JP2010185700A - Radar system - Google Patents

Radar system Download PDF

Info

Publication number
JP2010185700A
JP2010185700A JP2009028591A JP2009028591A JP2010185700A JP 2010185700 A JP2010185700 A JP 2010185700A JP 2009028591 A JP2009028591 A JP 2009028591A JP 2009028591 A JP2009028591 A JP 2009028591A JP 2010185700 A JP2010185700 A JP 2010185700A
Authority
JP
Japan
Prior art keywords
target
observation
targets
radar system
isar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009028591A
Other languages
Japanese (ja)
Other versions
JP5448481B2 (en
Inventor
Jun Nakamura
純 中村
Yosuke Nakano
陽介 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009028591A priority Critical patent/JP5448481B2/en
Publication of JP2010185700A publication Critical patent/JP2010185700A/en
Application granted granted Critical
Publication of JP5448481B2 publication Critical patent/JP5448481B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radar system and a signal processing method which can perform simultaneous observation of a plurality of targets different in direction by a single body, and can acquire a high-resolution image of each target. <P>SOLUTION: In a system in which an aircraft 11 tracks an observation target 4 to make images, a pulse equal to or higher than LPRF is transmitted while a beam 12 is switched over one after another. That is, the beam 12 which is directed to the target ever since it is transmitted, in the present circumstances, is directed for observation to other observation targets located in other directions as well. In an ISAR image analysis, only a reflected wave from the observation target 4 is actually needed, and therefore a reception gate 14 can be made smaller enough than usual PRI 17 for one target by controlling the timing of opening the reception gate 14. Thus, a plurality of targets in many directions can be observed simultaneously by adding a beam control function and a timing control function. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、目標を追尾しながら2次元画像の取得が可能なレーダシステムについて、ビームを高速に切替えながらLPRF(低パルス繰り返し周波数:Low Pulse Repetition Frequency)以上の周期でパルス送信を行うことにより、複数目標の同時観測を可能とするレーダシステムに関する。   The present invention relates to a radar system capable of acquiring a two-dimensional image while tracking a target, by performing pulse transmission at a period of LPRF (Low Pulse Repetition Frequency) or more while switching a beam at high speed, The present invention relates to a radar system that enables simultaneous observation of a plurality of targets.

従来からレーダによる警戒監視手法として、目標とする航空機や船舶の、回転や移動を利用して画像化する、ISAR(逆合成開口レーダ:Inverse Synthetic Aperture Radar)という技術が用いられている。   Conventionally, a technique called ISAR (Inverse Synthetic Aperture Radar) that uses rotation and movement of a target aircraft or ship as an image is used as a warning monitoring method using a radar.

この技術は、高分解能の2次元画像を取得できる、SAR(合成開口レーダ:Synthetic Aperture Radar)の原理を応用した、画像レーダ技術である。一般に、レーダのクロスレンジ分解能はビーム幅で決定され、アンテナ開口長が大きいほどビーム幅は狭くなり、高分解能となる。SARは、小開口アンテナの受信データを信号処理により、あたかも大開口アンテナで取得したかのように合成することで、クロスレンジ方向の高分解能を得る技術である。   This technology is an image radar technology that applies the principle of SAR (Synthetic Aperture Radar) that can acquire a high-resolution two-dimensional image. In general, radar cross-range resolution is determined by the beam width. The larger the antenna aperture length, the narrower the beam width and the higher the resolution. SAR is a technique for obtaining high resolution in the cross range direction by combining received data of a small aperture antenna by signal processing as if it were acquired by a large aperture antenna.

一方、ISARは、目標の回転運動により発生するドップラー周波数を利用して、目標のアジマス方向の高分解能画像を生成する技術である(例えば、特許文献1参照)。この技術の一例としては、例えば航空機にXバンドの合成開口レーダを搭載している。このレーダで、航行中の船舶を追尾し、例えば、船舶がヨー運動をしていると、そのドップラー周波数により、船舶を上方から見たような高分解能の画像が得られる。従来は単一目標の追尾・画像化しか行われていなかったが、複数目標の観測を可能にすることができる。この手法により、同方位に存在する複数目標のISAR画像が取得できる。   On the other hand, ISAR is a technique for generating a high-resolution image in a target azimuth direction using a Doppler frequency generated by a target rotational motion (see, for example, Patent Document 1). As an example of this technology, for example, an X-band synthetic aperture radar is mounted on an aircraft. With this radar, a navigating ship is tracked. For example, when the ship is performing yaw movement, a high-resolution image as if the ship was viewed from above is obtained by the Doppler frequency. Conventionally, only tracking and imaging of a single target has been performed, but it is possible to observe multiple targets. By this method, multiple target ISAR images existing in the same direction can be acquired.

特開平11−248834号公報Japanese Patent Laid-Open No. 11-248834

上述したシステムにおいては、目標の観測にLPRFを用いていた。したがって、複数目標を同時観測したとしても、それらの目標が同方位に存在する場合にしか適用できなかった。   In the system described above, LPRF is used for target observation. Therefore, even if a plurality of targets are observed simultaneously, it can be applied only when those targets exist in the same direction.

