helically wound layer is preferably a layer wound with one or more layers of glass fibers or carbon fibers. This is because the impact resistance can be increased. Preferably, one or more layers are wound. The high-angle helical is the strongest winding method against the impact of the angle sticking in the direction perpendicular to the fiber.

なお、本発明におけるFRP積層構造の層とは同一繊維を用いて、同一角度でライナーに巻き付けられた積層をいう。なお、上述した積層厚は一実施例を述べたものでこれに限るものではない。用途、部位、要求品質によって適宜決定される。   In addition, the layer of the FRP laminated structure in this invention means the lamination | stacking wound around the liner at the same angle using the same fiber. In addition, the laminated thickness mentioned above described one Example, and is not restricted to this. It is determined appropriately depending on the application, part, and required quality.

以下に具体的実施例について述べる。   Specific examples will be described below.

圧力容器のライナーとしてアルミニウム合金製で外径103mm、胴部肉厚1.5mm、長さ420mm、口金部外径31mm、容量2.8Lを用いて、その外装に本発明例として、内面側からフープ巻き層(90°)0.8mm、ヘリカル巻き層(12°)1.2mm、フープ巻き層(90°)0.8mm、最外層として高角度ヘリカル巻き層(55°)0.4mm、全厚みを3.2mmとした積層構造の圧力容器と、比較例として、内面側からフープ巻き層(90°)1.2mm、ヘリカル巻き層(12°)0.9mm、フープ巻き層(90°)1.1mm、全厚みを3.2mmとした積層構造の圧力容器を作成し、「アルミニウム合金ライナー・炭素繊維製一般複合容器の技術基準」(通称KHKS0121(2005))に従って落下試験を行った後に、破裂試験をおこなった。その結果を表1に示す。   The pressure vessel liner is made of an aluminum alloy and has an outer diameter of 103 mm, a barrel thickness of 1.5 mm, a length of 420 mm, a base portion outer diameter of 31 mm, and a capacity of 2.8 L. Hoop winding layer (90 °) 0.8 mm, helical winding layer (12 °) 1.2 mm, hoop winding layer (90 °) 0.8 mm, high angle helical winding layer (55 °) 0.4 mm as the outermost layer, all A pressure vessel having a laminated structure with a thickness of 3.2 mm and, as a comparative example, a hoop winding layer (90 °) 1.2 mm, a helical winding layer (12 °) 0.9 mm, a hoop winding layer (90 °) from the inner surface side After creating a pressure vessel with a laminated structure with a thickness of 1.1 mm and a total thickness of 3.2 mm, and performing a drop test according to “Technical Standards for Aluminum Composite Liner / Carbon Fiber General Composite Container” (commonly known as KHKS0121 (2005)) ,rupture A test was conducted. The results are shown in Table 1.

Figure 2010236587
Figure 2010236587

設計強度62MPaに対して、比較例では50〜70MPaであった。一方、本発明例では80MPa以上の強度が得られた。   It was 50-70 Mpa in the comparative example with respect to design strength 62 Mpa. On the other hand, in the present invention example, a strength of 80 MPa or more was obtained.

本発明例は、比較例と比較して、落下衝撃性能を大幅に向上させることができ、より軽い容器を製造可能となった。FRP積層量は2.8L容器で、比較例では1700gであったが、本発明例では1600gで同一性能を得ることができた。   Compared with the comparative example, the example of the present invention can greatly improve the drop impact performance, and a lighter container can be manufactured. The FRP stacking amount was 2.8 L container, which was 1700 g in the comparative example, but the same performance could be obtained at 1600 g in the present invention example.

本発明は、一般高圧ガス容器として各産業分野において利用することが可能である。
1例として、燃料電池用水素容器、在宅医療用酸素容器、消化用炭酸ガス容器等である。
The present invention can be used in various industrial fields as a general high-pressure gas container.
Examples include a fuel cell hydrogen container, a home medical oxygen container, a digestion carbon dioxide container, and the like.

