JP2010222887A - Paving method, aggregate for pavement, and pavement body - Google Patents

Paving method, aggregate for pavement, and pavement body Download PDF

Info

Publication number
JP2010222887A
JP2010222887A JP2009072855A JP2009072855A JP2010222887A JP 2010222887 A JP2010222887 A JP 2010222887A JP 2009072855 A JP2009072855 A JP 2009072855A JP 2009072855 A JP2009072855 A JP 2009072855A JP 2010222887 A JP2010222887 A JP 2010222887A
Authority
JP
Japan
Prior art keywords
aggregate
pavement
resin
mass
paving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009072855A
Other languages
Japanese (ja)
Other versions
JP5372565B2 (en
Inventor
Yoshimitsu So
芳充 蘇
Akinori Ogasawara
彰紀 小笠原
Toshiro Kataoka
敏朗 片岡
Kenji Hanai
謙次 花井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BISHU KOSAN CO Ltd
Mino Ceramic Co Ltd
Original Assignee
BISHU KOSAN CO Ltd
Mino Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BISHU KOSAN CO Ltd, Mino Ceramic Co Ltd filed Critical BISHU KOSAN CO Ltd
Priority to JP2009072855A priority Critical patent/JP5372565B2/en
Publication of JP2010222887A publication Critical patent/JP2010222887A/en
Application granted granted Critical
Publication of JP5372565B2 publication Critical patent/JP5372565B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Road Paving Structures (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a paving method for paving by using resin mortar prepared by mixing an aqueous resin with aggregate as a binder and to provide the aggregate for pavement used in this paving method. <P>SOLUTION: This aggregate for pavement includes the aggregate having particle diameter of 100-3,000 μm of 99.9 mass% or more and the aggregate having particle diameter of 400 μm or more of 80 mass% or more based on the mass of the whole aggregate. In this paving method, a mixture prepared by mixing the aggregate M for pavement with an aqueous resin dispersing liquid PS is equally spread on a surface S to be constructed by thickness of 3-10 mm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、舗装方法、舗装用骨材、及び舗装体に関するものであり、特に、樹脂モルタルによる舗装方法、該舗装方法に使用される舗装用骨材、及び前記舗装用骨材を用いた前記舗装方法により敷設された舗装体に関するものである。   The present invention relates to a pavement method, a pavement aggregate, and a pavement, and in particular, a pavement method using a resin mortar, a pavement aggregate used for the pavement method, and the pavement aggregate described above. The present invention relates to a paving body laid by a paving method.

車道、歩道、駐車場、公園、遊園地、プールサイド等においては、区分け、滑り止め、或いは、景観性を高めることを目的として、アスファルト舗装面、コンクリート舗装面、或いはアスファルトコンクリート舗装面上に樹脂モルタルを敷き均す樹脂モルタル舗装が行われることがある。樹脂モルタルは、珪砂などの骨材を結合剤と混練したものであり、コテなどを用いて対象面上に3〜10mmの厚さで塗工されるのが一般的である。ここで、結合剤としては、従来、ウレタン系樹脂、エポキシ系樹脂、メタクリル酸メチル系樹脂(MMA)など、反応系又は有機溶剤系の樹脂が用いられている。   In roadways, sidewalks, parking lots, parks, amusement parks, poolsides, etc., resin is used on asphalt pavement surfaces, concrete pavement surfaces, or asphalt concrete pavement surfaces for the purpose of sorting, preventing slipping, or improving landscape. Resin mortar paving to spread and level mortar may be performed. The resin mortar is obtained by kneading an aggregate such as silica sand with a binder, and is generally applied to a target surface with a thickness of 3 to 10 mm using a trowel or the like. Here, as a binder, conventionally, a resin of a reaction system or an organic solvent system such as a urethane resin, an epoxy resin, or a methyl methacrylate resin (MMA) is used.

ところが、上記の樹脂は何れも引火しやすく、反応系樹脂の硬化剤には自然発火のおそれを有するものがあるなど、保管や施工に際して十分な安全管理が必要であった。また、反応系の樹脂は低温下では反応が進行しにくく硬化に時間を要するため、冬季や寒冷地では実用的ではないという難点があった。一方、溶剤の蒸発により硬化する有機溶剤系樹脂の場合は、臭気の発生が問題視されると共に、健康や環境に及ぼす悪影響が懸念されている。特に、近年では、産業界に対してVOC(揮発性有機化合物)の排出を低減することが要請されるようになっており、有機溶剤系樹脂の使用はその要請に沿うものではなかった。   However, any of the above resins is flammable, and some of the curing agents for the reactive resin have a risk of spontaneous ignition. For this reason, sufficient safety management is required for storage and construction. In addition, since the reaction resin hardly reacts at low temperatures and requires time for curing, there is a problem that it is not practical in winter and cold regions. On the other hand, in the case of an organic solvent-based resin that is cured by evaporation of the solvent, the generation of odor is regarded as a problem and there are concerns about adverse effects on health and the environment. In particular, in recent years, there has been a demand for the industry to reduce the emission of VOCs (volatile organic compounds), and the use of organic solvent-based resins has not been met.

そこで、従来の樹脂に代替して、水系樹脂を用いて樹脂モルタル舗装を行うことを想到し得る。しかしながら、従来の樹脂モルタル舗装において単に樹脂のみを水系樹脂に代替した場合は、実際には舗装は不可能である。すなわち、図5(a)に模式的に示すように、水系樹脂wpを結合剤として骨材mと混練した樹脂モルタルを舗装対象面s上に塗工した場合、図5(b)に示すように、表層で先に水分が蒸発して樹脂が硬化し、薄い樹脂被膜fが形成される。そのため、樹脂モルタルの内部から水分が蒸発しにくくなり、内部の骨材mを十分に接合することができない。また、表面に樹脂被膜fが形成されることにより、コテなどで塗り返す仕上げ作業を行うことも困難である。従って、水系樹脂を用いて樹脂モルタル舗装を行うことは、未だ実現されていない。   Therefore, it can be conceived to perform resin mortar paving using an aqueous resin instead of the conventional resin. However, in the conventional resin mortar pavement, when only the resin is replaced with a water-based resin, pavement is actually impossible. That is, as schematically shown in FIG. 5A, when a resin mortar kneaded with the aggregate m using the aqueous resin wp as a binder is applied on the surface to be paved s, as shown in FIG. 5B. In addition, the moisture is first evaporated on the surface layer to cure the resin, and a thin resin film f is formed. Therefore, it becomes difficult for water to evaporate from the inside of the resin mortar, and the internal aggregate m cannot be sufficiently joined. In addition, since the resin film f is formed on the surface, it is difficult to perform a finishing operation for repainting with a soldering iron or the like. Therefore, it has not yet been realized to perform resin mortar paving using an aqueous resin.

なお、水系樹脂を使用した舗装についての提案もなされているが(例えば、特許文献1,2参照)、特許文献1の技術は、従来のエポキシ樹脂を結合剤とした塗装体が硬化した後に、その表面及び空隙を速乾性の水系樹脂で被覆するものあり、特許文献2の技術は、従来のアスファルト舗装体の表面を水系樹脂で被覆するものである。従って、何れの技術においても、水系樹脂は舗装体の表面に薄い被膜を形成しているに過ぎない。   In addition, although the proposal about the pavement using a water-system resin is also made (for example, refer patent documents 1 and 2), after the technique of patent documents 1 hardens the coating object which used the conventional epoxy resin as a binder, The surface and voids are covered with a quick-drying aqueous resin, and the technique of Patent Document 2 is to coat the surface of a conventional asphalt pavement with an aqueous resin. Accordingly, in any technique, the water-based resin merely forms a thin film on the surface of the pavement.

