JP2010192249A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP2010192249A
JP2010192249A JP2009035253A JP2009035253A JP2010192249A JP 2010192249 A JP2010192249 A JP 2010192249A JP 2009035253 A JP2009035253 A JP 2009035253A JP 2009035253 A JP2009035253 A JP 2009035253A JP 2010192249 A JP2010192249 A JP 2010192249A
Authority
JP
Japan
Prior art keywords
vinyl alcohol
battery
fiber
surface area
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009035253A
Other languages
Japanese (ja)
Other versions
JP5504457B2 (en
Inventor
Taiko Cho
泰衡 趙
Hiroshi Onishi
洋 大西
Giichi Miyata
義一 宮田
Tatsuro Nakamura
達郎 中村
Masanao Tanaka
政尚 田中
Yuka Kondo
由香 近藤
Yuuka Takezaki
有由香 竹崎
Tetsuo Sakai
哲男 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Japan Vilene Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vilene Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Japan Vilene Co Ltd
Priority to JP2009035253A priority Critical patent/JP5504457B2/en
Publication of JP2010192249A publication Critical patent/JP2010192249A/en
Application granted granted Critical
Publication of JP5504457B2 publication Critical patent/JP5504457B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery that reduces a battery voltage in a high temperature state. <P>SOLUTION: The lithium ion secondary battery includes therein powder, fiber or fiber assembly including a polymer containing a vinyl alcohol unit or a derivative thereof in the amount such that a surface area of the vinyl alcohol unit part is 0.9 cm<SP>2</SP>or more per 1 mAh of battery capacity. In particular, the polymer is made from polyvinyl alcohol. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、リチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery.

近年の電子技術の進歩に伴い、カメラ一体型VTR、携帯電話、ラップトップコンピューター等の小型のポータブル電子機器が開発され、それらに使用するためのポータブル電源として、小型且つ軽量で高エネルギー密度の二次電池の開発が強く要請されている。   With recent advances in electronic technology, small portable electronic devices such as camera-integrated VTRs, mobile phones, laptop computers, etc. have been developed. There is a strong demand for the development of secondary batteries.

このような要請に応える二次電池としては、理論上高電圧を発生でき、且つ高エネルギー密度を有するリチウム、ナトリウム、アルミニウム等の軽金属を負極活物質として用いる非水電解液二次電池が期待されている。中でも、リチウムイオンの充放電を、非水系電解液を介して行うリチウムイオン二次電池は、水溶液系電解液二次電池であるニッケル・カドミウム電池や鉛蓄電池と比較して、高出力及び高エネルギー密度を実現できるものとして活発に研究開発が進められている。   As a secondary battery that meets such a demand, a non-aqueous electrolyte secondary battery that uses a light metal such as lithium, sodium, and aluminum as a negative electrode active material that can theoretically generate a high voltage and has a high energy density is expected. ing. In particular, lithium ion secondary batteries that charge and discharge lithium ions via non-aqueous electrolytes are higher in output and energy than nickel-cadmium batteries and lead-acid batteries, which are aqueous electrolyte secondary batteries. Research and development is actively underway to achieve density.

このリチウムイオン二次電池においては、内在するエネルギーが大きいため、内部短絡・外部短絡などの異常時に高い安全性が求められており、この安全対策のために、ポリオレフィン系微孔膜がセパレータとして使用されている。このポリオレフィン系微孔膜が異常発熱時に無孔化して電気を流さない機能(シャットダウン機能)を有すると考えられているためである。このような安全対策を講じていても異常発熱が止まらず、ポリオレフィン系微孔膜が収縮又は溶融し、電極同士が接触してショートしてしまい、発火する場合が考えられた。   In this lithium ion secondary battery, since the inherent energy is large, high safety is required in the event of an abnormality such as an internal short circuit or external short circuit. For this safety measure, a polyolefin microporous membrane is used as a separator. Has been. This is because this polyolefin-based microporous film is considered to have a function (shutdown function) that is made non-porous at the time of abnormal heat generation and does not flow electricity. Even if such safety measures were taken, abnormal heat generation did not stop, and the polyolefin microporous membrane contracted or melted, and the electrodes contacted each other to cause a short circuit, resulting in ignition.

他方、セパレータの耐熱性を向上させ、リチウムイオン二次電池の安全性を高めるために、ポリオレフィン系微孔膜を耐熱性多孔体と一体化することが提案されている。例えば、「ポリオレフィン多孔質膜とポリエステル樹脂多孔質膜とからなることを特徴とするリチウムイオン二次電池用セパレータ」(特許文献1)や、「耐熱性バリアフィルムと、保液層フィルムとが接着されてなり、突き刺し強度が400gf以上であることを特徴とするセパレータ」(特許文献2)が提案されている。このようなセパレータを用いた場合には、収縮又は溶融によるショートは生じないが、更に電池反応が進行し、熱暴走の危険性がある。   On the other hand, in order to improve the heat resistance of the separator and enhance the safety of the lithium ion secondary battery, it has been proposed to integrate the polyolefin microporous film with the heat resistant porous body. For example, “a separator for a lithium ion secondary battery characterized by comprising a polyolefin porous membrane and a polyester resin porous membrane” (Patent Document 1) or “a heat-resistant barrier film and a liquid retaining layer film are bonded. Thus, a separator "(Patent Document 2) characterized in that the piercing strength is 400 gf or more has been proposed. When such a separator is used, a short circuit due to shrinkage or melting does not occur, but the battery reaction further proceeds and there is a risk of thermal runaway.

なお、集電体に接着された活物質層をセパレータに接着する接着剤としてポリビニルアルコールを含む有機溶媒溶液からなるもの(特許文献3)、エチレン−ビニルアルコールが湿熱ゲル化したゲル化物によって繊維を固定した不織布で構成される有機電解液電池用セパレータ(特許文献4)、ポリオレフィン樹脂多孔膜の少なくとも片面に、無機フィラーとケン化度85%以上のポリビニルアルコールからなる多孔層を備えた多層多孔膜(特許文献5)が知られている。しかしながら、これらのものを使用したリチウムイオン二次電池も電池反応が進行し、熱暴走の危険性がある。   It should be noted that the active material layer adhered to the current collector is made of an organic solvent solution containing polyvinyl alcohol as an adhesive for adhering to the separator (Patent Document 3), and the fiber is formed by a gelled product obtained by gelling ethylene-vinyl alcohol. Organic electrolyte battery separator composed of a fixed nonwoven fabric (Patent Document 4), a multilayer porous membrane comprising a porous layer composed of an inorganic filler and polyvinyl alcohol having a saponification degree of 85% or more on at least one surface of a polyolefin resin porous membrane (Patent Document 5) is known. However, lithium ion secondary batteries using these batteries also have a risk of thermal runaway because the battery reaction proceeds.

特開2002−190291号公報JP 2002-190291 A 特開2004−363048号公報JP 2004-363048 A 国際公開99/31750号パンフレットWO99 / 31750 pamphlet 国際公開2004/038833号パンフレットInternational Publication No. 2004/038833 Pamphlet 特開2008−186721号公報JP 2008-186721 A

本発明の課題は、高温状態での電池電圧を下げることができるリチウムイオン二次電池を提供することにある。   The subject of this invention is providing the lithium ion secondary battery which can lower the battery voltage in a high temperature state.

前記課題は、本発明による、ビニルアルコール単位を含むポリマー又はその誘導体を含む粉体、繊維又は繊維集合体を、そのビニルアルコール単位部分の表面積が電池容量1mAhあたり0.9cm以上の量で内蔵していることを特徴とする、リチウムイオン二次電池により解決することができる。 The object is to incorporate a powder, fiber or fiber assembly containing a polymer containing vinyl alcohol units or a derivative thereof according to the present invention in an amount of 0.9 cm 2 or more per 1 mAh of battery capacity. This can be solved by using a lithium ion secondary battery.

本発明のリチウムイオン二次電池は、通常の使用温度を大幅に上回る高温状態(例えば、120℃)となった場合でも、電池電圧を下げることができるため、安全性に優れている。   The lithium ion secondary battery of the present invention is excellent in safety because the battery voltage can be lowered even in a high temperature state (for example, 120 ° C.) significantly exceeding the normal use temperature.

