JP2010178442A - Outer rotation type permanent magnet rotary electric machine and elevator apparatus using same - Google Patents

Outer rotation type permanent magnet rotary electric machine and elevator apparatus using same Download PDF

Info

Publication number
JP2010178442A
JP2010178442A JP2009016060A JP2009016060A JP2010178442A JP 2010178442 A JP2010178442 A JP 2010178442A JP 2009016060 A JP2009016060 A JP 2009016060A JP 2009016060 A JP2009016060 A JP 2009016060A JP 2010178442 A JP2010178442 A JP 2010178442A
Authority
JP
Japan
Prior art keywords
permanent magnet
stator
poles
electric machine
type permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009016060A
Other languages
Japanese (ja)
Other versions
JP2010178442A5 (en
Inventor
Fumio Tajima
文男 田島
Hideki Kitamura
英樹 北村
Masaji Kitamura
正司 北村
Hideki Nihei
秀樹 二瓶
Takafumi Ogata
尚文 尾方
Masahide Yamazaki
政英 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009016060A priority Critical patent/JP2010178442A/en
Priority to CN2010101081578A priority patent/CN101795041B/en
Publication of JP2010178442A publication Critical patent/JP2010178442A/en
Publication of JP2010178442A5 publication Critical patent/JP2010178442A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Brushless Motors (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a less-torque-pulsation, low-noise, small, efficient, and inexpensive outer rotation type permanent magnet rotary electric machine, and an elevator apparatus equipped with the same. <P>SOLUTION: This machine has: a stator, which consists a ring-form yoke, a stator core having salient poles at the periphery in its radial direction and stator coils being arranged in the open slots that the stator core forms and being wound concentratedly on the salient poles; a ring-form rotor core, which is arranged around the stator; and a permanent magnet rotor, in which rectangular permanent magnets are arranged directly via proper space with the stator at the inner perimetrical face of the rotor core. In this machine, the number of poles of the permanent magnets is P, the number of salient poles of the stator is S, the greatest common divisor between P and S is M, and the least common multiple is N, the greatest common divisor N is 3 or over, and besides the ratio N/S of the least common multiple N to the greatest common divisor M is 13 or over. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、外転型永久磁石回転電機およびそれを用いたエレベータ装置に関する。   The present invention relates to an outer rotation type permanent magnet rotating electric machine and an elevator apparatus using the same.

エレベータ駆動に使用される回転電機としては、小型軽量、高効率等の特性が要求され、永久磁石回転電機が用いられるようになってきた。特に、最近主流となってきたギヤ等の変速機を使用しないギヤレスのダイレクトドライブ方式では、この傾向が強く反映され、永久磁石回転電機を用いるようになってきている。   As a rotating electrical machine used for elevator driving, characteristics such as small and light weight and high efficiency are required, and a permanent magnet rotating electrical machine has been used. In particular, in the gearless direct drive system that does not use a transmission such as a gear that has become the mainstream recently, this tendency is strongly reflected, and a permanent magnet rotating electric machine has been used.

上記ダイレクトドライブのエレベータ用回転電機には、エレベータの乗り心地を悪くするトルクリプルを極力小さくすることが求められ、約200%に至る過負荷条件に至るまでトルク脈動を数%以下に抑制する必要がある。   The direct-drive elevator rotating electric machine is required to minimize the torque ripple that degrades the ride comfort of the elevator, and it is necessary to suppress the torque pulsation to several percent or less until the overload condition reaches approximately 200%. is there.

このようなエレベータ駆動用回転電機の構造としては、外周に固定子を配置し、その内周を永久磁石回転子を配置する構成のいわゆる内転型の永久磁石回転電機が一般に使用されている。これとは逆に、内周に固定子を配置し、その外周に永久磁石回転子を配置する構成のいわゆる外転型永久磁石回転電機を駆動モータとして利用する構成についても、特許文献1および2に開示されている。   As a structure of such an elevator driving rotary electric machine, a so-called internal rotation type permanent magnet rotary electric machine having a configuration in which a stator is arranged on the outer circumference and a permanent magnet rotor is arranged on the inner circumference is generally used. Contrary to this, Patent Documents 1 and 2 also disclose a configuration in which a so-called external rotation type permanent magnet rotating electrical machine in which a stator is disposed on the inner periphery and a permanent magnet rotor is disposed on the outer periphery is used as a drive motor. Is disclosed.

特開2000−134893号公報JP 2000-134893 A 特開2007−159394号公報JP 2007-159394 A

しかしながら、特許文献2に記載のものは、永久磁石の外周部における形状が円弧状であるために、第1に、この磁石形状に仕上げるには研磨によって仕上げねばならず、製作の面で、高価になるおそれがある。   However, since the shape described in Patent Document 2 has an arc shape at the outer peripheral portion of the permanent magnet, first, it must be finished by polishing to finish this magnet shape, which is expensive in terms of production. There is a risk of becoming.

第2には、この磁石形状は精度の確保が難しく、磁石バラツキによるトルクリプル、騒音を生じるおそれがある。   Secondly, it is difficult to ensure the accuracy of this magnet shape, which may cause torque ripple and noise due to magnet variation.

更には、特許文献1や2の永久磁石の極数と固定子突極のコンビネーションでは、コギングトルクや振動に関する点で改良の余地がある。   Furthermore, the combination of the number of poles of the permanent magnets and the stator salient poles in Patent Documents 1 and 2 has room for improvement in terms of cogging torque and vibration.

また、特許文献2では、固定子鉄心の突極の幅が小さく、出力トルクに関しても最大トルクを得る点で改良の余地がある。   Moreover, in patent document 2, the width | variety of the salient pole of a stator iron core is small, and there exists room for improvement at the point which obtains the maximum torque also regarding output torque.

本発明の目的は、トルク脈動の少ない、低騒音、小形軽量、高効率、低価格の外転型永久磁石回転電機及びそれを備えたエレベータ装置を提供するにある。   An object of the present invention is to provide an external rotation type permanent magnet rotating electric machine having low noise, small size, light weight, high efficiency, and low cost with less torque pulsation, and an elevator apparatus including the same.

本発明はその一面において、リング状のヨーク部と、その径方向外周に突極を有した固定子鉄心と、前記固定子鉄心が形成するオープンスロット部に配置され、前記突極に集中的に巻回する固定子巻線とからなる固定子と、その外周に配置したリング状の回転子鉄心と、回転子鉄心の内周面に6面が矩形状の直方体の永久磁石を前記固定子と適当な空隙を介して配置した永久磁石回転子とを有し、永久磁石の極数をP、固定子の突極数をSとし、さらにPとSの最大公約数M、最小公倍数Nとしたとき、最大公約数Mを3以上とし、かつ最小公倍数Nと最大公約数Mの比N/Mを13以上としたことを特徴とする。   In one aspect, the present invention is arranged in a ring-shaped yoke portion, a stator core having a salient pole on the outer periphery in the radial direction, and an open slot portion formed by the stator core, and concentrated on the salient pole. A stator composed of a wound stator winding, a ring-shaped rotor core disposed on the outer periphery of the stator, and a rectangular parallelepiped permanent magnet on the inner peripheral surface of the rotor core; A permanent magnet rotor disposed through an appropriate air gap, the number of poles of the permanent magnet being P, the number of salient poles of the stator being S, the greatest common divisor M of P and S, and the least common multiple N The greatest common divisor M is set to 3 or more, and the ratio N / M between the least common multiple N and the greatest common divisor M is set to 13 or more.

本発明の望ましい実施態様においては、永久磁石極数Pを固定子突極数Sより多くしたことを特徴とする。   In a preferred embodiment of the present invention, the number of permanent magnet poles P is larger than the number of stator salient poles S.

また、本発明の望ましい実施態様においては、固定子突極の表面磁極幅を、固定子突極のピッチの44〜54%にしたことを特徴とする。   In a preferred embodiment of the present invention, the surface magnetic pole width of the stator salient pole is 44 to 54% of the pitch of the stator salient pole.

さらに、本発明の望ましい実施態様においては、永久磁石の極弧度を、永久磁石ピッチの0.7または、0.87としたことを特徴とする。   Furthermore, in a preferred embodiment of the present invention, the pole arc degree of the permanent magnet is set to 0.7 or 0.87 of the permanent magnet pitch.

さらに、本発明の望ましい実施態様においては、永久磁石と回転子鉄心の間に積層鋼板を有することを特徴とする。   Furthermore, in a preferred embodiment of the present invention, a laminated steel plate is provided between the permanent magnet and the rotor core.