そこで、本発明は、上記の実情に鑑み、水系樹脂を結合剤として骨材と混合した樹脂モルタルで舗装を行う舗装方法、該舗装方法に使用される舗装用骨材、及び、前記舗装用骨材を用いた前記舗装方法により敷設される舗装体の提供を、課題とするものである。   Therefore, in view of the above circumstances, the present invention provides a paving method for paving with a resin mortar mixed with an aggregate using an aqueous resin as a binder, an aggregate for paving used in the paving method, and the bone for paving. An object of the present invention is to provide a pavement that is laid by the pavement method using a material.

上記の課題を解決するため、本発明にかかる舗装方法は、「全骨材の質量に対して、粒子径100μm〜3000μmの骨材を99.9質量%以上、且つ、粒子径400μm以上の骨材を80質量%以上有する骨材と、水系樹脂分散液とを混合した混合物を、施工対象面上に3mm〜10mmの厚さに敷き均す」ものである。   In order to solve the above-mentioned problem, the pavement method according to the present invention is “a bone having a particle diameter of 100 μm to 3000 μm with respect to the total aggregate mass of 99.9% by mass or more and a particle diameter of 400 μm or more. A mixture obtained by mixing an aggregate having 80% by mass or more of the material and an aqueous resin dispersion is spread on a surface to be processed to a thickness of 3 mm to 10 mm ”.

「骨材」としては、珪砂などの自然砕石、砂利、セラミックス製人工骨材、ガラスカレット、スラグ等を使用することができる。本発明では、骨材の粒度が重要であり、材質は特に限定されるものではない。   As the “aggregate”, natural crushed stone such as quartz sand, gravel, ceramic artificial aggregate, glass cullet, slag and the like can be used. In the present invention, the particle size of the aggregate is important, and the material is not particularly limited.

骨材の「粒子径」は、篩い分け法による測定に基づくものである。   The “particle diameter” of the aggregate is based on measurement by a sieving method.

「水系樹脂分散液」としては、水に難溶な樹脂の骨格に親水性基を導入して水に分散させた自己乳化型、或いは、水に難溶な樹脂を乳化剤と共に強制的に水に分散させた強制乳化型の樹脂の何れも使用可能であるが、自己乳化型樹脂の方が一般的に耐水性が高いため、より好適である。ここで、樹脂の種類は特に限定されず、ポリエステル系樹脂、アクリル系樹脂、ウレタン系樹脂、或いは、これらの複合樹脂を使用可能である。   The “aqueous resin dispersion” is a self-emulsifying type in which a hydrophilic group is introduced into a skeleton of a resin that is hardly soluble in water and dispersed in water, or a resin that is hardly soluble in water is forcibly made into water together with an emulsifier. Any of the compulsory emulsification type resins dispersed can be used, but the self-emulsification type resin is more preferable because it generally has higher water resistance. Here, the type of the resin is not particularly limited, and a polyester resin, an acrylic resin, a urethane resin, or a composite resin thereof can be used.

化学反応によって硬化する反応系樹脂とは異なり、溶媒系の樹脂の場合は溶媒が蒸発することにより硬化するため、上述のように、表層が先に乾燥して樹脂の被膜が形成されると、内部からの水分蒸発が妨げられて硬化しにくく舗装が困難となる。本発明者らは、骨材の粒度を上記要件を満たすよう制御することにより、水系樹脂を用いて施工性良く樹脂モルタル舗装することができることを見出した。上記要件を満たす骨材は、従来の樹脂モルタル舗装で一般的に用いられてきた骨材より粗い粒子の割合が大きく、骨材間に0.5mm〜1mm程度の連続した空隙が形成される。そのため、有機溶剤より表面張力の大きな水が、樹脂モルタル層の内部から表層側へ、この空隙を介して移動し易い。   Unlike a reaction-type resin that is cured by a chemical reaction, in the case of a solvent-based resin, it is cured by evaporation of the solvent, and as described above, when the surface layer is dried first to form a resin film, Water evaporation from the inside is hindered and hard to harden, making paving difficult. The present inventors have found that resin mortar paving can be performed with good workability using a water-based resin by controlling the particle size of the aggregate to satisfy the above requirements. Aggregates satisfying the above requirements have a larger proportion of coarse particles than aggregates generally used in conventional resin mortar paving, and continuous voids of about 0.5 mm to 1 mm are formed between the aggregates. For this reason, water having a surface tension larger than that of the organic solvent easily moves from the inside of the resin mortar layer to the surface layer side through this gap.

また、水は有機溶剤より蒸発潜熱が大きいため、温度条件が同じであれば同量蒸発するまでに有機溶剤より時間を要するが、その間に水分の蒸発によって表面に樹脂被膜が形成されても、骨材の粒度が粗い場合は樹脂被膜間に空隙が残る。そのため、樹脂皮膜間の空隙を介して、内部の水分が継続的に蒸発することができる。これにより、樹脂モルタル層の厚さを3〜10mmと厚くしても、内部まで十分に乾燥させ硬化させることができる。   In addition, since water has a larger latent heat of evaporation than an organic solvent, if the temperature conditions are the same, it takes more time than the organic solvent to evaporate in the same amount, but even if a resin film is formed on the surface by evaporation of moisture during that time, When the aggregate has a coarse particle size, voids remain between the resin coatings. Therefore, the internal moisture can continuously evaporate through the gap between the resin films. Thereby, even if the thickness of the resin mortar layer is increased to 3 to 10 mm, it can be sufficiently dried and cured to the inside.

一方、骨材の粒子間距離が離れ過ぎている場合は、水系樹脂が乾燥により十分硬化したとしても、骨材どうしを樹脂で接合することができない。これに対し、本発明では、骨材の粒度を上記要件を満たすものとすることにより、水が蒸発するための経路となる空隙を確保しつつ、骨材どうしを樹脂で接合できる距離に、骨材の粒子間距離をとどめることができる。   On the other hand, when the distance between the particles of the aggregate is too far, the aggregates cannot be joined with the resin even if the water-based resin is sufficiently cured by drying. On the other hand, in the present invention, by satisfying the above-mentioned requirements for the particle size of the aggregate, the bone can be joined to the distance by which the aggregate can be joined with the resin while ensuring a gap serving as a path for water to evaporate. The distance between particles of the material can be kept.

従って、本発明によれば、骨材の粒度を上記要件を満たすものとすることにより、低温下でも硬化し易く、引火のおそれや臭気発生の問題がなく、取り扱いの容易な水系樹脂を用いて、従来の樹脂を用いた樹脂モルタル舗装と同程度の厚さを有する樹脂モルタル舗装を行うことができる。   Therefore, according to the present invention, by making the aggregate particle size satisfy the above requirements, it is easy to cure even at low temperatures, and there is no risk of flammability or odor generation, and an easily handled aqueous resin is used. The resin mortar pavement having the same thickness as the resin mortar pavement using the conventional resin can be performed.

本発明にかかる舗装方法は、上記構成に加え、「前記混合物に、水硬性材料を全骨材100重量部に対して0.1重量部〜3.0重量部添加する」ものとすることができる。   In addition to the above configuration, the pavement method according to the present invention shall be "adding 0.1 to 3.0 parts by weight of a hydraulic material to 100 parts by weight of the total aggregate in the mixture". it can.

「水硬性材料」は、水和により硬化する材料であり、ポルトランドセメント等の種々のセメントの他、石膏、酸化マグネシウム、アルカリ土類ケイ酸塩等の粉末材料を使用することができる。   The “hydraulic material” is a material that hardens by hydration, and powder materials such as gypsum, magnesium oxide, and alkaline earth silicate can be used in addition to various cements such as Portland cement.