本発明のリチウムイオン二次電池は、ビニルアルコール単位を含むポリマー又はその誘導体(以下、「ビニルアルコール系ポリマー」と表現することがある)を含む粉体、繊維又は繊維集合体を、特定量内蔵していること以外は、従来のリチウムイオン二次電池と同様の構成とすることができる。例えば、正極として、リチウム含有金属化合物のペーストを集電材に担持させたもの等を使用し、負極として、リチウム金属やリチウムと合金になる材料(例えば、スズ系合金、シリコン系合金、SiOなどの材料)、及びリチウムを吸蔵、放出可能なカーボン又はグラファイトを含む炭素材料(例えば、コークス、天然黒鉛や人造黒鉛などの炭素材料)を集電材に担持させたもの等を使用し、電解質として、非水系電解液(例えば、エチレンカーボネートとジエチルカーボネートの混合溶媒にLiPFを溶解させた電解液)等を使用することができる。また、リチウムイオン二次電池のセル構造も特に限定するものではなく、例えば、積層形、円筒形、角形、コイン形などであることができる。 The lithium ion secondary battery of the present invention contains a specific amount of powder, fiber or fiber assembly containing a polymer containing vinyl alcohol units or a derivative thereof (hereinafter sometimes referred to as “vinyl alcohol polymer”). Except for this, the same configuration as a conventional lithium ion secondary battery can be adopted. For example, a material in which a paste of a lithium-containing metal compound is carried on a current collector is used as a positive electrode, and a material that becomes an alloy with lithium metal or lithium (for example, a tin-based alloy, a silicon-based alloy, SiO, or the like) Material), and carbon materials that can store and release lithium or carbon materials containing graphite (for example, carbon materials such as coke, natural graphite, and artificial graphite) supported on a current collector, etc. An aqueous electrolytic solution (for example, an electrolytic solution in which LiPF 6 is dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate) or the like can be used. Further, the cell structure of the lithium ion secondary battery is not particularly limited, and may be, for example, a laminated shape, a cylindrical shape, a square shape, a coin shape, or the like.

本発明のリチウムイオン二次電池では、ビニルアルコール系ポリマーが粉体、繊維又は繊維集合体の形態を有する。このような粉体、繊維又は繊維集合体は比表面積が広く、少量で特定表面積量内蔵することができるため、従来のリチウムイオン二次電池構造を変化させることがない。   In the lithium ion secondary battery of the present invention, the vinyl alcohol polymer has a form of powder, fiber, or fiber aggregate. Such a powder, fiber, or fiber aggregate has a large specific surface area and can be incorporated in a specific surface area in a small amount, so that the conventional lithium ion secondary battery structure is not changed.

本発明のビニルアルコール系ポリマーが粉体形態からなる場合、その形状及び平均粒径は特に限定するものではないが、少量でもビニルアルコール単位部分の表面積が広く、リチウムイオン二次電池構成材料への影響を少なくできるように、粉体の平均粒径は250μm以下であることが好ましく、100μm以下であることがより好ましく、60μm以下であることがより好ましく、30μm以下であることがより好ましく、1μm以下であることが更に好ましい。平均粒径の下限は特に限定するものではないが、100nm以上であるのが好ましい。なお、ビニルアルコール系ポリマーを含む粉体はビニルアルコール系ポリマーのみから構成することができるし、一部をビニルアルコール系ポリマーから構成することもできる。しかしながら、少量で電池内に内蔵することを考慮すると、ビニルアルコール系ポリマーのみから構成するのが好ましい。なお、「平均粒径」は走査型電子顕微鏡(Scanning Electron Microscope、SEM)より観測した、100個の粒子の粒径(直径)の算術平均値であり、粒子が非球形である場合には、最も長く採ることのできる直径と最も短く採ることのできる直径の算術平均値を粒径とする。   When the vinyl alcohol polymer of the present invention is in powder form, its shape and average particle diameter are not particularly limited, but even in a small amount, the surface area of the vinyl alcohol unit portion is large, and it can be used as a constituent material for lithium ion secondary batteries. In order to reduce the influence, the average particle size of the powder is preferably 250 μm or less, more preferably 100 μm or less, more preferably 60 μm or less, more preferably 30 μm or less, and more preferably 1 μm. More preferably, it is as follows. The lower limit of the average particle size is not particularly limited, but is preferably 100 nm or more. In addition, the powder containing a vinyl alcohol-type polymer can be comprised only from a vinyl alcohol-type polymer, and a part can also be comprised from a vinyl alcohol-type polymer. However, considering that it is incorporated in the battery in a small amount, it is preferable to use only a vinyl alcohol polymer. The “average particle diameter” is an arithmetic average value of the particle diameters (diameters) of 100 particles as observed with a scanning electron microscope (SEM). When the particles are non-spherical, The arithmetic average value of the longest diameter and the shortest diameter is taken as the particle size.

本発明のビニルアルコール系ポリマーが繊維形態からなる場合、その横断面形状及び平均繊維径は特に限定するものではないが、少量でもビニルアルコール単位部分の表面積が広く、リチウムイオン二次電池構成材料への影響を少なくできるように、15μm以下であることが好ましく、12μm以下であることがより好ましく、10μm以下であることが更に好ましい。平均繊維径の下限は特に限定するものではないが、10nm以上であるのが現実的である。なお、ビニルアルコール系ポリマーを含む繊維はビニルアルコール系ポリマーのみから構成することができるし、一部をビニルアルコール系ポリマーから構成することもできる。しかしながら、少量で電池内に内蔵することを考慮すると、ビニルアルコール系ポリマーのみから構成するのが好ましい。なお、この「平均繊維径」は、走査型電子顕微鏡(Scanning Electron Microscope、SEM)を用い、50本以上の繊維が観察できる倍率で、異なる繊維の10箇所における繊維直径を計測し、その10箇所の繊維直径をもとに算出した算術平均値を意味する。なお、繊維の横断面形状が非円形である場合には、最も長く採ることのできる直径と最も短く採ることのできる直径の算術平均値を繊維直径とする。   When the vinyl alcohol polymer of the present invention has a fiber form, the cross-sectional shape and the average fiber diameter are not particularly limited, but even a small amount has a large surface area of the vinyl alcohol unit portion, leading to a lithium ion secondary battery constituent material. Is preferably 15 μm or less, more preferably 12 μm or less, and still more preferably 10 μm or less. The lower limit of the average fiber diameter is not particularly limited, but is practically 10 nm or more. In addition, the fiber containing a vinyl alcohol-type polymer can be comprised only from a vinyl alcohol-type polymer, and a part can also be comprised from a vinyl alcohol-type polymer. However, considering that it is incorporated in the battery in a small amount, it is preferable to use only a vinyl alcohol polymer. In addition, this "average fiber diameter" measured the fiber diameter in 10 places of a different fiber by the magnification which can observe 50 or more fibers using a scanning electron microscope (Scanning Electron Microscope, SEM), and 10 places It means the arithmetic average value calculated based on the fiber diameter. When the cross-sectional shape of the fiber is non-circular, the arithmetic average value of the longest diameter and the shortest diameter is defined as the fiber diameter.