さらに、本発明の望ましい実施態様においては、永久磁石取付け面である回転子内周面を、永久磁石取付け面毎に、周方向および軸方向に平直面とし、軸方向に複数の永久磁石を並べ周方向にずらして配置したことを特徴とする。   Furthermore, in a preferred embodiment of the present invention, the rotor inner peripheral surface, which is a permanent magnet mounting surface, is made flat in the circumferential direction and the axial direction for each permanent magnet mounting surface, and a plurality of permanent magnets are arranged in the axial direction. It is characterized by being shifted in the circumferential direction.

さらに、本発明の望ましい実施態様においては、以上のような特徴を持つ外転型永久磁石回転電機の回転子に連なり、ロープを巻きかけたシーブを有する巻上機を備えたエレベータ装置を提供する。   Furthermore, in a preferred embodiment of the present invention, there is provided an elevator apparatus including a hoisting machine having a sheave around which a rope is wound, which is connected to a rotor of an outer rotation type permanent magnet rotating electric machine having the above-described characteristics. .

本発明の望ましい実施態様によれば、トルク脈動の少ない、低騒音、小形軽量、高効率、低価格の外転型永久磁石回転電機及びそれを駆動源とするエレベータ装置を提供することができる。   According to a preferred embodiment of the present invention, it is possible to provide an external rotation type permanent magnet rotating electrical machine having a low torque pulsation, a low noise, a small size, a light weight, a high efficiency, and a low price, and an elevator apparatus using the same as a drive source.

本発明のその他の目的と特徴は、以下に述べる実施形態の中で明らかにする。   Other objects and features of the present invention will be clarified in the embodiments described below.

本発明の一実施例による外転型永久磁石回転電機の半径方向断面概要図である。It is a radial direction cross-sectional schematic diagram of the external rotation type permanent magnet rotary electric machine by one Example of this invention. 図1の要部拡大図である。It is a principal part enlarged view of FIG. 本発明の一実施例による外転型永久磁石回転電機を軸に平行な面で断面した概要図である。1 is a schematic view of an abduction type permanent magnet rotating electrical machine according to an embodiment of the present invention taken along a plane parallel to an axis. 本発明の一実施例による外転型永久磁石回転電機の表面磁極幅に対するトルク特性図である。It is a torque characteristic figure with respect to the surface magnetic pole width of the outer rotation type permanent magnet rotating electrical machine by one Example of this invention. 本発明の一実施例による外転型永久磁石回転電機の永久磁石の極弧度に対するトルク特性図である。It is a torque characteristic figure with respect to the pole arc degree of the permanent magnet of the outer rotation type permanent magnet rotating electric machine by one Example of this invention. 本発明の一実施例による外転型永久磁石回転電機のスキュー構成例図である。It is a skew structural example figure of the outer rotation type permanent magnet rotary electric machine by one Example of this invention. 本発明の一実施例による外転型永久磁石回転電機のスキュー特性を示す1 shows skew characteristics of an abduction type permanent magnet rotating electric machine according to an embodiment of the present invention. 本発明の他の実施例による外転型永久磁石回転電機のスキュー構成を示す。6 shows a skew configuration of an outer rotation type permanent magnet rotating electric machine according to another embodiment of the present invention. 本発明の他の実施例による外転型永久磁石回転電機の要部拡大図である。It is a principal part enlarged view of the abduction type permanent magnet rotary electric machine by the other Example of this invention. 本発明の一実施例による外転型永久磁石回転電機を用いたエレベータ巻上機を軸に平行な面で断面した概要図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of an elevator hoisting machine using an outer rotation type permanent magnet rotating electric machine according to an embodiment of the present invention, taken along a plane parallel to an axis.

まず、図1〜3を用いて、本発明の一実施例によるエレベータの巻上機に最適な外転型永久磁石回転電機について説明する。   First, with reference to FIGS. 1 to 3, an abduction type permanent magnet rotating electrical machine that is most suitable for an elevator hoist according to an embodiment of the present invention will be described.

図1は、本実施例の外転型永久磁石回転電機を半径方向に断面した概要図である。   FIG. 1 is a schematic view of an abductor-type permanent magnet rotating electric machine according to the present embodiment taken along a radial direction.

図2は、図1の要部(AOB部)拡大図、図3は、その回転電機を軸に平行な面で断面した概要図である。   FIG. 2 is an enlarged view of a main part (AOB part) of FIG. 1, and FIG. 3 is a schematic view of the rotating electrical machine taken along a plane parallel to the axis.

図1〜3において、外転型永久磁石回転電機1は固定子2と回転子3とから構成されている。固定子2は、大きくは固定子鉄心4と固定子巻線5とで構成される。固定子鉄心4は、硅素鋼板を型による打ち抜き等により、積層して構成される。固定子鉄心4の内周には、固定子磁路を構成する固定子コア41と、固定子コア41より固定子外周に向かって放射状にのびる固定子突極42とから構成されている。図示のように、隣り合った固定子突極42間と固定子コア41とで構成される空間はスロット43であり、固定子巻線5を収納する空間である。ここで、各固定子突極42には、図示のように1極に1個の固定子巻線5を巻回するものとする。   1 to 3, the outer rotation type permanent magnet rotating electrical machine 1 includes a stator 2 and a rotor 3. The stator 2 is mainly composed of a stator core 4 and a stator winding 5. The stator core 4 is configured by laminating silicon steel plates by punching with a mold or the like. The inner periphery of the stator core 4 includes a stator core 41 that constitutes a stator magnetic path, and stator salient poles 42 that extend radially from the stator core 41 toward the outer periphery of the stator. As shown in the drawing, the space formed between the adjacent stator salient poles 42 and the stator core 41 is a slot 43, which is a space for accommodating the stator winding 5. Here, one stator winding 5 is wound around each stator salient pole 42 as shown in the figure.

一方、回転子3は、外周に配置され、図示のようにリング上に配置された塊状の回転子鉄心7と、回転子鉄心7の内周面に配置された永久磁石6とで構成される。   On the other hand, the rotor 3 is disposed on the outer periphery, and includes a massive rotor core 7 disposed on a ring as illustrated, and a permanent magnet 6 disposed on the inner peripheral surface of the rotor core 7. .

本実施例の永久磁石6の形状の特徴は、6面ともに矩形の直方体としたことにある。図示のように、永久磁石6の内周面、外周面ともに平直面で構成したことが特徴である。従って、永久磁石の取付け面となる回転子鉄心3の内周面は、軸方向だけでなく、周方向に対しても平直面をなす。回転子鉄心3の内周面は、この平直な永久磁石の取付け面71と、永久磁石6の極間の位置する部分の回転子鉄心極間部72とがある。ここで、回転子鉄心極間部72の形状は、周方向に対して直線でも弧状でも良いが、磁石保持、位置決めの点からは回転子鉄心7から内周側に突起となる形状にすることが望ましい。ここで、永久磁石6は、接着剤等によって固定子鉄心の磁石取付け面71に固着されている。   The feature of the shape of the permanent magnet 6 of the present embodiment is that the six surfaces are rectangular parallelepipeds. As shown in the drawing, the inner and outer peripheral surfaces of the permanent magnet 6 are configured to be flat. Therefore, the inner peripheral surface of the rotor core 3 serving as a mounting surface for the permanent magnets faces not only in the axial direction but also in the circumferential direction. The inner peripheral surface of the rotor core 3 includes a flat permanent magnet mounting surface 71 and a portion between the rotor core poles 72 located between the poles of the permanent magnet 6. Here, the shape of the rotor core inter-pole portion 72 may be a straight line or an arc shape with respect to the circumferential direction, but from the standpoint of magnet holding and positioning, a shape that forms a protrusion from the rotor core 7 to the inner peripheral side. Is desirable. Here, the permanent magnet 6 is fixed to the magnet mounting surface 71 of the stator core with an adhesive or the like.

図1〜3に示す本発明の一実施例においては、永久磁石6の極数Pは42、固定子鉄心の突極数Sは36である。この構成では、永久磁石6の極数Pと固定子鉄心4の突極数Sの最大公約数Mは6、最小公倍数Nは252となる。最小公倍数Nと最大公約数Mとの比N/Mは、252/6で42となる。   1-3, the permanent magnet 6 has a pole number P of 42 and the stator core has a salient pole number S of 36. In this configuration, the greatest common divisor M of the number of poles P of the permanent magnet 6 and the number of salient poles S of the stator core 4 is 6, and the least common multiple N is 252. The ratio N / M between the least common multiple N and the greatest common divisor M is 42 at 252/6.

この最大公約数M=6は、図2で示した60度内での構成、すなわち、永久磁石の極数P=7、固定子鉄心4の突極数S=6の6回の繰り返し構成と一致するとともに、比N/M=42は、本発明の範囲を示す13を越えたものである。   The greatest common divisor M = 6 is a configuration within 60 degrees shown in FIG. 2, that is, a configuration in which the number of poles P of the permanent magnet P = 7 and the number of salient poles S = 6 of the stator core 4 is six times. In agreement, the ratio N / M = 42 exceeds 13 which indicates the scope of the present invention.