上記の水硬性材料が水系樹脂分散液と骨材との混合物中に存在する場合、水硬性材料の水和反応によって水系樹脂分散液から水分が除かれ、樹脂の硬化が促進される。また、樹脂の硬化に加えて、水硬性材料の水和物自体も硬化するため、混合物全体の硬化がより促進される。   When the hydraulic material is present in the mixture of the aqueous resin dispersion and the aggregate, the water is removed from the aqueous resin dispersion by the hydration reaction of the hydraulic material, and the curing of the resin is promoted. In addition to the curing of the resin, the hydrate of the hydraulic material itself is also cured, so that the curing of the entire mixture is further promoted.

ここで、上記の水硬性材料の添加量が少ない場合は、硬化を促進する作用効果が殆ど発揮されない。一方、添加量が多過ぎれば混合物の硬化が速くなり過ぎ、可使時間が短くなって仕上げ作業がしにくくなる。これに対し、本発明では、水硬性材料の添加量を上記範囲としたことにより、後述のように、十分な可使時間を確保しつつ、樹脂モルタルの硬化を促進することができる。   Here, when there is little addition amount of said hydraulic material, the effect which accelerates | stimulates hardening is hardly exhibited. On the other hand, if the amount added is too large, the mixture will cure too quickly, and the pot life will be shortened, making it difficult to complete the finishing operation. On the other hand, in this invention, hardening of resin mortar can be accelerated | stimulated, ensuring sufficient pot life as mentioned later by making the addition amount of a hydraulic material into the said range.

次に、本発明にかかる舗装用骨材は、「上記に記載の舗装方法に使用される舗装用骨材であって、全骨材の質量に対して、粒子径100μm〜3000μmの骨材が99.9質量%以上で、粒子径400μm以上の骨材が80質量%以上の骨材を有する」ものとすることができる。   Next, the aggregate for paving according to the present invention is “the aggregate for paving used in the paving method described above, wherein the aggregate having a particle diameter of 100 μm to 3000 μm with respect to the mass of the total aggregate. The aggregate having a particle diameter of 99.9% by mass or more and a particle diameter of 400 μm or more has an aggregate of 80% by mass or more.

かかる構成の舗装用骨材を使用することにより、上述のように、従来の樹脂を結合剤として用いた樹脂モルタル舗装と同程度の厚さを有する樹脂モルタル舗装を、水系樹脂を結合剤として行うことが可能となる。   By using the aggregate for paving having such a configuration, as described above, resin mortar paving having the same thickness as conventional resin mortar paving using resin as a binder is performed using an aqueous resin as a binder. It becomes possible.

次に、本発明にかかる舗装体は、「アスファルト舗装面、コンクリート舗装面、又はアスファルトコンクリート舗装面上に敷設された舗装体であって、全骨材の質量に対して、粒子径100μm〜3000μmの骨材を99.9質量%以上、且つ、粒子径400μm以上の骨材を80質量%以上有する骨材が、硬化した樹脂によって接合された接合層によって構成され、該接合層は、3mm〜10mmの厚さに形成されている」ものである。   Next, the pavement according to the present invention is an “asphalt pavement surface, a concrete pavement surface, or a pavement laid on an asphalt concrete pavement surface, and has a particle diameter of 100 μm to 3000 μm with respect to the mass of the total aggregate. The aggregate having 99.9% by mass or more of the aggregate and 80% by mass or more of the aggregate having a particle diameter of 400 μm or more is constituted by a joining layer joined by a cured resin, and the joining layer is 3 mm to It is formed to a thickness of 10 mm ".

骨材の粒度が上記要件を満たすよう制御されていることにより、本発明の舗装体では骨材間に連続空隙が存在する。この連続空隙は雨水の浸透する経路となるため、本発明の舗装体は透水性が高い。また、骨材の粒度が制御されていることにより、水系樹脂を用いた場合であっても、上述のように舗装の際にコテ等による仕上げ作業が行い易いため、本発明の舗装体の表面は平滑に仕上げられており外観が良い。加えて、本発明の舗装体は、従来の舗装体に比べて粗い粒子径の骨材の割合が大きいため、滑り抵抗値が高い。更に、粗い粒子径の骨材の割合が大きいにも関わらず、骨材の粒子径が制御されていることより、骨材どうしが樹脂によって強固に接合されており、後述のように耐摩耗性も高い。   By controlling the aggregate particle size so as to satisfy the above requirements, continuous voids exist between the aggregates in the pavement of the present invention. Since this continuous space serves as a path through which rainwater permeates, the pavement of the present invention has high water permeability. Moreover, since the particle size of the aggregate is controlled, the surface of the pavement according to the present invention can be easily finished with a trowel or the like when paving even when an aqueous resin is used. Is smooth and has a good appearance. In addition, the pavement of the present invention has a high slip resistance value because the ratio of the coarse particle diameter aggregate is larger than that of the conventional pavement. Furthermore, despite the large proportion of aggregate with coarse particle size, the aggregate particle size is controlled, so that the aggregates are firmly joined by resin, and wear resistance as described later Is also expensive.

本発明にかかる舗装体は、上記構成に加え、「前記接合層に、硬化した水硬性材料が分散している」ものとすることができる。   The pavement according to the present invention may be “the cured hydraulic material is dispersed in the bonding layer” in addition to the above-described configuration.

本発明の舗装体は、硬化した水硬性材料が樹脂中にフィラーのように分散していることにより、硬化した樹脂の強度が高められている。なお、本発明では、硬化した水硬性材料は接合層中に分散しているのみであり、骨材の結合には寄与していない。この点で、水硬性材料が結合の主体となっているポリマーセメントによる舗装体とは相違している。このような構成の舗装体は、粒度の制御された骨材と水系樹脂との混合物に水硬性材料を添加して行われる上述の舗装方法によって得ることができ、水硬性材料の割合としては水和前の質量として全骨材100重量部に対して0.1〜3.0重量部であれば好適である。   In the pavement of the present invention, the cured hydraulic material is dispersed like a filler in the resin, so that the strength of the cured resin is increased. In the present invention, the cured hydraulic material is only dispersed in the bonding layer and does not contribute to the bonding of the aggregate. In this respect, it is different from a pavement made of polymer cement in which a hydraulic material is the main component of bonding. A pavement having such a structure can be obtained by the above-described pavement method in which a hydraulic material is added to a mixture of aggregate and water-based resin with controlled particle size, and the ratio of the hydraulic material is water. If it is 0.1-3.0 weight part with respect to 100 weight part of total aggregates as a mass before the sum, it is suitable.

以上のように、本発明の効果として、水系樹脂を結合剤として骨材と混合した樹脂モルタルで舗装を行う舗装方法、該舗装方法に使用される舗装用骨材、及び、前記舗装用骨材を用いた前記舗装方法により敷設される舗装体の提供を、提供することができる。   As described above, as an effect of the present invention, a paving method for paving with a resin mortar mixed with an aggregate using an aqueous resin as a binder, an aggregate for paving used in the paving method, and the aggregate for paving It is possible to provide a pavement that is laid by the above-described pavement method.

実施例1〜実施例11の骨材の累積粒度分布曲線を示すグラフである。It is a graph which shows the accumulation particle size distribution curve of the aggregate of Examples 1-11. 実施例8の累積粒度分布曲線と近似式による曲線を示すグラフである。It is a graph which shows the cumulative grain size distribution curve of Example 8, and the curve by an approximate expression. 実施例1及び実施例9の骨材を用いた試料について、破断面を実体顕微鏡で観察した像である。It is the image which observed the torn surface with the stereoscopic microscope about the sample using the aggregate of Example 1 and Example 9. FIG. 本実施形態の舗装方法における乾燥の過程を模式的に示した図である。It is the figure which showed typically the process of the drying in the paving method of this embodiment. 従来の樹脂モルタル舗装方法において、単に樹脂を水系樹脂に代替した場合の乾燥の過程を模式的に示す図である。In the conventional resin mortar pavement method, it is a figure which shows typically the process of drying at the time of replacing resin with a water-system resin.