本発明の繊維集合体は前述のようなビニルアルコール系ポリマー繊維が集合したものであり、その集合状態は特に限定するものではないが、例えば、シート状、束状であることができる。特に、シート状であると、セパレータとして使用できるなど、電極間に配置することができ、限られたスペースの中で電池に内蔵しやすいため好適である。なお、シート形態としては、不織布、織物、編物などがある。これらの中でも、不織布は繊維1本1本が分散しており、表面積が広く、繊維表面が電解液と接触しやすいため好適である。なお、シート状繊維集合体(特には不織布)をセパレータとして使用する場合には、繊維径が太いとセパレータの体積が大きくなり、電池の体積当たりのエネルギー密度が減少することになる。また、繊維径が太いと平均孔径が大きくなり、絶縁作用つまり自己放電抑制作用が悪くなり、リチウムのデンドライトによる内部短絡が発生しやすくなる。更には、繊維径が太いと孔径分布が広くなり、電極の電圧分布が不均一になる結果、電池の劣化が早くなる。したがって、シート状繊維集合体(特には不織布)をセパレータとして使用する場合には、平均繊維径の小さい繊維(15μm以下)を用いるのが好ましい。   The fiber assembly of the present invention is an assembly of the vinyl alcohol polymer fibers as described above, and the assembly state is not particularly limited, but can be, for example, a sheet form or a bundle form. In particular, the sheet form is suitable because it can be used as a separator and can be disposed between electrodes, and can be easily built in a battery in a limited space. Examples of the sheet form include non-woven fabric, woven fabric, and knitted fabric. Among these, the nonwoven fabric is preferable because each fiber is dispersed, the surface area is large, and the fiber surface is easily in contact with the electrolytic solution. In addition, when using a sheet-like fiber assembly (especially nonwoven fabric) as a separator, if the fiber diameter is large, the volume of the separator increases, and the energy density per volume of the battery decreases. Further, if the fiber diameter is large, the average pore diameter is increased, the insulating action, that is, the self-discharge suppressing action is deteriorated, and an internal short circuit due to lithium dendrite is likely to occur. Furthermore, if the fiber diameter is large, the hole diameter distribution becomes wide and the voltage distribution of the electrodes becomes non-uniform, resulting in faster battery deterioration. Therefore, when using a sheet-like fiber aggregate (especially nonwoven fabric) as a separator, it is preferable to use a fiber having a small average fiber diameter (15 μm or less).

なお、ビニルアルコール系ポリマー繊維を用いて繊維集合体を形成する場合には、ビニルアルコール系ポリマー繊維のみを用いて繊維集合体を形成することも、ビニルアルコール系ポリマー繊維を混合して繊維集合体を形成することもできるが、少量で電池内に内蔵することを考慮すると、ビニルアルコール系ポリマー繊維のみを用いて繊維集合体を形成するのが好ましい。このようにビニルアルコール系ポリマー繊維のみから構成することができ、また、表面積が広いことから、静電紡糸法により繊維集合体(特に不織布)を形成するのが好ましい。なお、ビニルアルコール系ポリマー繊維を含む繊維集合体(特に繊維シート)を、補強材、微孔膜などの他の材料と複合することもできる。   When forming a fiber assembly using vinyl alcohol polymer fibers, the fiber assembly can be formed using only vinyl alcohol polymer fibers or by mixing vinyl alcohol polymer fibers. However, it is preferable to form a fiber assembly using only vinyl alcohol-based polymer fibers in consideration of being incorporated in the battery in a small amount. Thus, since it can comprise only a vinyl alcohol-type polymer fiber and it has a large surface area, it is preferable to form a fiber assembly (especially nonwoven fabric) by an electrospinning method. In addition, the fiber assembly (especially fiber sheet) containing a vinyl alcohol-type polymer fiber can also be combined with other materials such as a reinforcing material and a microporous membrane.

本明細書において、「電池内に内蔵する」とは、電解液と接触可能な状態で電池内に配置することを意味し、その位置は特に限定するものではないが、例えば、電極間、電池の内壁、蓋付近、管底などに配置することができる。ビニルアルコール系ポリマーが繊維シート(特に不織布)からなる場合、電極間に位置していると、活物質の活性を抑制することなく、効率的に電池電圧を下げることができるため好適である。特にセパレータとして内蔵していると、電池構成材料を増やすことなく内蔵できるため好適である。このようにセパレータとして電池内に内蔵している場合、繊維シート(セパレータ)の厚さはイオン透過性に優れ、内部抵抗が上昇しないように、80μm以下であるのが好ましく、70μm以下であるのがより好ましく、60μm以下であるのがより好ましく、50μm以下であるのがより好ましく、40μm以下であるのがより好ましい。また、機械的強度に優れ、絶縁性能に優れるように、5μm以上であるのが好ましく、10μm以上であるのがより好ましい。なお、特定表面積量となるように、繊維シート(セパレータ)の厚さが薄ければ薄いほど、平均繊維径の小さいビニルアルコール系繊維を含んでいるのが好ましい。   In this specification, “built in the battery” means that the battery is disposed in the battery in a state where it can come into contact with the electrolytic solution, and the position thereof is not particularly limited. It can be placed on the inner wall, near the lid, on the bottom of the tube. When the vinyl alcohol-based polymer is made of a fiber sheet (particularly nonwoven fabric), it is preferable that the vinyl alcohol polymer is positioned between the electrodes because the battery voltage can be lowered efficiently without suppressing the activity of the active material. In particular, it is preferable to incorporate the separator as a separator because it can be built without increasing the battery constituent material. When the separator is incorporated in the battery as described above, the thickness of the fiber sheet (separator) is preferably 80 μm or less, and preferably 70 μm or less so that the ion permeability is excellent and the internal resistance is not increased. Is more preferable, 60 μm or less is more preferable, 50 μm or less is more preferable, and 40 μm or less is more preferable. Moreover, it is preferable that it is 5 micrometers or more so that it is excellent in mechanical strength and it is excellent in insulation performance, and it is more preferable that it is 10 micrometers or more. In addition, it is preferable that the thinner the fiber sheet (separator) is, the smaller the average fiber diameter is, so that the specific surface area amount is obtained.

また、ビニルアルコール系ポリマーが粉体又は繊維形態からなる場合、電池の蓋付近、管底などに散布して配置することができるが、限られた電池内部のスペースを考慮すると、電池構成材料(例えば、電極、セパレータ)の空隙に内在させるのが好ましい。例えば、電極、セパレータ等の電池構成材作製時にビニルアルコール系ポリマーを含む粉体又は繊維を混合したり、電極、セパレータ等の電池構成材に対してビニルアルコール系ポリマーを含む粉体又は繊維を充填することにより、電池構成材料(例えば、電極、セパレータ)の空隙に内在させることができる。   In addition, when the vinyl alcohol polymer is in the form of powder or fiber, it can be dispersed near the battery lid, on the tube bottom, etc., but considering the limited space inside the battery, the battery constituent material ( For example, it is preferable to make it exist in the space | gap of an electrode and a separator. For example, powders or fibers containing a vinyl alcohol polymer are mixed at the time of preparation of battery components such as electrodes and separators, or powders or fibers containing a vinyl alcohol polymer are filled into battery components such as electrodes and separators. By doing so, it can be made to exist in the space | gap of battery constituent materials (for example, an electrode, a separator).

本発明で用いることのできるビニルアルコール系ポリマーは、ビニルアルコール単位[−CH(OH)−CH−]を含むポリマーであるか、その誘導体である。本発明者らの実験の結果、ビニルアルコール系ポリマーは高温状態で電池電圧を下げることを見出したのである。その詳細な機構は未だ解明されていないが、ビニルアルコール系ポリマーの水酸基が何らかの形で関与していると考えている。本発明のビニルアルコール系ポリマーは、特に限定されるものではないが、例えば、ポリビニルアルコール(PVA)若しくはビニルアルコール共重合体(例えば、エチレン−ビニルアルコール共重合体、プロピレン−ビニルアルコール共重合体など)、或いはビニルアセタール(例えば、ポリビニルホルマール、ポリビニルブチラールなど)を例示することができる。 The vinyl alcohol polymer that can be used in the present invention is a polymer containing a vinyl alcohol unit [—CH (OH) —CH 2 —] or a derivative thereof. As a result of the experiments by the present inventors, it has been found that the vinyl alcohol polymer lowers the battery voltage at a high temperature. Although the detailed mechanism is not yet elucidated, it is considered that the hydroxyl group of the vinyl alcohol polymer is involved in some form. The vinyl alcohol polymer of the present invention is not particularly limited. For example, polyvinyl alcohol (PVA) or vinyl alcohol copolymer (for example, ethylene-vinyl alcohol copolymer, propylene-vinyl alcohol copolymer, etc.) ) Or vinyl acetal (for example, polyvinyl formal, polyvinyl butyral, etc.).