従って、本発明では、6面ともに矩形の直方体の永久磁石6を備え、永久磁石6の極数Pと固定子の突極数Sとの最大公約数をM、最小公倍数をNとしたとき、最大公約数Mを3以上とし、かつ最小公倍数Nと最大公約数Mの比N/Mを13以上の構成としている。   Therefore, in the present invention, the rectangular parallelepiped permanent magnet 6 is provided on all six surfaces, and when the greatest common divisor between the number of poles P of the permanent magnet 6 and the number of salient poles S of the stator is M and the least common multiple is N, The greatest common divisor M is set to 3 or more, and the ratio N / M between the least common multiple N and the greatest common divisor M is set to 13 or more.

特許文献2に述べられた第1の例では、永久磁石の極数Pと固定子鉄心の突極数Sの比を3:2、もしくは3:4にすることを開示している。したがって、本発明の一実施例で選択したように、固定子鉄心の突極S=36に固定した場合、特許文献2においては、永久磁石の極数P=24、もしくはP=48に選択することとなる。この場合、最大公約数Mは、両者とも12となるが、最小公倍数Nはそれぞれ72,144となり、最小公倍数Nと最大公約数Mの比N/Mは、それぞれ、6あるいは12となり、本発明のように、13以上とはならない。   In the first example described in Patent Document 2, it is disclosed that the ratio of the number of poles P of the permanent magnet and the number of salient poles S of the stator core is 3: 2 or 3: 4. Therefore, as selected in the embodiment of the present invention, when the salient pole S = 36 of the stator core is fixed, in Patent Document 2, the number of poles of the permanent magnet P = 24 or P = 48 is selected. It will be. In this case, the greatest common divisor M is 12 in both cases, but the least common multiple N is 72 and 144, respectively, and the ratio N / M between the least common multiple N and the greatest common divisor M is 6 or 12, respectively. As above, it will not be 13 or more.

一方、特許文献2に開示されている他の実施例である永久磁石6の極数Pと固定子鉄心の突極Sとの関係を、S=6n,P=6n±2(nは1以上の整数)の関係にした組み合わせについて検討する。この場合、固定子鉄心4の突極数Sが本発明と同じに36とすると、永久磁石6の極数は36±2となり、永久磁石6の極数は34もしくは38となる。   On the other hand, the relationship between the number of poles P of the permanent magnet 6 and the salient pole S of the stator core, which is another embodiment disclosed in Patent Document 2, is expressed as S = 6n, P = 6n ± 2 (n is 1 or more) Consider a combination that is an integer). In this case, if the number of salient poles S of the stator core 4 is 36 as in the present invention, the number of poles of the permanent magnet 6 is 36 ± 2, and the number of poles of the permanent magnet 6 is 34 or 38.

従って、最大公約数Mは、両者とも2となり、最小公倍数Nは612,684となり、最小公倍数Nと最大公約数Mの比は、それぞれ306と、342となる。   Accordingly, the greatest common divisor M is 2 for both, the least common multiple N is 612,684, and the ratio of the least common multiple N to the greatest common divisor M is 306 and 342, respectively.

この場合、最小公倍数Nと最大公約数Mの比は大きくなるが、最大公約数Mが2と小さく、本発明のように、3以上とはならない。   In this case, the ratio of the least common multiple N and the greatest common divisor M becomes large, but the greatest common divisor M is as small as 2 and does not become 3 or more as in the present invention.

永久磁石回転電機で、永久磁石の極数をP、固定子の突極数をSとし、さらにPとSの最大公約数M、最小公倍数Nとしたとき、最大公約数Mは、回転電機の振動モードを規定する値となる。外転型永久磁石回転電機1の場合に、回転子鉄心7が電磁気的な応力を受けて円環モードの振動をする場合のモード数(周方向の振動サイクル)を規定し、これを大きくすることによって、振動は少なくなり、低振動のモータとすることができる。   In a permanent magnet rotating electric machine, when the number of poles of the permanent magnet is P, the number of salient poles of the stator is S, and the greatest common divisor M and the least common multiple N of P and S are the greatest common divisor M, It is a value that defines the vibration mode. In the case of the abduction-type permanent magnet rotating electrical machine 1, the number of modes (circumferential vibration cycle) when the rotor core 7 vibrates in an annular mode under electromagnetic stress is specified and increased. As a result, vibration is reduced and a low vibration motor can be obtained.

特許文献2に当てはめて示した最大公約数M=2は、2次の振動モードとなり、半周分の電磁力の積分がその中央に位置する回転子鉄心にかかるため、大きな楕円状の振動を回転子鉄心7に引き起こしてしまう。   The greatest common divisor M = 2 shown in Patent Document 2 is the second-order vibration mode, and the integral of the electromagnetic force for half a circle is applied to the rotor core located at the center, so that a large elliptical vibration is rotated. It will cause the child core 7.

一方、最小公倍数Nと最大公約数Mの比N/Mは、1回転を最大公約数Mで割った範囲の固定子鉄心4の突極数と、そこに占める永久磁石6の極数の最小公倍数である。これは、上記の範囲の固定子鉄心4の突極数Sと永久磁石6の極数Pとによって発生するコギングトルクのサイクル数を規定するものである。コギングトルクは、コギングトルクのサイクル数の増加に応じて小さくなるので、最小公倍数Nと最大公約数Mの比を大きくすることで、コギングトルクを低減することができる。   On the other hand, the ratio N / M between the least common multiple N and the greatest common divisor M is the minimum of the number of salient poles of the stator core 4 in one rotation divided by the greatest common divisor M and the number of poles of the permanent magnet 6 occupying there. It is a common multiple. This prescribes the number of cycles of cogging torque generated by the number of salient poles S of the stator core 4 and the number of poles P of the permanent magnet 6 in the above range. Since the cogging torque decreases as the number of cycles of the cogging torque increases, the cogging torque can be reduced by increasing the ratio of the least common multiple N and the greatest common divisor M.

本発明の一実施形態においては、リング状ヨーク部と、その径方向外周に突極を持つ固定子鉄心と、固定子鉄心のオープンスロット部に配置され、前記突極に集中的に巻回する固定子巻線を備えた固定子と、その外周に配置したリング状の回転子鉄心を備えている。この回転子鉄心の内周面に、6面ともに矩形状の直方体の永久磁石を前記固定子と適当な空隙を介して配置した永久磁石回転子を備えている。そして、永久磁石の極数をP、固定子の突極数をSとし、さらにPとSの最大公約数をM、最小公倍数をNとしたとき、最大公約数Mを3以上とし、かつ最小公倍数Nと最大公約数Mの比N/Mを13以上の構成にしたことを特徴とする。   In one embodiment of the present invention, a ring-shaped yoke portion, a stator core having a salient pole on the outer periphery in the radial direction thereof, and an open slot portion of the stator core are concentratedly wound around the salient pole. A stator having a stator winding and a ring-shaped rotor core disposed on the outer periphery thereof are provided. On the inner peripheral surface of the rotor core, there is provided a permanent magnet rotor in which rectangular parallelepiped permanent magnets on all six sides are arranged with an appropriate gap from the stator. When the number of poles of the permanent magnet is P, the number of salient poles of the stator is S, the greatest common divisor of P and S is M, and the least common multiple is N, the greatest common divisor M is 3 or more and the smallest The ratio N / M between the common multiple N and the greatest common divisor M is 13 or more.

これによって、無負荷時のコギングトルク、負荷時の振動、騒音を低減すると共に、安価な外転型永久磁石回転電機を提供できる。   As a result, it is possible to reduce the cogging torque at the time of no load, vibration and noise at the time of load, and to provide an inexpensive external rotation type permanent magnet rotating electrical machine.

コギングトルクは、特許文献2に開示された「S=6n,P=6n±2(nは1以上の整数)」の構成にまでしなくとも、十分小さくでき、かつそれによって、振動モード数を多くした構成とすることによって、振動騒音を十分に低減することができる。   The cogging torque can be made sufficiently small without the configuration of “S = 6n, P = 6n ± 2 (n is an integer of 1 or more)” disclosed in Patent Document 2, and the number of vibration modes is thereby reduced. With the increased configuration, vibration noise can be sufficiently reduced.