以下、本発明の一実施形態である舗装方法、及び、舗装用骨材について、図1乃至図4を用いて説明する。   Hereinafter, a pavement method and a pavement aggregate according to an embodiment of the present invention will be described with reference to FIGS. 1 to 4.

本実施形態の舗装用骨材は、全骨材の質量に対して、粒子径100μm〜3000μmの骨材を99.9質量%以上、且つ、粒子径400μm以上の骨材を80質量%以上有している。また、本実施形態の舗装方法は、本実施形態の舗装用骨材と、水系樹脂分散液とを混合した混合物を、施工対象面上に3mm〜10mmの厚さに敷き均すものである。なお、前記混合物には、骨材及び水系樹脂分散に加えて顔料を添加することができる。   The aggregate for paving of this embodiment has 99.9% by mass or more of aggregate with a particle size of 100 μm to 3000 μm and 80% by mass or more of aggregate with a particle size of 400 μm or more with respect to the mass of the total aggregate. is doing. Moreover, the pavement method of this embodiment spreads the mixture which mixed the pavement aggregate of this embodiment, and an aqueous resin dispersion on the construction object surface in the thickness of 3 mm-10 mm, and is equalized. In addition to the aggregate and the aqueous resin dispersion, a pigment can be added to the mixture.

以下、本実施形態の舗装用骨材を上記構成とした根拠を示すために、実施例1〜実施例11の骨材用いて行った検討の結果を示す。実施例1〜実施例11の骨材は、何れも最大粒子径が3000μ以下の珪砂からなり、それぞれ粒度が異なっている。各実施例の骨材の粒度を、JIS Z8801−1に規定する標準ふるいを用いた篩い分け法により測定した結果を、表1に示す。また、この粒度測定の結果に基づく各実施例の骨材の累積粒度分布曲線を図1(a)に、図1(a)における累積粒度分布曲線を粒子径が約1200μm以下の範囲で拡大した曲線を図1(b)に示す。ここで、実施例1〜実施例11の骨材は、表1及び図1(a)から分かるように、何れも粒子径100μm〜3000μmの骨材によって全骨材の99.9質量%以上が占められている。   Hereinafter, in order to show the grounds for the above-described configuration of the aggregate for paving of the present embodiment, the results of studies conducted using the aggregates of Examples 1 to 11 are shown. The aggregates of Examples 1 to 11 are all composed of silica sand having a maximum particle size of 3000 μm or less, and the particle sizes are different. Table 1 shows the results of measuring the particle size of the aggregate of each example by a sieving method using a standard sieve specified in JIS Z8801-1. In addition, the cumulative particle size distribution curve of the aggregate of each example based on the result of the particle size measurement is shown in FIG. 1 (a), and the cumulative particle size distribution curve in FIG. 1 (a) is enlarged in a range where the particle diameter is about 1200 μm or less. The curve is shown in FIG. Here, as can be seen from Table 1 and FIG. 1A, the aggregates of Examples 1 to 11 are all aggregates having a particle diameter of 100 μm to 3000 μm and 99.9% by mass or more of the total aggregate. Occupied.

次に、実施例1〜実施例11の骨材を用いて実際に樹脂モルタル舗装を行い、施工性と硬化性を評価した結果を示す。まず、各実施例の骨材に、骨材100重量部に対して12重量部の水系アクリル樹脂分散液、及び、1重量部の顔料粉末を添加し、モルタルミキサーで混合して混合物(樹脂モルタル)とした。得られた樹脂モルタルを、屋外のアスファルトコンクリート舗装面上に塗布し、コテで敷き均して5mm厚さに仕上げた。   Next, resin mortar paving is actually performed using the aggregates of Examples 1 to 11, and the results of evaluating the workability and curability are shown. First, 12 parts by weight of an aqueous acrylic resin dispersion and 1 part by weight of pigment powder are added to 100 parts by weight of the aggregate to the aggregates of each example, and the mixture is mixed with a mortar mixer (resin mortar). ). The obtained resin mortar was applied on an outdoor asphalt concrete pavement surface, spread with a trowel, and finished to a thickness of 5 mm.

施工性及び硬化性は、次のように評価した。評価結果を表1に併せて示す。
<施工性>
樹脂モルタル舗装面の表面を平滑に仕上げるまで樹脂の流動性が保たれ、コテによる塗り返し作業を支障なく行うことができた場合を良好(○)、平滑に仕上げる前に表面が硬化してしまい、コテによる塗り返し作業が困難であった場合を不良(×)とし、両者の中間をやや不良(△)として評価した。
<硬化性>
樹脂モルタル舗装面を24時間養生した後、舗装面上に乗用車を乗り入れ、舗装面に亀裂や剥離等の損傷が生じなかった場合を良好(○)、何らかの損傷が生じた場合を不良(×)として評価した。なお、24時間の養生中、外温度は1〜12℃であった。
Workability and curability were evaluated as follows. The evaluation results are also shown in Table 1.
<Workability>
Resin fluidity is maintained until the surface of the resin mortar pavement is finished smoothly, and when the repainting operation with a trowel can be performed without hindrance (○), the surface hardens before smooth finish. The case where the repainting operation with a trowel was difficult was evaluated as defective (×), and the middle of both was evaluated as slightly defective (Δ).
<Curing property>
After curing the resin mortar pavement surface for 24 hours, put a passenger car on the pavement surface, and when the pavement surface is not damaged such as cracking or peeling (○), it is poor when some damage occurs (×) As evaluated. In addition, the external temperature was 1-12 degreeC during the curing for 24 hours.

施工性及び硬化性の評価が何れも良好であったのは、実施例3〜5及び実施例9〜11であった。これを図1(b)に示した累積粒度分布曲線と考え合わせると、施工性及び硬化性の評価が共に良好であった実施例の骨材には、何れも粒子径400μm以上の骨材が80質量%以上含まれていることを読み取ることができる。このことから、有機溶媒より表面張力の大きな水が蒸発するためには、骨材の粒子間に比較的大きな空隙が必要であり、舗装用骨材が粒子径400μm以上の骨材を80質量%以上含む場合に、そのような空隙が有効に形成されると考えられた。   It was Examples 3-5 and Examples 9-11 that both evaluation of workability and sclerosis | hardenability was favorable. When this is considered together with the cumulative particle size distribution curve shown in FIG. 1 (b), the aggregates of the examples in which both the workability and the curability evaluation are good are aggregates having a particle diameter of 400 μm or more. It can be read that 80% by mass or more is contained. For this reason, in order for water having a surface tension larger than that of the organic solvent to evaporate, a relatively large gap is required between the particles of the aggregate, and the aggregate for paving is 80% by mass of aggregate having a particle diameter of 400 μm or more. In the case of including the above, it was considered that such voids are effectively formed.