本明細書において、「ビニルアルコール単位部分」とは、文字通り、ビニルアルコール単位部分を意味し、ビニルアルコール単位を含むポリマーの誘導体(例えば、ポリビニルアセタール)の場合、元のポリマー(例えば、ポリビニルアルコール)の残存したビニルアルコール単位部分を意味する。   In the present specification, the “vinyl alcohol unit portion” literally means a vinyl alcohol unit portion, and in the case of a derivative of a polymer containing a vinyl alcohol unit (for example, polyvinyl acetal), the original polymer (for example, polyvinyl alcohol) Of the remaining vinyl alcohol unit.

本発明で用いることのできるポリビニルアルコールとしては、例えば、重合度100〜10,000、好ましくは300〜5,000、より好ましくは500〜3,000のポリビニルアルコールを用いることができる。また、ポリビニルアルコールのけん化度については、例えば、60〜98%、好ましくは70〜98%のポリビニルアルコールを用いることができる。   As polyvinyl alcohol that can be used in the present invention, for example, polyvinyl alcohol having a polymerization degree of 100 to 10,000, preferably 300 to 5,000, more preferably 500 to 3,000 can be used. Moreover, about the saponification degree of polyvinyl alcohol, 60 to 98%, Preferably 70 to 98% polyvinyl alcohol can be used, for example.

ビニルアルコール系ポリマーとしてビニルアルコール共重合体を用いる場合、ビニルアルコール共重合体中に含まれるビニルアルコール単位のモル比は10〜85%であることが好ましく、20〜80%であることがより好ましく、30〜75%であることが更に好ましい。   When a vinyl alcohol copolymer is used as the vinyl alcohol polymer, the molar ratio of vinyl alcohol units contained in the vinyl alcohol copolymer is preferably 10 to 85%, more preferably 20 to 80%. 30 to 75% is more preferable.

これらのビニルアルコール系ポリマーの中でも、ポリビニルアルコールはビニルアルコール単位が多く、少量で電池電圧を下げることができるため好適である。   Among these vinyl alcohol polymers, polyvinyl alcohol is preferred because it has many vinyl alcohol units and can reduce the battery voltage with a small amount.

ビニルアルコール系ポリマーを含む粉体、繊維又は繊維集合体の内蔵量は、通常の使用温度を大幅に上回る高温状態となった場合でも、電池電圧を下げることができるように、ビニルアルコール単位部分の表面積量が電池容量1mAhあたり0.9cm以上であり、好ましくは3.5cm以上であり、より好ましくは8cm以上であり、より好ましくは13cm以上であり、更に好ましくは20cm以上である。また、その上限は、内蔵することのできる量である限り、特に限定するものではないが、小型のポータブル電子機器、ハイブリット自動車(HEV)及び電気自動車(PEV)のリチウムイオン二次電池のように、体積が限られた電池に内蔵することを考慮すると、例えば、電池容量1mAhあたり30m以下である。 The built-in amount of powder, fiber or fiber aggregate containing vinyl alcohol polymer is such that the vinyl alcohol unit part can be lowered so that the battery voltage can be lowered even when the temperature is significantly higher than the normal use temperature. The surface area is 0.9 cm 2 or more per 1 mAh of battery capacity, preferably 3.5 cm 2 or more, more preferably 8 cm 2 or more, more preferably 13 cm 2 or more, and further preferably 20 cm 2 or more. is there. Further, the upper limit is not particularly limited as long as it can be incorporated, but it is not limited to small portable electronic devices, hybrid vehicles (HEV) and electric vehicles (PEV) lithium ion secondary batteries. Considering the incorporation into a battery with a limited volume, for example, the battery capacity is 30 m 2 or less per 1 mAh of battery capacity.

本明細書において「ビニルアルコール単位部分の表面積」は、ビニルアルコール系ポリマーを含む粉体、繊維又は繊維集合体の表面積をもとに、ビニルアルコール系ポリマーにおけるビニルアルコール単位の比率から算出される値をいう。例えば、ポリビニルアルコールを含む粉体、繊維又は繊維集合体の表面積がA(cm)で、けん化度がS(%)である場合、ポリビニルアルコールを含む粉体、繊維又は繊維集合体のビニルアルコール単位部分の表面積は[A×(S/100)=AS/100]である。また、ビニルアルコール共重合体を含む粉体、繊維又は繊維集合体の表面積がA(cm)で、ビニルアルコール単位部分のモル比がC(%)である場合、ビニルアルコール共重合体のビニルアルコール単位部分の表面積は[A×(C/100)=AC/100]である。更に、ポリビニルアセタールを含む粉体、繊維又は繊維集合体の表面積がA(cm)で、ポリビニルアセタールのビニルアルコール単位部分のモル比がR(%)である場合、ポリビニルアセタールのビニルアルコール単位部分の表面積は[A×(R/100)=AR/100]である。 In the present specification, the “surface area of the vinyl alcohol unit portion” is a value calculated from the ratio of vinyl alcohol units in the vinyl alcohol polymer based on the surface area of the powder, fiber or fiber aggregate containing the vinyl alcohol polymer. Say. For example, when the surface area of the powder, fiber or fiber aggregate containing polyvinyl alcohol is A (cm 2 ) and the degree of saponification is S (%), the vinyl alcohol containing powder, fiber or fiber aggregate containing polyvinyl alcohol The surface area of the unit portion is [A × (S / 100) = AS / 100]. When the surface area of the powder, fiber or fiber aggregate containing the vinyl alcohol copolymer is A (cm 2 ) and the molar ratio of the vinyl alcohol unit portion is C (%), the vinyl alcohol copolymer vinyl The surface area of the alcohol unit portion is [A × (C / 100) = AC / 100]. Furthermore, when the surface area of the powder, fiber or fiber aggregate containing polyvinyl acetal is A (cm 2 ) and the molar ratio of the vinyl alcohol unit part of polyvinyl acetal is R (%), the vinyl alcohol unit part of polyvinyl acetal The surface area of [A × (R / 100) = AR / 100].

なお、ビニルアルコール系ポリマーの表面積は比表面積(Ss)とビニルアルコール系ポリマー量(M)を掛け合わせて算出される値(=Ss×M)であり、比表面積は次の手順により測定される値をいう。   The surface area of the vinyl alcohol polymer is a value (= Ss × M) calculated by multiplying the specific surface area (Ss) and the vinyl alcohol polymer amount (M), and the specific surface area is measured by the following procedure. Value.

まず、ビニルアルコール系ポリマーを含む粉体、繊維又は繊維集合体の結晶水を除去するために、前処理として温度80℃で10時間減圧乾燥を行った後、BELSORP−mini−II[日本BEL(株)製]を用いて、液体窒素の温度で相対圧0から1の範囲で窒素ガスの吸着等温線を得た後、吸着等温線中で相対圧0.1以上0.3以下の範囲における吸着等温線の傾きから単分子層の吸着ガス量を求める。そして、B.E.T式を用い、求めた吸着ガス量からビニルアルコール系ポリマーを含む粉体、繊維又は繊維集合体の比表面積(Ss)を算出する。なお、ビニルアルコール系ポリマー以外のポリマーを含む場合には、ビニルアルコール系ポリマーの表面露出比率[Er(単位:%)]を乗じた値(=Ss×Er/100)を比表面積とする。   First, in order to remove the water of crystallization of the powder, fiber or fiber aggregate containing the vinyl alcohol polymer, as a pretreatment, after drying under reduced pressure at a temperature of 80 ° C. for 10 hours, BELSORP-mini-II [Japan BEL ( In the range of the relative pressure of 0.1 to 0.3 in the adsorption isotherm after obtaining an adsorption isotherm of nitrogen gas at a liquid nitrogen temperature in the range of 0 to 1 at the temperature of liquid nitrogen. The amount of adsorbed gas in the monomolecular layer is determined from the slope of the adsorption isotherm. And B. E. Using the T equation, the specific surface area (Ss) of the powder, fiber or fiber assembly containing the vinyl alcohol polymer is calculated from the obtained amount of adsorbed gas. When a polymer other than a vinyl alcohol polymer is included, a value (= Ss × Er / 100) obtained by multiplying the surface exposure ratio [Er (unit:%)] of the vinyl alcohol polymer is defined as the specific surface area.