本発明の望ましい実施形態では、固定子鉄心4の突極を、特許文献1のように外周端で周方向に広がる構成とはせずに、オープン型のスロット構成とした。エレベータの巻上機としては、200%程度の負荷に至るまでトルク脈動を小さく抑制することが要求される。また、エレベータ装置の保持試験のために、更にそれより大きいトルクを発生できることを、定期試験等で確認している。特許文献1に開示されているように、突極の外周側に周方向に広がる爪部を有する一般のセミクローズ型のスロット構成では、固定子巻線5と鎖交する磁束量を、永久磁石6の磁束を爪部の集磁力を利用して増加させることができる。このため、前記過負荷条件下では、爪部の集磁力を利用して、トルクを増大させることができる。しかし、反面、固定子巻線5に流れる大きな電流による磁界によって、爪部の部分的な磁気飽和が発生し、これによってトルク変動を大きくしてしまう結果となる。これは、エレベータ装置にとって、乗り心地を損ねる要因となる。   In a preferred embodiment of the present invention, the salient poles of the stator core 4 are not configured to expand in the circumferential direction at the outer peripheral end as in Patent Document 1, but are configured as open slots. An elevator hoisting machine is required to suppress torque pulsation to a small extent until a load of about 200% is reached. In addition, it is confirmed by periodic tests and the like that a torque larger than that can be generated for a holding test of the elevator apparatus. As disclosed in Patent Document 1, in a general semi-closed slot configuration having a claw portion extending in the circumferential direction on the outer peripheral side of the salient pole, the amount of magnetic flux interlinked with the stator winding 5 is set to a permanent magnet. The magnetic flux of 6 can be increased using the magnetic force of the claw. For this reason, under the overload condition, the torque can be increased by utilizing the magnetic force of the claw portion. However, on the other hand, a magnetic field caused by a large current flowing in the stator winding 5 causes partial magnetic saturation of the claw portion, resulting in a large torque fluctuation. This is a factor that impairs the ride comfort for the elevator apparatus.

一般には、永久磁石6の磁束と鎖交することによって発生する固定子巻線5の誘起電圧を、高調波分を含まない正弦波状とし、これに、正弦波状の電流を印加することによって3相合成のトルクを脈動の少ない一定の駆動トルクとすることができる。セミクローズ型のスロット形状では、大電流時にその磁界の影響によって、誘起電圧を歪ませ、誘起電圧の高調波を大きくすると考えることができ、これによって、トルク脈動が大きくなる。   In general, the induced voltage of the stator winding 5 generated by interlinking with the magnetic flux of the permanent magnet 6 is a sine wave that does not include harmonic components, and a sine wave current is applied to the sine wave to thereby generate a three-phase. The combined torque can be a constant driving torque with little pulsation. In the semi-closed slot shape, it can be considered that the induced voltage is distorted and the harmonics of the induced voltage are increased due to the influence of the magnetic field when the current is large, thereby increasing the torque pulsation.

一方、本発明の望ましい実施形態のようなオープンスロットでは、過負荷条件下においても、部分的な磁気飽和を生ぜしめる爪部が無いために、トルクは若干低下する反面、200%を越える大きな負荷条件下でもトルク脈動を小さくすることができる。   On the other hand, in the open slot as in the preferred embodiment of the present invention, there is no claw that causes partial magnetic saturation even under an overload condition. Torque pulsation can be reduced even under conditions.

このオープンスロット構成では、極数の選択がトルクに大きな影響を与える。   In this open slot configuration, the selection of the number of poles greatly affects the torque.

例えば、固定子鉄心4の突極数Sと永久磁石6の極数Pを図1,図2で示したように36と42に選択する場合と、固定子鉄心4の突極数Sを変えずに永久磁石6の極数Pを30にした場合を比較する。一般に、セミクローズのスロット形状では、極数P=42と多い場合には、一つの固定子巻線5が巻回する固定子鉄心突極の表面の領域が電気角で240度を占める。このため、磁束密度の負領域まで含むことになり、固定子鉄心突極表面の平均磁束密度が減少し、周波数は永久磁石6の極数P=30に比較して増加するが、発生誘起電圧に変わりが無く、同じ電流におけるトルクもあまり変わらない結果となる。   For example, when the number of salient poles S of the stator core 4 and the number of poles P of the permanent magnet 6 are selected as 36 and 42 as shown in FIGS. 1 and 2, the number of salient poles S of the stator core 4 is changed. The case where the number of poles P of the permanent magnet 6 is 30 is compared. Generally, in the semi-closed slot shape, when the number of poles P is as large as 42, the surface area of the stator core salient pole around which one stator winding 5 is wound occupies 240 degrees in electrical angle. For this reason, the negative magnetic flux density region is included, the average magnetic flux density on the surface of the stator core salient poles decreases, and the frequency increases compared to the number of poles P = 30 of the permanent magnet 6, but the generated induced voltage As a result, the torque at the same current does not change much.

本発明の望ましい実施形態によるオープンスロット構造では、一つの固定子巻線5が巻回する固定子鉄心突極の表面の領域は、電気角で180度以下にでき、それによって、磁束密度の負の部分を含めて低い部分を除くことができる。したがって、固定子鉄心突極表面の平均磁束密度が増加し、P=30に比較して増加させることができる。試算例では、P=30極に対して、P=42極の選択によって10%のトルク向上となる。   In the open slot structure according to the preferred embodiment of the present invention, the area of the surface of the stator core salient pole around which one stator winding 5 is wound can be less than 180 degrees in electrical angle, thereby reducing the negative magnetic flux density. The lower part including the part of can be removed. Therefore, the average magnetic flux density on the surface of the stator core salient pole is increased and can be increased as compared with P = 30. In the trial calculation example, the torque is improved by 10% by selecting P = 42 poles with respect to P = 30 poles.

極数の増加は周波数の増加となって、インダクタンスによる電圧降下を大きくするため、力率が悪くなり、駆動するインバータ容量を増加させる必要があり、これは欠点となる。しかし、エレベータ装置としては、保持試験のために、更にそれより大きいトルクを発生できることを、定期試験等で確認しなければならない。   An increase in the number of poles results in an increase in frequency and a voltage drop due to the inductance is increased, so that the power factor is deteriorated and the inverter capacity to be driven needs to be increased, which is a drawback. However, as an elevator apparatus, it is necessary to confirm by a periodic test or the like that a larger torque can be generated for the holding test.

この場合には、上記のトルクアップは大きく、永久磁石の極数Pを固定子の突極数Sより多くすることによって、永久磁石回転電機1の体格を小さくできる点、あるいは回転電機の温度上昇を低くできる点で、上記の欠点を補い得るメリットがある。   In this case, the torque increase is large, and the size of the permanent magnet rotating electrical machine 1 can be reduced by increasing the number P of permanent magnets to the number S of salient poles of the stator, or the temperature of the rotating electrical machine increases. There is an advantage that the above-mentioned drawbacks can be compensated.

図1に戻って、永久磁石回転電機1の固定子鉄心2の突極には、図示のような記号を付記した。それぞれ、U,V,W相からなる固定子巻線5を巻回した突極を示す。例えば、U1+はU相に属する巻線で+に巻回した1番目の突極を示している。また、図2には、固定子巻線5について、図示のような記号を付記した。例えば、U1++では、固定子鉄心2の突極U1+に巻回することを示し、さらに、末尾の+は紙面上、裏面より表面に巻回されていることを示し、−の場合にはその逆を示している。図1では、固定子鉄心2の突極Pが12極、永久磁石2の極数Pが14極を基本単位とする構成の3倍構成を示しており、図2には上記基本単位の1/2分を図示している。   Returning to FIG. 1, the salient poles of the stator core 2 of the permanent magnet rotating electrical machine 1 are marked with symbols as shown. The salient pole which wound the stator coil | winding 5 which consists of U, V, and W phase, respectively is shown. For example, U1 + indicates a first salient pole wound around + in a winding belonging to the U phase. Further, in FIG. 2, symbols as illustrated are added to the stator winding 5. For example, U1 ++ indicates that the coil is wound around the salient pole U1 + of the stator core 2, and the trailing + indicates that the coil is wound from the back surface to the front surface on the paper surface. Is shown. FIG. 1 shows a triple configuration in which the basic unit is the salient pole P of the stator core 2 and the pole number P of the permanent magnet 2 is 14 poles. FIG. / 2 minutes are shown.

この他の、固定子鉄心突極数Sと、永久磁石の極数Pのコンビネーションとしては、固定子鉄心4の突極Sが9極、永久磁石6の極数Pが8極もしくは10極を基本単位とし、その3倍以上の繰り返しが考えられる。したがって、固定子鉄心4の突極Sが27極で、永久磁石6の極数Pが24極もしくは30極を基本単位とすること等が挙げられる。   Other combinations of the number S of stator core salient poles and the number of poles P of the permanent magnet are 9 poles S of the stator core 4 and 8 poles or 10 poles of the permanent magnet 6. The basic unit can be repeated three times or more. Therefore, the salient pole S of the stator core 4 is 27, and the number P of the permanent magnet 6 is 24 or 30 as a basic unit.