また、図1から、施工性及び硬化性の評価が共に良好であった実施例は、3000μm以下の全粒子径範囲にわたって、累積粒度分布曲線が実施例8の累積粒度分布曲線より粒子径の大きな側に位置する実施例であることが分かる。これに対し、累積粒度分布曲線が実施例8の分布曲線より粒子径の小さい側に位置する実施例6,7、及び、累積粒度分布曲線が実施例8の分布曲線と交差する実施例1,2は、施工性及び硬化性が何れも良好ではなかった。ここで、施工性及び硬化性の評価が「良好」とそれ以外とに別れる境界となった実施例8の分布曲線は、図2に示すように、200μm〜850μmの粒子径範囲で、次の数式によって表わされる曲線とほぼ一致する。ここで、数式中、yは積算質量(%)であり、xは粒子径(μm)である。
y=4×10−7−0.0007x+0.215x+81.8
Also, from FIG. 1, in the examples in which both the workability and the curability evaluation were good, the cumulative particle size distribution curve was larger than the cumulative particle size distribution curve of Example 8 over the entire particle size range of 3000 μm or less. It can be seen that the embodiment is located on the side. In contrast, Examples 6 and 7 in which the cumulative particle size distribution curve is located on the smaller particle diameter side than the distribution curve of Example 8, and Example 1 in which the cumulative particle size distribution curve intersects the distribution curve of Example 8 In No. 2, neither the workability nor the curability was good. Here, as shown in FIG. 2, the distribution curve of Example 8, which was a boundary where the evaluation of workability and curability was divided into “good” and other than that, was in the particle diameter range of 200 μm to 850 μm, and the following. It almost coincides with the curve expressed by the mathematical formula. Here, in the formula, y is an integrated mass (%), and x is a particle diameter (μm).
y = 4 × 10 −7 x 3 −0.0007x 2 + 0.215x + 81.8

換言すれば、粒子径が200μm〜850μmの範囲で、累積粒度分布曲線が上記の近似式により表わされる曲線より、粒子径の大きい側に粒度分布が位置する骨材は、施工性及び硬化性が良好であると判断することができる。   In other words, in the range of 200 μm to 850 μm in particle diameter, the aggregate in which the particle size distribution is located on the larger particle diameter side than the curve in which the cumulative particle size distribution curve is represented by the above approximate expression, has workability and curability. It can be judged that it is favorable.

なお、粒子径が850μm以上の骨材を多く含む実施例3〜5も、粒子径が850μm以上の骨材を殆ど含まない実施例9〜11も、共に施工性及び硬化性の評価が良好であったことから、粒子径が850μm以上の骨材の割合は、樹脂モルタルの施工性及び硬化性には影響を与えないと考えられた。   In addition, both Examples 3 to 5 including many aggregates having a particle diameter of 850 μm or more and Examples 9 to 11 including almost no aggregate having a particle diameter of 850 μm or more have good evaluation of workability and curability. Therefore, it was considered that the ratio of the aggregate having a particle size of 850 μm or more did not affect the workability and curability of the resin mortar.

ここで、上記の施工性の評価において、良好と評価された実施例の施工性について、より詳細に説明する。施工性が良好と評価された実施例(実施例3〜5,9〜11)の骨材を使用した樹脂モルタルについて、舗装対象面上にコテを用いて敷き均す作業を行った際、水分の蒸発によって樹脂モルタル層の表面に薄い樹脂被膜が形成されても、コテで押圧することにより、樹脂モルタル層の内部から表面側に水系樹脂分散液が浸み出してきた。そして、浸み出してきた樹脂分散液の流動性によって、コテによる塗り返し作業を引き続いて行うことができた。   Here, in the evaluation of the workability described above, the workability of Examples evaluated as good will be described in more detail. About the resin mortar using the aggregate of Examples (Examples 3 to 5, 9 to 11) evaluated as having good workability, when performing the work of leveling with a trowel on the surface to be paved, Even when a thin resin film is formed on the surface of the resin mortar layer due to evaporation of the water, the aqueous resin dispersion has oozed out from the inside of the resin mortar layer to the surface side by pressing with a trowel. The reflowing operation with a trowel could be continued due to the fluidity of the resin dispersion that had leached out.

このことを、模式的に図示した図4を用いて説明する。まず、骨材Mと水系樹脂分散液PSとを混合した樹脂モルタルが舗装対象面S上に塗布されると(図4(a)参照)、樹脂モルタル層の表層で先に水分が蒸発して樹脂が硬化し、表面に薄い樹脂皮膜Fが形成される。ここで、粒子径400μm以上の粗い骨材Mを80質量%以上含む舗装用骨材を用いた場合は、樹脂被膜Fの間に空隙が存在する(図4(b)参照)。そのため、コテで押圧することにより、樹脂被膜F間の空隙を介して内部から水系樹脂分散液PSが浸み出し、樹脂被膜Fの上に水系樹脂分散液PSの層Lができる(図4(c)参照)。これにより、層Lにおける樹脂の流動性によって、コテによる塗り返し作業を行うことができる。そして、コテによる押圧及び塗り返し作業の繰り返しによって樹脂分散液PSが内部から押し出されると共に、表面及び骨材M間の空隙を介して水分が蒸発すると、硬化した樹脂Pによって骨材Mが被覆されると共に、骨材どうしが樹脂Pによって接合される(図4(d)参照)。   This will be described with reference to FIG. First, when a resin mortar in which the aggregate M and the aqueous resin dispersion PS are mixed is applied on the pavement target surface S (see FIG. 4A), moisture is first evaporated on the surface layer of the resin mortar layer. The resin is cured and a thin resin film F is formed on the surface. Here, when a paving aggregate containing 80 mass% or more of coarse aggregate M having a particle diameter of 400 μm or more is used, voids exist between the resin coatings F (see FIG. 4B). Therefore, by pressing with a trowel, the aqueous resin dispersion PS oozes out from the inside through the gap between the resin coatings F, and a layer L of the aqueous resin dispersion PS is formed on the resin coating F (FIG. 4 ( c)). Thereby, the repainting operation with a trowel can be performed by the fluidity of the resin in the layer L. Then, the resin dispersion PS is pushed out from the inside by repeated pressing and repainting operations with a trowel, and when the moisture evaporates through the gap between the surface and the aggregate M, the aggregate M is covered with the cured resin P. At the same time, the aggregates are joined by the resin P (see FIG. 4D).

上記の考察は、次に示すように、硬化した後の樹脂モルタル層の断面の観察結果からも裏付けられた。観察には、各実施例の骨材を上述と同様の組成で水系アクリル樹脂分散液及び顔料粉末と混合して得た樹脂モルタルを、平滑な面上に敷き均して硬化させた試料を用い、破断面を実体顕微鏡を用いて観察した。例として、実施例1及び実施例9の骨材を用いた試料の観察像を、それぞれ図3(a),(b)に示す。   The above consideration was supported by the observation result of the cross section of the resin mortar layer after curing, as shown below. For observation, a sample obtained by mixing and curing a resin mortar obtained by mixing the aggregate of each example with an aqueous acrylic resin dispersion and pigment powder in the same composition as described above on a smooth surface is used. The fracture surface was observed using a stereomicroscope. As an example, observed images of samples using the aggregates of Example 1 and Example 9 are shown in FIGS. 3 (a) and 3 (b), respectively.

図3(a)に示すように、施工性が「不良」であった実施例1の骨材を使用した試料では、表層の骨材間は着色された樹脂の層によってほぼ塞がれており、施工に際しても、表面に樹脂被膜が殆ど隙間なく形成されたものと考えられた。なお、内部においても骨材間には0.5mm以上の大きな空隙はほとんど存在しない様子が観察された。これは、実施例1の骨材は、粒子径の小さな粒子から大きな粒子までを広い範囲で含有している骨材であるため、大きな粒子間に小さな粒子が入り込むことにより、比較的粒子が密に充填しているためと考えられた。   As shown in FIG. 3 (a), in the sample using the aggregate of Example 1 in which the workability was “bad”, the surface aggregate was almost blocked by the colored resin layer. Even during the construction, it was considered that the resin film was formed on the surface with almost no gap. In the interior, it was observed that there was almost no large gap of 0.5 mm or more between the aggregates. This is because the aggregate of Example 1 is an aggregate containing a wide range of particles from small particles to large particles, so that the small particles enter between the large particles, so that the particles are relatively dense. It was thought that it was filled.