また、異なる方位に存在する目標の同時観測の方法として、送信ファンビームと受信マルチビームを組み合わせる手法が考えられる。観測の間、一目標(一方向)に対して受信ゲートをずっと開くこととなる。   Further, as a method for simultaneously observing targets existing in different directions, a method of combining a transmission fan beam and a reception multi-beam can be considered. During the observation, the reception gate is opened for one target (one direction).

しかし、この手法では送信がファンビームであるため低利得となる恐れがあり、また受信系をマルチビームとするために、目標数に応じて受信チャネル数が必要となり、その分だけレーダ規模が大きくなってしまう。   However, this method may cause low gain because the transmission is a fan beam, and in order to make the receiving system a multi-beam, the number of reception channels is required according to the target number, and the radar scale increases accordingly. turn into.

この発明は、上記課題を解決するためになされたものであり、従来の利得とレーダ規模を維持した一つのレーダで、多方位に存在する複数目標の追尾・画像化を行うことができるレーダシステムを提供することを目的とする。   The present invention has been made to solve the above-described problems, and is a radar system capable of tracking and imaging a plurality of targets existing in multiple directions with a single radar that maintains the conventional gain and radar scale. The purpose is to provide.

この発明に係るレーダシステムは、低パルス繰り返し周波数以上のパルスを次々に観測対象を切り替えながら複数の観測目標に向けて送信する送信手段と、複数の観測目標からの反射波を受信する受信手段と、前記受信手段により受信された受信信号に基づいて補足・追尾処理を行い位置情報を算出すると共にISAR画像化処理するISAR処理部と、
前記ISAR処理部からの位置情報に基づいて送受信タイミングが衝突しないように受信ゲートのタイミング制御を行うと共に異方位の目標に対するビーム制御を統合して行う複数目標ISAR制御部とを備えたものである。
A radar system according to the present invention includes a transmission unit that transmits pulses having a low pulse repetition frequency or higher toward a plurality of observation targets while sequentially switching observation targets, and a reception unit that receives reflected waves from the plurality of observation targets. An ISAR processing unit for performing a supplement / tracking process based on a received signal received by the receiving unit to calculate position information and an ISAR imaging process;
A multi-target ISAR control unit that performs timing control of a reception gate so that transmission / reception timings do not collide based on position information from the ISAR processing unit, and performs integrated beam control for different-direction targets. .

この発明によれば、受信ゲートを開くのは、ターゲットの存在する時間のみに限定する。これにより生じた時間を他のターゲットへのビーム操作、パルス送受信に充てる。これにより、従来のシステムと同規模の処理系で多目標の追尾が可能となる。   According to the present invention, the reception gate is opened only during the time when the target exists. The time generated by this is used for beam operation and pulse transmission / reception to other targets. As a result, multi-target tracking can be performed with a processing system of the same scale as the conventional system.

この発明に係る実施の形態を説明するためのブロック図と概略構成図である。It is the block diagram and schematic block diagram for demonstrating embodiment which concerns on this invention. この発明に係る実施の形態を説明するための概略構成図である。It is a schematic block diagram for demonstrating embodiment which concerns on this invention. この発明に係る実施の形態のパルス送受信タイミングを説明するための説明図である。It is explanatory drawing for demonstrating the pulse transmission / reception timing of embodiment which concerns on this invention. この発明に係る実施の形態の処理の流れを説明するための説明図である。It is explanatory drawing for demonstrating the flow of the process of embodiment which concerns on this invention. この発明に係る実施の形態を説明するための概略構成図である。It is a schematic block diagram for demonstrating embodiment which concerns on this invention. この発明に係る実施の形態のパルス送受信タイミングを説明するための説明図である。It is explanatory drawing for demonstrating the pulse transmission / reception timing of embodiment which concerns on this invention. この発明に係る実施の形態を説明するための概略構成図である。It is a schematic block diagram for demonstrating embodiment which concerns on this invention. この発明に係る実施の形態のパルス送受信タイミングを説明するための説明図である。It is explanatory drawing for demonstrating the pulse transmission / reception timing of embodiment which concerns on this invention.

実施の形態1.
この発明の好適な実施の形態について図面を用いて説明する。なお、この発明のレーダシステムは、合成開口処理が可能なレーダにより、移動目標を観測する場合であればよく、例えば、航空機搭載レーダによる船舶の観測や地上管制レーダによる航空機の観測などに適用可能であるが、以下の説明では、航空機搭載レーダに適用した例を紹介する。すなわち、2艘の船舶の追尾・画像化を可能とするシステムについて説明する。
Embodiment 1 FIG.
A preferred embodiment of the present invention will be described with reference to the drawings. The radar system of the present invention may be used for observing a moving target with a radar capable of synthetic aperture processing. For example, the radar system can be applied to ship observation using an aircraft-mounted radar or aircraft observation using a ground control radar. However, in the following explanation, an example applied to an airborne radar will be introduced. That is, a system that enables tracking and imaging of a two-boat vessel will be described.