1 フープ巻き
2 ヘリカル巻き
3 ライナー
4 口金部
5 胴部
6 鏡部
11 アングル
12 ダメージ範囲
13 落下試験後の荷重負担部
DESCRIPTION OF SYMBOLS 1 Hoop winding 2 Helical winding 3 Liner 4 Base part 5 Trunk part 6 Mirror part 11 Angle 12 Damage range 13 Load bearing part after drop test

Claims (2)

樹脂を含浸したガラス繊維またはカーボン繊維をライナーに巻付けて形成したFRP積層構造を有する圧力容器であって、前記FRP積層構造の外面側の層として、ライナー胴部の軸方向に対して、45〜60°の配向角を有する高角度ヘリカル巻き層としたことを特徴とするFRP圧力容器。   A pressure vessel having an FRP laminated structure formed by winding glass fibers or carbon fibers impregnated with a resin around a liner, and serving as an outer surface side layer of the FRP laminated structure with respect to the axial direction of the liner body 45 An FRP pressure vessel characterized by being a high-angle helically wound layer having an orientation angle of ˜60 °. 前記FRP積層構造を形成する各層は、それぞれ同一繊維で構成され、さらに、前記高角度ヘリカル巻き層は、前記ガラス繊維またはカーボン繊維を少なくとも1回転以上巻付けた層であることを特徴とする請求項1記載のFRP圧力容器。   Each layer forming the FRP laminated structure is composed of the same fiber, and the high-angle helically wound layer is a layer in which the glass fiber or carbon fiber is wound at least one turn or more. Item 2. The FRP pressure vessel according to Item 1.
JP2009083935A 2009-03-31 2009-03-31 Fiber-reinforced plastic pressure vessel Pending JP2010236587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009083935A JP2010236587A (en) 2009-03-31 2009-03-31 Fiber-reinforced plastic pressure vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009083935A JP2010236587A (en) 2009-03-31 2009-03-31 Fiber-reinforced plastic pressure vessel

Publications (1)

Publication Number Publication Date
JP2010236587A true JP2010236587A (en) 2010-10-21

Family

ID=43091104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009083935A Pending JP2010236587A (en) 2009-03-31 2009-03-31 Fiber-reinforced plastic pressure vessel

Country Status (1)

Country Link
JP (1) JP2010236587A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149739A (en) * 2011-01-21 2012-08-09 Toyota Motor Corp Method for manufacturing high-pressure tank, and high-pressure tank
JP2015075173A (en) * 2013-10-09 2015-04-20 三菱重工業株式会社 Pressure container and method of manufacturing the same
JP2017133693A (en) * 2016-01-27 2017-08-03 株式会社旭製作所 Seamless vessel, its manufacturing method, composite vessel and its manufacturing method
US20170274603A1 (en) * 2016-03-24 2017-09-28 Mizuno Corporation Fiber-reinforced member and method for manufacturing same
CN107522261A (en) * 2016-06-21 2017-12-29 哈尔滨乐普实业发展中心 A kind of Cutout reinforcement technology of Wrapping formed fiberglass sea water desalination membrane shell
US20180104916A1 (en) * 2015-10-26 2018-04-19 Samtech Corporation Composite container
CN108027103A (en) * 2015-09-24 2018-05-11 瑞好股份公司 For preserving the pressure vessel of gas or liquid under the pressure in 200 Palestine and Israels
JP2019510911A (en) * 2016-02-02 2019-04-18 エンリッチメント テクノロジー カンパニー リミテッド ツヴァイクニーデルラッスング ドイチュラント Cylindrical rotating body
CN112670656A (en) * 2019-10-16 2021-04-16 丰田自动车株式会社 Module
JP2021076130A (en) * 2019-11-05 2021-05-20 サムテック株式会社 Tank aggregation device
CN114636093A (en) * 2020-12-15 2022-06-17 郑州宇通客车股份有限公司 Carbon fiber wound gas cylinder and preparation method thereof
CN115355439A (en) * 2022-09-20 2022-11-18 北京天海氢能装备有限公司 Layering method of high-pressure gas cylinder for vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185089A (en) * 1996-12-27 1998-07-14 Nkk Corp Electric charge preventing frp pressure vessel
JPH11101397A (en) * 1997-09-26 1999-04-13 Mitsubishi Heavy Ind Ltd Pressure vessel of cylindrical shape with frp-made dome
JP2004176898A (en) * 2002-09-30 2004-06-24 Toray Ind Inc High-pressure gas reservoir
JP2005036918A (en) * 2003-07-16 2005-02-10 Samtec Kk High pressure tank using highly rigid fiber and its manufacturing method
JP2008032088A (en) * 2006-07-27 2008-02-14 Toyota Motor Corp Tank

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185089A (en) * 1996-12-27 1998-07-14 Nkk Corp Electric charge preventing frp pressure vessel
JPH11101397A (en) * 1997-09-26 1999-04-13 Mitsubishi Heavy Ind Ltd Pressure vessel of cylindrical shape with frp-made dome
JP2004176898A (en) * 2002-09-30 2004-06-24 Toray Ind Inc High-pressure gas reservoir
JP2005036918A (en) * 2003-07-16 2005-02-10 Samtec Kk High pressure tank using highly rigid fiber and its manufacturing method
JP2008032088A (en) * 2006-07-27 2008-02-14 Toyota Motor Corp Tank

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149739A (en) * 2011-01-21 2012-08-09 Toyota Motor Corp Method for manufacturing high-pressure tank, and high-pressure tank
JP2015075173A (en) * 2013-10-09 2015-04-20 三菱重工業株式会社 Pressure container and method of manufacturing the same
CN108027103A (en) * 2015-09-24 2018-05-11 瑞好股份公司 For preserving the pressure vessel of gas or liquid under the pressure in 200 Palestine and Israels
US20180104916A1 (en) * 2015-10-26 2018-04-19 Samtech Corporation Composite container
US10456994B2 (en) 2015-10-26 2019-10-29 Samtech Corporation Composite container
JP2017133693A (en) * 2016-01-27 2017-08-03 株式会社旭製作所 Seamless vessel, its manufacturing method, composite vessel and its manufacturing method
JP2019510911A (en) * 2016-02-02 2019-04-18 エンリッチメント テクノロジー カンパニー リミテッド ツヴァイクニーデルラッスング ドイチュラント Cylindrical rotating body
US10730246B2 (en) 2016-03-24 2020-08-04 Mizuno Corporatioon Fiber-reinforced member and method for manufacturing same
US20170274603A1 (en) * 2016-03-24 2017-09-28 Mizuno Corporation Fiber-reinforced member and method for manufacturing same
CN107522261A (en) * 2016-06-21 2017-12-29 哈尔滨乐普实业发展中心 A kind of Cutout reinforcement technology of Wrapping formed fiberglass sea water desalination membrane shell
CN107522261B (en) * 2016-06-21 2023-04-07 哈尔滨乐普实业有限公司 Opening reinforcing technology for winding formed glass fiber reinforced plastic seawater desalination membrane shell
CN112670656A (en) * 2019-10-16 2021-04-16 丰田自动车株式会社 Module
CN112670656B (en) * 2019-10-16 2023-05-16 丰田自动车株式会社 Assembly with restraining member
JP2021076130A (en) * 2019-11-05 2021-05-20 サムテック株式会社 Tank aggregation device
JP7433589B2 (en) 2019-11-05 2024-02-20 サムテック株式会社 Tank gathering device
CN114636093A (en) * 2020-12-15 2022-06-17 郑州宇通客车股份有限公司 Carbon fiber wound gas cylinder and preparation method thereof
CN114636093B (en) * 2020-12-15 2023-09-01 宇通客车股份有限公司 Carbon fiber wound gas cylinder and preparation method thereof
CN115355439A (en) * 2022-09-20 2022-11-18 北京天海氢能装备有限公司 Layering method of high-pressure gas cylinder for vehicle
CN115355439B (en) * 2022-09-20 2024-04-30 北京天海氢能装备有限公司 Layering method of automotive high-pressure gas cylinder

Similar Documents

Publication Publication Date Title
JP2010236587A (en) Fiber-reinforced plastic pressure vessel
JP5408351B2 (en) High-pressure tank and method for manufacturing high-pressure tank
EP2418412B1 (en) Tank and fabrication method thereof
AU2005239418B2 (en) Hybrid pressure vessel with separable jacket
JP6354846B2 (en) High-pressure tank and high-pressure tank manufacturing method
JP5741006B2 (en) High pressure tank manufacturing method and high pressure tank
EP1659331B1 (en) High-performance pressure vessel and carbon fiber for pressure vessel
JP5621631B2 (en) High pressure tank manufacturing method and high pressure tank
JP5856447B2 (en) Long high pressure vessel
US8550286B2 (en) High-pressure container
US9618157B2 (en) Concentric shells for compressed gas storage
JP6623722B2 (en) High pressure tank
WO2012161006A1 (en) Pressure vessel
JP6994829B2 (en) High pressure container
KR102478330B1 (en) pressure vessel dome vent
JP2010270878A (en) Pressure vessel structure
KR101846733B1 (en) Pressure vessel using fiber-reinforced composite and method manufacturing thereof
JP2005113971A (en) Liner for pressure resistant container
WO2010116529A1 (en) Tank and fabrication method thereof
JP6927013B2 (en) High pressure tank
JP2007154927A (en) High-pressure tank
JP2004197812A (en) High pressure gas storage vessel
JP2015209880A (en) High pressure hydrogen storage container
CN1378052A (en) Orthogonal wound composite high pressure gas cylinder
JPH10274392A (en) Frp pressure vessel excellent in external pressure tightness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120313

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20120423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131001