一方、図3(b)に示すように、施工性が「良好」であった実施例9の骨材を使用した試料では、表層の骨材間に比較的大きな空隙が観察され、施工に際しても、表面に形成された樹脂被膜の間に空隙が存在していたと考えられた。なお、内部においても骨材間に0.5mm〜1mmの大きな空隙が散在している様子が観察された。これは、実施例9の骨材は、粒度分布の幅が狭く粒子径が比較的揃っているため、骨材の粒子が密に充填しなかったためと考えられた。   On the other hand, as shown in FIG. 3 (b), in the sample using the aggregate of Example 9 whose workability was “good”, relatively large voids were observed between the aggregates on the surface layer, and even during the construction. It was considered that voids existed between the resin films formed on the surface. In addition, it was observed that large gaps of 0.5 mm to 1 mm were scattered between the aggregates inside. This was considered because the aggregate of Example 9 had a narrow particle size distribution and a relatively uniform particle size, and thus the aggregate particles were not densely packed.

これらのことから、粒子径400μm以上の骨材を80質量%以上有する舗装用骨材を使用することにより、樹脂モルタル内部から表面へ水分が移動するための経路となる連続空隙を確保した上で、実施例3〜5のように粒度分布の幅の広い骨材を使用することにより、比較的緻密でより強度の高い舗装面を施工することができ、一方、実施例9〜11のように粒度分布の幅の狭い骨材を使用することにより、空隙が多く透水性の高い舗装面を施工することができると考えられた。   From these facts, by using a paving aggregate having an aggregate with a particle diameter of 400 μm or more of 80% by mass or more, a continuous void serving as a path for moisture to move from the inside of the resin mortar to the surface is secured. By using an aggregate having a wide particle size distribution as in Examples 3 to 5, it is possible to construct a relatively dense and higher-strength pavement surface, while as in Examples 9 to 11 It was considered that a paved surface with many voids and high water permeability could be constructed by using an aggregate with a narrow particle size distribution.

次に、本実施形態の骨材(施工性及び硬化性が共に良好であった実施例の骨材)を使用し、水系樹脂分散液を結合剤として使用した樹脂モルタルによって施工された舗装体(本実施形態の舗装体)の耐摩耗性及び滑り抵抗を評価するために、樹脂モルタルを硬化させた試料について、摩耗減量及び滑り抵抗値を測定した。測定は、実施例4の骨材を上述と同様の組成で水系アクリル樹脂分散液及び顔料粉末と混合して得た樹脂モルタルを、平滑な面上に敷き均して、室温で1週間養生して硬化させた試料B1を用いて行った。試料サイズは、300mm×150mm×5mmとした。ここで、摩耗減量はJIS K5600−5−9に準拠し、滑り抵抗値はASTM E 303−66Tに準拠して測定した。測定結果を、表2に示す。   Next, using the aggregate of this embodiment (the aggregate of the example in which both workability and curability were good), a pavement constructed by a resin mortar using an aqueous resin dispersion as a binder ( In order to evaluate the wear resistance and slip resistance of the pavement of this embodiment, the weight loss and slip resistance values were measured for the samples in which the resin mortar was cured. The measurement was carried out by laying a resin mortar obtained by mixing the aggregate of Example 4 with a water-based acrylic resin dispersion and pigment powder in the same composition as described above on a smooth surface and curing at room temperature for 1 week. The sample B1 cured in this way was used. The sample size was 300 mm × 150 mm × 5 mm. Here, the wear loss was measured in accordance with JIS K5600-5-9, and the slip resistance value was measured in accordance with ASTM E 303-66T. The measurement results are shown in Table 2.

また、対比のために、結合剤として従来の二液性エポキシ樹脂を使用した以外は、試料B1と同様に作製した対照試料BRについて、摩耗減量と滑り抵抗値を測定した。その結果を、表2に併せて示す。   For comparison, wear loss and slip resistance were measured for a control sample BR produced in the same manner as Sample B1, except that a conventional two-component epoxy resin was used as a binder. The results are also shown in Table 2.

表2から明らかなように、本実施形態の骨材を使用した場合、水系樹脂分散液を結合剤とした試料B1と、従来のエポキシ樹脂を結合剤とした対照試料BRとで、摩耗減量は同程度であった。このことから、水系樹脂分散液を使用しても、従来の樹脂モルタル舗装体と比べて、耐摩耗性において遜色のない舗装体が得られることが確認された。加えて、滑り抵抗値は試料B1方の方が対照試料BRより大きな値を示し、特に湿潤状態における滑り抵抗値では、試料B1方が対照試料BRより約4割高い値を示した。これにより、本実施形態によれば、滑り抵抗値の高い舗装体が得られることが示された。   As is apparent from Table 2, when the aggregate of the present embodiment is used, the wear loss in the sample B1 using the aqueous resin dispersion as the binder and the control sample BR using the conventional epoxy resin as the binder is It was about the same. From this, it was confirmed that even when an aqueous resin dispersion was used, a pavement having an abrasion resistance comparable to that of a conventional resin mortar pavement was obtained. In addition, the slip resistance value of the sample B1 was larger than that of the control sample BR, and in particular, the slip resistance value in a wet state was about 40% higher than that of the control sample BR. Thereby, according to this embodiment, it was shown that a pavement with a high slip resistance value is obtained.

次に、水硬性材料の添加が、樹脂モルタルの施工性及び硬化性に及ぼす影響について検討した結果を示す。水硬性材料としては、セメント粉末を使用した。また、骨材としては実施例4の骨材を使用し、上述と同様の組成で水系アクリル樹脂分散液及び顔料粉末を加え、更にセメント粉末を添加した原料を、モルタルミキサーで混合した。得られた樹脂モルタルを屋外のアスファルトコンクリート舗装面上に塗布し、コテで敷き均して5mm厚さに仕上げた。施工性及び硬化性の評価は、セメント粉末の添加量の異なる7種類の試料C1〜C7について行った。ここで、施工性の評価は上述と同様に行ったが、硬化性の評価は、舗装面に損傷を生じることなく乗用車を乗り入れることができるまでの養生時間、すなわち、開放できるまでの時間で評価した。なお、養生中の外気温は5〜15℃であった。セメント粉末の添加量と施工性及び硬化性の評価結果を、表3に示す。   Next, the result of having examined about the influence which addition of a hydraulic material has on the workability and curability of resin mortar is shown. Cement powder was used as the hydraulic material. Moreover, the aggregate of Example 4 was used as an aggregate, the water-based acrylic resin dispersion liquid and the pigment powder were added by the same composition as the above, and the raw material further added with the cement powder was mixed with a mortar mixer. The obtained resin mortar was applied on an outdoor asphalt concrete pavement surface, spread with a trowel, and finished to a thickness of 5 mm. The evaluation of workability and curability was performed on seven types of samples C1 to C7 with different amounts of cement powder added. Here, the evaluation of the workability was performed in the same manner as described above, but the evaluation of the curability was evaluated by the curing time until the passenger car can be entered without causing damage to the pavement surface, that is, the time until it can be opened. did. In addition, the outside temperature during curing was 5 to 15 ° C. Table 3 shows the addition amount of cement powder and the evaluation results of workability and curability.