一般的には、永久磁石の極数をP、固定子の突極数をSとし、さらにPとSの最大公約数M、最小公倍数Nとしたとき、最大公約数Mを3以上とし、かつ最小公倍数Nと最大公約数Mの比N/Mを13以上の構成とすることで、本発明の効果が発揮できる。   In general, when the number of poles of the permanent magnet is P, the number of salient poles of the stator is S, and the greatest common divisor M and the least common multiple N of P and S, the greatest common divisor M is 3 or more, and By setting the ratio N / M of the least common multiple N and the greatest common divisor M to 13 or more, the effect of the present invention can be exhibited.

以上、3相構成で説明したが、これに限定されるものではなく、3相構成の巻線をそれぞれ、電気角で30度ずらした構成のものでも良く、また、多相構成とすることも可能である。   As described above, the three-phase configuration has been described. However, the present invention is not limited to this, and the three-phase configuration windings may be configured by shifting the electrical angle by 30 degrees, or may be a multiphase configuration. Is possible.

本発明の外転型永久磁石回転電機1は、インバータによって駆動されるものである。   The outer rotation type permanent magnet rotating electrical machine 1 of the present invention is driven by an inverter.

一般には、3相のインバータで、電流検出器、回転子の磁極位置検出器を備え、回転子3の位置に応じて正弦波状の電流を通電させると共に、インバータへのトルク指令によってその電流の大きさを変える制御を持ったインバータで駆動される。必要に応じて、高速回転時には電流の位相を進ませて、弱め界磁制御等を行うことも可能である。   In general, a three-phase inverter is provided with a current detector and a rotor magnetic pole position detector, and a sine wave current is applied according to the position of the rotor 3, and the magnitude of the current is determined by a torque command to the inverter. It is driven by an inverter with control to change the height. If necessary, it is possible to control the field weakening by advancing the phase of the current during high-speed rotation.

本発明の対象とする外転型永久磁石回転電機では、固定子鉄心4の固定子突極の永久磁石面の周方向幅(表面磁極幅)がトルク発生に大きな影響を与える。   In the outer rotation type permanent magnet rotating electrical machine that is the subject of the present invention, the circumferential width (surface magnetic pole width) of the permanent magnet surface of the stator salient pole of the stator core 4 has a great influence on the torque generation.

そこで、図2で示した固定子突極42の表面磁極幅をθa、固定子突極42間のピッチをθsとしたとき、その比θa/θsがトルク特性に与える影響について計算した。計算条件は、固定子突極42の表面磁極幅θaを変化させたとき、それに応じてスロット43の面積が増減した分、スロット内の起磁力が比例して増減するとの仮定で行った。したがって、スロット内の電流密度は一定と仮定している。計算条件は、永久磁石の極数Pを30、固定子の突極数Sを36、永久磁石の極幅と永久磁石ピッチの比は約80%程度の条件で有限要素法による磁界計算により行った。   Therefore, when the surface magnetic pole width of the stator salient pole 42 shown in FIG. 2 is θa and the pitch between the stator salient poles 42 is θs, the influence of the ratio θa / θs on the torque characteristics was calculated. The calculation conditions were based on the assumption that when the surface magnetic pole width θa of the stator salient pole 42 was changed, the magnetomotive force in the slot increased or decreased in proportion to the increase or decrease in the area of the slot 43 correspondingly. Therefore, it is assumed that the current density in the slot is constant. The calculation conditions are as follows. The number of poles P of the permanent magnet is 30, the number of salient poles S of the stator is 36, and the ratio between the pole width of the permanent magnet and the permanent magnet pitch is about 80%. It was.

ここで、トルクとトルク脈動が評価の対象となる。これに影響を与える因子としては、固定子突極42の表面磁極幅θaがある。もう一つは、固定子突極42の永久磁石面の両端面の半径を、固定子突極42の永久磁石面の中心面の半径よりT1だけ小さくすることで、固定子突極42の永久磁石面を丸めてトルク脈動を低減することができるので、このT1をパラメータとして計算した。   Here, torque and torque pulsation are objects of evaluation. A factor that affects this is the surface magnetic pole width θa of the stator salient poles 42. The other is to make the permanent salient pole 42 permanent by making the radius of both end faces of the permanent magnet face of the stator salient pole 42 smaller than the radius of the center face of the permanent magnet face of the stator salient pole 42 by T1. Since torque pulsation can be reduced by rounding the magnet surface, this T1 was calculated as a parameter.

その結果を図4に示す。   The result is shown in FIG.

図4は上記の計算条件から、脈動トルクを一定とした場合の固定子突極42の表面磁極幅θaと固定子突極ピッチθsの比に対する出力トルクの値を示す。固定子突極42の表面磁極幅θaを固定子突極42間のピッチθsのほぼ1/2にすることで、脈動トルク一定で、出力トルクを最大化することができる結果を見いだした。なお、固定子突極42の表面磁極幅θaと固定子突極42間のピッチθsに対する比を、44〜54%の範囲に設定すれば、最大トルクに対して約5%以内にトルク低下を押さえることができる。   FIG. 4 shows the value of the output torque with respect to the ratio of the surface magnetic pole width θa of the stator salient pole 42 and the stator salient pole pitch θs when the pulsating torque is constant from the above calculation conditions. It has been found that the output torque can be maximized with a constant pulsation torque by setting the surface magnetic pole width θa of the stator salient poles 42 to be approximately ½ of the pitch θs between the stator salient poles 42. If the ratio of the surface magnetic pole width θa of the stator salient poles 42 to the pitch θs between the stator salient poles 42 is set in the range of 44 to 54%, the torque will be reduced within about 5% with respect to the maximum torque. I can hold it down.

次に、図5には、本発明の外転型永久磁石回転電機の永久磁石の極弧度に対する特性を示した。平均的な出力トルクとトルクリプルとを示している。図では更に、トルクリプルのうち、トルクリプルのピーク−ピーク値を示すtpp、トルクリプルの電気角での第6次成分t6、及びその12次成分t12とを合わせて示した。第6次成分t6は比較的小さく、第12次成分t12によって、脈動トルクのピーク−ピーク値がきまる。そして、この第12次成分t12を小さくできる永久磁石の極ピッチに占める極幅(極弧度)を、0.7または0.87とすることによって、脈動トルクを小さくできることを見いだした。   Next, FIG. 5 shows the characteristics of the permanent magnet of the abduction type permanent magnet rotating electrical machine according to the present invention with respect to the degree of polar arc. Average output torque and torque ripple are shown. In the drawing, tpp indicating the peak-peak value of the torque ripple, the sixth-order component t6 in the electrical angle of the torque ripple, and the twelfth-order component t12 are also shown. The sixth order component t6 is relatively small, and the peak-peak value of the pulsating torque is determined by the twelfth order component t12. The inventors have found that the pulsation torque can be reduced by setting the pole width (polar arc degree) in the pole pitch of the permanent magnet that can reduce the twelfth order component t12 to 0.7 or 0.87.

本構成とすることにより、トルクリプルの小さい外転型永久磁石回転電機1を得ることができる。なお、永久磁石の極ピッチに占める極幅を、0.7または0.87に対して±2%の範囲、すなわち、0.68〜0.72または、0.85〜0.89の範囲において、十分トルクリプルが小さく本発明の範囲内といえる。   By adopting this configuration, an abduction type permanent magnet rotating electrical machine 1 with a small torque ripple can be obtained. The pole width occupying the pole pitch of the permanent magnet is in the range of ± 2% with respect to 0.7 or 0.87, that is, in the range of 0.68 to 0.72 or 0.85 to 0.89. It can be said that the torque ripple is sufficiently small and within the scope of the present invention.

なお、ここで、永久磁石の極ピッチに占める極幅が0.7の選択では、図から永久磁石の使用量に対するトルクの発生量の比が大きく、永久磁石の極ピッチに占める極幅が0.87の選択では、発生トルクの絶対値を大きくできる選択といえる。   Here, when the pole width occupying the pole pitch of the permanent magnet is selected to be 0.7, the ratio of the torque generation amount to the permanent magnet usage amount is large from the figure, and the pole width occupying the pole pitch of the permanent magnet is 0. .87 can be said to be a selection that can increase the absolute value of the generated torque.

図6は、本発明の一実施例による外転型永久磁石回転電機のスキュー(Skew)構成例図である。これまで示したように、高トルク化、低トルクリプル化とを同時に達成するためには、スキューが不可欠である。図6(a)には永久磁石6を回転子鉄心磁石取付け面71の中心部に配置した例を示す。図6(b)には永久磁石6を回転子鉄心磁石取付け面71の右側に配置した例を示す。図6(c)には永久磁石6を回転子鉄心磁石取付け面71の左側に配置した例を示す。   FIG. 6 is a diagram illustrating a skew configuration example of an outer rotation type permanent magnet rotating electric machine according to an embodiment of the present invention. As shown so far, skew is indispensable for achieving high torque and low torque ripple at the same time. FIG. 6A shows an example in which the permanent magnet 6 is arranged at the center of the rotor core magnet mounting surface 71. FIG. 6B shows an example in which the permanent magnet 6 is arranged on the right side of the rotor core magnet mounting surface 71. FIG. 6C shows an example in which the permanent magnet 6 is arranged on the left side of the rotor core magnet mounting surface 71.

ここで、θdは、図6(a)の永久磁石6を回転子鉄心磁石取付け面71の中心部に配置した場合に対して、図6(b),図6(c)で示した永久磁石6の配置の移動量示すものである。   Here, θd is the permanent magnet shown in FIGS. 6B and 6C compared to the case where the permanent magnet 6 in FIG. 6A is arranged at the center of the rotor core magnet mounting surface 71. The movement amount of the arrangement of 6 is shown.

以上の図6の(a),(b),および(c)の配置を、軸方向で変えることでスキューを行うことができる。   Skew can be performed by changing the arrangement of FIGS. 6A, 6B, and 6C in the axial direction.

図7は、本発明の一実施例による外転型永久磁石回転電機のスキュー特性を示す。ここで、tpp2は永久磁石を軸方向に2分割し、図6(b),図6(c)のように配置したときのトルクリプルを示す。また、tpp3は、永久磁石を軸方向に3分割し、それぞれの永久磁石を図6(a),図6(b),図6(c)のようにずらして配置したときのトルクリプルを示す。   FIG. 7 shows a skew characteristic of an outer rotation type permanent magnet rotating electric machine according to an embodiment of the present invention. Here, tpp2 indicates a torque ripple when the permanent magnet is divided into two in the axial direction and arranged as shown in FIGS. 6 (b) and 6 (c). Further, tpp3 indicates a torque ripple when the permanent magnet is divided into three in the axial direction and the respective permanent magnets are displaced as shown in FIGS. 6 (a), 6 (b), and 6 (c).

軸方向2分割はθdの小さい範囲でトルクリプルの極小を得られるのが特徴であり、一方、軸方向3分割はトルクリプルの最小値を2分割構成よりも小さくできるのが特徴である。この原理は、軸方向2分割が電気角12次成分に対応して小さくなるのに対して、軸方向3分割は、電気角12次成分と6次成分とが同時に小さくなるように働くことができるからである。以上の構成で、簡単にスキューの効果を得ることができる。   A feature of the axial division into two is that the torque ripple can be minimized within a small range of θd. On the other hand, the division in the axial direction has a feature that the minimum value of the torque ripple can be made smaller than that in the two-division configuration. In this principle, the axial division into two becomes smaller corresponding to the electrical angle twelfth component, whereas the axial division into three works so that the electrical angle twelfth component and the sixth order component become smaller at the same time. Because it can. With the above configuration, a skew effect can be easily obtained.

図8は、本発明の他の実施例による外転型永久磁石回転電機のスキュー構成を示す。   FIG. 8 shows a skew configuration of an outer rotation type permanent magnet rotating electric machine according to another embodiment of the present invention.

図8の外転型永久磁石回転電機1では、軸方向で磁石分割を行わない構成を示す。回転子鉄心磁石取付け面71の周方向幅を永久磁石6の幅より大きくし、永久磁石6を図示のように斜めに配置することによって、連続的なスキューとすることが可能である。かつ、永久磁石6は軸方向に分割する必要がないため、製作、塗装、取り扱いが容易であり、コストを低減できる。   The abduction type permanent magnet rotating electrical machine 1 of FIG. 8 shows a configuration in which magnet division is not performed in the axial direction. By making the circumferential width of the rotor core magnet mounting surface 71 larger than the width of the permanent magnet 6 and arranging the permanent magnet 6 obliquely as shown in the figure, it is possible to make a continuous skew. Moreover, since the permanent magnet 6 does not need to be divided in the axial direction, it can be easily manufactured, painted, and handled, and the cost can be reduced.

なお、前述の図7の中に、図8で示した外転型永久磁石回転電機1のスキューでのトルクリプルの計算値をtcontとして一緒に示した。低コスト化の他に、スキューの効果としても、前記の2分割、3分割のスキューより大きくトルクリプルを低減できる結果を示している。   In FIG. 7 described above, the calculated value of the torque ripple at the skew of the outer rotation type permanent magnet rotating electrical machine 1 shown in FIG. 8 is shown together as tcont. In addition to cost reduction, the skew effect can be reduced more than the two-part or three-part skew as described above.

図9は、本発明の他の実施例による外転型永久磁石回転電機の要部拡大図である。   FIG. 9 is an enlarged view of a main part of an outer rotation type permanent magnet rotating electric machine according to another embodiment of the present invention.

ここでは、回転子鉄心7の中を珪素鋼板で構成する硅素鋼板部74と塊状鉄心で構成される塊状鉄心部73とに分けたことが特徴である。前述の回転子鉄心7の回転子鉄心磁石部71の機械加工は製作時間がかかる。その分、高価になるおそれがある。また、図1で示したように、塊状鉄心73が固定子鉄心4に直接対面すると、固定子巻線5の作る磁界によって塊状鉄心中に渦電流を発生させ、それによって永久磁石回転電機の効率を落とすおそれがある。   Here, the rotor core 7 is characterized in that it is divided into a silicon steel plate portion 74 made of a silicon steel plate and a massive iron core portion 73 made of a massive iron core. The machining of the rotor core magnet portion 71 of the rotor core 7 described above takes manufacturing time. There is a risk that it will be expensive. Further, as shown in FIG. 1, when the massive iron core 73 directly faces the stator iron core 4, an eddy current is generated in the massive iron core by the magnetic field generated by the stator winding 5, thereby improving the efficiency of the permanent magnet rotating electric machine. There is a risk of dropping.

本実施例の構成によれば、図示のように硅素鋼板部74を設けることによって、回転子鉄心磁石取付け面71の形状を簡単に製作できる。また、回転子鉄心7内の渦電流を生ぜしめる可能性のある脈動磁束が積層珪素鋼板内を通過して、渦電流損の発生を最小に押さえてくれる。集中巻永久磁石回転電機の永久磁石内の渦電流については、既に行われている永久磁石の分割によって小さく押さえることができる。回転子鉄心7の珪素鋼板部74は、軸方向または半径方向の塊状鉄心部73にボルト等によって容易に固定することが可能である。   According to the configuration of the present embodiment, the shape of the rotor core magnet mounting surface 71 can be easily manufactured by providing the silicon steel plate portion 74 as shown. Further, the pulsating magnetic flux that may cause eddy current in the rotor core 7 passes through the laminated silicon steel sheet, and the generation of eddy current loss is minimized. The eddy current in the permanent magnet of the concentrated winding permanent magnet rotating electric machine can be suppressed to a small level by the division of the permanent magnet already performed. The silicon steel plate portion 74 of the rotor core 7 can be easily fixed to the massive core portion 73 in the axial direction or the radial direction with bolts or the like.

次に、これまで説明した本発明の実施例による永久磁石回転電機1を適用したエレベータ巻上機の構成について、図10を用いて説明する。   Next, the structure of the elevator hoisting machine to which the permanent magnet rotating electrical machine 1 according to the embodiment of the present invention described so far is applied will be described with reference to FIG.

図10は、本発明の一実施例による外転型永久磁石回転電機を用いたエレベータ巻上機を軸に平行な面で断面した概要図である。外転型永久磁石回転電機1とシーブ9が一体となった構成である。エレベータ巻上機11は、動力を生み出す外転型永久磁石回転電機1と、前記外転型永久磁石回転電機1が生み出す動力をロープ(図示せず)に伝えるシーブ9を備えている。また、回転子3の外周に制動力を与えるブレーキ12と、回転体を備えたシャフト8を支える回転子支持部10と、これらを支える固定子支持板8とを備えている。ここで、ブレーキ13は、回転子3の外周に接してブレーキ力を発生するブレーキの移動部131と、これを移動可能に支えるブレーキの固定部132とで構成される。   FIG. 10 is a schematic view of an elevator hoisting machine using an outer rotation type permanent magnet rotating electric machine according to an embodiment of the present invention, taken along a plane parallel to the axis. The outer rotation type permanent magnet rotating electrical machine 1 and the sheave 9 are integrated. The elevator hoisting machine 11 includes an outer rotation type permanent magnet rotating electrical machine 1 that generates power, and a sheave 9 that transmits power generated by the outer rotation type permanent magnet rotating electrical machine 1 to a rope (not shown). Moreover, the brake 12 which gives braking force to the outer periphery of the rotor 3, the rotor support part 10 which supports the shaft 8 provided with the rotary body, and the stator support plate 8 which supports these are provided. Here, the brake 13 includes a brake moving part 131 that generates a braking force in contact with the outer periphery of the rotor 3 and a brake fixing part 132 that supports the brake 13 so as to be movable.

以上の構成で、コンパクトで、低振動のエレベータ巻上機11を実現できる。   With the above configuration, a compact and low vibration elevator hoisting machine 11 can be realized.

本発明の一実施形態による永久磁石回転電機1をエレベータ巻上機11に適用することで、定格トルク時から最大トルクまでの幅広い領域における低トルク脈動が可能となり、かごに伝わる振動およびエレベータ機構の騒音の低減に寄与する。さらに、回転子3をスキューすることで、より低トルクリプル化、トルク向上が実現できる。さらに、固定子突極の表面磁極幅θaを固定子突極ピッチθsの50%近傍(44〜54%)にすることによって高トルク化ができる。これによって、振動の少ない、価格の安い、コンパクトなエレベータ巻上機を提供することができる。   By applying the permanent magnet rotating electrical machine 1 according to the embodiment of the present invention to the elevator hoisting machine 11, low torque pulsation in a wide range from the rated torque to the maximum torque is possible, and vibrations transmitted to the car and the elevator mechanism Contributes to noise reduction. Further, by skewing the rotor 3, lower torque ripple and improved torque can be realized. Further, the torque can be increased by setting the surface magnetic pole width θa of the stator salient poles to be close to 50% (44 to 54%) of the stator salient pole pitch θs. As a result, a compact elevator hoisting machine with low vibration and low price can be provided.

なお、以上は本発明の永久磁石回転電機をエレベータ巻上機に適用した場合の構成について示したが、本発明は以上に限定されるものではない。例えば、電動車両、特にホイールインモータのように車輪の中に搭載される外転型永久磁石回転電機にも同様の効果を発揮することができ、これによって、低騒音、低振動で乗り心地、燃費の良い電動車両を供給することができる。   In addition, although the above demonstrated about the structure at the time of applying the permanent magnet rotary electric machine of this invention to an elevator hoisting machine, this invention is not limited above. For example, the same effect can be exerted on an electric vehicle, particularly an abduction-type permanent magnet rotating electric machine mounted in a wheel like a wheel-in motor, and thereby, the ride comfort with low noise and low vibration, An electric vehicle with good fuel consumption can be supplied.

1:外転型永久磁石回転電機、2:固定子、3:回転子、4:固定子鉄心、41:固定子コア、42:固定子突極、43:スロット、5:固定子巻線、6:永久磁石、7:回転子鉄心、71:回転子鉄心磁石取付け面、72:回転子鉄心極間部、73:回転子鉄心の塊状鉄心部、74:回転子鉄心の珪素鋼板部、8:固定子支持板、9:シーブ、10:回転子支持部、11:エレベータ巻上機、12:シャフト、13:ブレーキ、131:ブレーキの移動部、132:ブレーキの固定部。   1: external rotation type permanent magnet rotating electric machine, 2: stator, 3: rotor, 4: stator core, 41: stator core, 42: stator salient pole, 43: slot, 5: stator winding, 6: Permanent magnet, 7: Rotor core, 71: Rotor core magnet mounting surface, 72: Rotor core interpole part, 73: Lump core part of rotor core, 74: Silicon steel plate part of rotor core, 8 : Stator support plate, 9: Sheave, 10: Rotor support, 11: Elevator hoist, 12: Shaft, 13: Brake, 131: Moving part of brake, 132: Fixed part of brake

Claims (9)

リング状のヨーク部と、その径方向外周に突極を有した固定子鉄心と、前記固定子鉄心が形成するオープンスロット部に配置され、前記突極に集中的に巻回する固定子巻線とからなる固定子と、その外周に配置したリング状の回転子鉄心と、回転子鉄心の内周面に6面が矩形状で直方体の永久磁石を前記固定子と適当な空隙を介して配置した永久磁石回転子とを有し、永久磁石の極数をP,固定子の突極数をSとし、さらにPとSの最大公約数をM、最小公倍数をNとしたとき、最大公約数Mを3以上とし、かつ最小公倍数Nと最大公約数Mの比N/Mを13以上としたことを特徴とする外転型永久磁石回転電機。   A ring-shaped yoke portion, a stator core having a salient pole on the outer periphery in the radial direction thereof, and a stator winding that is disposed in an open slot portion formed by the stator core and that is concentratedly wound around the salient pole A ring-shaped rotor core disposed on the outer periphery of the stator, and a rectangular parallelepiped permanent magnet disposed on the inner peripheral surface of the rotor core via the stator and an appropriate gap A permanent magnet rotor, the number of poles of the permanent magnet is P, the number of salient poles of the stator is S, the greatest common divisor of P and S is M, and the least common multiple is N. An external rotation type permanent magnet rotating electrical machine characterized in that M is 3 or more and the ratio N / M of least common multiple N and greatest common divisor M is 13 or more. 請求項1において、永久磁石の極数Pを固定子の突極数Sより多くしたことを特徴とする外転型永久磁石回転電機。   2. An abduction type permanent magnet rotating electric machine according to claim 1, wherein the number of poles P of the permanent magnet is larger than the number of salient poles S of the stator. 請求項1において、固定子突極の表面磁極幅を固定子突極ピッチの44〜54%にしたことを特徴とする外転型永久磁石回転電機。   2. An abduction type permanent magnet rotating electric machine according to claim 1, wherein the surface magnetic pole width of the stator salient pole is 44 to 54% of the stator salient pole pitch. 請求項1において、永久磁石の極弧度を永久磁石ピッチの0.7または0.87としたことを特徴とする外転型永久磁石回転電機。   2. An abduction type permanent magnet rotating electric machine according to claim 1, wherein the pole arc degree of the permanent magnet is set to 0.7 or 0.87 of the permanent magnet pitch. 請求項1において、永久磁石と固定子鉄心の間に積層鋼板を備えたことを特徴とする外転型永久磁石回転電機。   2. An abduction type permanent magnet rotating electric machine according to claim 1, wherein a laminated steel plate is provided between the permanent magnet and the stator core. 請求項1において、永久磁石取付け面である回転子内周面を、永久磁石取付け面毎に、周方向および軸方向に平直面とし、軸方向に複数の永久磁石を並べ周方向にずらして配置したことを特徴とする外転型永久磁石回転電機。   2. The rotor inner peripheral surface which is a permanent magnet mounting surface according to claim 1, wherein each permanent magnet mounting surface is flat in the circumferential direction and the axial direction, and a plurality of permanent magnets are arranged in an axial direction and shifted in the circumferential direction. An abduction type permanent magnet rotating electrical machine characterized by the above. 請求項6において、周方向へのずらす永久磁石の個数を3としたことを特徴とする外転型永久磁石回転電機。   7. An abduction type permanent magnet rotating electric machine according to claim 6, wherein the number of permanent magnets shifted in the circumferential direction is set to 3. 請求項1において、永久磁石取付け面である回転子内周面を、永久磁石取付け面毎に、周方向および軸方向に平直面とし、この平直面内で、軸方向に対して永久磁石を傾けて配置したことを特徴とする外転型永久磁石回転電機。   2. The rotor inner peripheral surface as a permanent magnet mounting surface according to claim 1, wherein the rotor inner peripheral surface is flat in the circumferential direction and the axial direction for each permanent magnet mounting surface, and the permanent magnet is inclined with respect to the axial direction within the flat surface. An abduction type permanent magnet rotating electrical machine characterized by 請求項1〜8のいずれかの外転型永久磁石回転電機を用い、その外転型回転子に連なり、ロープを巻きかけたシーブを有する巻上機を備えたことを特徴とするエレベータ装置。   An elevator apparatus comprising the hoisting machine having the sheave around the rope using the abduction-type permanent magnet rotating electric machine according to any one of claims 1 to 8.
JP2009016060A 2009-01-28 2009-01-28 Outer rotation type permanent magnet rotary electric machine and elevator apparatus using same Pending JP2010178442A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009016060A JP2010178442A (en) 2009-01-28 2009-01-28 Outer rotation type permanent magnet rotary electric machine and elevator apparatus using same
CN2010101081578A CN101795041B (en) 2009-01-28 2010-01-28 Abversion permanent magnet type rotary electric machine and elevator apparatus with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009016060A JP2010178442A (en) 2009-01-28 2009-01-28 Outer rotation type permanent magnet rotary electric machine and elevator apparatus using same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013169333A Division JP5617017B2 (en) 2013-08-19 2013-08-19 External rotating permanent magnet rotating electric machine and elevator apparatus using the same

Publications (2)

Publication Number Publication Date
JP2010178442A true JP2010178442A (en) 2010-08-12
JP2010178442A5 JP2010178442A5 (en) 2011-03-17

Family

ID=42587515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009016060A Pending JP2010178442A (en) 2009-01-28 2009-01-28 Outer rotation type permanent magnet rotary electric machine and elevator apparatus using same

Country Status (2)

Country Link
JP (1) JP2010178442A (en)
CN (1) CN101795041B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102111029A (en) * 2011-02-28 2011-06-29 哈尔滨工业大学 Permanent magnet motor rotor structure adopting stamping components to fix permanent magnet
JP2013176202A (en) * 2012-02-24 2013-09-05 Sim-Drive Co Ltd Three-phase permanent magnet type synchronous electric motor
CN104118786A (en) * 2014-07-01 2014-10-29 常熟市佳能电梯配件有限公司 Permanent magnet outer rotor braking type tractor convenient to adjust
WO2015105510A1 (en) * 2014-01-13 2015-07-16 Otis Elevator Company Drive unit for multiphase permanent magnet synchronous motor
CN109450138A (en) * 2018-12-28 2019-03-08 华人运通控股有限公司 Embedded magnet steel outer rotor iron core component and hub motor
CN112186922A (en) * 2019-07-03 2021-01-05 株式会社日立产机系统 External rotation type surface magnet rotating motor
CN115242008A (en) * 2022-07-04 2022-10-25 北京航空航天大学 Driver and electric propulsion unit based on polygon closely spreads Halbach external rotor magnetic pole configuration

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN2014CN03248A (en) * 2011-10-14 2015-07-03 Mitsubishi Electric Corp
US20140167547A1 (en) * 2012-12-14 2014-06-19 GM Global Technology Operations LLC Electric machine with fractional slot windings
CN104578650A (en) * 2013-10-15 2015-04-29 台达电子企业管理(上海)有限公司 Motor
CN105905764A (en) * 2016-06-15 2016-08-31 上海三菱电梯有限公司 Elevator traction machine
JP6430570B2 (en) 2017-03-27 2018-11-28 岡山県 In-wheel motor

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105365U (en) * 1987-12-28 1989-07-17
JPH01150470U (en) * 1988-04-07 1989-10-18
JPH05161287A (en) * 1991-11-29 1993-06-25 Fanuc Ltd Rotor of synchronous apparatus
JPH1042531A (en) * 1996-05-24 1998-02-13 Matsushita Electric Ind Co Ltd Motor
JPH11500897A (en) * 1994-12-02 1999-01-19 イドロ−ケベック Polyphase brushless AC electric machine
JP2000134893A (en) * 1998-10-29 2000-05-12 Hitachi Ltd Brushless motor
JP2001157428A (en) * 1999-11-26 2001-06-08 Mitsubishi Electric Corp Permanent magnet-type synchronous motor and elevator apparatus using it
JP2002281722A (en) * 2001-03-22 2002-09-27 Matsushita Electric Ind Co Ltd Outer rotor motor and electric bicycle
JP2003284276A (en) * 2002-03-25 2003-10-03 Mitsubishi Electric Corp Dynamo-electric machine
JP2004056871A (en) * 2002-07-17 2004-02-19 Yaskawa Electric Corp Thin direct drive motor
JP2006157998A (en) * 2004-11-25 2006-06-15 Toshiba Corp External rotation permanent magnet motor and washing machine
JP2006304407A (en) * 2005-04-15 2006-11-02 Mitsubishi Electric Corp Permanent magnet type rotary electric machine, and method for producing rotor of the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7067948B2 (en) * 2002-10-18 2006-06-27 Mitsubishi Denki Kabushiki Kaisha Permanent-magnet rotating machine
US7105973B2 (en) * 2003-07-21 2006-09-12 Kollmorgen Corporation Highly efficient permanent magnet brushless motor

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105365U (en) * 1987-12-28 1989-07-17
JPH01150470U (en) * 1988-04-07 1989-10-18
JPH05161287A (en) * 1991-11-29 1993-06-25 Fanuc Ltd Rotor of synchronous apparatus
JPH11500897A (en) * 1994-12-02 1999-01-19 イドロ−ケベック Polyphase brushless AC electric machine
JPH1042531A (en) * 1996-05-24 1998-02-13 Matsushita Electric Ind Co Ltd Motor
JP2000134893A (en) * 1998-10-29 2000-05-12 Hitachi Ltd Brushless motor
JP2001157428A (en) * 1999-11-26 2001-06-08 Mitsubishi Electric Corp Permanent magnet-type synchronous motor and elevator apparatus using it
JP2002281722A (en) * 2001-03-22 2002-09-27 Matsushita Electric Ind Co Ltd Outer rotor motor and electric bicycle
JP2003284276A (en) * 2002-03-25 2003-10-03 Mitsubishi Electric Corp Dynamo-electric machine
JP2004056871A (en) * 2002-07-17 2004-02-19 Yaskawa Electric Corp Thin direct drive motor
JP2006157998A (en) * 2004-11-25 2006-06-15 Toshiba Corp External rotation permanent magnet motor and washing machine
JP2006304407A (en) * 2005-04-15 2006-11-02 Mitsubishi Electric Corp Permanent magnet type rotary electric machine, and method for producing rotor of the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102111029A (en) * 2011-02-28 2011-06-29 哈尔滨工业大学 Permanent magnet motor rotor structure adopting stamping components to fix permanent magnet
JP2013176202A (en) * 2012-02-24 2013-09-05 Sim-Drive Co Ltd Three-phase permanent magnet type synchronous electric motor
EP2819282A4 (en) * 2012-02-24 2016-04-13 Clean Craft Ltd Three-phase permanent magnet synchronous motor
US10298076B2 (en) 2012-02-24 2019-05-21 Clean Craft Limited Three-phase permanent magnet-type synchronous motor
WO2015105510A1 (en) * 2014-01-13 2015-07-16 Otis Elevator Company Drive unit for multiphase permanent magnet synchronous motor
US9932204B2 (en) 2014-01-13 2018-04-03 Otis Elevator Company Drive unit for multiphase permanent magnet synchronous motor
CN104118786A (en) * 2014-07-01 2014-10-29 常熟市佳能电梯配件有限公司 Permanent magnet outer rotor braking type tractor convenient to adjust
CN109450138A (en) * 2018-12-28 2019-03-08 华人运通控股有限公司 Embedded magnet steel outer rotor iron core component and hub motor
CN112186922A (en) * 2019-07-03 2021-01-05 株式会社日立产机系统 External rotation type surface magnet rotating motor
CN112186922B (en) * 2019-07-03 2023-06-13 株式会社日立产机系统 External rotating surface magnet rotary motor
CN115242008A (en) * 2022-07-04 2022-10-25 北京航空航天大学 Driver and electric propulsion unit based on polygon closely spreads Halbach external rotor magnetic pole configuration

Also Published As

Publication number Publication date
CN101795041B (en) 2013-01-09
CN101795041A (en) 2010-08-04

Similar Documents

Publication Publication Date Title
JP2010178442A (en) Outer rotation type permanent magnet rotary electric machine and elevator apparatus using same
JP4269953B2 (en) Rotating electric machine
WO2011122111A1 (en) Dynamo electric machine
US20110018384A1 (en) Motor
JP2009219331A (en) Permanent magnet type generator and hybrid vehicle using the same
JP2010183781A (en) Motor generator
US11283314B2 (en) Motor
US9444317B2 (en) Electric rotating machine
JP5450472B2 (en) Permanent magnet generator and hybrid vehicle using it
JP2004260970A (en) Motor and motor system
JP4894273B2 (en) Rotating electric machine
JP2011019335A (en) Rotary electric machine
JP2012165540A (en) Rotary electric machine
JP5617017B2 (en) External rotating permanent magnet rotating electric machine and elevator apparatus using the same
JP4177189B2 (en) Rotating electric machine and pulley apparatus using the rotating electric machine
CN110875654A (en) Synchronous motor and compressor using same
JP2012161243A (en) Permanent magnet rotating electric machine
JP2010045872A (en) Permanent magnet rotary machine
CN112615509A (en) Double-permanent-magnet embedded permanent magnet synchronous motor structure
GB2589582A (en) Electrical generator
CN114157058B (en) Motor and electrical equipment
WO2010140209A1 (en) Rotating electric machine
US20240235360A1 (en) Magnetic geared rotating machine, power generation system, and drive system
JP6260468B2 (en) Motor core and motor drive system
WO2024214203A1 (en) Rotary electric machine, rotary electric machine system in which said rotary electric machine and electric power drive device are combined, and electric vehicle equipped with said rotary electric machine system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110131

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130528