図1は、この発明のレーダシステムのブロック図と概略構成を示すものである。従来のISARシステムは、励振器1で生成した励振信号を送信機2で送信信号に変え、空中線3から観測目標4に向けて送信していた。一定のパルス繰り返し周波数PRFでパルスを送信しているため、送信タイミングの制御は不必要である。観測目標4からの反射波を空中線3で再び受信し、受信機5でIQビデオ信号に変換する。単一目標を継続して観測しているため、受信ゲートの開くタイミングを観測中に制御する必要はない。   FIG. 1 is a block diagram and schematic configuration of a radar system according to the present invention. In the conventional ISAR system, the excitation signal generated by the exciter 1 is converted into a transmission signal by the transmitter 2 and transmitted from the antenna 3 toward the observation target 4. Since pulses are transmitted at a constant pulse repetition frequency PRF, transmission timing control is unnecessary. The reflected wave from the observation target 4 is received again by the antenna 3 and converted into an IQ video signal by the receiver 5. Since the single target is continuously observed, it is not necessary to control the opening timing of the reception gate during observation.

IQビデオ信号はISAR処理部6に送られ、そこで捕捉・追尾の処理6が行われ位置情報を算出する。従来はこの位置情報に基づき、観測目標4の移動を追尾するためにビーム制御を行っていた。また、ISAR画像化処理8を同時に行い、生成されたISAR画像は表示器9で表示される。   The IQ video signal is sent to the ISAR processing unit 6 where capture / tracking processing 6 is performed to calculate position information. Conventionally, beam control is performed based on this position information in order to track the movement of the observation target 4. Further, the ISAR imaging process 8 is performed simultaneously, and the generated ISAR image is displayed on the display 9.

この発明では、上述した従来のレーダシステムに複数目標ISAR制御部10を追加し、異なる方位に存在する2目標の追尾・画像化を可能にする。まず、2目標に対応するため、PRFを2倍にしなければならない。また、方位の異なる目標4を同時に観測するため、空中線3に対してビーム制御を行う必要がある。さらに、距離の異なる2目標からの反射波は受信タイミングが異なるため、受信ゲート制御も必要となる。このように、送受信タイミングが衝突しないような受信ゲートのタイミング制御と、異方位の2目標に対するビーム制御を統合して行うのが、複数目標ISAR制御部10である。   In the present invention, a multi-target ISAR control unit 10 is added to the above-described conventional radar system to enable tracking and imaging of two targets existing in different directions. First, the PRF must be doubled to accommodate two goals. In addition, in order to simultaneously observe the targets 4 having different azimuths, it is necessary to perform beam control on the antenna 3. Furthermore, since the reflected waves from two targets with different distances have different reception timings, reception gate control is also required. In this way, the multi-target ISAR control unit 10 integrally performs the timing control of the reception gate so that the transmission / reception timing does not collide and the beam control for the two targets of different directions.

図2は、この発明の概略構成を示すもので、図2において、航空機11は、図1に示されたこの発明のレーダシステムを搭載している。船舶4a、4bは観測目標で、航空機11はこの2艘の目標を、ビーム12を切り替えながら同時に追尾・画像化する。図2におけるR、Rはそれぞれ観測目標4a、4bまでの距離を示す。 FIG. 2 shows a schematic configuration of the present invention. In FIG. 2, an aircraft 11 is equipped with the radar system of the present invention shown in FIG. The ships 4a and 4b are observation targets, and the aircraft 11 simultaneously tracks and images the two targets while switching the beam 12. In FIG. 2, R a and R b indicate distances to the observation targets 4a and 4b, respectively.

図3は、この発明における2目標同時観測の動作概念を示したものである。観測目標4a、4bの送信パルス13と受信ゲート14の間隔t(15a)、t(15b)は、目標までの距離により次式で表される(c:光速)。観測目標4a、4bの距離が異なるため、tとtは異なる値をとる。 FIG. 3 shows the operation concept of the two-target simultaneous observation in the present invention. The distances t a (15a) and t b (15b) between the transmission pulse 13 and the reception gate 14 of the observation targets 4a and 4b are expressed by the following equation (c: speed of light) depending on the distance to the target. Since the observation target 4a, the distance 4b different, t a and t b takes different values.

Figure 2010185700
Figure 2010185700
Figure 2010185700
Figure 2010185700

ここで、受信ゲートのサイズを、観測対象である船舶の大きさから考えて、従来のパルス繰り返し間隔PRI(Pulse Repetition Interval)に対して十分小さくできることを利用し、観測目標4aの方の送受信を従来のPRI17の半分だけ遅らせて、観測目標4bの図に重ねても、送信パルスや受信ゲートが衝突することはない。このように、片方をずらしても送受信のタイミングが衝突しないような観測目標4の組み合わせであれば、PRI16を従来のPRI、すなわち1目標あたりのPRI17の2分の1にすることができる。   Here, considering the size of the receiving gate from the size of the ship to be observed, the fact that it can be made sufficiently smaller than the conventional pulse repetition interval PRI (Pulse Repetition Interval) makes it possible to transmit and receive toward the observation target 4a. Even if it is delayed by half of the conventional PRI 17 and superimposed on the observation target 4b, the transmission pulse and the reception gate do not collide. Thus, if the combination of the observation targets 4 is such that the transmission / reception timing does not collide even if one of them is shifted, the PRI 16 can be reduced to half of the conventional PRI, that is, the PRI 17 per target.