以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。   EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but these do not limit the scope of the present invention.

《実施例1》
(1)正極の作製
正極活物質としてコバルト酸リチウム(LiCoO)粉末90重量%と、アセチレンブラック5重量%と、ポリフッ化ビニリデン(PVdF)5重量%をN−メチル−2−ピロリドン(NMP)中に分散させ、スラリーを調製した。得られたスラリーを厚さ20μmのアルミ箔上に塗工し、温度140℃で30分間乾燥した後にプレスして、正極を得た。
Example 1
(1) Preparation of positive electrode As a positive electrode active material, 90% by weight of lithium cobaltate (LiCoO 2 ) powder, 5% by weight of acetylene black, and 5% by weight of polyvinylidene fluoride (PVdF) were added to N-methyl-2-pyrrolidone (NMP). A slurry was prepared by dispersing in the slurry. The obtained slurry was applied onto an aluminum foil having a thickness of 20 μm, dried at a temperature of 140 ° C. for 30 minutes, and then pressed to obtain a positive electrode.

(2)負極の作製
負極活物質として天然黒鉛粉末90重量%と、PVdF10重量%をNMP中に分散させてスラリーを調製した。得られたスラリーを厚さ15μmの銅箔上に塗工し、温度140℃で30分間減圧乾燥した後にプレスして、負極を得た。
(2) Production of negative electrode A slurry was prepared by dispersing 90% by weight of natural graphite powder and 10% by weight of PVdF in NMP as a negative electrode active material. The obtained slurry was coated on a copper foil having a thickness of 15 μm, dried under reduced pressure at a temperature of 140 ° C. for 30 minutes, and then pressed to obtain a negative electrode.

(3)非水電解液
エチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合溶媒(50:50)に、LiPFを1.0mol/Lとなるように溶解させた非水電解液[LiPF−EC/DEC(50:50);キシダ化学(株)製]を用意した。
(3) Non-aqueous electrolyte solution A non-aqueous electrolyte solution [LiPF 6] obtained by dissolving LiPF 6 in a mixed solvent (50:50) of ethylene carbonate (EC) and diethyl carbonate (DEC) so as to be 1.0 mol / L. -EC / DEC (50:50); manufactured by Kishida Chemical Co., Ltd.].

(4)セパレータ
ポリプロピレン製微孔膜[Celgard(登録商標)2400;セルガード製]をセパレータとして用意した。
(4) Separator A microporous membrane made of polypropylene [Celgard (registered trademark) 2400; manufactured by Celgard] was prepared as a separator.

(5)ポリビニルアルコールナノファイバー不織布(PVAナノファイバー不織布)の作製
ポリビニルアルコール粉末[けん化度:96%、重合度:1000、和光純薬工業(株)製]を純水に溶解させ、15重量%の紡糸溶液を調製し、この紡糸溶液を静電紡糸法により紡糸し、平均繊維径250nm(比表面積:9.43m/g)のナノファイバー不織布(目付:4.5g/m、厚さ:22μm)を作製した。なお、静電紡糸は電圧27kV、吐出量1mL/h、噴射距離9cmの条件で行った。
(5) Preparation of polyvinyl alcohol nanofiber nonwoven fabric (PVA nanofiber nonwoven fabric) Polyvinyl alcohol powder [saponification degree: 96%, polymerization degree: 1000, manufactured by Wako Pure Chemical Industries, Ltd.] was dissolved in pure water, and 15% by weight. A spinning solution was prepared, and the spinning solution was spun by an electrostatic spinning method. A nanofiber nonwoven fabric (weight per unit area: 4.5 g / m 2 , thickness) having an average fiber diameter of 250 nm (specific surface area: 9.43 m 2 / g) : 22 μm). Electrospinning was performed under the conditions of a voltage of 27 kV, a discharge rate of 1 mL / h, and an injection distance of 9 cm.

(6)電池の作製
上記正極、負極、非水電解液、セパレータ及びPVAナノファイバー不織布を用いて、本発明のリチウムイオン二次電池(2032型コインセル)を作製した。なお、PVAナノファイバー不織布は、電池容量1mAhあたりビニルアルコール単位部分の表面積が75.41cmになるように、セパレータに積層し、電極間に配置した。
(6) Production of Battery A lithium ion secondary battery (2032 type coin cell) of the present invention was produced using the positive electrode, the negative electrode, the non-aqueous electrolyte, the separator, and the PVA nanofiber nonwoven fabric. In addition, the PVA nanofiber nonwoven fabric was laminated | stacked on the separator and arrange | positioned between electrodes so that the surface area of a vinyl alcohol unit part might be 75.41 cm < 2 > per battery capacity 1mAh.

《実施例2》
PVAナノファイバー不織布を電極間に配置したのに替えて、PVAナノファイバー不織布を裁断した長方形の小片(サイズ:1mm×2mm)を、電池容量1mAhあたりビニルアルコール単位部分の表面積が23.58cmになるように、電池管の管底の端に複数枚配置したこと以外は、実施例1(6)の操作を繰り返し、本発明のリチウムイオン二次電池を作製した。
Example 2
Instead of arranging the PVA nanofiber nonwoven fabric between the electrodes, a rectangular piece (size: 1 mm × 2 mm) cut from the PVA nanofiber nonwoven fabric has a surface area of vinyl alcohol unit portion of 23.58 cm 2 per 1 mAh of battery capacity. As described above, the lithium ion secondary battery of the present invention was manufactured by repeating the operation of Example 1 (6) except that a plurality of batteries were arranged at the end of the tube bottom of the battery tube.

《実施例3》
PVAナノファイバー不織布に替えて、ポリビニルアルコール粉末[けん化度:96%、重合度:1000、比表面積:0.11m/g、平均粒径:200μm、和光純薬工業(株)製]を、電池容量1mAh当たりビニルアルコール単位部分の表面積が1.15cmになるように秤量し、電池管の管底の端に配置したこと以外は、実施例1(6)の操作を繰り返し、本発明のリチウムイオン二次電池を作製した。
Example 3
Instead of PVA nanofiber nonwoven fabric, polyvinyl alcohol powder [degree of saponification: 96%, degree of polymerization: 1000, specific surface area: 0.11 m 2 / g, average particle size: 200 μm, manufactured by Wako Pure Chemical Industries, Ltd.] The procedure of Example 1 (6) was repeated except that the vinyl alcohol unit portion per 1 mAh of battery capacity was weighed so that the surface area was 1.15 cm 2 and placed at the end of the tube bottom of the battery tube. A lithium ion secondary battery was produced.

《実施例4》
PVAナノファイバー不織布に替えて、ポリビニルアルコール粉末[けん化度:96%、重合度:1000、比表面積:0.11m/g、平均粒径:200μm、和光純薬工業(株)製]を、電池容量1mAh当たりビニルアルコール単位部分の表面積が0.92cmになるように秤量し、電池管の管底の端に配置したこと以外は、実施例1(6)の操作を繰り返し、本発明のリチウムイオン二次電池を作製した。
Example 4
Instead of PVA nanofiber nonwoven fabric, polyvinyl alcohol powder [degree of saponification: 96%, degree of polymerization: 1000, specific surface area: 0.11 m 2 / g, average particle size: 200 μm, manufactured by Wako Pure Chemical Industries, Ltd.] The procedure of Example 1 (6) was repeated, except that the vinyl alcohol unit portion per 1 mAh of battery capacity was weighed so that the surface area was 0.92 cm 2 and placed at the end of the tube bottom of the battery tube. A lithium ion secondary battery was produced.

《比較例1》
PVAナノファイバー不織布に替えて、ポリビニルアルコール粉末[けん化度:96%、重合度:1000、比表面積:0.11m/g、平均粒径:200μm、和光純薬工業(株)製]を、電池容量1mAh当たりビニルアルコール単位部分の表面積が0.85cmになるように秤量し、電池管の管底の端に配置したこと以外は、実施例1(6)の操作を繰り返し、比較用のリチウムイオン二次電池を作製した。
<< Comparative Example 1 >>
Instead of PVA nanofiber nonwoven fabric, polyvinyl alcohol powder [degree of saponification: 96%, degree of polymerization: 1000, specific surface area: 0.11 m 2 / g, average particle size: 200 μm, manufactured by Wako Pure Chemical Industries, Ltd.] The procedure of Example 1 (6) was repeated except that it was weighed so that the surface area of the vinyl alcohol unit portion per 1 mAh of battery capacity was 0.85 cm 2 and placed at the end of the tube bottom of the battery tube. A lithium ion secondary battery was produced.

《比較例2》
PVAナノファイバー不織布に替えて、ポリビニルアルコール粉末[けん化度:96%、重合度:1000、比表面積:0.11m/g、平均粒径:200μm、和光純薬工業(株)製]を、電池容量1mAh当たりビニルアルコール単位部分の表面積が0.72cmになるように秤量し、電池管の管底の端に配置したこと以外は、実施例1(6)の操作を繰り返し、比較用のリチウムイオン二次電池を作製した。
<< Comparative Example 2 >>
Instead of PVA nanofiber nonwoven fabric, polyvinyl alcohol powder [degree of saponification: 96%, degree of polymerization: 1000, specific surface area: 0.11 m 2 / g, average particle size: 200 μm, manufactured by Wako Pure Chemical Industries, Ltd.] The procedure of Example 1 (6) was repeated except that it was weighed so that the surface area of the vinyl alcohol unit part per 1 mAh of battery capacity was 0.72 cm 2 and placed at the end of the tube bottom of the battery tube. A lithium ion secondary battery was produced.

《比較例3》
PVAナノファイバー不織布に替えて、ポリビニルアルコール粉末[けん化度:96%、重合度:1000、比表面積:0.11m/g、平均粒径:200μm、和光純薬工業(株)製]を、電池容量1mAh当たりビニルアルコール単位部分の表面積が0.47cmになるように秤量し、電池管の管底の端に配置したこと以外は、実施例1(6)の操作を繰り返し、比較用のリチウムイオン二次電池を作製した。
<< Comparative Example 3 >>
Instead of PVA nanofiber nonwoven fabric, polyvinyl alcohol powder [degree of saponification: 96%, degree of polymerization: 1000, specific surface area: 0.11 m 2 / g, average particle size: 200 μm, manufactured by Wako Pure Chemical Industries, Ltd.] The procedure of Example 1 (6) was repeated except that it was weighed so that the surface area of the vinyl alcohol unit part per 1 mAh of battery capacity was 0.47 cm 2 and placed at the end of the tube bottom of the battery tube. A lithium ion secondary battery was produced.

《実施例5》
ポリビニルアルコール粉末[けん化度:96%、重合度:1000、比表面積:0.11m/g、平均粒径:200μm、和光純薬工業(株)製]とジルコニアビーズとを、1:1の体積比で混合し、粉砕機[ロッキングミル、セイワ技研(株)製]を用いて、50Hzの振動下で10時間粉砕した。その後、篩いにかけ、粒径63μm以下のポリビニルアルコール粉末を得た(比表面積0.65m/g)。
PVAナノファイバー不織布に替えて、前記ポリビニルアルコール粉末を電池容量1mAh当たりビニルアルコール単位部分の表面積が3.51cmになるように秤量し、電池管の管底の端に配置したこと以外は、実施例1(6)の操作を繰り返し、本発明のリチウムイオン二次電池を作製した。
Example 5
Polyvinyl alcohol powder [degree of saponification: 96%, degree of polymerization: 1000, specific surface area: 0.11 m 2 / g, average particle size: 200 μm, manufactured by Wako Pure Chemical Industries, Ltd.] and zirconia beads are 1: 1. The mixture was mixed at a volume ratio and pulverized for 10 hours under vibration of 50 Hz using a pulverizer [Rocking Mill, manufactured by Seiwa Giken Co., Ltd.]. Thereafter, it was sieved to obtain a polyvinyl alcohol powder having a particle size of 63 μm or less (specific surface area 0.65 m 2 / g).
Except for replacing the PVA nanofiber nonwoven fabric, the polyvinyl alcohol powder was weighed so that the surface area of the vinyl alcohol unit part per battery capacity 1 mAh was 3.51 cm 2 and placed at the end of the tube bottom of the battery tube. The operation of Example 1 (6) was repeated to produce a lithium ion secondary battery of the present invention.

《実施例6》
PVAナノファイバー不織布に替えて、実施例5のポリビニルアルコール粉末(けん化度:96%、重合度:1000、比表面積:0.65m/g、粒径:63μm以下)を電池容量1mAh当たりビニルアルコール単位部分の表面積が8.23cmになるように秤量し、電池管の管底の端に配置したこと以外は、実施例1(6)の操作を繰り返し、本発明のリチウムイオン二次電池を作製した。
Example 6
In place of the PVA nanofiber nonwoven fabric, the polyvinyl alcohol powder of Example 5 (degree of saponification: 96%, degree of polymerization: 1000, specific surface area: 0.65 m 2 / g, particle size: 63 μm or less) is vinyl alcohol per 1 mAh of battery capacity. The operation of Example 1 (6) was repeated except that the unit portion was weighed so that the surface area was 8.23 cm 2 and placed at the end of the tube bottom of the battery tube, and the lithium ion secondary battery of the present invention was Produced.

《実施例7》
PVAナノファイバー不織布に替えて、実施例5のポリビニルアルコール粉末(けん化度:96%、重合度:1000、比表面積:0.65m/g、粒径:63μm以下)を電池容量1mAh当たりビニルアルコール単位部分の表面積が13.13cmになるように秤量し、電池管の管底の端に配置したこと以外は、実施例1(6)の操作を繰り返し、本発明のリチウムイオン二次電池を作製した。
Example 7
In place of the PVA nanofiber nonwoven fabric, the polyvinyl alcohol powder of Example 5 (degree of saponification: 96%, degree of polymerization: 1000, specific surface area: 0.65 m 2 / g, particle size: 63 μm or less) is vinyl alcohol per 1 mAh of battery capacity. The operation of Example 1 (6) was repeated except that the unit portion was weighed so that the surface area was 13.13 cm 2 and placed at the end of the bottom of the battery tube, and the lithium ion secondary battery of the present invention was Produced.

《実施例8》
繊維として、芯成分がポリプロピレン、鞘部がポリエチレンからなる繊度0.8dtex、繊維長5mmの芯鞘型複合繊維を用い、湿式抄造法により繊維ウエブを形成した後、温度130℃のホットロールプレスにより芯鞘型複合繊維を融着させ、目付10g/mの不織布を作製した。
前記の不織布に実施例5のPVA粉末(けん化度:96%、重合度:1000、比表面積:0.65m/g、粒径:63μm以下)を吹き付けた後、温度130℃のホットロールプレスによりPVA粉末を不織布の空隙に充填し、PVA担持不織布を作製した(厚さ:35μm、PVAの付加重量:2.1g/m)。
そして、ポリプロピレン製微孔膜[Celgard(登録商標)2400;セルガード製]に替えて、前記PVA担持複合不織布(直径:16mm)を、正極と負極の間にセパレータとして配置し、PVAナノファイバー不織布を配置しなかったこと以外は、実施例1(6)の操作を繰り返し、本発明のリチウムイオン二次電池を作製した。なお、前記PVA担持不織布内のビニルアルコール単位の表面積は、電池容量1mAh当たり2.74cmに相当した。
Example 8
As a fiber, a core-sheath type composite fiber having a core component of polypropylene and a sheath part of polyethylene having a fineness of 0.8 dtex and a fiber length of 5 mm is used. After forming a fiber web by a wet papermaking method, a hot roll press at a temperature of 130 ° C. The core-sheath type composite fiber was fused to prepare a nonwoven fabric having a basis weight of 10 g / m 2 .
After the PVA powder of Example 5 (degree of saponification: 96%, degree of polymerization: 1000, specific surface area: 0.65 m 2 / g, particle size: 63 μm or less) was sprayed on the nonwoven fabric, a hot roll press at a temperature of 130 ° C. The PVA powder was filled in the voids of the nonwoven fabric to prepare a PVA-supporting nonwoven fabric (thickness: 35 μm, PVA added weight: 2.1 g / m 2 ).
Then, instead of a polypropylene microporous membrane [Celgard (registered trademark) 2400; manufactured by Celgard], the PVA-supporting composite nonwoven fabric (diameter: 16 mm) is disposed as a separator between the positive electrode and the negative electrode, and the PVA nanofiber nonwoven fabric is used. Except not having arrange | positioned, operation of Example 1 (6) was repeated and the lithium ion secondary battery of this invention was produced. In addition, the surface area of the vinyl alcohol unit in the said PVA carrying | support nonwoven fabric corresponded to 2.74 cm < 2 > per battery capacity 1mAh.

《実施例9》
実施例1のPVAナノファイバー不織布に替えて、ポリビニルアルコール粉末[けん化度:80%、重合度:1500、比表面積:0.09m/g、平均粒径:250μm、和光純薬工業(株)製]を、電池容量1mAh当たりビニルアルコール単位部分の表面積が1.10cmになるように秤量し、電池管の管底の端に配置したこと以外は、実施例1(6)の操作を繰り返し、本発明のリチウムイオン二次電池を作製した。
Example 9
In place of the PVA nanofiber nonwoven fabric of Example 1, polyvinyl alcohol powder [degree of saponification: 80%, degree of polymerization: 1500, specific surface area: 0.09 m 2 / g, average particle size: 250 μm, Wako Pure Chemical Industries, Ltd. The operation of Example 1 (6) was repeated, except that the surface area of the vinyl alcohol unit portion per 1 mAh of battery capacity was 1.10 cm 2 and placed at the end of the tube bottom of the battery tube. The lithium ion secondary battery of the present invention was produced.

《実施例10》
ポリプロピレン製微孔膜[Celgard(登録商標)2400;セルガード製]に替えて、PVAナノファイバー不織布をセパレータ(目付:4.5g/m、厚さ:22μm)として使用したこと以外は、実施例1(6)の操作を繰り返し、本発明のリチウムイオン二次電池を作製した。なお、PVAナノファイバー不織布は、電池容量1mAhあたりビニルアルコール単位部分の表面積が94.26cmであった。
Example 10
Example except that PVA nanofiber nonwoven fabric was used as a separator (weight per unit: 4.5 g / m 2 , thickness: 22 μm) instead of polypropylene microporous membrane [Celgard (registered trademark) 2400; manufactured by Celgard] The operation of 1 (6) was repeated to produce a lithium ion secondary battery of the present invention. The PVA nanofiber nonwoven fabric had a surface area of the vinyl alcohol unit portion of 94.26 cm 2 per 1 mAh of battery capacity.

《実施例11》
PVAナノファイバー不織布に替えて、ポリプロピレン成分とエチレン−ビニルアルコール共重合成分(エチレン単位とビニルアルコール単位のモル比=4:6)がそれぞれ繊維軸から交互に伸び、16分割オレンジ状断面を有する、繊度3.3dtex(平均繊維径:19μm)、繊維長5mmの複合繊維(ポリプロピレン成分とエチレン−ビニルアルコール共重合成分の表面露出比率=1:1、比表面積:0.33m/g)を、分割させずに、電池容量1mAh当たりビニルアルコール単位部分の表面積が1.24cmになるように、電池管の管底の端に複数本配置したこと以外は、実施例1(6)の操作を繰り返し、本発明のリチウムイオン二次電池を作製した。
Example 11
In place of the PVA nanofiber nonwoven fabric, the polypropylene component and the ethylene-vinyl alcohol copolymer component (molar ratio of ethylene unit and vinyl alcohol unit = 4: 6) alternately extend from the fiber axis, and have a 16-segment orange cross section, A composite fiber having a fineness of 3.3 dtex (average fiber diameter: 19 μm) and a fiber length of 5 mm (surface exposure ratio of polypropylene component and ethylene-vinyl alcohol copolymer component = 1: 1, specific surface area: 0.33 m 2 / g), The operation of Example 1 (6) was performed except that a plurality of pieces were arranged at the end of the tube bottom of the battery tube so that the surface area of the vinyl alcohol unit portion per 1 mAh of battery capacity was 1.24 cm 2 without being divided. The lithium ion secondary battery of the present invention was produced repeatedly.

《実施例12》
PVAナノファイバー不織布に替えて、繊度0.53dtex(平均繊維径:7.5μm)、繊維長2mmのビニロン繊維(比表面積:0.71m/g)を、電池容量1mAh当たりビニルアルコール単位部分の表面積が2.13cmになるように、電池管の管底の端に複数本配置したこと以外は、実施例1(6)の操作を繰り返し、本発明のリチウムイオン二次電池を作製した。
Example 12
In place of the PVA nanofiber nonwoven fabric, vinylon fibers having a fineness of 0.53 dtex (average fiber diameter: 7.5 μm) and a fiber length of 2 mm (specific surface area: 0.71 m 2 / g) are used as vinyl alcohol unit parts per 1 mAh of battery capacity. The lithium ion secondary battery of the present invention was fabricated by repeating the operation of Example 1 (6) except that a plurality of the battery tubes were arranged at the end of the tube bottom so that the surface area was 2.13 cm 2 .

《比較例4》
PVAナノファイバー不織布に替えて、ポリビニルアルコール粉末[けん化度:80%、重合度:1500、比表面積:0.09m/g、平均粒径:250μm、和光純薬工業(株)製]を電池容量1mAh当たりビニルアルコール単位部分の表面積が0.76cmになるように秤量し、電池管の管底の端に配置したこと以外は、実施例1(6)の操作を繰り返し、比較用のリチウムイオン二次電池を作製した。
<< Comparative Example 4 >>
In place of PVA nanofiber nonwoven fabric, polyvinyl alcohol powder [degree of saponification: 80%, degree of polymerization: 1500, specific surface area: 0.09 m 2 / g, average particle size: 250 μm, manufactured by Wako Pure Chemical Industries, Ltd.] battery Lithium for comparison was obtained by repeating the operation of Example 1 (6) except that the vinyl alcohol unit portion per 1 mAh was weighed so that the surface area was 0.76 cm 2 and placed at the end of the tube bottom. An ion secondary battery was produced.

《比較例5》
PVAナノファイバー不織布を添加しなかったこと以外は、実施例1(6)の操作を繰り返し、比較用のリチウムイオン二次電池を作製した。
<< Comparative Example 5 >>
Except that the PVA nanofiber nonwoven fabric was not added, the operation of Example 1 (6) was repeated to produce a comparative lithium ion secondary battery.

≪評価≫
実施例1〜12及び比較例1〜5のリチウムイオン二次電池(2032型コインセル)を、3〜4.2Vの電圧範囲で、0.2Cの定電流充放電を5サイクル実施し、電池が正常に作動することを確認した後、以下の高温安全性試験を行った。
高温安全性試験は、0.2Cの定電流で4.2Vまで充電し、更に定電圧法で5時間充電を継続し、満充電状態にした後、電池を温度120℃に設定した熱風オーブン中に保持し、開回路電圧(OCV)変化を測定した。その結果を表1に示す。
リチウムイオン二次電池は、高電圧(高エネルギー)を保った状態で長時間高温に曝されることで、電解液や電極活物質の分解及びそれに伴う副反応等で自己発熱し、電池の発煙や発火に至る可能性が非常に高いばかりでなく、セパレータの収縮に由来する内部短絡が起こり、電池の発火や爆発に繋がる。そのため、本安全試験では3時間以内に電池電圧が2V以下になるものが、「高温安全性を有する」と定義した。
≪Evaluation≫
The lithium ion secondary batteries (2032 type coin cells) of Examples 1 to 12 and Comparative Examples 1 to 5 were subjected to 5 cycles of constant current charging / discharging at 0.2 C in a voltage range of 3 to 4.2 V, and the batteries were After confirming normal operation, the following high temperature safety test was conducted.
In the high-temperature safety test, the battery was charged to 4.2 V at a constant current of 0.2 C, further charged for 5 hours by the constant voltage method, fully charged, and then in a hot air oven in which the battery was set at a temperature of 120 ° C. And the open circuit voltage (OCV) change was measured. The results are shown in Table 1.
Lithium ion secondary batteries are exposed to high temperatures for a long time while maintaining a high voltage (high energy), so that they self-heat due to decomposition of the electrolyte and electrode active material and associated side reactions, and so on. In addition to the extremely high possibility of ignition, an internal short circuit resulting from the shrinkage of the separator occurs, leading to battery ignition and explosion. Therefore, in this safety test, a battery whose voltage is 2 V or less within 3 hours is defined as “having high-temperature safety”.

Figure 2010192249
#1:ポリプロピレン成分/エチレン−ビニルアルコール共重合成分複合繊維
#2:ビニロン繊維
#3:ビニルアルコール系ポリマー無添加
Figure 2010192249
# 1: Polypropylene component / ethylene-vinyl alcohol copolymer component composite fiber # 2: Vinylon fiber # 3: No vinyl alcohol polymer added

表1に示す結果から、内蔵するビニルアルコール系ポリマーを含む粉体、繊維又は繊維集合体の表面積が、電池容量1mAh当たり0.9cm以上であることによって、満充電した電池が120℃で3時間以内に2V以下になり、高温安全性を有するものであることがわかった。また、表面積が電池容量1mAh当たり8cm以上あると、満充電した電池が120℃で2時間以内に2V以下になり、高温安全性を有するものであること、更に、表面積が電池容量1mAh当たり20cm以上あると、満充電した電池が120℃で1時間以内に2V以下になり、高温安全性を有するものであることがわかった。 From the results shown in Table 1, when the surface area of the powder, fiber, or fiber assembly containing the vinyl alcohol polymer incorporated is 0.9 cm 2 or more per 1 mAh of battery capacity, a fully charged battery is 3 at 120 ° C. It was found to be 2 V or less within the time and have high temperature safety. In addition, when the surface area is 8 cm 2 or more per 1 mAh of battery capacity, a fully charged battery is 2 V or less within 2 hours at 120 ° C., and has high temperature safety, and further, the surface area is 20 cm per 1 mAh of battery capacity. When it was 2 or more, it was found that a fully charged battery became 2 V or less within 1 hour at 120 ° C., and had high-temperature safety.

本発明のリチウムイオン二次電池はカメラ一体型VTR、携帯電話、ラップトップコンピューター等の電子機器の電源として使用することができる。   The lithium ion secondary battery of the present invention can be used as a power source for electronic devices such as camera-integrated VTRs, mobile phones, and laptop computers.

Claims (1)

ビニルアルコール単位を含むポリマー又はその誘導体を含む粉体、繊維又は繊維集合体を、そのビニルアルコール単位部分の表面積が電池容量1mAhあたり0.9cm以上の量で内蔵していることを特徴とする、リチウムイオン二次電池。 A powder, fiber or fiber aggregate containing a polymer containing vinyl alcohol units or a derivative thereof is incorporated in such a manner that the surface area of the vinyl alcohol unit portion is 0.9 cm 2 or more per 1 mAh of battery capacity. , Lithium ion secondary battery.
JP2009035253A 2009-02-18 2009-02-18 Lithium ion secondary battery Active JP5504457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009035253A JP5504457B2 (en) 2009-02-18 2009-02-18 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009035253A JP5504457B2 (en) 2009-02-18 2009-02-18 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2010192249A true JP2010192249A (en) 2010-09-02
JP5504457B2 JP5504457B2 (en) 2014-05-28

Family

ID=42818065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009035253A Active JP5504457B2 (en) 2009-02-18 2009-02-18 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5504457B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245428A (en) * 2012-05-29 2013-12-09 Shinshu Univ Separator, method for producing separator and apparatus for producing separator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998032184A1 (en) * 1997-01-16 1998-07-23 Mitsubishi Paper Mills Limited Separator for nonaqueous electrolyte batteries, nonaqueous electrolyte battery using it, and method for manufacturing separator for nonaqueous electrolyte batteries
JP2002327386A (en) * 2001-04-26 2002-11-15 Oji Paper Co Ltd Method for producing ultrafine fiber and sheet composed of ultrafine fiber
JP2003208922A (en) * 2002-01-10 2003-07-25 Hitachi Ltd Lithium ion secondary battery
WO2004038833A1 (en) * 2002-10-24 2004-05-06 Daiwabo Co., Ltd. Separator for organic electrolyte battery, process for producing the same and organic electrolyte battery including the separator
JP2005203134A (en) * 2004-01-13 2005-07-28 Yuasa Corp Electrochemical device
JP2006260786A (en) * 2005-03-15 2006-09-28 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
WO2007041312A1 (en) * 2005-09-30 2007-04-12 E.I. Du Pont De Nemours And Company Batteries including improved fine fiber separators
JP2007184219A (en) * 2005-12-29 2007-07-19 Ind Technol Res Inst Lithium-ion secondary battery of high output design

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998032184A1 (en) * 1997-01-16 1998-07-23 Mitsubishi Paper Mills Limited Separator for nonaqueous electrolyte batteries, nonaqueous electrolyte battery using it, and method for manufacturing separator for nonaqueous electrolyte batteries
JP2002327386A (en) * 2001-04-26 2002-11-15 Oji Paper Co Ltd Method for producing ultrafine fiber and sheet composed of ultrafine fiber
JP2003208922A (en) * 2002-01-10 2003-07-25 Hitachi Ltd Lithium ion secondary battery
WO2004038833A1 (en) * 2002-10-24 2004-05-06 Daiwabo Co., Ltd. Separator for organic electrolyte battery, process for producing the same and organic electrolyte battery including the separator
JP2005203134A (en) * 2004-01-13 2005-07-28 Yuasa Corp Electrochemical device
JP2006260786A (en) * 2005-03-15 2006-09-28 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
WO2007041312A1 (en) * 2005-09-30 2007-04-12 E.I. Du Pont De Nemours And Company Batteries including improved fine fiber separators
JP2007184219A (en) * 2005-12-29 2007-07-19 Ind Technol Res Inst Lithium-ion secondary battery of high output design

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245428A (en) * 2012-05-29 2013-12-09 Shinshu Univ Separator, method for producing separator and apparatus for producing separator

Also Published As

Publication number Publication date
JP5504457B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
Wang et al. A paper-supported inorganic composite separator for high-safety lithium-ion batteries
JP5470255B2 (en) Lithium ion secondary battery separator, method for producing the same, and lithium ion secondary battery
KR101726530B1 (en) Positive-electrode active substance, positive-electrode material, positive electrode, and nonaqueous-electrolyte secondary cell
KR101760198B1 (en) Nonaqueous-electrolyte secondary battery
KR101891013B1 (en) Electrical device
KR102565595B1 (en) Lithium ion battery including composite separator and composite separator and manufacturing method of composite separator
US10608276B2 (en) Carbon material, anode material and spacer additive for lithium ion battery
WO2018047656A1 (en) Lithium ion secondary battery and method for manufacturing same
US11005095B2 (en) Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
JP6507106B2 (en) Negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery, method of producing negative electrode active material, and method of producing lithium ion secondary battery
US20190131618A1 (en) Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
US11658289B2 (en) Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
JP6927034B2 (en) Lithium-ion secondary battery and its manufacturing method
US9450222B2 (en) Electric storage device, and vehicle mounted electric storage system
KR20150123303A (en) Non-aqueous electrolyte secondary battery
KR20160100348A (en) Electrical device
JP2009123399A (en) Separator for lithium-ion secondary battery, and lithium-ion secondary battery
JP2005285447A (en) Lithium-ion secondary battery
JP2013258150A (en) Lithium ion secondary battery
JP5504456B2 (en) Lithium ion secondary battery
KR101891014B1 (en) Electrical device
JP2018113167A (en) Lithium ion secondary battery
US20210242499A1 (en) Non-aqueous electrolyte power storage device and method for manufacturing non-aqueous electrolytic power storage device
JP2009135540A (en) Nonaqueous lithium power storage element and manufacturing method
JP5504457B2 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140224

R150 Certificate of patent or registration of utility model

Ref document number: 5504457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250