表3から明らかなように、セメント粉末の添加量が増加するのに伴って、開放できるまでの時間は短縮されており、セメント粉末の添加によって樹脂モルタルの硬化が促進されていることが分かる。しかしながら、施工性をみてみると、セメント粉末の添加量が骨材100重量部に対して0.1〜2.0重量部までの試料C1〜C5では施工性は良好であったものの、添加量3重量部の樹脂モルタルC6では施工性がやや不良となり、添加量4重量部の試料C7では硬化が速過ぎ、コテによる仕上げ作業を行うことができなかった。これらの結果から、施工性及び硬化性を共に満足するためには、セメント粉末の添加量は骨材100重量部に対して0.1〜3.0重量部が望ましく、より望ましくは、施工性が良好で硬化時間が8時間以下と短い0.7〜2.0重量部であると考えられた。   As is apparent from Table 3, as the amount of cement powder added increases, the time until it can be opened is shortened, and it can be seen that the addition of cement powder promotes the hardening of the resin mortar. However, when looking at the workability, the amount of cement powder added was 0.1 to 2.0 parts by weight with respect to 100 parts by weight of the aggregate, but the workability was good in samples C1 to C5. With 3 parts by weight of resin mortar C6, workability was slightly poor, and with the addition amount of 4 parts by weight of sample C7, curing was too fast and finishing work with a trowel could not be performed. From these results, in order to satisfy both workability and curability, the amount of cement powder added is preferably 0.1 to 3.0 parts by weight with respect to 100 parts by weight of the aggregate, more preferably workability. And the curing time was considered to be 0.7 to 2.0 parts by weight as short as 8 hours or less.

セメント粉末の水和物は硬化して針状結晶となり、硬化した樹脂によって骨材が接合された接合層中にフィラーのように分散することとなるため、舗装体の強度を高める効果も期待できる。   Cement powder hydrates harden to form needle-like crystals and are dispersed like fillers in the joint layer where the aggregate is joined by the hardened resin, so the effect of increasing the strength of the pavement can also be expected. .

以上のように、本実施形態の舗装用骨材、及び、該舗装用骨材を使用した舗装方法によれば、水分の蒸発により硬化する水系樹脂分散液を結合剤として、約5mmの厚さを有する樹脂モルタル舗装を行うことができた。なお、舗装の厚さに関しては、少なくとも10mmまでは施工性及び硬化性ともに良好に施工できることを確認している。また、厚さを薄くする場合、骨材の最大粒子径を考慮すると3mmまでは可能であるが、望ましくは4mm以上であると考えられる。   As described above, according to the pavement aggregate of the present embodiment and the pavement method using the pavement aggregate, a thickness of about 5 mm is obtained using the aqueous resin dispersion that is cured by evaporation of moisture as a binder. Resin mortar pavement having As for the thickness of the pavement, it has been confirmed that it can be satisfactorily constructed in both workability and curability up to at least 10 mm. Further, when the thickness is reduced, the maximum particle diameter of the aggregate is taken into consideration, up to 3 mm is possible, but it is considered that it is desirably 4 mm or more.

そして、水系樹脂を結合剤とした樹脂モルタル舗装を実現したことにより、従来の樹脂モルタル舗装で化学反応型又は有機溶剤型の樹脂を用いることに起因して問題となっていた、引火のおそれや臭気の発生等の問題を解消することができる。また、樹脂が水系であるため、舗装のために用いる装置や用具の洗浄が容易である。   And by realizing a resin mortar pavement using a water-based resin as a binder, there has been a problem of inflammability, which has been a problem due to the use of a chemical reaction type or organic solvent type resin in conventional resin mortar pavement. Problems such as generation of odor can be solved. Moreover, since the resin is water-based, it is easy to clean the apparatus and tools used for paving.

また、従来の化学反応型の樹脂では低温下での硬化が困難であったところ、水系樹脂は低温でも硬化し易いため、冬季や寒冷地でも問題なく使用することができる。上述した検討においても、水系アクリル樹脂分散液を使用した場合、外気温1〜12℃の環境下で少なくとも24時間以内に施工現場を開放することが可能であった。   In addition, since conventional chemical reaction type resins are difficult to cure at low temperatures, water-based resins are easy to cure even at low temperatures, and therefore can be used without problems even in winter and cold regions. Also in the examination mentioned above, when the water-based acrylic resin dispersion was used, it was possible to open the construction site within at least 24 hours in an environment with an outside air temperature of 1 to 12 ° C.

加えて、骨材100重量部に対して0.1〜3.0重量部という少量の水硬性材料を添加し、水系樹脂の水分を利用して水硬性材料を硬化させることにより、十分な可使時間を確保しつつ、水系樹脂を用いた樹脂モルタルの硬化を促進することができた。   In addition, a small amount of 0.1 to 3.0 parts by weight of a hydraulic material is added to 100 parts by weight of the aggregate, and the hydraulic material is cured using the water content of the water-based resin. It was possible to promote the curing of the resin mortar using the water-based resin while securing the working time.

更に、従来の樹脂モルタル舗装に用いられていた樹脂は、アスファルトに含まれる油分に起因してアスファルトとの接着性が悪く、アスファルト舗装面やアスファルトコンクリート舗装面上に施工する場合は、プライマーを塗布する前処理工程が必要であった。これに対し、本実施形態で使用した水系アクリル系樹脂分散液などの水系樹脂は、一般的にアスファルトやコンクリートとの接着性が高いため、アスファルト舗装、アスファルトコンクリート舗装、及び、コンクリート舗装面に直接施工することが可能であり、前処理工程を省略できる利点を有している。   Furthermore, the resin used in conventional resin mortar pavement has poor adhesion to asphalt due to the oil contained in the asphalt, and when applying on asphalt pavement or asphalt concrete pavement, apply a primer. A pretreatment step was required. On the other hand, the aqueous resin such as the aqueous acrylic resin dispersion used in this embodiment generally has high adhesiveness to asphalt or concrete, so it is directly applied to asphalt pavement, asphalt concrete pavement, and concrete pavement surfaces. It can be constructed and has the advantage that the pretreatment process can be omitted.

また、本実施形態の舗装用骨材を用いた舗装方法によれば、従来の樹脂モルタル舗装体と同程度の耐摩耗性を有し、且つ、従来の樹脂モルタル舗装体より滑り抵抗値の高い舗装体を得ることができた。   Moreover, according to the pavement method using the aggregate for paving of the present embodiment, it has the same level of wear resistance as the conventional resin mortar pavement and has a higher slip resistance value than the conventional resin mortar pavement. A pavement was obtained.

加えて、水系樹脂は硬化した後に可撓性を有する。そのため、アスファルト舗装面上に本実施形態の舗装体を敷設した場合、高温下でアスファルトが膨張し変形しても、その変形に対する追従性が高い。これにより、舗装体に亀裂や剥離が生じにくい利点を有している。   In addition, the water-based resin has flexibility after being cured. Therefore, when the pavement of this embodiment is laid on the asphalt pavement surface, even if the asphalt expands and deforms at a high temperature, the followability to the deformation is high. Thereby, it has the advantage that a crack and peeling do not arise easily in a pavement.

加えて、本実施形態では、水分が蒸発する経路を確保するために、骨材の粒度を制御して骨材間に連続する空隙を形成させているが、この連続空隙は、舗装体に透水性や吸音性を具備させる効果も発揮する。   In addition, in this embodiment, in order to secure a path for moisture to evaporate, the aggregate particle size is controlled to form a continuous gap between the aggregates. It also exhibits the effect of having the properties and sound absorption.

以上、本発明について好適な実施形態を挙げて説明したが、本発明は上記の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々の改良及び設計の変更が可能である。   Although the present invention has been described with reference to the preferred embodiments, the present invention is not limited to the above-described embodiments, and various improvements and design changes can be made without departing from the scope of the present invention. It is.

例えば、樹脂モルタルを敷き均す作業にコテを用いる場合を例示したが、これに限定されず、レーキやローラ等を使用可能である。また、着色のために顔料粉末を添加する場合を例示したが、カラー骨材を使用することもできる。顔料の添加による着色は舗装面の摩耗により退色することがあるが、カラー骨材の場合は摩耗により退色しない利点がある。   For example, although the case where a trowel is used for the work of spreading and leveling resin mortar is illustrated, the present invention is not limited to this, and a rake, a roller, or the like can be used. Moreover, although the case where the pigment powder was added for coloring was illustrated, a color aggregate can also be used. Coloring due to the addition of pigments may fade due to abrasion of the paved surface, but color aggregates have the advantage of not fading due to abrasion.