Figure 2010185700
Figure 2010185700

以下、動作について説明する。まず、航空機11は観測目標4bにビーム12bを向けて、送信パルス13bを送信する。その後、ビームの向きを変えて(12a)観測目標4aに送信パルス13aを送信する。次に、ビームの向きを変えて(12b)受信ゲート14bを開き、観測目標4bからの反射波を受信する。最後に、またビームの向きを変えて(12a)受信ゲート14aを開いて観測目標4aからの反射波を受信する。この動作を繰り返して、従来の1目標あたりのPRIを維持したまま、2目標の同時観測を行う。   The operation will be described below. First, the aircraft 11 directs the beam 12b toward the observation target 4b and transmits a transmission pulse 13b. Thereafter, the direction of the beam is changed (12a), and the transmission pulse 13a is transmitted to the observation target 4a. Next, the direction of the beam is changed (12b), the reception gate 14b is opened, and the reflected wave from the observation target 4b is received. Finally, the direction of the beam is changed (12a), and the reception gate 14a is opened to receive the reflected wave from the observation target 4a. By repeating this operation, two targets are simultaneously observed while maintaining the conventional PRI per target.

図4には、複数目標観測の処理の流れが示されている。まず、観測対象地域の捜索を行い、観測目標を選定する(S100)。次に、各目標までの距離に応じて、タイミングチャートを作成する(S101)。ここで、目標までの距離によっては同時観測が不可能となるため、同時観測の可否を判定する(S102)。その後、ビーム制御とタイミング制御(S103)を行う。そこで、捕捉・追尾処理(S104)によって得られた位置データは、タイミングチャート作成(S101)にフィードバックされ、ISAR画像化(S105)によって得られたデータは画像出力される(S106)。   FIG. 4 shows the flow of processing for multi-target observation. First, an observation target area is searched and an observation target is selected (S100). Next, a timing chart is created according to the distance to each target (S101). Here, since simultaneous observation is impossible depending on the distance to the target, whether or not simultaneous observation is possible is determined (S102). Thereafter, beam control and timing control (S103) are performed. Therefore, the position data obtained by the capture / tracking process (S104) is fed back to the timing chart creation (S101), and the data obtained by the ISAR imaging (S105) is output as an image (S106).

この発明では、ビームを複雑に切り替えながら送受信を行うため、一方の反射波を観測しているときに、受信ビームのサイドローブに、他方の反射波が入り込む可能性がある。よって、この発明の実施にあたっては、低サイドローブのビームを用いる、あるいはサイドローブキャンセラを用いる等の多目標からの不要波対策が必要である。   In the present invention, since transmission / reception is performed while switching the beam in a complicated manner, when one reflected wave is observed, the other reflected wave may enter the side lobe of the received beam. Therefore, in implementing this invention, it is necessary to take measures against unwanted waves from multiple targets such as using a low sidelobe beam or using a sidelobe canceller.

また、上述の不要波対策として、パルスの周波数変調のチャープの向きを逆にしたり、パルスに位相変調を施したりして、混信しても必要な信号のみを分離できるような方法を取ってもよい。   In addition, as a countermeasure against the above-described unwanted waves, it is possible to reverse the chirp direction of the frequency modulation of the pulse, or apply a phase modulation to the pulse so that only necessary signals can be separated even if interference occurs. Good.

従来は、システムの多重化により多目標追尾を可能にするのに対し、この実施の形態ではリソースの分配により多目標追尾を可能にする。従来では処理系の規模はターゲットが多くなる分増加してしまうが、この実施の形態では送受信系の規模は変化しない。   Conventionally, multi-target tracking is enabled by system multiplexing, whereas in this embodiment, multi-target tracking is enabled by resource distribution. Conventionally, the scale of the processing system increases as the number of targets increases, but in this embodiment, the scale of the transmission / reception system does not change.

実施の形態2.
以下の説明では、前述の実施の形態と同様に、航空機搭載レーダに適用した例を紹介する。すなわち、複数の船舶の追尾・画像化を可能とするシステムについて説明する。
Embodiment 2. FIG.
In the following description, as in the above-described embodiment, an example applied to an aircraft-mounted radar will be introduced. That is, a system that enables tracking and imaging of a plurality of ships will be described.

図5は、この発明の概略構成を示すもので、図5において、航空機11は、この発明のレーダシステムを搭載している。船舶4a、4b、・・・、4Nは合計N艘の観測目標であるとし、航空機11はこの複数の目標を、ビーム12を切替えながら同時に追尾・画像化する。図5におけるR、R、・・・、Rはそれぞれ観測目標4a、4b、・・・、4Nまでの距離を示す。 FIG. 5 shows a schematic configuration of the present invention. In FIG. 5, the aircraft 11 is equipped with the radar system of the present invention. Assume that the ships 4a, 4b,..., 4N are observation targets in total N 艘, and the aircraft 11 tracks and images the plurality of targets simultaneously while switching the beam 12. R a, R b in FIG. 5, showing ..., each R N observation target 4a, 4b, ..., the distance to 4N.

図6は、この発明における複数目標同時観測の動作概念を示したものである。観測目標4a、4b、・・・、4Nの送信パルス13と受信ゲート14の間隔t、t、・・・、tN(15)は、目標までの距離により次式で表される。観測目標4a、4b、・・・、4Nの距離が異なるため、t、t、・・・、tは異なる値をとる。 FIG. 6 shows the operation concept of simultaneous observation of multiple targets in the present invention. The distances t a , t b ,..., TN (15) between the observation targets 4a, 4b,..., 4N transmission pulse 13 and the reception gate 14 are expressed by the following equation depending on the distance to the target. Since the observation target 4a, 4b, ···, the distance 4N different, t a, t b, ··· , t N takes a different value.

Figure 2010185700
Figure 2010185700
Figure 2010185700
Figure 2010185700
Figure 2010185700
Figure 2010185700

ここで、PRI16を従来のPRI17のN(N:0を含まない自然数)分の1まで短くして、N目標の同時観測を行う。例えば、観測目標4aの送受信を1*PRI分だけ、観測目標4cの送受信を(N−1)*PRI分だけそれぞれシフトさせて、観測目標4bの図に重ねても、送信パルスや受信ゲートが衝突することはない。このように、それぞれをPRI16ずつずらしても送受信のタイミングが衝突しないような観測目標4の組み合わせであれば、PRI16を今までのPRI、すなわち1目標あたりの見かけのPRI17のN分の1にすることができる。   Here, the PRI 16 is shortened to 1 / N (N: a natural number not including 0) of the conventional PRI 17, and N targets are simultaneously observed. For example, even if the transmission / reception of the observation target 4a is shifted by 1 * PRI and the transmission / reception of the observation target 4c is shifted by (N-1) * PRI respectively, There is no collision. In this way, if the combination of the observation targets 4 is such that the transmission / reception timing does not collide even if each of the PRIs 16 is shifted, the PRI 16 is reduced to 1 / N of the prior PRI, that is, the apparent PRI 17 per target. be able to.

Figure 2010185700
Figure 2010185700

したがって、以下の条件を満たすNであれば、同時観測が可能である。   Therefore, simultaneous observation is possible if N satisfies the following conditions.

Figure 2010185700
Figure 2010185700

以下、動作について説明する。まず、航空機11は観測目標4bにビーム12bを向けて、送信パルス13bを送信する。その後、ビームの向きを変えて(12a)観測目標4aに送信パルス13aを送信する。次に、ビームの向きを変えて(12N)受信ゲート14Nを開き、観測目標4Nからの反射波を受信する。この観測目標4Nからの反射波は、この1周期の前の周期で観測目標4Nに送信したものであり、このように周期を越えて送受信を割り振ることも可能である。次に、ビームの向きを変えて(12a)受信ゲート14aで観測目標4aからの反射波を受信し、同様にビームの向きを変えて(12b)受信ゲート14bで観測目標4bからの反射波を受信する。最後に、またビームの向きを変えて(12N)観測目標4Nに送信パルス13Nを送信して、1周期の観測を終える。当然、これらの動作の間に、合計N回の送受信が行われる。この動作を繰り返して、従来の1目標あたりのPRI17を維持したまま、N目標の同時観測を行う。   The operation will be described below. First, the aircraft 11 directs the beam 12b toward the observation target 4b and transmits a transmission pulse 13b. Thereafter, the direction of the beam is changed (12a), and the transmission pulse 13a is transmitted to the observation target 4a. Next, the direction of the beam is changed (12N), the reception gate 14N is opened, and the reflected wave from the observation target 4N is received. The reflected wave from the observation target 4N is transmitted to the observation target 4N in the previous cycle of this one cycle, and transmission / reception can be assigned beyond the cycle in this way. Next, the direction of the beam is changed (12a), and the reflected wave from the observation target 4a is received by the receiving gate 14a. Similarly, the direction of the beam is changed (12b) and the reflected wave from the observation target 4b is received by the receiving gate 14b. Receive. Finally, the direction of the beam is changed (12N), the transmission pulse 13N is transmitted to the observation target 4N, and the observation of one cycle is completed. Naturally, a total of N transmissions / receptions are performed during these operations. By repeating this operation, N targets are simultaneously observed while maintaining the conventional PRI 17 per target.

実施の形態3.
以下の説明では、前述の実施の形態と同様に、航空機搭載レーダに適用した例を紹介する。すなわち、複数の船舶の追尾・画像化を可能とするシステムについて説明する。
Embodiment 3 FIG.
In the following description, as in the above-described embodiment, an example applied to an aircraft-mounted radar will be introduced. That is, a system that enables tracking and imaging of a plurality of ships will be described.

図7は、この発明の概略構成を示すもので、図7において、航空機11は、この発明のレーダシステムを搭載している。船舶4a、4b、4c、4dは、例として合計4艘の観測目標であるとし、航空機11はこの複数の目標を、ビーム12を切替えながら同時に追尾・画像化する。図7におけるR、R、R、Rはそれぞれ観測目標4a、4b、4c、4dまでの距離を示す。 FIG. 7 shows a schematic configuration of the present invention. In FIG. 7, an aircraft 11 is equipped with the radar system of the present invention. Ships 4a, 4b, 4c, and 4d are, for example, a total of four observation targets, and aircraft 11 tracks and images the plurality of targets simultaneously while switching beams 12. In FIG. 7, R a , R b , R c , and R d indicate distances to the observation targets 4a, 4b, 4c, and 4d, respectively.

図8は、この発明における複数目標同時観測の動作概念を示したものである。観測目標4a、4b、4c、4dの送信パルス13と受信ゲート14の間隔t、t、t、t(15)は、目標までの距離により次式で表される。 FIG. 8 shows the operation concept of simultaneous observation of multiple targets in the present invention. The distances t a , t b , t c , and t d (15) between the transmission pulses 13 of the observation targets 4a, 4b, 4c, and 4d and the reception gate 14 are expressed by the following equations depending on the distance to the target.

Figure 2010185700
Figure 2010185700
Figure 2010185700
Figure 2010185700
Figure 2010185700
Figure 2010185700
Figure 2010185700
Figure 2010185700

観測目標4a、4b、4c、4dの距離が異なるため、t、t、t、tは異なる値をとる。ここで、従来の1目標あたりのPRI17を保ったまま、パルスの送信間隔18を不定期とすることで、例えば方位の異なる4目標の同時観測を行うことのできるシステムを示す。送信パルス間隔18は、送信パルス13、受信ゲート14が衝突することが無いように、任意時間だけシフトされる。どのようにシフトさせても衝突が生じるような観測目標4の組み合わせでなければ、今までのPRI、すなわち1目標あたりの見かけのPRI17を保ったまま、複数目標の同時観測が可能となる。不定期パルスを用いることで、定期パルスを用いた場合と比べても観測目標数Nの増加が見込める。 Since the distances of the observation targets 4a, 4b, 4c, and 4d are different, t a , t b , t c , and t d take different values. Here, a conventional system capable of simultaneously observing, for example, four targets with different azimuths by setting the pulse transmission interval 18 irregularly while maintaining the conventional PRI 17 per target. The transmission pulse interval 18 is shifted by an arbitrary time so that the transmission pulse 13 and the reception gate 14 do not collide. If the observation target 4 is not a combination that causes a collision no matter how it is shifted, it is possible to simultaneously observe a plurality of targets while maintaining the conventional PRI, that is, the apparent PRI 17 per target. By using irregular pulses, an increase in the number of observation targets N can be expected as compared with the case of using regular pulses.

以下、動作について説明する。まず、航空機11は観測目標4aにビーム12aを向けて、送信パルス13aを送信する。その後、ビームの向きを変えて(12d)観測目標4dに送信パルス13dを送信する。次に、ビームの向きを変えて(12a)受信ゲート14aを開き、観測目標4aからの反射波を受信する。次に、ビームの向きを変えて(12c)観測目標4cに送信パルス13cを送信する。次に、ビームの向きを変えて(12b)受信ゲート14bを開き、観測目標4bからの反射波を受信する。この観測目標4bからの反射波は、この1周期の前の周期で観測目標4bに送信したものであり、このように周期を越えて送受信を割り振ることも可能である。次に、ビームの向きを変えて(12d)受信ゲート14dを開き、観測目標4dからの反射波を受信する。次に、ビームの向きを変えて(12b)観測目標4bに送信パルス13bを送信する。最後に、またビームの向きを変えて(12c)受信ゲート14cを開き、観測目標4cからの反射波を受信して、1周期の観測を終える。この動作を繰り返して、従来の1目標あたりのPRIを維持したまま、複数目標の同時観測を行う。   The operation will be described below. First, the aircraft 11 directs the beam 12a toward the observation target 4a and transmits a transmission pulse 13a. Thereafter, the direction of the beam is changed (12d), and the transmission pulse 13d is transmitted to the observation target 4d. Next, the direction of the beam is changed (12a), the reception gate 14a is opened, and the reflected wave from the observation target 4a is received. Next, the direction of the beam is changed (12c), and the transmission pulse 13c is transmitted to the observation target 4c. Next, the direction of the beam is changed (12b), the reception gate 14b is opened, and the reflected wave from the observation target 4b is received. The reflected wave from the observation target 4b is transmitted to the observation target 4b in the period before this one period, and transmission / reception can be assigned beyond the period in this way. Next, the direction of the beam is changed (12d), the reception gate 14d is opened, and the reflected wave from the observation target 4d is received. Next, the direction of the beam is changed (12b), and the transmission pulse 13b is transmitted to the observation target 4b. Finally, the direction of the beam is changed again (12c), the reception gate 14c is opened, the reflected wave from the observation target 4c is received, and one cycle of observation is finished. This operation is repeated to simultaneously observe a plurality of targets while maintaining the conventional PRI per target.

また、ISAR以外にも、送受信の集積化を図るために、送信に不定期パルスを用いる方法を利用することも可能である。   In addition to ISAR, it is also possible to use a method using irregular pulses for transmission in order to integrate transmission and reception.

4 観測目標、10 複数目標ISAR制御部、11 航空機、12 ビーム、13 送信パルス、14 受信ゲート、16 PRI、17 1目標あたりのPRI、18 パルス送信間隔。   4 observation target, 10 multi-target ISAR control unit, 11 aircraft, 12 beams, 13 transmission pulses, 14 reception gate, 16 PRI, 17 PRI per target, 18 pulse transmission interval.

Claims (5)

低パルス繰り返し周波数以上のパルスを次々に観測対象を切り替えながら複数の観測目標に向けて送信する送信手段と、
複数の観測目標からの反射波を受信する受信手段と、
前記受信手段により受信された受信信号に基づいて補足・追尾処理を行い位置情報を算出すると共にISAR画像化処理するISAR処理部と、
前記ISAR処理部からの位置情報に基づいて送受信タイミングが衝突しないように受信ゲートのタイミング制御を行うと共に異方位の目標に対するビーム制御を統合して行う複数目標ISAR制御部と
を備えたレーダシステム。
A transmission means for transmitting a pulse having a low pulse repetition frequency or more toward a plurality of observation targets while sequentially switching the observation target;
Receiving means for receiving reflected waves from a plurality of observation targets;
An ISAR processing unit for performing a supplement / tracking process based on a received signal received by the receiving unit to calculate position information and an ISAR imaging process;
A radar system comprising: a multi-target ISAR control unit that performs timing control of a reception gate so that transmission / reception timings do not collide based on position information from the ISAR processing unit, and performs integrated beam control for targets in different directions.
請求項1に記載のレーダシステムにおいて、
前記複数目標ISAR制御部は、複数の観測目標N(N:0を含まない自然数)の送信パルスと受信ゲートの間隔tをt=2R/c(ここで、Rは複数の観測目標までの距離、cは光速)とし、パルス繰り返し間隔PRIを1目標あたりの見かけのパルス繰り返し間隔PRIのN分の1にすると共に、見かけのパルス繰り返し間隔PRIを≧(パルス幅+受信ゲート幅+ビーム切替え時間)とし、複数の観測目標Nの同時観測を行う
ことを特徴とするレーダシステム。
The radar system according to claim 1, wherein
The multi-target ISAR control unit sets an interval t N between transmission pulses and reception gates of a plurality of observation targets N (N: a natural number not including 0) to t N = 2R N / c (where RN is a plurality of observations) The distance to the target, c is the speed of light), the pulse repetition interval PRI is set to 1 / N of the apparent pulse repetition interval PRI per target, and the apparent pulse repetition interval PRI is ≧ (pulse width + receiving gate width) + A beam switching time), and a radar system that performs simultaneous observation of a plurality of observation targets N.
請求項1または2に記載のレーダシステムにおいて、
前記複数目標ISAR制御部は、異なる多方位の観測目標を追尾して画像化処理する
ことを特徴とするレーダシステム。
The radar system according to claim 1 or 2,
The radar system according to claim 1, wherein the multi-target ISAR control unit tracks and observes observation targets of different multi-directions.
請求項3に記載のレーダシステムにおいて、
前記複数目標ISAR制御部は、多方位の観測目標に対するパルスの送信タイミングを、各観測目標までの距離に応じて不定期とし、次々に観測対象を切替えながら、異なる多方位の複数目標を追尾して画像化処理する
ことを特徴とするレーダシステム。
The radar system according to claim 3, wherein
The multi-target ISAR control unit irregularly sets the pulse transmission timing for multi-directional observation targets according to the distance to each observation target, and tracks multiple multi-directional multi-targets while switching the observation target one after another. A radar system characterized by image processing.
請求項1から4までのいずれか1項に記載のレーダシステムにおいて、
前記複数目標ISAR制御部は、サイドローブキャンセラや、パルスの周波数変調のチャープの向きを逆にする機能、パルスに位相変調を施す機能を有し、複数方位へのビーム切替えによって発生する、他方位からの受信信号の干渉を低減あるいは除去する
ことを特徴とするレーダシステム。
The radar system according to any one of claims 1 to 4,
The multi-target ISAR controller has a sidelobe canceller, a function of reversing the direction of chirp of frequency modulation of the pulse, and a function of performing phase modulation on the pulse, and is generated by switching the beam to a plurality of directions. Radar system characterized by reducing or eliminating interference of received signal from
JP2009028591A 2009-02-10 2009-02-10 Radar system Active JP5448481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009028591A JP5448481B2 (en) 2009-02-10 2009-02-10 Radar system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009028591A JP5448481B2 (en) 2009-02-10 2009-02-10 Radar system

Publications (2)

Publication Number Publication Date
JP2010185700A true JP2010185700A (en) 2010-08-26
JP5448481B2 JP5448481B2 (en) 2014-03-19

Family

ID=42766451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009028591A Active JP5448481B2 (en) 2009-02-10 2009-02-10 Radar system

Country Status (1)

Country Link
JP (1) JP5448481B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052923A (en) * 2010-09-01 2012-03-15 Toshiba Corp Weather radar device and weather observation method
CN102778680A (en) * 2012-06-06 2012-11-14 西安电子科技大学 Method for imaging uniformly accelerated motion rigid group targets based on parameterization
CN114280604A (en) * 2021-12-17 2022-04-05 南京长峰航天电子科技有限公司 ISAR imaging-based river surface ship monitoring method and system
CN117741594A (en) * 2024-02-19 2024-03-22 中国科学院空天信息创新研究院 Interference device and method for distributed cooperative ISAR detection system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184562A (en) * 1982-04-22 1983-10-28 Mitsubishi Electric Corp Multi-target tracking system
JPS63167288A (en) * 1986-12-27 1988-07-11 Toshiba Corp Radar equipment
JPH02208588A (en) * 1989-02-09 1990-08-20 Mitsubishi Electric Corp Inverse synthetic aperture radar
JPH0353183A (en) * 1989-07-20 1991-03-07 Mitsubishi Electric Corp Phased aray radar equipment
JPH03105276A (en) * 1989-09-20 1991-05-02 Mitsubishi Electric Corp Radar apparatus
JPH03225287A (en) * 1990-01-30 1991-10-04 Mitsubishi Electric Corp Method and device for beam management of phase array radar
JPH05281349A (en) * 1992-03-30 1993-10-29 Nec Corp Pulse radar equipment
JPH1020032A (en) * 1996-06-28 1998-01-23 Sumitomo Heavy Ind Ltd Target detector in which detection area can be set for shit radar
JPH11248834A (en) * 1998-03-06 1999-09-17 Mitsubishi Electric Corp Radar apparatus
JP2001133538A (en) * 1999-11-05 2001-05-18 Mitsubishi Electric Corp Signal processing device and method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184562A (en) * 1982-04-22 1983-10-28 Mitsubishi Electric Corp Multi-target tracking system
JPS63167288A (en) * 1986-12-27 1988-07-11 Toshiba Corp Radar equipment
JPH02208588A (en) * 1989-02-09 1990-08-20 Mitsubishi Electric Corp Inverse synthetic aperture radar
JPH0353183A (en) * 1989-07-20 1991-03-07 Mitsubishi Electric Corp Phased aray radar equipment
JPH03105276A (en) * 1989-09-20 1991-05-02 Mitsubishi Electric Corp Radar apparatus
JPH03225287A (en) * 1990-01-30 1991-10-04 Mitsubishi Electric Corp Method and device for beam management of phase array radar
JPH05281349A (en) * 1992-03-30 1993-10-29 Nec Corp Pulse radar equipment
JPH1020032A (en) * 1996-06-28 1998-01-23 Sumitomo Heavy Ind Ltd Target detector in which detection area can be set for shit radar
JPH11248834A (en) * 1998-03-06 1999-09-17 Mitsubishi Electric Corp Radar apparatus
JP2001133538A (en) * 1999-11-05 2001-05-18 Mitsubishi Electric Corp Signal processing device and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052923A (en) * 2010-09-01 2012-03-15 Toshiba Corp Weather radar device and weather observation method
CN102778680A (en) * 2012-06-06 2012-11-14 西安电子科技大学 Method for imaging uniformly accelerated motion rigid group targets based on parameterization
CN114280604A (en) * 2021-12-17 2022-04-05 南京长峰航天电子科技有限公司 ISAR imaging-based river surface ship monitoring method and system
CN117741594A (en) * 2024-02-19 2024-03-22 中国科学院空天信息创新研究院 Interference device and method for distributed cooperative ISAR detection system
CN117741594B (en) * 2024-02-19 2024-04-30 中国科学院空天信息创新研究院 Interference device and method for distributed cooperative ISAR detection system

Also Published As

Publication number Publication date
JP5448481B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
Brenner et al. Demonstration of advanced reconnaissance techniques with the airborne SAR/GMTI sensor PAMIR
JP2737570B2 (en) Synthetic aperture radar device
KR101081894B1 (en) Synthetic aperture radar system for continuous wide swath high resolution imaging and method thereof
JPH02210285A (en) Spot light maping radar device
JPH07244158A (en) Evaluation method of image quality of synthetic aperture radar image
JP5448481B2 (en) Radar system
JPWO2007020704A1 (en) Target detection method and target detection apparatus
JP2005233723A (en) Distributed aperture radar device
CN110412586B (en) Underwater target exploration method based on phase-controlled emission and bunching imaging
JP5424572B2 (en) Radar equipment
JP2011180004A (en) Search radar device, and method of inhibiting unnecessary wave component in the search radar device
JP2017049208A (en) Polarimetric SAR device and observation method
JP6385278B2 (en) Radar apparatus and radar image display method
JP5853547B2 (en) Radar equipment
JP2014052336A (en) Signal processor and radar observation method
Garry et al. Framework and results on passive ISAR
JP7132047B2 (en) radar equipment
Zhai et al. A stepped frequency chirp scaling algorithm for high resolution SAR imaging
JP4550634B2 (en) Radar device and wind speed observation method
CN112505669A (en) Intra-pulse space scanning radar system and receiving and processing method thereof
Pastina et al. Multi-angle distributed ISAR with stepped-frequency waveforms for surveillance and recognition
US20240201322A1 (en) Target characterisation method for a detection device of multi-panel radar or sonar type with electronic scanning
Zhang et al. Moving train imaging by ground-based Ka-band radar
Pastina et al. Multi-platform ISAR for flying formation
JPH06186321A (en) Multi-beam radar device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131224

R150 Certificate of patent or registration of utility model

Ref document number: 5448481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250