PS 水系樹脂分散液
M 骨材
F 樹脂皮膜
PS Water-based resin dispersion M Aggregate F Resin film

特開平05−25803号公報JP 05-25803 A 特開2000−328505号公報JP 2000-328505 A

Claims (5)

全骨材の質量に対して、粒子径100μm〜3000μmの骨材を99.9質量%以上、且つ、粒子径400μm以上の骨材を80質量%以上有する骨材と、
水系樹脂分散液と
を混合した混合物を、施工対象面上に3mm〜10mmの厚さに敷き均すことを特徴とする舗装方法。
An aggregate having 99.9% by mass or more of an aggregate having a particle diameter of 100 μm to 3000 μm and 80% by mass or more of an aggregate having a particle diameter of 400 μm or more with respect to the mass of the total aggregate;
A pavement method characterized in that a mixture obtained by mixing an aqueous resin dispersion is spread on a surface to be constructed to a thickness of 3 mm to 10 mm.
前記混合物に、水硬性材料を全骨材100重量部に対して0.1重量部〜3.0重量部添加することを特徴とする請求項1に記載の舗装方法。   The paving method according to claim 1, wherein a hydraulic material is added to the mixture in an amount of 0.1 to 3.0 parts by weight with respect to 100 parts by weight of the total aggregate. 請求項1または請求項2に記載の舗装方法に使用される舗装用骨材であって、
全骨材の質量に対して、粒子径100μm〜3000μmの骨材を99.9質量%以上、且つ、粒子径400μm以上の骨材を80質量%以上有する
ことを特徴とする舗装用骨材。
The aggregate for paving used in the paving method according to claim 1 or 2,
A pavement aggregate comprising 99.9% by mass or more of an aggregate having a particle diameter of 100 μm to 3000 μm and 80% by mass or more of an aggregate having a particle diameter of 400 μm or more based on the mass of the total aggregate.
アスファルト舗装面、コンクリート舗装面、又はアスファルトコンクリート舗装面上に敷設された舗装体であって、
全骨材の質量に対して、粒子径100μm〜3000μmの骨材を99.9質量%以上、且つ、粒子径400μm以上の骨材を80質量%以上有する骨材が、硬化した樹脂によって接合された接合層によって構成され、
該接合層は、3mm〜10mmの厚さに形成されていることを特徴とする舗装体。
An asphalt pavement surface, a concrete pavement surface, or a pavement laid on an asphalt concrete pavement surface,
Aggregates having 99.9% by mass or more of aggregates having a particle diameter of 100 μm to 3000 μm and 80% by mass or more of aggregates having a particle diameter of 400 μm or more with respect to the mass of all aggregates are joined by a cured resin. Composed of an adhesive layer
The bonding layer is formed to a thickness of 3 mm to 10 mm.
前記接合層に、硬化した水硬性材料が分散していることを特徴する請求項4に記載の舗装体。   The pavement according to claim 4, wherein a cured hydraulic material is dispersed in the bonding layer.
JP2009072855A 2009-03-24 2009-03-24 Paving method and paving body Expired - Fee Related JP5372565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009072855A JP5372565B2 (en) 2009-03-24 2009-03-24 Paving method and paving body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009072855A JP5372565B2 (en) 2009-03-24 2009-03-24 Paving method and paving body

Publications (2)

Publication Number Publication Date
JP2010222887A true JP2010222887A (en) 2010-10-07
JP5372565B2 JP5372565B2 (en) 2013-12-18

Family

ID=43040370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009072855A Expired - Fee Related JP5372565B2 (en) 2009-03-24 2009-03-24 Paving method and paving body

Country Status (1)

Country Link
JP (1) JP5372565B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012193591A (en) * 2011-03-18 2012-10-11 Kikusui Chemical Industries Co Ltd Paving material
JP2016056089A (en) * 2014-09-10 2016-04-21 Jfeスチール株式会社 Rolling concrete pavement material
JP2017014741A (en) * 2015-06-29 2017-01-19 西日本高速道路株式会社 Pavement repairing material and pavement repairing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124040A (en) * 2002-08-05 2004-04-22 Kao Corp Binder composition for road construction
JP2005126998A (en) * 2003-10-23 2005-05-19 Toa Doro Kogyo Co Ltd Road paving composition and paving body making use thereof
JP2005194124A (en) * 2004-01-06 2005-07-21 Nippon Steel Corp Inorganic resin mortar composition and inorganic resin mortar coated steel product
JP2006219821A (en) * 2005-02-08 2006-08-24 Toray Ind Inc Paving method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124040A (en) * 2002-08-05 2004-04-22 Kao Corp Binder composition for road construction
JP2005126998A (en) * 2003-10-23 2005-05-19 Toa Doro Kogyo Co Ltd Road paving composition and paving body making use thereof
JP2005194124A (en) * 2004-01-06 2005-07-21 Nippon Steel Corp Inorganic resin mortar composition and inorganic resin mortar coated steel product
JP2006219821A (en) * 2005-02-08 2006-08-24 Toray Ind Inc Paving method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012193591A (en) * 2011-03-18 2012-10-11 Kikusui Chemical Industries Co Ltd Paving material
JP2016056089A (en) * 2014-09-10 2016-04-21 Jfeスチール株式会社 Rolling concrete pavement material
JP2017014741A (en) * 2015-06-29 2017-01-19 西日本高速道路株式会社 Pavement repairing material and pavement repairing method

Also Published As

Publication number Publication date
JP5372565B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
JP4643318B2 (en) Polymer cement concrete surface coating material and its construction method
JP2011157772A (en) Waterproof pavement structure of concrete floor slab, waterproof construction method for the concrete floor slab, and waterproof construction method for the concrete floor slab, and method for constructing waterproof pavement of the concrete floor slab
CN102838334B (en) Concrete member repairing agent, preparation method and construction method
JP5938976B2 (en) Repair method for concrete structures
JP4695568B2 (en) Polymer cement mortar with excellent paint workability and adhesion
JP5372565B2 (en) Paving method and paving body
JP2005538276A (en) Resin mortar composition for building and floor construction method using the same
JP6591390B2 (en) Road pavement repair method
JP6764639B2 (en) Road surface repair method and road surface repair kit
JP2005042439A (en) Surface covering aggregate for permeable pavement utilizing tile waste material, permeable paving material and paving body utilizing permeable paving material and these manufacturing method
JP2020523279A (en) Drying premix of flexible concrete, and its preparation and use
JP5326389B2 (en) Construction method of mortar finish structure
JP2008196145A (en) Material and method for repairing surface of pavement
JP2010285849A (en) Repair method for pavement surface layer
EP3894367A1 (en) Flexible concrete
JP5308967B2 (en) Pavement structure and pavement construction method
JP2007205011A (en) Construction method and coating method for soil-based pavement
JP3913717B2 (en) Cement mortar composition for repairing asphalt and concrete pavement surface
JP4387995B2 (en) Tile paving material
JP2015000820A (en) Polymer cement mortar, and construction method using the same
EP1403226B1 (en) Cement-free floor coating composition
JP2010018493A (en) Hydraulic composition and structure using the same
JP2020165184A (en) Block pavement filler
JP2006328229A (en) Coating material on surface of asphaltic paving, and method for treating surface of asphaltic paving
JP3378226B2 (en) Cosmetic functionally graded water-permeable composition and method for producing the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20090518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130424

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130918

R150 Certificate of patent or registration of utility model

Ref document number: 5372565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees