JP2010168459A - Film and method for producing film - Google Patents

Film and method for producing film Download PDF

Info

Publication number
JP2010168459A
JP2010168459A JP2009011805A JP2009011805A JP2010168459A JP 2010168459 A JP2010168459 A JP 2010168459A JP 2009011805 A JP2009011805 A JP 2009011805A JP 2009011805 A JP2009011805 A JP 2009011805A JP 2010168459 A JP2010168459 A JP 2010168459A
Authority
JP
Japan
Prior art keywords
group
titanium dichloride
ethylene
dimethylsilylene
phenoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009011805A
Other languages
Japanese (ja)
Inventor
Hiroshi Masutani
泰士 桝谷
Makoto Morikawa
誠 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2009011805A priority Critical patent/JP2010168459A/en
Publication of JP2010168459A publication Critical patent/JP2010168459A/en
Pending legal-status Critical Current

Links

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film having excellent blocking resistance and a method for producing the same. <P>SOLUTION: A resin composition contains an ethylene-α-olefin copolymer having an ethylene-based monomer unit and a 3C-20C α-olefin-based monomer unit and polystyrene, wherein 5 wt.% or less of the polystyrene is contained when the total amount of the ethylene-α-olefin copolymer and the polystyrene is 100 wt.%. The method for producing the film includes kneading a mixture obtained by pellet blending of the ethylene-α-olefin copolymer pellets and polystyrene pellets in an extruder and extruding the mixture from a T-die attached to the extruder to produce the film. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、フィルム及びフィルムの製造方法に関する。   The present invention relates to a film and a method for producing the film.

エチレン系重合体は、汎用樹脂として多くの分野に用いられており、例えば、フィルムやシートなどの押出成形品に用いられている。エチレン系重合体の押出成形品は、食品用包装材料や医療用包装材料として使用されることも多く、特にそのような用途では、低臭気性や低味覚性といった高品質性が強く要求されるようになってきている。低臭気性や低味覚性のフィルムを得るためには、エチレン系重合体を加工する際に通常使用する酸化防止剤などの添加剤を添加することなく加工することが望ましい。特許文献1には、エチレンから誘導される構成単位と炭素数3〜20のα−オレフィンから誘導される構成単位を有し、流動の活性化エネルギーが50kJ/mol以上であるエチレン−α−オレフィン共重合体を含むインフレーションフィルムの製造法であって、ダイギャップにおける溶融温度が170℃以下である条件で、前記エチレン−α−オレフィン共重合体を成形するインフレーションフィルムの製造法が記載されており、これにより添加剤を用いることなく低臭気性や低味覚性に優れたフィルムが得られることが記載されている。 Ethylene polymers are used in many fields as general-purpose resins, and are used, for example, in extruded products such as films and sheets. Extruded products of ethylene-based polymers are often used as food packaging materials and medical packaging materials, and in such applications, high quality such as low odor and taste is strongly required. It has become like this. In order to obtain a film having low odor and taste, it is desirable to process without adding an additive such as an antioxidant usually used when processing an ethylene polymer. Patent Document 1 includes an ethylene-α-olefin having a structural unit derived from ethylene and a structural unit derived from an α-olefin having 3 to 20 carbon atoms and having a flow activation energy of 50 kJ / mol or more. A method for producing an inflation film containing a copolymer, wherein the melt temperature in a die gap is 170 ° C. or less, and a method for producing an inflation film for molding the ethylene-α-olefin copolymer is described. Thus, it is described that a film excellent in low odor and taste can be obtained without using an additive.

特開2005−103756公報JP 2005-103756 A

しかしながら上記の方法では、ダイギャップにおけるエチレン−α−オレフィン共重合体の温度が170℃以下となるようにインフレーション成形する必要があるため、生産性に劣ることがあった。また、特許文献1に記載されているような、流動の活性化エネルギーが50kJ/mol以上であるエチレン−α−オレフィン共重合体を、生産性に優れるTダイ押出法にて170℃を超える温度で製膜した場合には、得られるフィルムの耐ブロッキング性が不十分であることがあった。 However, in the above method, since it is necessary to perform inflation molding so that the temperature of the ethylene-α-olefin copolymer in the die gap is 170 ° C. or less, the productivity may be inferior. Further, an ethylene-α-olefin copolymer having a flow activation energy of 50 kJ / mol or more as described in Patent Document 1 is produced at a temperature exceeding 170 ° C. by a T-die extrusion method with excellent productivity. In the case of film formation, the blocking resistance of the resulting film may be insufficient.

かかる状況のもと、本発明が解決しようとする課題は、170℃を超える温度でTダイ法にて製膜した場合においても、耐ブロッキング性に優れるフィルムおよびその製造方法を提供することである。   Under such circumstances, the problem to be solved by the present invention is to provide a film having excellent blocking resistance and a method for producing the same even when the film is formed by a T-die method at a temperature exceeding 170 ° C. .

すなわち、本発明の第一は、エチレンに基づく単量体単位と炭素原子数3〜20のα−オレフィンに基づく単量体単位とを有するエチレン−α−オレフィン共重合体と、ポリスチレンとを含有し、前記エチレン−α−オレフィン共重合体と前記ポリスチレンの合計量を100重量%として、ポリスチレンを5重量%以下含有する樹脂組成物からなるフィルムである。   That is, the first of the present invention contains an ethylene-α-olefin copolymer having a monomer unit based on ethylene and a monomer unit based on an α-olefin having 3 to 20 carbon atoms, and polystyrene. And it is a film which consists of a resin composition which contains 5 weight% or less of polystyrenes by making the total amount of the said ethylene-alpha-olefin copolymer and the said polystyrene into 100 weight%.

本発明の第二は、エチレンに基づく単量体単位と炭素原子数3〜20のα−オレフィンに基づく単量体単位とを有するエチレン−α−オレフィン共重合体ペレットと、ポリスチレンペレットとを、前記エチレン−α−オレフィン共重合体ペレットと前記ポリスチレンペレットの合計量を100重量%として、ポリスチレンペレットを5重量%以下含有するようにペレットブレンドした混合物を、押出機にて混練し、該押出機に装着したTダイより押出して前記フィルムを製造する方法である。   The second of the present invention is an ethylene-α-olefin copolymer pellet having a monomer unit based on ethylene and a monomer unit based on an α-olefin having 3 to 20 carbon atoms, and a polystyrene pellet. A mixture obtained by blending pellets so that the total amount of the ethylene-α-olefin copolymer pellets and the polystyrene pellets is 100% by weight and containing 5% by weight or less of the polystyrene pellets is kneaded in an extruder, and the extruder The film is produced by extruding from a T-die mounted on the film.

本発明により、170℃を超える温度でTダイ法にて製膜した場合においても、耐ブロッキング性に優れるフィルムおよびその製造方法を提供することができる。   According to the present invention, even when a film is formed by a T-die method at a temperature exceeding 170 ° C., a film excellent in blocking resistance and a method for producing the film can be provided.

本発明は、エチレンに基づく単量体単位と炭素原子数3〜20のα−オレフィンに基づく単量体単位とを有するエチレン−α−オレフィン共重合体と、ポリスチレンとを含有し、前記エチレン−α−オレフィン共重合体と前記ポリスチレンの合計量を100重量%として、ポリスチレンを5重量%以下含有する樹脂組成物からなるフィルムである。   The present invention comprises an ethylene-α-olefin copolymer having a monomer unit based on ethylene and a monomer unit based on an α-olefin having 3 to 20 carbon atoms, and polystyrene. The film is made of a resin composition containing 5% by weight or less of polystyrene with the total amount of the α-olefin copolymer and the polystyrene as 100% by weight.

本発明におけるエチレン−α−オレフィン共重合体とは、エチレンに基づく単量体単位と炭素原子数3〜20のα−オレフィンに基づく単量体単位とを含むエチレン−α−オレフィン共重合体である。該α−オレフィンとしては、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、1−ドデセン、4−メチル−1−ペンテン、4−メチル−1−ヘキセン等があげられ、これらは単独で用いられていてもよく、2種以上を併用されていてもよい。α−オレフィンとしては、好ましくは1−ヘキセン、4−メチル−1−ペンテン、1−オクテンであり、より好ましくは1−ヘキセン、1−オクテンが挙げられる。   The ethylene-α-olefin copolymer in the present invention is an ethylene-α-olefin copolymer containing a monomer unit based on ethylene and a monomer unit based on an α-olefin having 3 to 20 carbon atoms. is there. Examples of the α-olefin include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-dodecene, 4-methyl-1-pentene, 4 -Methyl- 1-hexene etc. are mention | raise | lifted and these may be used independently and 2 or more types may be used together. The α-olefin is preferably 1-hexene, 4-methyl-1-pentene and 1-octene, and more preferably 1-hexene and 1-octene.

エチレン−α−オレフィン共重合体中のエチレンに基づく単量体単位の含有量は、エチレン−α−オレフィン共重合体の全重量(100重量%)に対して、通常50〜99.5重量%である。またα−オレフィンに基づく単量体単位の含有量は、エチレン−α−オレフィン共重合体の全重量(100重量%)に対して、通常0.5〜50重量%である。 The content of the monomer unit based on ethylene in the ethylene-α-olefin copolymer is usually 50 to 99.5% by weight with respect to the total weight (100% by weight) of the ethylene-α-olefin copolymer. It is. The content of the monomer unit based on the α-olefin is usually 0.5 to 50% by weight with respect to the total weight (100% by weight) of the ethylene-α-olefin copolymer.

エチレン−α−オレフィン共重合体は、前記のエチレンに基づく単量体単位および炭素原子数3〜20のα−オレフィンに基づく単量体単位に加え、本発明の効果を損なわない範囲において、他の単量体に基づく単量体単位を有していてもよい。他の単量体としては、例えば、共役ジエン(例えばブタジエンやイソプレン)、非共役ジエン(例えば1,4−ペンタジエン)、アクリル酸、アクリル酸エステル(例えばアクリル酸メチルやアクリル酸エチル)、メタクリル酸、メタクリル酸エステル(例えばメタクリル酸メチルやメタクリル酸エチル)、酢酸ビニル等が挙げられる。   The ethylene-α-olefin copolymer is not limited to the above-described monomer units based on ethylene and monomer units based on α-olefins having 3 to 20 carbon atoms, It may have a monomer unit based on the monomer. Examples of other monomers include conjugated dienes (for example, butadiene and isoprene), non-conjugated dienes (for example, 1,4-pentadiene), acrylic acid, acrylic acid esters (for example, methyl acrylate and ethyl acrylate), and methacrylic acid. , Methacrylate esters (for example, methyl methacrylate and ethyl methacrylate), vinyl acetate and the like.

エチレン−α−オレフィン共重合体として、好ましくは、エチレンに基づく単量体単位および炭素原子数4〜20のα−オレフィンに基づく単量体単位を有する共重合体であり、より好ましくは、エチレンに基づく単量体単位および炭素原子数5〜20のα−オレフィンに基づく単量体単位を有する共重合体であり、さらに好ましくは、エチレンに基づく単量体単位および炭素原子数6〜20のα−オレフィンに基づく単量体単位を有する共重合体である。   The ethylene-α-olefin copolymer is preferably a copolymer having a monomer unit based on ethylene and a monomer unit based on an α-olefin having 4 to 20 carbon atoms, more preferably ethylene. And a copolymer having a monomer unit based on an α-olefin having 5 to 20 carbon atoms, more preferably a monomer unit based on ethylene and having 6 to 20 carbon atoms. It is a copolymer having monomer units based on α-olefin.

エチレン−α−オレフィン共重合体としては、例えば、エチレン−1−ヘキセン共重合体、エチレン−4−メチル−1−ペンテン共重合体、エチレン−1−オクテン共重合体、エチレン−1−ブテン−1−ヘキセン共重合体、エチレン−1−ブテン−4−メチル−1−ペンテン共重合体、エチレン−1−ブテン−1−オクテン共重合体等があげられ、好ましくはエチレン−1−ヘキセン共重合体、エチレン−4−メチル−1−ペンテン共重合体、エチレン−1−ブテン−1−ヘキセン共重合体、エチレン−1−ブテン−4−メチル−1−ペンテン共重合体、エチレン−1−オクテン共重合体、エチレン−1−ヘキセン−1−オクテン共重合体、エチレン−1−ブテン−1−オクテン共重合体であり、より好ましくはエチレン−1−ヘキセン共重合体、エチレン−1−オクテン共重合体、エチレン−1−ブテン−1−ヘキセン共重合体、エチレン−1−ブテン−1−オクテン共重合体が挙げられる。   Examples of the ethylene-α-olefin copolymer include an ethylene-1-hexene copolymer, an ethylene-4-methyl-1-pentene copolymer, an ethylene-1-octene copolymer, and an ethylene-1-butene- Examples include 1-hexene copolymer, ethylene-1-butene-4-methyl-1-pentene copolymer, and ethylene-1-butene-1-octene copolymer, preferably ethylene-1-hexene copolymer Copolymer, ethylene-4-methyl-1-pentene copolymer, ethylene-1-butene-1-hexene copolymer, ethylene-1-butene-4-methyl-1-pentene copolymer, ethylene-1-octene Copolymer, ethylene-1-hexene-1-octene copolymer, and ethylene-1-butene-1-octene copolymer, more preferably ethylene-1-hexene copolymer. Coalescence, ethylene-1-octene copolymer, ethylene-1-butene-1-hexene copolymer, ethylene-1-butene-1-octene copolymer.

エチレン−α−オレフィン共重合体のメルトフローレート(MFR;単位はg/10分である。)は、通常0.01〜100g/10分である。該メルトフローレートは、Tダイによる押出成形時のドローダウン性の観点から、好ましくは0.1g/10分以上で以上であり、フィルムの強度の観点から、より好ましくは10g/10分以下である。メルトフローレートは、JIS K7210−1995に規定された方法において、温度190℃、荷重21.18Nの条件で、A法により測定される値である。 The melt flow rate (MFR; unit is g / 10 minutes) of the ethylene-α-olefin copolymer is usually 0.01 to 100 g / 10 minutes. The melt flow rate is preferably 0.1 g / 10 min or more from the viewpoint of drawdown at the time of extrusion molding with a T die, and more preferably 10 g / 10 min or less from the viewpoint of film strength. is there. The melt flow rate is a value measured by the method A under the conditions of a temperature of 190 ° C. and a load of 21.18 N in the method defined in JIS K7210-1995.

本発明におけるエチレン−α−オレフィン共重合体の密度は、通常、890〜970kg/m3であり、耐衝撃強度を高める観点から、好ましくは940kg/m3以下であり、より好ましくは930kg/m3以下であり、特に好ましくは925kg/m3以下である。なお、密度は、JIS K6760−1995に記載のアニーリングを行った後、JIS K7112−1980のうち、A法に規定された方法に従って測定される。 The density of the ethylene -α- olefin copolymer in the present invention is usually from 890~970kg / m 3, from the viewpoint of enhancing the impact strength, preferably 940 kg / m 3 or less, more preferably 930 kg / m 3 or less, particularly preferably 925 kg / m 3 or less. The density is measured according to the method defined in Method A of JIS K7112-1980 after annealing described in JIS K6760-1995.

本発明におけるエチレン−α−オレフィン共重合体は、エチレン−α−オレフィン共重合体の示差走査熱量測定から得られる融解曲線において、25℃から融解終了温度までの範囲に存在する変曲点の数が2個以下の共重合体であることが、耐ブロッキング性の観点から好ましい。該変曲点の数が多いということは、エチレン−α−オレフィン共重合体の融解曲線において、最大融解ピーク(ピーク高さが最も大きい融解ピーク)とは別の融解ピークやショルダーピークが多く存在するということであり、エチレン−α−オレフィン共重合体中に、単量体単位の含有割合の異なる重合体成分が多く存在し、エチレン−α−オレフィン共重合体の組成分布(エチレン−α−オレフィン共重合体に含まれる各重合体成分間での単量体単位の含有割合のばらつき。)が広いことを意味する。すなわち、該変曲点の数が少ないということは、エチレン−α−オレフィン共重合体の組成分布が狭いことを意味する。変曲点の数が2個以下のエチレン−α−オレフィン共重合体を用いることにより、より耐ブロッキング性に優れるフィルムを得ることができる。なお、ここでいう変曲点とは、融解曲線が凹から凸へ、あるいは凸から凹へ推移する境目の点を指す。   The ethylene-α-olefin copolymer in the present invention is the number of inflection points existing in the range from 25 ° C. to the end of melting temperature in the melting curve obtained from the differential scanning calorimetry of the ethylene-α-olefin copolymer. Is preferably a copolymer of 2 or less from the viewpoint of blocking resistance. The large number of inflection points means that there are many melting peaks and shoulder peaks different from the maximum melting peak (melting peak with the highest peak height) in the melting curve of the ethylene-α-olefin copolymer. In the ethylene-α-olefin copolymer, there are many polymer components having different monomer unit content ratios, and the ethylene-α-olefin copolymer composition distribution (ethylene-α-olefin- This means that the content ratio of monomer units among the polymer components contained in the olefin copolymer is wide. That is, the fact that the number of inflection points is small means that the composition distribution of the ethylene-α-olefin copolymer is narrow. By using an ethylene-α-olefin copolymer having two or less inflection points, a film with better blocking resistance can be obtained. The inflection point here refers to the point at the boundary where the melting curve changes from concave to convex or from convex to concave.

なお、エチレン−α−オレフィン共重合体の融解曲線は、示差走査熱量計(例えば、パーキンエルマー社製の示差走査型熱量計DSC−7型)により、例えば、約10mgの資料を封入したアルミニウムパンを、(1)150℃で5分間保持し、(2)5℃/分で150℃から20℃まで降温し、(3)20℃で2分間保持し、(4)5℃/分で20℃から融解終了温度+約20℃(通常150℃程度)まで昇温して、(4)の測定で得られた示差走査熱量測定曲線である。 The melting curve of the ethylene-α-olefin copolymer was measured by using a differential scanning calorimeter (for example, a differential scanning calorimeter DSC-7 manufactured by Perkin Elmer), for example, an aluminum pan in which about 10 mg of material was sealed. (1) held at 150 ° C. for 5 minutes, (2) lowered from 150 ° C. to 20 ° C. at 5 ° C./minute, (3) held at 20 ° C. for 2 minutes, and (4) 20 at 5 ° C./minute. It is a differential scanning calorimetry curve obtained by measuring (4) by raising the temperature from 0 ° C. to the melting end temperature + about 20 ° C. (usually about 150 ° C.).

本発明におけるエチレン−α−オレフィン共重合体は、長鎖分岐を有する成形加工性に優れたエチレン−α−オレフィン共重合体であることが好ましく、このようなエチレン−α−オレフィン共重合体は従来知られた通常の直鎖状のエチレン−α−オレフィン共重合体に比して、流動の活性化エネルギー(Ea;単位はkJ/molである。)が高く35kJ/mol以上である。 The ethylene-α-olefin copolymer in the present invention is preferably an ethylene-α-olefin copolymer having long chain branching and excellent moldability, and such an ethylene-α-olefin copolymer is Compared with a conventionally known normal linear ethylene-α-olefin copolymer, the flow activation energy (Ea; the unit is kJ / mol) is high and is 35 kJ / mol or more.

本発明のエチレン−α−オレフィン共重合体のEaは、シール強度、透明性をより高める観点から、好ましくは35kJ/mol以上であり、より好ましくは50kJ/mol以上であり、さらに好ましくは60kJ/mol以上である。また、光沢、耐衝撃性をより高める観点から、Eaは、好ましくは100kJ/mol以下であり、より好ましくは90kJ/mol以下である Ea of the ethylene-α-olefin copolymer of the present invention is preferably 35 kJ / mol or more, more preferably 50 kJ / mol or more, and further preferably 60 kJ / mol, from the viewpoint of further improving the sealing strength and transparency. More than mol. Further, from the viewpoint of further improving gloss and impact resistance, Ea is preferably 100 kJ / mol or less, more preferably 90 kJ / mol or less.

流動の活性化エネルギー(Ea)は、温度−時間重ね合わせ原理に基づいて、190℃での溶融複素粘度(単位はPa・secである。)の角周波数(単位:rad/sec)依存性を示すマスターカーブを作成する際のシフトファクター(aT)からアレニウス型方程式により算出される数値であって、以下に示す方法で求められる値である。すなわち、130℃、150℃、170℃および190℃夫々の温度(T、単位:℃)におけるエチレン−α−オレフィン共重合体の溶融複素粘度−角周波数曲線(溶融複素粘度の単位はPa・sec、角周波数の単位はrad/secである。)を、温度−時間重ね合わせ原理に基づいて、各温度(T)での溶融複素粘度−角周波数曲線毎に、190℃でのエチレン系共重合体の溶融複素粘度−角周波数曲線に重ね合わせた際に得られる各温度(T)でのシフトファクター(aT)を求め、夫々の温度(T)と、各温度(T)でのシフトファクター(aT)とから、最小自乗法により[ln(aT)]と[1/(T+273.16)]との一次近似式(下記(I)式)を算出する。次に、該一次式の傾きmと下記式(II)とからEaを求める。
ln(aT) = m(1/(T+273.16))+n (I)
Ea = |0.008314×m| (II)
T :シフトファクター
Ea:流動の活性化エネルギー(単位:kJ/mol)
T :温度(単位:℃)
前記計算は、市販の計算ソフトウェアを用いてもよく、該計算ソフトウェアとしては、Rheometrics社製 Rhios V.4.4.4などがあげられる。
なお、シフトファクター(aT)は、夫々の温度(T)における溶融複素粘度−角周波数の両対数曲線を、log(Y)=−log(X)軸方向に移動させて(但し、Y軸を溶融複素粘度、X軸を角周波数とする。)、190℃での溶融複素粘度−角周波数曲線に重ね合わせた際の移動量であり、該重ね合わせでは、夫々の温度(T)における溶融複素粘度−角周波数の両対数曲線は、各曲線ごとに、角周波数をaT倍に、溶融複素粘度を1/aT倍に移動させる。また、130℃、150℃、170℃および190℃の4点の値から(I)式を最小自乗法で求めるときの相関係数は、通常、0.99以上である。
The activation energy (Ea) of the flow is dependent on the angular frequency (unit: rad / sec) dependence of the melt complex viscosity (unit: Pa · sec) at 190 ° C. based on the temperature-time superposition principle. It is a numerical value calculated by the Arrhenius type equation from the shift factor (a T ) when creating the master curve shown, and is a value obtained by the method shown below. That is, the melt complex viscosity-angular frequency curve of the ethylene-α-olefin copolymer at temperatures of 130 ° C., 150 ° C., 170 ° C. and 190 ° C. (T, unit: ° C.) (the unit of melt complex viscosity is Pa · sec. The unit of the angular frequency is rad / sec.), Based on the temperature-time superposition principle, for each melt complex viscosity-angular frequency curve at each temperature (T), The shift factor (a T ) at each temperature (T) obtained when superposed on the melt complex viscosity-angular frequency curve of the coalescence is obtained, and each temperature (T) and the shift factor at each temperature ( T ) are obtained. From (a T ), a first-order approximate expression (formula (I) below) of [ln (a T )] and [1 / (T + 273.16)] is calculated by the method of least squares. Next, Ea is obtained from the slope m of the linear expression and the following expression (II).
ln (a T ) = m (1 / (T + 273.16)) + n (I)
Ea = | 0.008314 × m | (II)
a T : Shift factor Ea: Activation energy of flow (unit: kJ / mol)
T: Temperature (unit: ° C)
For the calculation, commercially available calculation software may be used. As the calculation software, Rheos V. manufactured by Rheometrics is used. 4.4.4.
The shift factor (a T ) is obtained by moving the logarithmic curve of the melt complex viscosity-angular frequency at each temperature (T) in the log (Y) = − log (X) axis direction (however, the Y axis Is the complex viscosity of the melt, and the X axis is the angular frequency.), And the amount of movement when superposed on the melt complex viscosity-angular frequency curve at 190 ° C., in the superposition, melting at each temperature (T) The logarithmic curve of complex viscosity-angular frequency shifts the angular frequency by a T times and the melt complex viscosity by 1 / a T times for each curve. Moreover, the correlation coefficient when calculating | requiring (I) Formula by the least squares method from the value of four points | pieces, 130 degreeC, 150 degreeC, 170 degreeC, and 190 degreeC is usually 0.99 or more.

溶融複素粘度−角周波数曲線の測定は、粘弾性測定装置(例えば、Rheometrics社製Rheometrics Mechanical Spectrometer RMS−800など。)を用い、通常、ジオメトリー:パラレルプレート、プレート直径:25mm、プレート間隔:1.5〜2mm、ストレイン:5%、角周波数:0.1〜100rad/秒の条件で行われる。   The melt complex viscosity-angular frequency curve is measured using a viscoelasticity measuring apparatus (for example, Rheometrics Mechanical Spectrometer RMS-800 manufactured by Rheometrics), and usually geometry: parallel plate, plate diameter: 25 mm, plate interval: 1. It is performed under the conditions of 5 to 2 mm, strain: 5%, angular frequency: 0.1 to 100 rad / sec.

本発明のエチレン−α−オレフィン共重合体の分子量分布(Mw/Mn)は、フィルム表面の荒れを低減する観点から、好ましくは5以上であり、更に好ましくは6以上である。また、フィルムの機械強度を高める観点から、好ましくは25以下であり、より好ましくは20以下であり、更に好ましくは15以下である。該分子量分布(Mw/Mn)は、ゲル・パーミエイション・クロマトグラフ(GPC)法により、重量平均分子量(Mw)と数平均分子量(Mn)を測定し、MwをMnで除した値(Mw/Mn)である。また、GPC法での測定条件としては、例えば、次の条件をあげることができる。
(1)装置:Waters製Waters150C
(2)分離カラム:TOSOH TSKgelGMH6−HT
(3)測定温度:140℃
(4)キャリア:オルトジクロロベンゼン
(5)流量:1.0mL/分
(6)注入量:500μL
(7)検出器:示差屈折
(8)分子量標準物質:標準ポリスチレン
The molecular weight distribution (Mw / Mn) of the ethylene-α-olefin copolymer of the present invention is preferably 5 or more, more preferably 6 or more, from the viewpoint of reducing the roughness of the film surface. Moreover, from a viewpoint of raising the mechanical strength of a film, Preferably it is 25 or less, More preferably, it is 20 or less, More preferably, it is 15 or less. The molecular weight distribution (Mw / Mn) is a value obtained by measuring the weight average molecular weight (Mw) and the number average molecular weight (Mn) by gel permeation chromatography (GPC), and dividing Mw by Mn (Mw / Mn). Moreover, as measurement conditions by GPC method, the following conditions can be mention | raise | lifted, for example.
(1) Equipment: Waters 150C manufactured by Waters
(2) Separation column: TOSOH TSKgelGMH6-HT
(3) Measurement temperature: 140 ° C
(4) Carrier: Orthodichlorobenzene
(5) Flow rate: 1.0 mL / min
(6) Injection volume: 500 μL
(7) Detector: Differential refraction
(8) Molecular weight reference material: Standard polystyrene

本発明におけるエチレン−α−オレフィン共重合体の製造方法としては、メタロセン系錯体と活性化助触媒成分(以下、助触媒成分(I)と称する。)が微粒子状担体に担持されてなる固体助触媒成分とを接触処理してなるメタロセン系オレフィン重合触媒を用いて、エチレンとα−オレフィンとを共重合する方法が挙げられる。助触媒成分(I)としては、亜鉛化合物をあげることができる。   The method for producing an ethylene-α-olefin copolymer in the present invention includes a solid promoter comprising a metallocene complex and an activation promoter component (hereinafter referred to as promoter component (I)) supported on a particulate carrier. Examples thereof include a method of copolymerizing ethylene and α-olefin using a metallocene olefin polymerization catalyst formed by contact treatment with a catalyst component. An example of the promoter component (I) is a zinc compound.

助触媒成分(I)の亜鉛化合物としては、ジエチル亜鉛とフッ素化フェノールと水とを接触処理してなる接触処理物等があげられる。   Examples of the zinc compound of the promoter component (I) include a contact-treated product obtained by contact-treating diethylzinc, fluorinated phenol and water.

微粒子状担体としては、多孔性の物質が好ましく、SiO2、Al23、MgO、ZrO2、TiO2、B23、CaO、ZnO、BaO、ThO2等の無機酸化物;スメクタイト、モンモリロナイト、ヘクトライト、ラポナイト、サポナイト等の粘土や粘土鉱物;ポリエチレン、ポリプロピレン、スチレン−ジビニルベンゼン共重合体などの有機ポリマーなどが使用される。該微粒子状担体の50%体積平均粒子径は、通常、10〜500μmであり、該50%体積平均粒子径は、光散乱式レーザー回折法などで測定される。また、該微粒子状担体の細孔容量は、通常0.3〜10ml/gであり、該微粒子状担体の比表面積は、通常、10〜1000m2/gである。該細孔容量と該比表面積は、ガス吸着法により測定され、細孔容量はガス脱着量をBJH法で、比表面積はガス吸着量をBET法で解析することにより求められる。 As the fine particle carrier, a porous material is preferable, and inorganic oxides such as SiO 2 , Al 2 O 3 , MgO, ZrO 2 , TiO 2 , B 2 O 3 , CaO, ZnO, BaO, ThO 2 ; smectite, Clay and clay minerals such as montmorillonite, hectorite, laponite and saponite; organic polymers such as polyethylene, polypropylene and styrene-divinylbenzene copolymer are used. The 50% volume average particle diameter of the particulate carrier is usually 10 to 500 μm, and the 50% volume average particle diameter is measured by a light scattering laser diffraction method or the like. Moreover, the pore volume of the particulate carrier is usually 0.3 to 10 ml / g, and the specific surface area of the particulate carrier is usually 10 to 1000 m 2 / g. The pore volume and the specific surface area are measured by a gas adsorption method. The pore volume is obtained by analyzing the gas desorption amount by the BJH method, and the specific surface area by analyzing the gas adsorption amount by the BET method.

また、上述のメタロセン系錯体としては、下記一般式[1]で表される遷移金属化合物またはそのμ−オキソタイプの遷移金属化合物二量体が好ましい。
2 a21 b [1]
(式中、M2は周期律表第3〜11族もしくはランタノイド系列の遷移金属原子である。L2はシクロペンタジエン形アニオン骨格を有する基であり、複数のL2は互いに直接連結されているか、または、炭素原子、ケイ素原子、窒素原子、酸素原子、硫黄原子もしくはリン原子を含有する残基を介して連結されていてもよい。X1はハロゲン原子、炭化水素基(但し、シクロペンタジエン形アニオン骨格を有する基を除く)、または炭化水素オキシ基である。aは0<a≦8を満足する数を、bは0<b≦8を満足する数を表す。)
The metallocene complex is preferably a transition metal compound represented by the following general formula [1] or a μ-oxo type transition metal compound dimer thereof.
L 2 a M 2 X 1 b [1]
(In the formula, M 2 is a transition metal atom of Groups 3 to 11 of the periodic table or a lanthanoid series. L 2 is a group having a cyclopentadiene-type anion skeleton, and are a plurality of L 2 linked directly to each other? Or may be linked via a residue containing a carbon atom, a silicon atom, a nitrogen atom, an oxygen atom, a sulfur atom or a phosphorus atom, and X 1 is a halogen atom, a hydrocarbon group (provided that the cyclopentadiene form (Excluding a group having an anion skeleton), or a hydrocarbon oxy group, a represents a number satisfying 0 <a ≦ 8, and b represents a number satisfying 0 <b ≦ 8.

一般式[1]において、M2は周期律表(IUPAC1989年)第3〜11族もしくはランタノイド系列の遷移金属原子である。その具体例としては、スカンジウム原子、イットリウム原子、チタン原子、ジルコニウム原子、ハフニウム原子、バナジウム原子、ニオビウム原子、タンタル原子、クロム原子、鉄原子、ルテニウム原子、コバルト原子、ロジウム原子、ニッケル原子、パラジウム原子、サマリウム原子、イッテルビウム原子等が挙げられる。一般式[1]におけるM2として好ましくは、チタン原子、ジルコニウム原子、ハフニウム原子、バナジウム原子、クロム原子、鉄原子、コバルト原子またはニッケル原子であり、特に好ましくはチタン原子、ジルコニウム原子またはハフニウム原子であり、最も好ましくはジルコニウム原子である。 In the general formula [1], M 2 is a transition metal atom of Group 3 to 11 of the periodic table (IUPAC 1989) or a lanthanoid series. Specific examples include scandium atoms, yttrium atoms, titanium atoms, zirconium atoms, hafnium atoms, vanadium atoms, niobium atoms, tantalum atoms, chromium atoms, iron atoms, ruthenium atoms, cobalt atoms, rhodium atoms, nickel atoms, palladium atoms. , Samarium atoms, ytterbium atoms, and the like. M 2 in the general formula [1] is preferably a titanium atom, a zirconium atom, a hafnium atom, a vanadium atom, a chromium atom, an iron atom, a cobalt atom or a nickel atom, particularly preferably a titanium atom, a zirconium atom or a hafnium atom. And most preferably a zirconium atom.

一般式[1]において、L2はシクロペンタジエン形アニオン骨格を有する基であり、複数のL2は同じであっても異なっていてもよい。また複数のL2は互いに直接連結されているか、または、炭素原子、ケイ素原子、窒素原子、酸素原子、硫黄原子もしくはリン原子を含有する架橋基を介して連結されていてもよい。 In the general formula [1], L 2 is a group having a cyclopentadiene type anion skeleton, and a plurality of L 2 may be the same or different. The plurality of L 2 may be directly connected to each other, or may be connected via a bridging group containing a carbon atom, a silicon atom, a nitrogen atom, an oxygen atom, a sulfur atom or a phosphorus atom.

2におけるシクロペンタジエン形アニオン骨格を有する基としてはη5−(置換)シクロペンタジエニル基、η5−(置換)インデニル基、η5−(置換)フルオレニル基などが挙げられる。具体的に例示すれば、η5−シクロペンタジエニル基、η5−メチルシクロペンタジエニル基、η5−エチルシクロペンタジエニル基、η5−n−ブチルシクロペンタジエニル基、η5−tert−ブチルシクロペンタジエニル基、η5−1,2−ジメチルシクロペンタジエニル基、η5−1,3−ジメチルシクロペンタジエニル基、η5−1−メチル−2−エチルシクロペンタジエニル基、η5−1−メチル−3−エチルシクロペンタジエニル基、η5−1−tert−ブチル−2−メチルシクロペンタジエニル基、η5−1−tert−ブチル−3−メチルシクロペンタジエニル基、η5−1−メチル−2−イソプロピルシクロペンタジエニル基、η5−1−メチル−3−イソプロピルシクロペンタジエニル基、η5−1−メチル−2−n−ブチルシクロペンタジエニル基、η5−1−メチル−3−n−ブチルシクロペンタジエニル基、η5−1,2,3−トリメチルシクロペンタジエニル基、η5−1,2,4−トリメチルシクロペンタジエニル基、η5−テトラメチルシクロペンタジエニル基、η5−ペンタメチルシクロペンタジエニル基、η5−インデニル基、η5−4,5,6,7−テトラヒドロインデニル基、η5−2−メチルインデニル基、η5−3−メチルインデニル基、η5−4−メチルインデニル基、η5−5−メチルインデニル基、η5−6−メチルインデニル基、η5−7−メチルインデニル基、η5−2−tert−ブチルインデニル基、η5−3−tert−ブチルインデニル基、η5−4−tert−ブチルインデニル基、η5−5−tert−ブチルインデニル基、η5−6−tert−ブチルインデニル基、η5−7−tert−ブチルインデニル基、η5−2,3−ジメチルインデニル基、η5−4,7−ジメチルインデニル基、η5−2,4,7−トリメチルインデニル基、η5−2−メチル−4−イソプロピルインデニル基、η5−4,5−ベンズインデニル基、η5−2−メチル−4,5−ベンズインデニル基、η5−4−フェニルインデニル基、η5−2−メチル−5−フェニルインデニル基、η5−2−メチル−4−フェニルインデニル基、η5−2−メチル−4−ナフチルインデニル基、η5−フルオレニル基、η5−2,7−ジメチルフルオレニル基、η5−2,7−ジ−tert−ブチルフルオレニル基、およびこれらの置換体等が挙げられる。なお、本明細書においては、遷移金属化合物の名称については「η5−」を省略することがある。 Examples of the group having a cyclopentadiene-type anion skeleton in L 2 include η 5- (substituted) cyclopentadienyl group, η 5- (substituted) indenyl group, η 5- (substituted) fluorenyl group and the like. Specifically, η 5 -cyclopentadienyl group, η 5 -methylcyclopentadienyl group, η 5 -ethylcyclopentadienyl group, η 5 -n-butylcyclopentadienyl group, η 5 -Tert-butylcyclopentadienyl group, η 5 -1,2-dimethylcyclopentadienyl group, η 5 -1,3-dimethylcyclopentadienyl group, η 5 -1-methyl-2-ethylcyclopenta Dienyl group, η 5 -1-methyl-3-ethylcyclopentadienyl group, η 5 -1-tert-butyl-2-methylcyclopentadienyl group, η 5 -1-tert-butyl-3-methyl Cyclopentadienyl group, η 5 -1-methyl-2-isopropylcyclopentadienyl group, η 5 -1-methyl-3-isopropylcyclopentadienyl group, η 5 -1-methyl-2-n-butyl Cyclopentadienyl group, η 5 -1-methyl-3-n-butylcyclopentadienyl group, η 5 -1,2,3-trimethylcyclopentadienyl group, η 5 -1,2,4-trimethyl cyclopentadienyl group, eta 5 - tetramethylcyclopentadienyl group, eta 5 - pentamethylcyclopentadienyl group, eta 5 - indenyl group, eta 5-4,5,6,7-tetrahydroindenyl group, η 5 -2-methylindenyl group, η 5 -3-methylindenyl group, η 5 -4-methylindenyl group, η 5 -5-methylindenyl group, η 5 -6-methylindenyl group, eta 5-7-methylindenyl group, η 5 -2-tert- butyl indenyl group, η 5 -3-tert- butyl indenyl group, η 5 -4-tert- butylindenyl group, eta 5 -5 -Tert-butylindenyl group, η 5-6 -tert-butylindenyl group, η 5 -7-tert-butylindenyl group, η 5 -2,3-dimethylindenyl group, η 5 -4,7-dimethylindenyl group, η 5- 2,4,7-trimethylindenyl group, η 5 -2-methyl-4-isopropylindenyl group, η 5 -4,5-benzindenyl group, η 5 -2-methyl-4,5-benzindenyl group, η 5-4-phenyl indenyl group, eta 5-2-methyl-5-phenyl indenyl group, eta 5-2-methyl-4-phenyl indenyl group, eta 5-2-methyl-4-naphthyl indenyl group , Η 5 -fluorenyl group, η 5 -2,7-dimethylfluorenyl group, η 5 -2,7-di-tert-butylfluorenyl group, and substituted products thereof. In the present specification, “η 5 −” may be omitted for the names of transition metal compounds.

シクロペンタジエン形アニオン骨格を有する基同士は、それぞれ、直接連結されていてもよく、炭素原子、ケイ素原子、窒素原子、酸素原子、硫黄原子もしくはリン原子を含有する架橋基を介して連結されていてもよい。かかる架橋基としては、エチレン基、プロピレン基等のアルキレン基;ジメチルメチレン基、ジフェニルメチレン基などの置換アルキレン基;またはシリレン基、ジメチルシリレン基、ジフェニルシリレン基、テトラメチルジシリレン基などの置換シリレン基;窒素原子、酸素原子、硫黄原子、リン原子などのヘテロ原子などが挙げられる。   The groups having a cyclopentadiene type anion skeleton may be directly connected to each other, and are connected via a bridging group containing a carbon atom, a silicon atom, a nitrogen atom, an oxygen atom, a sulfur atom or a phosphorus atom. Also good. Examples of such cross-linking groups include: alkylene groups such as ethylene groups and propylene groups; substituted alkylene groups such as dimethylmethylene groups and diphenylmethylene groups; or substituted silylenes such as silylene groups, dimethylsilylene groups, diphenylsilylene groups, and tetramethyldisilylene groups. Groups; heteroatoms such as nitrogen atom, oxygen atom, sulfur atom and phosphorus atom.

一般式[1]におけるX1は、ハロゲン原子、炭化水素基(但し、シクロペンタジエン形アニオン骨格を有する基を除く)、または炭化水素オキシ基である。ハロゲン原子の具体例としてフッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。ここでいう炭化水素基としてはシクロペンタジエン形アニオン骨格を有する基を含まない。ここでいう炭化水素基としてはアルキル基、アラルキル基、アリール基、アルケニル基等が挙げられ、炭化水素オキシ基としては、アルコキシ基、アラルキルオキシ基やアリールオキシ基等が挙げられる。 X 1 in the general formula [1] is a halogen atom, a hydrocarbon group (excluding a group having a cyclopentadiene type anion skeleton), or a hydrocarbon oxy group. Specific examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. The hydrocarbon group here does not include a group having a cyclopentadiene type anion skeleton. Examples of the hydrocarbon group include an alkyl group, an aralkyl group, an aryl group, and an alkenyl group. Examples of the hydrocarbon oxy group include an alkoxy group, an aralkyloxy group, and an aryloxy group.

アルキル基としては、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、イソブチル基、n−ペンチル基、ネオペンチル基、アミル基、n−ヘキシル基、n−オクチル基、n−デシル基、n−ドデシル基、n−ペンタデシル基、n−エイコシル基などが挙げられ、これらのアルキル基はいずれも、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子で置換されていてもよい。ハロゲン原子で置換されたアルキル基としては、例えばフルオロメチル基、トリフルオロメチル基、クロロメチル基、トリクロロメチル基、フルオロエチル基、ペンタフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基、パークロロプロピル基、パークロロブチル基、パーブロモプロピル基などが挙げられる。またこれらのアルキル基はいずれも、メトキシ基、エトキシ基等のアルコキシ基;フェノキシ基などのアリールオキシ基またはベンジルオキシ基などのアラルキルオキシ基などで一部が置換されていてもよい。   Examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, isobutyl group, n-pentyl group, neopentyl group, amyl group, n -Hexyl group, n-octyl group, n-decyl group, n-dodecyl group, n-pentadecyl group, n-eicosyl group and the like, and these alkyl groups are all fluorine atom, chlorine atom, bromine atom, It may be substituted with a halogen atom such as an iodine atom. Examples of the alkyl group substituted with a halogen atom include a fluoromethyl group, a trifluoromethyl group, a chloromethyl group, a trichloromethyl group, a fluoroethyl group, a pentafluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, and a perfluoro group. Examples include a hexyl group, a perfluorooctyl group, a perchloropropyl group, a perchlorobutyl group, and a perbromopropyl group. Any of these alkyl groups may be partially substituted with an alkoxy group such as a methoxy group or an ethoxy group; an aryloxy group such as a phenoxy group or an aralkyloxy group such as a benzyloxy group.

アラルキル基としては、例えばベンジル基、(2−メチルフェニル)メチル基、(3−メチルフェニル)メチル基、(4−メチルフェニル)メチル基、(2,3−ジメチルフェニル)メチル基、(2,4−ジメチルフェニル)メチル基、(2,5−ジメチルフェニル)メチル基、(2,6−ジメチルフェニル)メチル基、(3,4−ジメチルフェニル)メチル基、(3,5−ジメチルフェニル)メチル基、(2,3,4−トリメチルフェニル)メチル基、(2,3,5−トリメチルフェニル)メチル基、(2,3,6−トリメチルフェニル)メチル基、(3,4,5−トリメチルフェニル)メチル基、(2,4,6−トリメチルフェニル)メチル基、(2,3,4,5−テトラメチルフェニル)メチル基、(2,3,4,6−テトラメチルフェニル)メチル基、(2,3,5,6−テトラメチルフェニル)メチル基、(ペンタメチルフェニル)メチル基、(エチルフェニル)メチル基、(n−プロピルフェニル)メチル基、(イソプロピルフェニル)メチル基、(n−ブチルフェニル)メチル基、(sec−ブチルフェニル)メチル基、(tert−ブチルフェニル)メチル基、(n−ペンチルフェニル)メチル基、(ネオペンチルフェニル)メチル基、(n−ヘキシルフェニル)メチル基、(n−オクチルフェニル)メチル基、(n−デシルフェニル)メチル基、(n−ドデシルフェニル)メチル基、ナフチルメチル基、アントラセニルメチル基などが挙げられ、これらのアラルキル基はいずれも、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;フェノキシ基などのアリールオキシ基またはベンジルオキシ基などのアラルキルオキシ基などで一部が置換されていてもよい。   Examples of the aralkyl group include benzyl group, (2-methylphenyl) methyl group, (3-methylphenyl) methyl group, (4-methylphenyl) methyl group, (2,3-dimethylphenyl) methyl group, (2, 4-dimethylphenyl) methyl group, (2,5-dimethylphenyl) methyl group, (2,6-dimethylphenyl) methyl group, (3,4-dimethylphenyl) methyl group, (3,5-dimethylphenyl) methyl Group, (2,3,4-trimethylphenyl) methyl group, (2,3,5-trimethylphenyl) methyl group, (2,3,6-trimethylphenyl) methyl group, (3,4,5-trimethylphenyl) ) Methyl group, (2,4,6-trimethylphenyl) methyl group, (2,3,4,5-tetramethylphenyl) methyl group, (2,3,4,6-tetramethylphenyl) Nyl) methyl group, (2,3,5,6-tetramethylphenyl) methyl group, (pentamethylphenyl) methyl group, (ethylphenyl) methyl group, (n-propylphenyl) methyl group, (isopropylphenyl) methyl Group, (n-butylphenyl) methyl group, (sec-butylphenyl) methyl group, (tert-butylphenyl) methyl group, (n-pentylphenyl) methyl group, (neopentylphenyl) methyl group, (n-hexyl) Phenyl) methyl group, (n-octylphenyl) methyl group, (n-decylphenyl) methyl group, (n-dodecylphenyl) methyl group, naphthylmethyl group, anthracenylmethyl group, etc., and these aralkyl groups Are all halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; methoxy group An alkoxy group such as ethoxy group; a portion at an aralkyl group such as aryloxy or benzyloxy group, such as phenoxy group may be substituted.

アリール基としては、例えばフェニル基、2−トリル基、3−トリル基、4−トリル基、2,3−キシリル基、2,4−キシリル基、2,5−キシリル基、2,6−キシリル基、3,4−キシリル基、3,5−キシリル基、2,3,4−トリメチルフェニル基、2,3,5−トリメチルフェニル基、2,3,6−トリメチルフェニル基、2,4,6−トリメチルフェニル基、3,4,5−トリメチルフェニル基、2,3,4,5−テトラメチルフェニル基、2,3,4,6−テトラメチルフェニル基、2,3,5,6−テトラメチルフェニル基、ペンタメチルフェニル基、エチルフェニル基、n−プロピルフェニル基、イソプロピルフェニル基、n−ブチルフェニル基、sec−ブチルフェニル基、tert−ブチルフェニル基、n−ペンチルフェニル基、ネオペンチルフェニル基、n−ヘキシルフェニル基、n−オクチルフェニル基、n−デシルフェニル基、n−ドデシルフェニル基、n−テトラデシルフェニル基、ナフチル基、アントラセニル基などが挙げられ、これらのアリール基はいずれも、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;フェノキシ基などのアリールオキシ基またはベンジルオキシ基などのアラルキルオキシ基などで一部が置換されていてもよい。   Examples of the aryl group include phenyl group, 2-tolyl group, 3-tolyl group, 4-tolyl group, 2,3-xylyl group, 2,4-xylyl group, 2,5-xylyl group, and 2,6-xylyl group. Group, 3,4-xylyl group, 3,5-xylyl group, 2,3,4-trimethylphenyl group, 2,3,5-trimethylphenyl group, 2,3,6-trimethylphenyl group, 2,4,4 6-trimethylphenyl group, 3,4,5-trimethylphenyl group, 2,3,4,5-tetramethylphenyl group, 2,3,4,6-tetramethylphenyl group, 2,3,5,6- Tetramethylphenyl group, pentamethylphenyl group, ethylphenyl group, n-propylphenyl group, isopropylphenyl group, n-butylphenyl group, sec-butylphenyl group, tert-butylphenyl group, n-pentyl Phenyl group, neopentylphenyl group, n-hexylphenyl group, n-octylphenyl group, n-decylphenyl group, n-dodecylphenyl group, n-tetradecylphenyl group, naphthyl group, anthracenyl group, etc. All of the aryl groups are halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; alkoxy groups such as methoxy group and ethoxy group; aryloxy groups such as phenoxy group; and aralkyloxy groups such as benzyloxy group May be partially substituted.

アルケニル基としては、例えばアリル基、メタリル基、クロチル基、1,3−ジフェニル−2−プロペニル基などが挙げられる。   Examples of the alkenyl group include an allyl group, a methallyl group, a crotyl group, and a 1,3-diphenyl-2-propenyl group.

アルコキシ基としては、例えばメトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、sec−ブトキシ基、tert−ブトキシ基、n−ペントキシ基、ネオペントキシ基、n−ヘキソキシ基、n−オクトキシ基、n−ドデソキシ基、n−ペンタデソキシ基、n−イコソキシ基などが挙げられ、これらのアルコキシ基はいずれも、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;フェノキシ基などのアリールオキシ基またはベンジルオキシ基などのアラルキルオキシ基などで一部が置換されていてもよい。   Examples of the alkoxy group include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tert-butoxy group, n-pentoxy group, neopentoxy group, n-hexoxy group, n -Octoxy group, n-dodesoxy group, n-pentadesoxy group, n-icosoxy group and the like, and these alkoxy groups are all halogen atoms such as fluorine atom, chlorine atom, bromine atom, iodine atom; methoxy group, An alkoxy group such as an ethoxy group; an aryloxy group such as a phenoxy group or an aralkyloxy group such as a benzyloxy group may be partially substituted.

アラルキルオキシ基としては、例えばベンジルオキシ基、(2−メチルフェニル)メトキシ基、(3−メチルフェニル)メトキシ基、(4−メチルフェニル)メトキシ基、(2、3−ジメチルフェニル)メトキシ基、(2、4−ジメチルフェニル)メトキシ基、(2、5−ジメチルフェニル)メトキシ基、(2、6−ジメチルフェニル)メトキシ基、(3,4−ジメチルフェニル)メトキシ基、(3,5−ジメチルフェニル)メトキシ基、(2,3,4−トリメチルフェニル)メトキシ基、(2,3,5−トリメチルフェニル)メトキシ基、(2,3,6−トリメチルフェニル)メトキシ基、(2,4,5−トリメチルフェニル)メトキシ基、(2,4,6−トリメチルフェニル)メトキシ基、(3,4,5−トリメチルフェニル)メトキシ基、(2,3,4,5−テトラメチルフェニル)メトキシ基、(2,3,4,6−テトラメチルフェニル)メトキシ基、(2,3,5,6−テトラメチルフェニル)メトキシ基、(ペンタメチルフェニル)メトキシ基、(エチルフェニル)メトキシ基、(n−プロピルフェニル)メトキシ基、(イソプロピルフェニル)メトキシ基、(n−ブチルフェニル)メトキシ基、(sec−ブチルフェニル)メトキシ基、(tert−ブチルフェニル)メトキシ基、(n−ヘキシルフェニル)メトキシ基、(n−オクチルフェニル)メトキシ基、(n−デシルフェニル)メトキシ基、ナフチルメトキシ基、アントラセニルメトキシ基などが挙げられ、これらのアラルキルオキシ基はいずれも、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;フェノキシ基などのアリールオキシ基またはベンジルオキシ基などのアラルキルオキシ基などで一部が置換されていてもよい。   Examples of the aralkyloxy group include benzyloxy group, (2-methylphenyl) methoxy group, (3-methylphenyl) methoxy group, (4-methylphenyl) methoxy group, (2,3-dimethylphenyl) methoxy group, ( 2,4-dimethylphenyl) methoxy group, (2,5-dimethylphenyl) methoxy group, (2,6-dimethylphenyl) methoxy group, (3,4-dimethylphenyl) methoxy group, (3,5-dimethylphenyl) ) Methoxy group, (2,3,4-trimethylphenyl) methoxy group, (2,3,5-trimethylphenyl) methoxy group, (2,3,6-trimethylphenyl) methoxy group, (2,4,5- Trimethylphenyl) methoxy group, (2,4,6-trimethylphenyl) methoxy group, (3,4,5-trimethylphenyl) methoxy , (2,3,4,5-tetramethylphenyl) methoxy group, (2,3,4,6-tetramethylphenyl) methoxy group, (2,3,5,6-tetramethylphenyl) methoxy group, Pentamethylphenyl) methoxy group, (ethylphenyl) methoxy group, (n-propylphenyl) methoxy group, (isopropylphenyl) methoxy group, (n-butylphenyl) methoxy group, (sec-butylphenyl) methoxy group, (tert -Butylphenyl) methoxy group, (n-hexylphenyl) methoxy group, (n-octylphenyl) methoxy group, (n-decylphenyl) methoxy group, naphthylmethoxy group, anthracenylmethoxy group, etc. All of the aralkyloxy groups are halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom. Emissions atoms; an alkoxy group such as methoxy group and ethoxy group; a portion at an aralkyl group such as aryloxy or benzyloxy group, such as phenoxy group may be substituted.

アリールオキシ基としては、例えばフェノキシ基、2−メチルフェノキシ基、3−メチルフェノキシ基、4−メチルフェノキシ基、2、3−ジメチルフェノキシ基、2、4−ジメチルフェノキシ基、2、5−ジメチルフェノキシ基、2、6−ジメチルフェノキシ基、3,4−ジメチルフェノキシ基、3,5−ジメチルフェノキシ基、2−tert−ブチル−3−メチルフェノキシ基、2−tert−ブチル−4−メチルフェノキシ基、2−tert−ブチル−5−メチルフェノキシ基、2−tert−ブチル−6−メチルフェノキシ基、2,3,4−トリメチルフェノキシ基、2,3,5−トリメチルフェノキシ基、2,3,6−トリメチルフェノキシ基、2,4,5−トリメチルフェノキシ基、2,4,6−トリメチルフェノキシ基、2−tert−ブチル−3,4−ジメチルフェノキシ基、2−tert−ブチル−3,5−ジメチルフェノキシ基、2−tert−ブチル−3,6−ジメチルフェノキシ基、2,6−ジ−tert−ブチル−3−メチルフェノキシ基、2−tert−ブチル−4,5−ジメチルフェノキシ基、2,6−ジ−tert−ブチル−4−メチルフェノキシ基、3,4,5−トリメチルフェノキシ基、2,3,4,5−テトラメチルフェノキシ基、2−tert−ブチル−3,4,5−トリメチルフェノキシ基、2,3,4,6−テトラメチルフェノキシ基、2−tert−ブチル−3,4,6−トリメチルフェノキシ基、2,6−ジ−tert−ブチル−3,4−ジメチルフェノキシ基、2,3,5,6−テトラメチルフェノキシ基、2−tert−ブチル−3,5,6−トリメチルフェノキシ基、2,6−ジ−tert−ブチル−3,5−ジメチルフェノキシ基、ペンタメチルフェノキシ基、エチルフェノキシ基、n−プロピルフェノキシ基、イソプロピルフェノキシ基、n−ブチルフェノキシ基、sec−ブチルフェノキシ基、tert−ブチルフェノキシ基、n−ヘキシルフェノキシ基、n−オクチルフェノキシ基、n−デシルフェノキシ基、n−テトラデシルフェノキシ基、ナフトキシ基、アントラセノキシ基などが挙げられ、これらのアリールオキシ基はいずれも、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;フェノキシ基などのアリールオキシ基またはベンジルオキシ基などのアラルキルオキシ基などで一部が置換されていてもよい。   Examples of the aryloxy group include phenoxy group, 2-methylphenoxy group, 3-methylphenoxy group, 4-methylphenoxy group, 2,3-dimethylphenoxy group, 2,4-dimethylphenoxy group, and 2,5-dimethylphenoxy group. Group, 2,6-dimethylphenoxy group, 3,4-dimethylphenoxy group, 3,5-dimethylphenoxy group, 2-tert-butyl-3-methylphenoxy group, 2-tert-butyl-4-methylphenoxy group, 2-tert-butyl-5-methylphenoxy group, 2-tert-butyl-6-methylphenoxy group, 2,3,4-trimethylphenoxy group, 2,3,5-trimethylphenoxy group, 2,3,6- Trimethylphenoxy group, 2,4,5-trimethylphenoxy group, 2,4,6-trimethylphenoxy group, 2- tert-butyl-3,4-dimethylphenoxy group, 2-tert-butyl-3,5-dimethylphenoxy group, 2-tert-butyl-3,6-dimethylphenoxy group, 2,6-di-tert-butyl- 3-methylphenoxy group, 2-tert-butyl-4,5-dimethylphenoxy group, 2,6-di-tert-butyl-4-methylphenoxy group, 3,4,5-trimethylphenoxy group, 2,3, 4,5-tetramethylphenoxy group, 2-tert-butyl-3,4,5-trimethylphenoxy group, 2,3,4,6-tetramethylphenoxy group, 2-tert-butyl-3,4,6- Trimethylphenoxy group, 2,6-di-tert-butyl-3,4-dimethylphenoxy group, 2,3,5,6-tetramethylphenoxy group, 2-tert-butyl group -3,5,6-trimethylphenoxy group, 2,6-di-tert-butyl-3,5-dimethylphenoxy group, pentamethylphenoxy group, ethylphenoxy group, n-propylphenoxy group, isopropylphenoxy group, n -Butylphenoxy group, sec-butylphenoxy group, tert-butylphenoxy group, n-hexylphenoxy group, n-octylphenoxy group, n-decylphenoxy group, n-tetradecylphenoxy group, naphthoxy group, anthracenoxy group, etc. These aryloxy groups are all halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; alkoxy groups such as methoxy group and ethoxy group; aryloxy groups such as phenoxy group; and benzyloxy groups. Partially placed with an aralkyloxy group, etc. It may be replaced.

一般式[1]におけるaは0<a≦8を満足する数を、bは0<b≦8を満足する数を表し、M2の価数に応じて適宜選択される。M2がチタン原子、ジルコニウム原子またはハフニウム原子である場合、aは2であることが好ましく、bも2であることが好ましい。 In the general formula [1], a represents a number satisfying 0 <a ≦ 8, b represents a number satisfying 0 <b ≦ 8, and is appropriately selected according to the valence of M 2 . When M 2 is a titanium atom, a zirconium atom or a hafnium atom, a is preferably 2, and b is also preferably 2.

メタロセン系錯体の具体例としては、
ビス(シクロペンタジエニル)チタンジクロライド、ビス(メチルシクロペンタジエニル)チタンジクロライド、ビス(エチルシクロペンタジエニル)チタンジクロライド、ビス(n−ブチルシクロペンタジエニル)チタンジクロライド、ビス(tert−ブチルシクロペンタジエニル)チタンジクロライド、ビス(1,2−ジメチルシクロペンタジエニル)チタンジクロライド、ビス(1,3−ジメチルシクロペンタジエニル)チタンジクロライド、ビス(1−メチル−2−エチルシクロペンタジエニル)チタンジクロライド、ビス(1−メチル−3−エチルシクロペンタジエニル)チタンジクロライド、ビス(1−メチル−2−n−ブチルシクロペンタジエニル)チタンジクロライド、ビス(1−メチル−3−n−ブチルシクロペンタジエニル)チタンジクロライド、ビス(1−メチル−2−イソプロピルシクロペンタジエニル)チタンジクロライド、ビス(1−メチル−3−イソプロピルシクロペンタジエニル)チタンジクロライド、ビス(1−tert−ブチル−2−メチルシクロペンタジエニル)チタンジクロライド、ビス(1−tert−ブチル−3−メチルシクロペンタジエニル)チタンジクロライド、ビス(1,2,3−トリメチルシクロペンタジエニル)チタンジクロライド、ビス(1,2,4−トリメチルシクロペンタジエニル)チタンジクロライド、ビス(テトラメチルシクロペンタジエニル)チタンジクロライド、ビス(ペンタメチルシクロペンタジエニル)チタンジクロライド、ビス(インデニル)チタンジクロライド、ビス(4,5,6,7−テトラヒドロインデニル)チタンジクロライド、ビス(フルオレニル)チタンジクロライド、ビス(2−フェニルインデニル)チタンジクロライド、
As a specific example of a metallocene complex,
Bis (cyclopentadienyl) titanium dichloride, bis (methylcyclopentadienyl) titanium dichloride, bis (ethylcyclopentadienyl) titanium dichloride, bis (n-butylcyclopentadienyl) titanium dichloride, bis (tert-butyl) Cyclopentadienyl) titanium dichloride, bis (1,2-dimethylcyclopentadienyl) titanium dichloride, bis (1,3-dimethylcyclopentadienyl) titanium dichloride, bis (1-methyl-2-ethylcyclopentadi) Enyl) titanium dichloride, bis (1-methyl-3-ethylcyclopentadienyl) titanium dichloride, bis (1-methyl-2-n-butylcyclopentadienyl) titanium dichloride, bis (1-methyl-3-n) -Butylcyclopentadi Nyl) titanium dichloride, bis (1-methyl-2-isopropylcyclopentadienyl) titanium dichloride, bis (1-methyl-3-isopropylcyclopentadienyl) titanium dichloride, bis (1-tert-butyl-2-methyl) Cyclopentadienyl) titanium dichloride, bis (1-tert-butyl-3-methylcyclopentadienyl) titanium dichloride, bis (1,2,3-trimethylcyclopentadienyl) titanium dichloride, bis (1,2,2 4-trimethylcyclopentadienyl) titanium dichloride, bis (tetramethylcyclopentadienyl) titanium dichloride, bis (pentamethylcyclopentadienyl) titanium dichloride, bis (indenyl) titanium dichloride, bis (4,5,6, 7-tetra Doroindeniru) titanium dichloride, bis (fluorenyl) titanium dichloride, bis (2-phenyl indenyl) titanium dichloride,

ビス[2−(ビス−3,5−トリフルオロメチルフェニル)インデニル]チタンジクロライド、ビス[2−(4−tert−ブチルフェニル)インデニル]チタンジクロライド、ビス[2−(4−トリフルオロメチルフェニル)インデニル]チタンジクロライド、ビス[2−(4−メチルフェニル)インデニル]チタンジクロライド、ビス[2−(3,5−ジメチルフェニル)インデニル]チタンジクロライド、ビス[2−(ペンタフルオロフェニル)インデニル]チタンジクロライド、シクロペンタジエニル(ペンタメチルシクロペンタジエニル)チタンジクロライド、シクロペンタジエニル(インデニル)チタンジクロライド、シクロペンタジエニル(フルオレニル)チタンジクロライド、インデニル(フルオレニル)チタンジクロライド、ペンタメチルシクロペンタジエニル(インデニル)チタンジクロライド、ペンタメチルシクロペンタジエニル(フルオレニル)チタンジクロライド、シクロペンタジエニル(2−フェニルインデニル)チタンジクロライド、ペンタメチルシクロペンタジエニル(2−フェニルインデニル)チタンジクロライド、 Bis [2- (bis-3,5-trifluoromethylphenyl) indenyl] titanium dichloride, bis [2- (4-tert-butylphenyl) indenyl] titanium dichloride, bis [2- (4-trifluoromethylphenyl) Indenyl] titanium dichloride, bis [2- (4-methylphenyl) indenyl] titanium dichloride, bis [2- (3,5-dimethylphenyl) indenyl] titanium dichloride, bis [2- (pentafluorophenyl) indenyl] titanium dichloride , Cyclopentadienyl (pentamethylcyclopentadienyl) titanium dichloride, cyclopentadienyl (indenyl) titanium dichloride, cyclopentadienyl (fluorenyl) titanium dichloride, indenyl (fluorenyl) titanium dichloride , Pentamethylcyclopentadienyl (indenyl) titanium dichloride, pentamethylcyclopentadienyl (fluorenyl) titanium dichloride, cyclopentadienyl (2-phenylindenyl) titanium dichloride, pentamethylcyclopentadienyl (2-phenylindene) Nil) titanium dichloride,

ジメチルシリレンビス(シクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2−メチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(3−メチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2−n−ブチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(3−n−ブチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2,3−ジメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2,4−ジメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2,5−ジメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(3,4−ジメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2,3−エチルメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2,4−エチルメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2,5−エチルメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(3,5−エチルメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2,3,4−トリメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2,3,5−トリメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(テトラメチルシクロペンタジエニル)チタンジクロライド、 Dimethylsilylene bis (cyclopentadienyl) titanium dichloride, dimethylsilylene bis (2-methylcyclopentadienyl) titanium dichloride, dimethylsilylene bis (3-methylcyclopentadienyl) titanium dichloride, dimethylsilylene bis (2-n- Butylcyclopentadienyl) titanium dichloride, dimethylsilylenebis (3-n-butylcyclopentadienyl) titanium dichloride, dimethylsilylenebis (2,3-dimethylcyclopentadienyl) titanium dichloride, dimethylsilylenebis (2,4 -Dimethylcyclopentadienyl) titanium dichloride, dimethylsilylenebis (2,5-dimethylcyclopentadienyl) titanium dichloride, dimethylsilylenebis (3,4-dimethylcyclopentadienyl) Titanium dichloride, dimethylsilylene bis (2,3-ethylmethylcyclopentadienyl) titanium dichloride, dimethylsilylene bis (2,4-ethylmethylcyclopentadienyl) titanium dichloride, dimethylsilylene bis (2,5-ethylmethylcyclo) Pentadienyl) titanium dichloride, dimethylsilylene bis (3,5-ethylmethylcyclopentadienyl) titanium dichloride, dimethylsilylene bis (2,3,4-trimethylcyclopentadienyl) titanium dichloride, dimethylsilylene bis (2, 3,5-trimethylcyclopentadienyl) titanium dichloride, dimethylsilylene bis (tetramethylcyclopentadienyl) titanium dichloride,

ジメチルシリレンビス(インデニル)チタンジクロライド、ジメチルシリレンビス(2−メチルインデニル)チタンジクロライド、ジメチルシリレンビス(2−tert−ブチルインデニル)チタンジクロライド、ジメチルシリレンビス(2,3−ジメチルインデニル)チタンジクロライド、ジメチルシリレンビス(2,4,7−トリメチルインデニル)チタンジクロライド、ジメチルシリレンビス(2−メチル−4−イソプロピルインデニル)チタンジクロライド、ジメチルシリレンビス(4,5−ベンズインデニル)チタンジクロライド、ジメチルシリレンビス(2−メチル−4,5−ベンズインデニル)チタンジクロライド、ジメチルシリレンビス(2−フェニルインデニル)チタンジクロライド、ジメチルシリレンビス(4−フェニルインデニル)チタンジクロライド、ジメチルシリレンビス(2−メチル−4−フェニルインデニル)チタンジクロライド、ジメチルシリレンビス(2−メチル−5−フェニルインデニル)チタンジクロライド、ジメチルシリレンビス(2−メチル−4−ナフチルインデニル)チタンジクロライド、ジメチルシリレンビス(4,5,6,7−テトラヒドロインデニル)チタンジクロライド、 Dimethylsilylenebis (indenyl) titanium dichloride, dimethylsilylenebis (2-methylindenyl) titanium dichloride, dimethylsilylenebis (2-tert-butylindenyl) titanium dichloride, dimethylsilylenebis (2,3-dimethylindenyl) titanium Dichloride, dimethylsilylene bis (2,4,7-trimethylindenyl) titanium dichloride, dimethylsilylene bis (2-methyl-4-isopropylindenyl) titanium dichloride, dimethylsilylene bis (4,5-benzindenyl) titanium dichloride, dimethyl Silylene bis (2-methyl-4,5-benzindenyl) titanium dichloride, dimethylsilylene bis (2-phenylindenyl) titanium dichloride, dimethylsilylene bis (4-phenyl) Indenyl) titanium dichloride, dimethylsilylene bis (2-methyl-4-phenylindenyl) titanium dichloride, dimethylsilylene bis (2-methyl-5-phenylindenyl) titanium dichloride, dimethylsilylene bis (2-methyl-4-naphthyl) Indenyl) titanium dichloride, dimethylsilylenebis (4,5,6,7-tetrahydroindenyl) titanium dichloride,

ジメチルシリレン(シクロペンタジエニル)(インデニル)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(インデニル)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(インデニル)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(インデニル)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(フルオレニル)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(フルオレニル)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(フルオレニル)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(インデニル)チタンジクロライド、ジメチルシリレン(インデニル)(フルオレニル)チタンジクロライド、ジメチルシリレンビス(フルオレニル)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(テトラメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(フルオレニル)チタンジクロライド、 Dimethylsilylene (cyclopentadienyl) (indenyl) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) (indenyl) titanium dichloride, dimethylsilylene (n-butylcyclopentadienyl) (indenyl) titanium dichloride, dimethylsilylene (tetra Methylcyclopentadienyl) (indenyl) titanium dichloride, dimethylsilylene (cyclopentadienyl) (fluorenyl) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) (fluorenyl) titanium dichloride, dimethylsilylene (n-butylcyclopentadiene) Enyl) (fluorenyl) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (indenyl) titanium dichloride, dimethylsilyl (Indenyl) (fluorenyl) titanium dichloride, dimethylsilylene bis (fluorenyl) titanium dichloride, dimethylsilylene (cyclopentadienyl) (tetramethylcyclopentadienyl) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (fluorenyl) ) Titanium dichloride,

シクロペンタジエニルチタントリクロライド、ペンタメチルシクロペンタジエニルチタントリクロライド、シクロペンタジエニル(ジメチルアミド)チタンジクロライド、シクロペンタジエニル(フェノキシ)チタンジクロライド、シクロペンタジエニル(2,6−ジメチルフェニル)チタンジクロライド、シクロペンタジエニル(2,6−ジイソプロピルフェニル)チタンジクロライド、シクロペンタジエニル(2,6−ジ−tert−ブチルフェニル)チタンジクロライド、ペンタメチルシクロペンタジエニル(2,6−ジメチルフェニル)チタンジクロライド、ペンタメチルシクロペンタジエニル(2,6−ジイソプロピルフェニル)チタンジクロライド、ペンタメチルシクロペンタジエニル(2,6−tert−ブチルフェニル)チタンジクロライド、インデニル(2,6−ジイソプロピルフェニル)チタンジクロライド、フルオレニル(2,6−ジイソプロピルフェニル)チタンジクロライド、 Cyclopentadienyl titanium trichloride, pentamethylcyclopentadienyl titanium trichloride, cyclopentadienyl (dimethylamido) titanium dichloride, cyclopentadienyl (phenoxy) titanium dichloride, cyclopentadienyl (2,6-dimethylphenyl) ) Titanium dichloride, cyclopentadienyl (2,6-diisopropylphenyl) titanium dichloride, cyclopentadienyl (2,6-di-tert-butylphenyl) titanium dichloride, pentamethylcyclopentadienyl (2,6-dimethyl) Phenyl) titanium dichloride, pentamethylcyclopentadienyl (2,6-diisopropylphenyl) titanium dichloride, pentamethylcyclopentadienyl (2,6-tert-butylphenyl) thi Njikuroraido, indenyl (2,6-diisopropylphenyl) titanium dichloride, fluorenyl (2,6-diisopropylphenyl) titanium dichloride,

ジメチルシリレン(シクロペンタジエニル)(2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3,5−ジメチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3,5−ジ−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(5−メチル−3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3−tert−ブチルジメチルシリル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(5−メチル−3−トリメチルシリル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3−tert−ブチル−5−メトキシ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3−tert−ブチル−5−クロロ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3,5−ジアミル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(1−ナフトキシ−2−イル)チタンジクロライド、 Dimethylsilylene (cyclopentadienyl) (2-phenoxy) titanium dichloride, dimethylsilylene (cyclopentadienyl) (3-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (cyclopentadienyl) (3,5-dimethyl -2-phenoxy) titanium dichloride, dimethylsilylene (cyclopentadienyl) (3-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (cyclopentadienyl) (3-tert-butyl-5-methyl-2) -Phenoxy) titanium dichloride, dimethylsilylene (cyclopentadienyl) (3,5-di-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (cyclopentadienyl) (5-methyl-3-phenyl-2) -Phenoxy Titanium dichloride, dimethylsilylene (cyclopentadienyl) (3-tert-butyldimethylsilyl-5-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (cyclopentadienyl) (5-methyl-3-trimethylsilyl-2- Phenoxy) titanium dichloride, dimethylsilylene (cyclopentadienyl) (3-tert-butyl-5-methoxy-2-phenoxy) titanium dichloride, dimethylsilylene (cyclopentadienyl) (3-tert-butyl-5-chloro-) 2-phenoxy) titanium dichloride, dimethylsilylene (cyclopentadienyl) (3,5-diamil-2-phenoxy) titanium dichloride, dimethylsilylene (cyclopentadienyl) (3-phenyl-2-phenoxy) titanium dichloride Id, dimethylsilylene (cyclopentadienyl) (1-naphthoxy-2-yl) titanium dichloride,

ジメチルシリレン(メチルシクロペンタジエニル)(2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3,5−ジメチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3,5−ジ−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(5−メチル−3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3−tert−ブチルジメチルシリル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(5−メチル−3−トリメチルシリル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3−tert−ブチル−5−メトキシ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3−tert−ブチル−5−クロロ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3,5−ジアミル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(1−ナフトキシ−2−イル)チタンジクロライド、 Dimethylsilylene (methylcyclopentadienyl) (2-phenoxy) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) (3-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) (3 5-dimethyl-2-phenoxy) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) (3-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) (3-tert-butyl- 5-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) (3,5-di-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) 5-methyl-3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) (3-tert-butyldimethylsilyl-5-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (methylcyclopenta Dienyl) (5-methyl-3-trimethylsilyl-2-phenoxy) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) (3-tert-butyl-5-methoxy-2-phenoxy) titanium dichloride, dimethylsilylene (methyl) Cyclopentadienyl) (3-tert-butyl-5-chloro-2-phenoxy) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) (3,5-diamil-2-phenoxy) titanium dichloride, dimethylsilyl Down (methylcyclopentadienyl) (3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) (1-naphthoxy-2-yl) titanium dichloride,

ジメチルシリレン(n−ブチルシクロペンタジエニル)(2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3,5−ジメチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3,5−ジ−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(5−メチル−3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3−tert−ブチルジメチルシリル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(5−メチル−3−トリメチルシリル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3−tert−ブチル−5−メトキシ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3−tert−ブチル−5−クロロ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3,5−ジアミル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(1−ナフトキシ−2−イル)チタンジクロライド、 Dimethylsilylene (n-butylcyclopentadienyl) (2-phenoxy) titanium dichloride, dimethylsilylene (n-butylcyclopentadienyl) (3-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (n-butylcyclopenta) Dienyl) (3,5-dimethyl-2-phenoxy) titanium dichloride, dimethylsilylene (n-butylcyclopentadienyl) (3-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (n-butylcyclopenta) Dienyl) (3-tert-butyl-5-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (n-butylcyclopentadienyl) (3,5-di-tert-butyl-2-phenoxy) titanium dichloride, Dimethylsilylene (n- Tilcyclopentadienyl) (5-methyl-3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (n-butylcyclopentadienyl) (3-tert-butyldimethylsilyl-5-methyl-2-phenoxy) Titanium dichloride, dimethylsilylene (n-butylcyclopentadienyl) (5-methyl-3-trimethylsilyl-2-phenoxy) titanium dichloride, dimethylsilylene (n-butylcyclopentadienyl) (3-tert-butyl-5- Methoxy-2-phenoxy) titanium dichloride, dimethylsilylene (n-butylcyclopentadienyl) (3-tert-butyl-5-chloro-2-phenoxy) titanium dichloride, dimethylsilylene (n-butylcyclopentadienyl) ( 3,5-diamil- -Phenoxy) titanium dichloride, dimethylsilylene (n-butylcyclopentadienyl) (3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (n-butylcyclopentadienyl) (1-naphthoxy-2-yl) titanium Dichloride,

ジメチルシリレン(tert−ブチルシクロペンタジエニル)(2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3,5−ジメチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3,5−ジ−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(5−メチル−3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3−tert−ブチルジメチルシリル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(5−メチル−3−トリメチルシリル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3−tert−ブチル−5−メトキシ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3−tert−ブチル−5−クロロ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3,5−ジアミル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(1−ナフトキシ−2−イル)チタンジクロライド、 Dimethylsilylene (tert-butylcyclopentadienyl) (2-phenoxy) titanium dichloride, dimethylsilylene (tert-butylcyclopentadienyl) (3-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (tert-butylcyclopenta) Dienyl) (3,5-dimethyl-2-phenoxy) titanium dichloride, dimethylsilylene (tert-butylcyclopentadienyl) (3-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (tert-butylcyclopenta) Dienyl) (3-tert-butyl-5-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (tert-butylcyclopentadienyl) (3,5-di-tert-butyl-2-phenoxy) titanium Chloride, dimethylsilylene (tert-butylcyclopentadienyl) (5-methyl-3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (tert-butylcyclopentadienyl) (3-tert-butyldimethylsilyl-5) -Methyl-2-phenoxy) titanium dichloride, dimethylsilylene (tert-butylcyclopentadienyl) (5-methyl-3-trimethylsilyl-2-phenoxy) titanium dichloride, dimethylsilylene (tert-butylcyclopentadienyl) (3 -Tert-butyl-5-methoxy-2-phenoxy) titanium dichloride, dimethylsilylene (tert-butylcyclopentadienyl) (3-tert-butyl-5-chloro-2-phenoxy) titanium dichloride, dimethyl Lucylylene (tert-butylcyclopentadienyl) (3,5-diamil-2-phenoxy) titanium dichloride, dimethylsilylene (tert-butylcyclopentadienyl) (3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene ( tert-butylcyclopentadienyl) (1-naphthoxy-2-yl) titanium dichloride,

ジメチルシリレン(テトラメチルシクロペンタジエニル)(2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3,5−ジメチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3,5−ジ−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(5−メチル−3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3−tert−ブチルジメチルシリル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(5−メチル−3−トリメチルシリル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3−tert−ブチル−5−メトキシ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3−tert−ブチル−5−クロロ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3,5−ジアミル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(1−ナフトキシ−2−イル)チタンジクロライド、 Dimethylsilylene (tetramethylcyclopentadienyl) (2-phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (3-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (3,5-dimethyl-2-phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (3-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (3 -Tert-butyl-5-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (3,5-di-tert-butyl-2-phenoxy) titanium dichloride, dimethyl Len (tetramethylcyclopentadienyl) (5-methyl-3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (3-tert-butyldimethylsilyl-5-methyl-2- Phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (5-methyl-3-trimethylsilyl-2-phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (3-tert-butyl-5- Methoxy-2-phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (3-tert-butyl-5-chloro-2-phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadieni) ) (3,5-Diamyl-2-phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (1- Naphthoxy-2-yl) titanium dichloride,

ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3,5−ジメチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3,5−ジ−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(5−メチル−3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3−tert−ブチルジメチルシリル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(5−メチル−3−トリメチルシリル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3−tert−ブチル−5−メトキシ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3−tert−ブチル−5−クロロ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3,5−ジアミル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(1−ナフトキシ−2−イル)チタンジクロライド、 Dimethylsilylene (trimethylsilylcyclopentadienyl) (2-phenoxy) titanium dichloride, dimethylsilylene (trimethylsilylcyclopentadienyl) (3-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (trimethylsilylcyclopentadienyl) (3 5-dimethyl-2-phenoxy) titanium dichloride, dimethylsilylene (trimethylsilylcyclopentadienyl) (3-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (trimethylsilylcyclopentadienyl) (3-tert-butyl- 5-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (trimethylsilylcyclopentadienyl) (3,5-di-tert-butyl-2-phenoxy) titanium Chloride, dimethylsilylene (trimethylsilylcyclopentadienyl) (5-methyl-3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (trimethylsilylcyclopentadienyl) (3-tert-butyldimethylsilyl-5-methyl-2) -Phenoxy) titanium dichloride, dimethylsilylene (trimethylsilylcyclopentadienyl) (5-methyl-3-trimethylsilyl-2-phenoxy) titanium dichloride, dimethylsilylene (trimethylsilylcyclopentadienyl) (3-tert-butyl-5-methoxy) -2-phenoxy) titanium dichloride, dimethylsilylene (trimethylsilylcyclopentadienyl) (3-tert-butyl-5-chloro-2-phenoxy) titanium dichloride, dimethyl Lucylylene (trimethylsilylcyclopentadienyl) (3,5-diamil-2-phenoxy) titanium dichloride, dimethylsilylene (trimethylsilylcyclopentadienyl) (3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (trimethylsilylcyclopentadi) Enyl) (1-naphthoxy-2-yl) titanium dichloride,

ジメチルシリレン(インデニル)(2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3,5−ジメチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3,5−ジ−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(5−メチル−3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3−tert−ブチルジメチルシリル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(5−メチル−3−トリメチルシリル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3−tert−ブチル−5−メトキシ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3−tert−ブチル−5−クロロ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3,5−ジアミル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(1−ナフトキシ−2−イル)チタンジクロライド、 Dimethylsilylene (indenyl) (2-phenoxy) titanium dichloride, dimethylsilylene (indenyl) (3-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (indenyl) (3,5-dimethyl-2-phenoxy) titanium dichloride, dimethyl Silylene (indenyl) (3-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (indenyl) (3-tert-butyl-5-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (indenyl) (3,5 -Di-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (indenyl) (5-methyl-3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (indenyl) (3-tert-butyl) Rudimethylsilyl-5-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (indenyl) (5-methyl-3-trimethylsilyl-2-phenoxy) titanium dichloride, dimethylsilylene (indenyl) (3-tert-butyl-5- Methoxy-2-phenoxy) titanium dichloride, dimethylsilylene (indenyl) (3-tert-butyl-5-chloro-2-phenoxy) titanium dichloride, dimethylsilylene (indenyl) (3,5-diamil-2-phenoxy) titanium dichloride Dimethylsilylene (indenyl) (3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (indenyl) (1-naphthoxy-2-yl) titanium dichloride,

ジメチルシリレン(フルオレニル)(2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3,5−ジメチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3,5−ジ−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(5−メチル−3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3−tert−ブチルジメチルシリル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(5−メチル−3−トリメチルシリル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3−tert−ブチル−5−メトキシ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3−tert−ブチル−5−クロロ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3,5−ジアミル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(1−ナフトキシ−2−イル)チタンジクロライド、 Dimethylsilylene (fluorenyl) (2-phenoxy) titanium dichloride, dimethylsilylene (fluorenyl) (3-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (fluorenyl) (3,5-dimethyl-2-phenoxy) titanium dichloride, dimethyl Silylene (fluorenyl) (3-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (fluorenyl) (3-tert-butyl-5-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (fluorenyl) (3,5 -Di-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (fluorenyl) (5-methyl-3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (fluorenyl) ( -Tert-butyldimethylsilyl-5-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (fluorenyl) (5-methyl-3-trimethylsilyl-2-phenoxy) titanium dichloride, dimethylsilylene (fluorenyl) (3-tert-butyl -5-methoxy-2-phenoxy) titanium dichloride, dimethylsilylene (fluorenyl) (3-tert-butyl-5-chloro-2-phenoxy) titanium dichloride, dimethylsilylene (fluorenyl) (3,5-diamil-2-phenoxy) ) Titanium dichloride, dimethylsilylene (fluorenyl) (3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (fluorenyl) (1-naphthoxy-2-yl) titanium dichloride,

(tert−ブチルアミド)テトラメチルシクロペンタジエニル−1,2−エタンジイルチタンジクロライド、(メチルアミド)テトラメチルシクロペンタジエニル−1,2−エタンジイルチタンジクロライド、(エチルアミド)テトラメチルシクロペンタジエニル−1,2−エタンジイルチタンジクロライド、(tert−ブチルアミド)テトラメチルシクロペンタジエニルジメチルシランチタンジクロライド、(ベンジルアミド)テトラメチルシクロペンタジエニルジメチルシランチタンジクロライド、(フェニルフォスファイド)テトラメチルシクロペンタジエニルジメチルシランチタンジクロライド、(tert−ブチルアミド)インデニル−1,2−エタンジイルチタンジクロライド、(tert−ブチルアミド)テトラヒドロインデニル−1,2−エタンジイルチタンジクロライド、(tert−ブチルアミド)フルオレニル−1,2−エタンジイルチタンジクロライド、(tert−ブチルアミド)インデニルジメチルシランチタンジクロライド、(tert−ブチルアミド)テトラヒドロインデニルジメチルシランチタンジクロライド、(tert−ブチルアミド)フルオレニルジメチルシランチタンジクロライド、 (Tert-Butylamide) tetramethylcyclopentadienyl-1,2-ethanediyltitanium dichloride, (methylamido) tetramethylcyclopentadienyl-1,2-ethanediyltitanium dichloride, (ethylamido) tetramethylcyclopentadienyl- 1,2-ethanediyltitanium dichloride, (tert-butylamide) tetramethylcyclopentadienyldimethylsilane titanium dichloride, (benzylamido) tetramethylcyclopentadienyldimethylsilane titanium dichloride, (phenylphosphide) tetramethylcyclopentadi Enyldimethylsilane titanium dichloride, (tert-butylamido) indenyl-1,2-ethanediyl titanium dichloride, (tert-butylamido) tetrahydroyl Denyl-1,2-ethanediyl titanium dichloride, (tert-butylamido) fluorenyl-1,2-ethanediyl titanium dichloride, (tert-butylamido) indenyldimethylsilane titanium dichloride, (tert-butylamido) tetrahydroindenyldimethylsilane titanium Dichloride, (tert-butylamido) fluorenyldimethylsilane titanium dichloride,

(ジメチルアミノメチル)テトラメチルシクロペンタジエニルチタン(III)ジクロライド、(ジメチルアミノエチル)テトラメチルシクロペンタジエニルチタン(III)ジクロライド、(ジメチルアミノプロピル)テトラメチルシクロペンタジエニルチタン(III)ジクロライド、(N−ピロリジニルエチル)テトラメチルシクロペンタジエニルチタンジクロライド、(B−ジメチルアミノボラベンゼン)シクロペンタジエニルチタンジクロライド、シクロペンタジエニル(9−メシチルボラアントラセニル)チタンジクロライド、などや、これらの化合物のチタンをジルコニウムまたはハフニウムに変更した化合物、(2−フェノキシ)を(3−フェニル−2−フェノキシ)、(3−トリメチルシリル−2−フェノキシ)、または(3−tert−ブチルジメチルシリル−2−フェノキシ)に変更した化合物、ジメチルシリレンをメチレン、エチレン、ジメチルメチレン(イソプロピリデン)、ジフェニルメチレン、ジエチルシリレン、ジフェニルシリレン、またはジメトキシシリレンに変更した化合物、ジクロライドをジフルオライド、ジブロマイド、ジアイオダイド、ジメチル、ジエチル、ジイソプロピル、ジフェニル、ジベンジル、ジメトキシド、ジエトキシド、ジ(n−プロポキシド)、ジ(イソプロポキシド)、ジフェノキシド、またはジ(ペンタフルオロフェノキシド)に変更した化合物、トリクロライドをトリフルオライド、トリブロマイド、トリアイオダイド、トリメチル、トリエチル、トリイソプロピル、トリフェニル、トリベンジル、トリメトキシド、トリエトキシド、トリ(n−プロポキシド)、トリ(イソプロポキシド)、トリフェノキシド、またはトリ(ペンタフルオロフェノキシド)に変更した化合物などを例示することができる。 (Dimethylaminomethyl) tetramethylcyclopentadienyl titanium (III) dichloride, (dimethylaminoethyl) tetramethylcyclopentadienyl titanium (III) dichloride, (dimethylaminopropyl) tetramethylcyclopentadienyl titanium (III) dichloride (N-pyrrolidinylethyl) tetramethylcyclopentadienyl titanium dichloride, (B-dimethylaminoborabenzene) cyclopentadienyl titanium dichloride, cyclopentadienyl (9-mesitylboraanthracenyl) titanium dichloride, Or compounds in which titanium of these compounds is changed to zirconium or hafnium, (2-phenoxy) is changed to (3-phenyl-2-phenoxy), (3-trimethylsilyl-2-phenoxy), or (3-ter -Butyldimethylsilyl-2-phenoxy), dimethylsilylene changed to methylene, ethylene, dimethylmethylene (isopropylidene), diphenylmethylene, diethylsilylene, diphenylsilylene, or dimethoxysilylene, dichloride changed to difluoride, di Compound, trichloride changed to bromide, diiodide, dimethyl, diethyl, diisopropyl, diphenyl, dibenzyl, dimethoxide, diethoxide, di (n-propoxide), di (isopropoxide), diphenoxide, or di (pentafluorophenoxide) Trifluoride, tribromide, triiodide, trimethyl, triethyl, triisopropyl, triphenyl, tribenzyl, trimethoxide, trieth Sid, tri (n- propoxide), tri (isopropoxide), tri phenoxide or a compound was changed to tri (pentafluorophenyl phenoxide), etc., can be exemplified.

また一般式[1]で表される遷移金属化合物のμ−オキソタイプの遷移金属化合物の具体例としては、μ−オキソビス[イソプロピリデン(シクロペンタジエニル)(2−フェノキシ)チタンクロライド]、μ−オキソビス[イソプロピリデン(シクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンクロライド]、μ−オキソビス[イソプロピリデン(メチルシクロペンタジエニル)(2−フェノキシ)チタンクロライド]、μ−オキソビス[イソプロピリデン(メチルシクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンクロライド]、μ−オキソビス[イソプロピリデン(テトラメチルシクロペンタジエニル)(2−フェノキシ)チタンクロライド]、μ−オキソビス[イソプロピリデン(テトラメチルシクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンクロライド]、μ−オキソビス[ジメチルシリレン(シクロペンタジエニル)(2−フェノキシ)チタンクロライド]、μ−オキソビス[ジメチルシリレン(シクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンクロライド]、μ−オキソビス[ジメチルシリレン(メチルシクロペンタジエニル)(2−フェノキシ)チタンクロライド]、μ−オキソビス[ジメチルシリレン(メチルシクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンクロライド]、μ−オキソビス[ジメチルシリレン(テトラメチルシクロペンタジエニル)(2−フェノキシ)チタンクロライド]、μ−オキソビス[ジメチルシリレン(テトラメチルシクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンクロライド]などが挙げられる。また、これらの化合物のクロライドをフルオライド、ブロマイド、アイオダイド、メチル、エチル、イソプロピル、フェニル、ベンジル、メトキシド、エトキシド、n−プロポキシド、イソプロポキシド、フェノキシド、またはペンタフルオロフェノキシドに変更した化合物などを例示することができる。   Specific examples of the transition metal compound of the transition metal compound represented by the general formula [1] include μ-oxobis [isopropylidene (cyclopentadienyl) (2-phenoxy) titanium chloride], μ -Oxobis [isopropylidene (cyclopentadienyl) (3-tert-butyl-5-methyl-2-phenoxy) titanium chloride], μ-oxobis [isopropylidene (methylcyclopentadienyl) (2-phenoxy) titanium chloride ], Μ-oxobis [isopropylidene (methylcyclopentadienyl) (3-tert-butyl-5-methyl-2-phenoxy) titanium chloride], μ-oxobis [isopropylidene (tetramethylcyclopentadienyl) (2 -Phenoxy) titanium chloride], μ-oxobis [ Sopropylidene (tetramethylcyclopentadienyl) (3-tert-butyl-5-methyl-2-phenoxy) titanium chloride], μ-oxobis [dimethylsilylene (cyclopentadienyl) (2-phenoxy) titanium chloride], μ -Oxobis [dimethylsilylene (cyclopentadienyl) (3-tert-butyl-5-methyl-2-phenoxy) titanium chloride], μ-oxobis [dimethylsilylene (methylcyclopentadienyl) (2-phenoxy) titanium chloride ], [Mu] -oxobis [dimethylsilylene (methylcyclopentadienyl) (3-tert-butyl-5-methyl-2-phenoxy) titanium chloride], [mu] -oxobis [dimethylsilylene (tetramethylcyclopentadienyl) (2 -Phenoxy) chita Chloride], .mu. Okisobisu [dimethylsilylene (tetramethylcyclopentadienyl) (3-tert-butyl-5-methyl-2-phenoxy) titanium chloride], and the like. Examples include compounds in which the chloride of these compounds is changed to fluoride, bromide, iodide, methyl, ethyl, isopropyl, phenyl, benzyl, methoxide, ethoxide, n-propoxide, isopropoxide, phenoxide, or pentafluorophenoxide. can do.

本発明のエチレン−α−オレフィン共重合体の製造方法としては、下記の助触媒成分(I)が担持されてなる助触媒担体(A)と、アルキレン基やシリレン基等の架橋基で2つのシクロペンタジエニル型アニオン骨格が結合した構造を持つ配位子を有するメタロセン系錯体(B)と、有機アルミニウム化合物(C)とを接触させてなる重合触媒の存在下、エチレンとα−オレフィンとを共重合する方法をあげることができる。   The method for producing the ethylene-α-olefin copolymer of the present invention includes two promoters (A) on which the following promoter component (I) is supported and a crosslinking group such as an alkylene group or a silylene group. In the presence of a polymerization catalyst obtained by contacting a metallocene complex (B) having a ligand having a structure with a cyclopentadienyl-type anion skeleton and an organoaluminum compound (C), ethylene and an α-olefin The method of copolymerizing can be mentioned.

[助触媒担体(A)]
ジエチル亜鉛(以下、成分(a)と称する)、フッ素化フェノール(以下、成分(b)と称する)、水(以下、成分(c)と称する)、無機微粒子状担体(以下、成分(d)と称する)、およびトリメチルジシラザン(((CH33Si)2NH)(以下、成分(e)と称する)を接触させて得られる担体。
[Cocatalyst carrier (A)]
Diethyl zinc (hereinafter referred to as component (a)), fluorinated phenol (hereinafter referred to as component (b)), water (hereinafter referred to as component (c)), inorganic particulate carrier (hereinafter referred to as component (d) And trimethyldisilazane (((CH 3 ) 3 Si) 2 NH) (hereinafter referred to as component (e)).

成分(b)として、3,4,5−トリフルオロフェノール、3,4,5−トリス(トリフルオロメチル)フェノール、3,4,5−トリス(ペンタフルオロフェニル)フェノール、3,5−ジフルオロ−4−ペンタフルオロフェニルフェノール、または4,5,6,7,8−ペンタフルオロ−2−ナフトールを用いることにより、C値の小さいエチレン−α−オレフィン共重合体を得ることができる。   As component (b), 3,4,5-trifluorophenol, 3,4,5-tris (trifluoromethyl) phenol, 3,4,5-tris (pentafluorophenyl) phenol, 3,5-difluoro- By using 4-pentafluorophenylphenol or 4,5,6,7,8-pentafluoro-2-naphthol, an ethylene-α-olefin copolymer having a small C value can be obtained.

成分(b)としてより好ましくは、3,4,5−トリフルオロフェノール、4,5,6,7,8−ペンタフルオロ−2−ナフトールであり、さらに好ましくは3,4,5−トリフルオロフェノールである。   More preferably, component (b) is 3,4,5-trifluorophenol or 4,5,6,7,8-pentafluoro-2-naphthol, more preferably 3,4,5-trifluorophenol. It is.

成分(d)の無機微粒子状担体としては、好ましくはシリカゲルである。   The inorganic particulate carrier of component (d) is preferably silica gel.

本発明では、成分(a)、成分(b)、成分(c)の各成分の使用量が、各成分の使用量のモル比率を成分(a):成分(b):成分(c)=1:y:zとするとき、yおよびzが下記式を満足するように使用する。
|2−y−2z|≦1 (2)
z≧−2.5y+2.48 (3)
y<1 (4)
(前記式(2)〜(4)において、yおよびzは0よりも大きな数を表す。)
成分(a)の使用量に対する成分(b)の使用量のモル比率yおよび成分(a)の使用量に対する成分(c)の使用量のモル比率zは、前記式(2)、(3)および(4)を満たす限り特に制限されない。zの値が式(3)の右辺の値よりも小さい場合、得られるエチレン−α−オレフィン共重合体の流動活性化エネルギー(Ea)が低くなることがあり、yの値が式(4)の右辺の値よりも大きい場合、エチレン−α−オレフィン共重合体の流動活性化エネルギー(Ea)が低くなる場合がある。具体的に、yは通常0.55〜0.99の値をとるが、より好ましくは0.55〜0.95であり、さらに好ましくは0.6〜0.9であり、最も好ましくは0.7〜0.8である。
In the present invention, the use amount of each component of component (a), component (b), and component (c) is the molar ratio of the use amount of each component: component (a): component (b): component (c) = When 1: y: z, y and z are used so as to satisfy the following formula.
| 2-y-2z | ≦ 1 (2)
z ≧ −2.5y + 2.48 (3)
y <1 (4)
(In the above formulas (2) to (4), y and z represent a number larger than 0.)
The molar ratio y of the usage amount of the component (b) to the usage amount of the component (a) and the molar ratio z of the usage amount of the component (c) to the usage amount of the component (a) are the above formulas (2) and (3). As long as the above and (4) are satisfied, there is no particular limitation. When the value of z is smaller than the value on the right side of Formula (3), the flow activation energy (Ea) of the resulting ethylene-α-olefin copolymer may be low, and the value of y may be Formula (4). When the value is larger than the value on the right side, the flow activation energy (Ea) of the ethylene-α-olefin copolymer may be low. Specifically, y usually takes a value of 0.55 to 0.99, more preferably 0.55 to 0.95, still more preferably 0.6 to 0.9, and most preferably 0. .7 to 0.8.

また、成分(a)に対して使用する成分(d)の量としては、成分(a)と成分(d)との接触により得られる粒子に含まれる成分(a)のジエチル亜鉛に由来する亜鉛原子が、得られる粒子1gに含まれる亜鉛原子のモル数にして、0.1mmol以上となる量であることが好ましく、0.5〜20mmolとなる量であることがより好ましい。成分(d)の無機微粒子状担体に対して使用する成分(e)の量としては、成分(d)の無機微粒子状担体1gにつき成分(e)のトリメチルジシラザン0.1mmol以上となる量であることが好ましく、0.5〜20mmolとなる量であることがより好ましい。   The amount of component (d) used relative to component (a) is zinc derived from diethylzinc of component (a) contained in particles obtained by contact between component (a) and component (d). The amount of atoms is preferably 0.1 mmol or more, more preferably 0.5 to 20 mmol, in terms of the number of moles of zinc atoms contained in 1 g of the obtained particles. The amount of the component (e) used for the inorganic fine particle carrier of the component (d) is such that the trimethyldisilazane of the component (e) is 0.1 mmol or more per 1 g of the inorganic fine particle carrier of the component (d). The amount is preferably 0.5 to 20 mmol, and more preferably 0.5 to 20 mmol.

アルキレン基やシリレン基等の架橋基で2つのシクロペンタジエニル型アニオン骨格が結合した構造を持つ配位子を有するメタロセン系錯体(B)の金属原子としては、周期律表第IV属原子が好ましく、ジルコニウム、ハフニウムがより好ましい。また、配位子としては、インデニル基、メチルインデニル基、メチルシクロペンタジエニル基、ジメチルシクロペンタジエニル基が好ましく、架橋基としては、エチレン基、ジメチルメチレン基、ジメチルシリレン基が好ましい。更には、金属原子が有する残りの置換基としては、ジフェノキシ基やジアルコキシ基が好ましい。メタロセン系錯体(B)として好ましくは、エチレンビス(1−インデニル)ジルコニウムジフェノキシドをあげることができる。   As a metal atom of the metallocene complex (B) having a ligand having a structure in which two cyclopentadienyl type anion skeletons are bonded by a bridging group such as an alkylene group or a silylene group, a group IV atom of the periodic table is Zirconium and hafnium are preferred. The ligand is preferably an indenyl group, a methylindenyl group, a methylcyclopentadienyl group, or a dimethylcyclopentadienyl group, and the crosslinking group is preferably an ethylene group, a dimethylmethylene group, or a dimethylsilylene group. Furthermore, as a remaining substituent which a metal atom has, a diphenoxy group and a dialkoxy group are preferable. Preferred examples of the metallocene complex (B) include ethylene bis (1-indenyl) zirconium diphenoxide.

有機アルミニウム化合物(C)としては、トリメチルアルミニウム、トリエチルアルミニウム、トリブチルアルミニウムトリイソブチルアルミニウム、トリノルマルオクチルアルミニウムなどがあげられ、好ましくはトリイソブチルアルミニウム、トリノルマルオクチルアルミニウムである。   Examples of the organoaluminum compound (C) include trimethylaluminum, triethylaluminum, tributylaluminum, triisobutylaluminum, and trinormaloctylaluminum, with triisobutylaluminum and trinormaloctylaluminum being preferred.

メタロセン系錯体(B)の使用量は、助触媒担体(A)1gに対し、好ましくは5×10-6〜5×10-4molである。また有機アルミニウム化合物(C)の使用量として、好ましくは、メタロセン系錯体(B)の金属原子モル数に対する有機アルミニウム化合物(C)のアルミニウム原子のモル数の比(Al/M)で表して、1〜2000である。 The amount of the metallocene complex (B) used is preferably 5 × 10 −6 to 5 × 10 −4 mol with respect to 1 g of the promoter support (A). The amount of the organoaluminum compound (C) used is preferably expressed by the ratio (Al / M) of the number of moles of aluminum atoms in the organoaluminum compound (C) to the number of moles of metal atoms in the metallocene complex (B). 1 to 2000.

前記の助触媒担体(A)とメタロセン系錯体(B)と有機アルミニウム化合物(C)とを接触させてなる重合触媒においては、必要に応じて、助触媒担体(A)とメタロセン系錯体(B)と有機アルミニウム化合物(C)とに、電子供与性化合物(D)を接触させてなる重合触媒としてもよい。該電子供与性化合物(D)として、好ましくはトリエチルアミン、トリノルマルオクチルアミンをあげることができる。   In the polymerization catalyst obtained by bringing the promoter support (A), the metallocene complex (B) and the organoaluminum compound (C) into contact, the promoter support (A) and the metallocene complex (B ) And the organoaluminum compound (C) may be a polymerization catalyst obtained by contacting the electron donating compound (D). Preferred examples of the electron donating compound (D) include triethylamine and trinormaloctylamine.

得られるエチレン−α−オレフィン共重合体の分子量分布を大きくする観点からは、電子供与性化合物(D)を使用することが好ましく、電子供与性化合物(D)の使用量としては、有機アルミニウム化合物(C)のアルミニウム原子のモル数に対して、0.1mol%以上であることがより好ましく、1mol%以上であることが更に好ましい。なお、該使用量は、重合活性を高める観点から、好ましくは10mol%以下であり、より好ましくは5mol%以下である。   From the viewpoint of increasing the molecular weight distribution of the obtained ethylene-α-olefin copolymer, the electron donating compound (D) is preferably used, and the amount of the electron donating compound (D) used is an organoaluminum compound. The amount is more preferably 0.1 mol% or more, still more preferably 1 mol% or more, relative to the number of moles of aluminum atoms in (C). The amount used is preferably 10 mol% or less, more preferably 5 mol% or less, from the viewpoint of increasing the polymerization activity.

本発明のエチレン−α−オレフィン共重合体の製造方法としては、微粒子状担体に助触媒成分(I)が担持されてなる助触媒担体(A)を用いて、少量のオレフィンを重合(以下、予備重合と称する。)して得られた予備重合触媒成分、例えば、前記助触媒担体(A)と、メタロセン系錯体と、有機アルミニウム化合物とを用いて少量のオレフィンを重合して得られた予備重合触媒成分を、触媒成分または触媒として用いて、エチレンとα−オレフィンとを共重合する方法により、得ることができる。   As a method for producing the ethylene-α-olefin copolymer of the present invention, a small amount of olefin is polymerized (hereinafter referred to as “copolymer catalyst carrier (A)”) in which the promoter component (I) is supported on a particulate carrier. This is referred to as prepolymerization.) A prepolymerization catalyst component obtained by polymerization, for example, a prepolymer obtained by polymerizing a small amount of olefin using the promoter support (A), a metallocene complex, and an organoaluminum compound. The polymerization catalyst component can be obtained by a method of copolymerizing ethylene and α-olefin using the catalyst component or catalyst.

有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリブチルアルミニウムトリイソブチルアルミニウム、トリノルマルオクチルアルミニウムなどがあげられ、好ましくはトリイソブチルアルミニウム、トリノルマルオクチルアルミニウムである。   Examples of the organoaluminum compound include trimethylaluminum, triethylaluminum, tributylaluminum, triisobutylaluminum, and trinormaloctylaluminum, with triisobutylaluminum and trinormaloctylaluminum being preferred.

本発明のエチレン−α−オレフィン共重合体を製造する際に用いる予備重合触媒成分の製造方法としては、下記工程(1)、(2)および(3)を有する処理工程により、助触媒担体(A)とメタロセン系錯体と有機アルミニウム化合物とを接触処理する方法が挙げられる。
工程(1):メタロセン系錯体を含有する飽和炭化水素化合物溶媒を40℃以上で熱処理する工程。
工程(2):工程(1)で熱処理してなる熱処理物と助触媒担体(A)とを接触処理する工程。
工程(3):工程(2)で接触処理してなる接触処理物と有機アルミニウム化合物とを接触処理する工程。
As a method for producing a prepolymerized catalyst component used in producing the ethylene-α-olefin copolymer of the present invention, a co-catalyst carrier (by a treatment step having the following steps (1), (2) and (3) is used. Examples thereof include a method in which A), a metallocene complex, and an organoaluminum compound are contact-treated.
Step (1): A step of heat-treating a saturated hydrocarbon compound solvent containing a metallocene complex at 40 ° C. or higher.
Step (2): A step of contacting the heat-treated product obtained by heat treatment in step (1) with the cocatalyst support (A).
Step (3): a step of contact-treating the contact-treated product obtained by the contact treatment in Step (2) and the organoaluminum compound.

工程(1)は、メタロセン系錯体を含有する飽和炭化水素化合物溶媒を40℃以上で熱処理する工程である。メタロセン系錯体を含有する飽和炭化水素化合物溶媒は、飽和炭化水素化合物溶媒中にメタロセン系錯体を投入する方法等により調製される。メタロセン系錯体は、通常、粉体、あるいは、飽和炭化水素化合物液のスラリーとして、投入される。   Step (1) is a step of heat-treating a saturated hydrocarbon compound solvent containing a metallocene complex at 40 ° C. or higher. The saturated hydrocarbon compound solvent containing the metallocene complex is prepared by a method of introducing the metallocene complex into the saturated hydrocarbon compound solvent. The metallocene complex is usually charged as a powder or a slurry of a saturated hydrocarbon compound solution.

メタロセン系錯体を含有する飽和炭化水素化合物溶媒の調製に用いられる飽和炭化水素化合物としては、例えば、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ノルマルヘキサン、シクロヘキサン、ヘプタン等があげられる。これらは単独あるいは2種以上組み合わせて用いられる。飽和炭化水素化合物としては、常圧における沸点が100℃以下のものが好ましく、常圧における沸点が90℃以下のものがより好ましく、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ノルマルヘキサン、シクロヘキサンが更に好ましい。   Examples of the saturated hydrocarbon compound used for the preparation of the saturated hydrocarbon compound solvent containing the metallocene complex include propane, normal butane, isobutane, normal pentane, isopentane, normal hexane, cyclohexane, heptane and the like. These may be used alone or in combination of two or more. The saturated hydrocarbon compound preferably has a boiling point of 100 ° C. or less at normal pressure, more preferably 90 ° C. or less at normal pressure, and propane, normal butane, isobutane, normal pentane, isopentane, normal hexane, cyclohexane. Is more preferable.

メタロセン系錯体を含有する飽和炭化水素化合物溶媒の熱処理は、メタロセン系錯体を含有する飽和炭化水素化合物溶媒の温度を、40℃以上の温度に調整すればよい。また、熱処理中は、溶媒を静置してもよく、溶媒を撹拌してもよい。該温度は、成形加工性を高める観点から、好ましくは45℃以上であり、より好ましくは50℃以上である。また、触媒活性を高める観点から、好ましくは100℃以下であり、より好ましくは80℃以下である。熱処理の時間は、通常、0.5〜12時間である。該時間は、成形加工性を高める観点から、好ましくは1時間以上であり、より好ましくは2時間以上である。また、触媒性能の安定性から、好ましくは6時間以下であり、より好ましくは4時間以下である。   In the heat treatment of the saturated hydrocarbon compound solvent containing the metallocene complex, the temperature of the saturated hydrocarbon compound solvent containing the metallocene complex may be adjusted to a temperature of 40 ° C. or higher. Further, during the heat treatment, the solvent may be allowed to stand or the solvent may be stirred. The temperature is preferably 45 ° C. or higher, more preferably 50 ° C. or higher, from the viewpoint of improving molding processability. Moreover, from a viewpoint of improving a catalyst activity, Preferably it is 100 degrees C or less, More preferably, it is 80 degrees C or less. The heat treatment time is usually 0.5 to 12 hours. The time is preferably 1 hour or more, and more preferably 2 hours or more, from the viewpoint of improving molding processability. Moreover, from stability of catalyst performance, Preferably it is 6 hours or less, More preferably, it is 4 hours or less.

工程(2)は、前記工程(1)で熱処理してなる熱処理物(すなわち、メタロセン系錯体を含有する飽和炭化水素化合物溶媒)と、助触媒担体(A)とを接触処理する工程である。接触処理では、熱処理物と助触媒担体(A)とが接触すればよく、通常、熱処理物に助触媒担体(A)を投入する方法、飽和炭化水素化合物中に、熱処理物と助触媒担体(A)とを投入する方法が用いられる。また、助触媒担体(A)は、通常、粉体、あるいは、飽和炭化水素化合物溶媒のスラリーとして、投入される。   Step (2) is a step in which the heat-treated product obtained by heat treatment in the step (1) (that is, a saturated hydrocarbon compound solvent containing a metallocene complex) and the cocatalyst support (A) are contact-treated. In the contact treatment, the heat-treated product and the cocatalyst support (A) may be brought into contact with each other. Usually, the heat-treated product and the co-catalyst support (A) are added to the heat-treated product. A) is used. The cocatalyst carrier (A) is usually charged as a powder or a slurry of a saturated hydrocarbon compound solvent.

工程(2)での接触処理の温度は、好ましくは70℃以下であり、より好ましくは60℃以下であり、また好ましくは10℃以上であり、より好ましくは20℃以上である。接触処理の時間は、通常、0.1時間〜2時間である。   The temperature of the contact treatment in the step (2) is preferably 70 ° C. or lower, more preferably 60 ° C. or lower, preferably 10 ° C. or higher, more preferably 20 ° C. or higher. The time for the contact treatment is usually 0.1 to 2 hours.

工程(3)は、前記工程(2)で接触処理してなる接触処理物(すなわち、工程(1)で熱処理してなる熱処理物と助触媒担体(A)との接触処理物)と有機アルミニウム化合物とを接触処理する工程である。接触処理では、工程(2)で接触処理してなる接触処理物と有機アルミニウム化合物とが接触すればよく、通常、工程(2)で接触処理してなる接触処理物に有機アルミニウム化合物を投入する方法、飽和炭化水素化合物中に、工程(2)で接触処理してなる接触処理物と有機アルミニウム化合物とを投入する方法が用いられる。   In step (3), the contact-treated product obtained by the contact treatment in step (2) (that is, the contact-treated product of the heat-treated product heat-treated in step (1) and the cocatalyst support (A)) and organoaluminum This is a step of contact treatment with a compound. In the contact treatment, the contact treatment product formed in the step (2) may be brought into contact with the organoaluminum compound. Usually, the organoaluminum compound is introduced into the contact treatment product obtained in the contact treatment in the step (2). A method is used in which a contact-treated product obtained by contact treatment in step (2) and an organoaluminum compound are introduced into a saturated hydrocarbon compound.

工程(3)での接触処理の温度は、好ましくは70℃以下であり、より好ましくは60℃以下である。また、予備重合の活性の発現を効率的に行う観点から、好ましくは10℃以上であり、より好ましくは20℃以上である。また、接触処理の時間は、通常、0.01時間〜0.5時間である。   The temperature of the contact treatment in the step (3) is preferably 70 ° C. or lower, more preferably 60 ° C. or lower. Further, from the viewpoint of efficiently expressing the prepolymerization activity, the temperature is preferably 10 ° C or higher, more preferably 20 ° C or higher. The time for the contact treatment is usually 0.01 hours to 0.5 hours.

工程(3)の接触処理は、オレフィンの存在下で行うことが好ましい。該オレフィンとしては、通常、予備重合での原料となるオレフィンが用いられる。オレフィンの量としては、助触媒担体(A)1gあたり、0.05〜1gであることが好ましい。   The contact treatment in the step (3) is preferably performed in the presence of an olefin. As the olefin, an olefin that is a raw material in prepolymerization is usually used. The amount of olefin is preferably 0.05 to 1 g per 1 g of the promoter support (A).

前記の工程(1)〜(3)は、飽和炭化水素化合物と助触媒担体(A)とメタロセン系錯体と有機アルミニウム化合物とを、予備重合反応器に、別々に投入することにより、全工程を予備重合反応器内で行ってもよく、工程(2)および(3)を予備重合反応器内で行ってもよく、また、工程(3)を予備重合反応器内で行ってもよい。   The above steps (1) to (3) are carried out by introducing the saturated hydrocarbon compound, the cocatalyst support (A), the metallocene complex and the organoaluminum compound separately into the prepolymerization reactor. You may perform in a prepolymerization reactor, you may perform a process (2) and (3) in a prepolymerization reactor, and you may perform a process (3) in a prepolymerization reactor.

予備重合は、前記工程(1)、(2)および(3)を有する処理工程により、助触媒担体(A)とメタロセン系錯体と有機アルミニウム化合物とを接触処理されてなる接触処理物の存在下、オレフィンを予備重合(少量のオレフィンを重合)するものである。該予備重合は、通常、スラリー重合法で行われ、該予備重合は、回分式、半回分式、連続式のいずれの方式を用いてもよい。更には、該予備重合は、水素等の連鎖移動剤を添加して行ってもよい。   The prepolymerization is carried out in the presence of a contact-treated product obtained by contact-treating the cocatalyst support (A), the metallocene complex and the organoaluminum compound by the treatment step having the steps (1), (2) and (3). The olefin is prepolymerized (a small amount of olefin is polymerized). The prepolymerization is usually performed by a slurry polymerization method, and the prepolymerization may be performed by any of batch, semi-batch, and continuous methods. Furthermore, the prepolymerization may be performed by adding a chain transfer agent such as hydrogen.

予備重合をスラリー重合法で行う場合、溶媒としては、通常、飽和炭化水素化合物が用いられ、例えば、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ノルマルヘキサン、シクロヘキサン、ヘプタン等があげられる。これらは単独あるいは2種以上組み合わせて用いられる。飽和炭化水素化合物としては、常圧における沸点が100℃以下のものが好ましく、常圧における沸点が90℃以下のものがより好ましく、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ノルマルヘキサン、シクロヘキサンが更に好ましい。   When the prepolymerization is performed by a slurry polymerization method, a saturated hydrocarbon compound is usually used as the solvent, and examples thereof include propane, normal butane, isobutane, normal pentane, isopentane, normal hexane, cyclohexane, and heptane. These may be used alone or in combination of two or more. The saturated hydrocarbon compound preferably has a boiling point of 100 ° C. or less at normal pressure, more preferably 90 ° C. or less at normal pressure, and propane, normal butane, isobutane, normal pentane, isopentane, normal hexane, cyclohexane. Is more preferable.

予備重合をスラリー重合法で行う場合、スラリー濃度としては、溶媒1リットル当たりの助触媒担体(A)の量が、通常0.1〜600gであり、好ましくは0.5〜300gである。予備重合温度は、通常−20〜100℃であり、好ましくは0〜80℃である。予備重合中、重合温度は適宜変更してもよいが、予備重合を開始する温度は、45℃以下とすることが好ましく、40℃以下とすることが好ましい。また、予備重合中の気相部でのオレフィン類の分圧は、通常0.001〜2MPaであり、好ましくは0.01〜1MPaである。予備重合時間は、通常2分間〜15時間である。   When the prepolymerization is performed by the slurry polymerization method, the slurry concentration is usually 0.1 to 600 g, preferably 0.5 to 300 g, of the promoter support (A) per liter of the solvent. The prepolymerization temperature is usually -20 to 100 ° C, preferably 0 to 80 ° C. During the prepolymerization, the polymerization temperature may be appropriately changed, but the temperature at which the prepolymerization is started is preferably 45 ° C. or less, and preferably 40 ° C. or less. Moreover, the partial pressure of olefins in the gas phase part during the prepolymerization is usually 0.001 to 2 MPa, preferably 0.01 to 1 MPa. The prepolymerization time is usually 2 minutes to 15 hours.

予備重合に用いられるオレフィンとしては、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、4−メチル−1−ペンテン、シクロペンテン、シクロヘキセンなどをあげることができる。これらは1種または2種以上組み合わせて用いることができ、好ましくは、エチレンのみ、あるいはエチレンとα−オレフィンとを併用して、更に好ましくは、エチレンのみ、あるいは1−ブテン、1−ヘキセンおよび1−オクテンから選ばれる少なくとも1種のα−オレフィンとエチレンとを併用して用いられる。   Examples of the olefin used for the prepolymerization include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 4-methyl-1-pentene, cyclopentene, cyclohexene and the like. These may be used alone or in combination of two or more, preferably ethylene alone, or ethylene and α-olefin in combination, more preferably ethylene alone, or 1-butene, 1-hexene and 1 -It is used in combination with at least one α-olefin selected from octene and ethylene.

予備重合触媒成分中の予備重合された重合体の含有量は、助触媒担体(A)1g当たり、通常0.01〜1000gであり、好ましくは0.05〜500gであり、より好ましくは0.1〜200gである。   The content of the prepolymerized polymer in the prepolymerized catalyst component is usually 0.01 to 1000 g, preferably 0.05 to 500 g, more preferably 0.00, per 1 g of the promoter support (A). 1 to 200 g.

エチレン−α−オレフィン共重合体の製造方法としては、気相重合法が好ましく、連続気相重合法がより好ましい。該重合法に用いられる気相重合反応装置としては、通常、流動層型反応槽を有する装置であり、好ましくは、拡大部を有する流動層型反応槽を有する装置である。反応槽内に撹拌翼が設置されていてもよい。   As a manufacturing method of an ethylene-α-olefin copolymer, a gas phase polymerization method is preferable, and a continuous gas phase polymerization method is more preferable. The gas phase polymerization reaction apparatus used in the polymerization method is usually an apparatus having a fluidized bed type reaction tank, and preferably an apparatus having a fluidized bed type reaction tank having an enlarged portion. A stirring blade may be installed in the reaction vessel.

予備重合された予備重合触媒成分をエチレン−α−オレフィン共重合体の粒子の形成を伴う連続重合反応槽に供給する方法としては、通常、窒素、アルゴン等の不活性ガス、水素、エチレン等を用いて、水分のない状態で供給する方法、各成分を溶媒に溶解または稀釈して、溶液またはスラリー状態で供給する方法が用いられる。   As a method for supplying the prepolymerized prepolymerized catalyst component to the continuous polymerization reaction tank accompanied by the formation of ethylene-α-olefin copolymer particles, an inert gas such as nitrogen and argon, hydrogen, ethylene, etc. are usually used. And a method in which the components are supplied without moisture, and a method in which each component is dissolved or diluted in a solvent and supplied in a solution or slurry state.

エチレン−α−オレフィン共重合体の気相重合の重合温度としては、通常、エチレン−α−オレフィン共重合体が溶融する温度未満であり、好ましくは0〜150℃であり、より好ましくは30〜100℃である。さらに好ましくは90℃よりも低温の具体的には70℃〜87℃の範囲である。また、エチレン−α−オレフィン共重合体の溶融流動性を調節する目的で、水素を分子量調節剤として添加してもよい。そして、混合ガス中に不活性ガスを共存させてもよい。なお、予備重合触媒成分を用いる場合、適宜、有機アルミニウム化合物等の助触媒成分を用いてもよい。   The polymerization temperature for the gas phase polymerization of the ethylene-α-olefin copolymer is usually lower than the temperature at which the ethylene-α-olefin copolymer melts, preferably 0 to 150 ° C, more preferably 30 to 30 ° C. 100 ° C. More preferably, the temperature is lower than 90 ° C, specifically in the range of 70 ° C to 87 ° C. Further, hydrogen may be added as a molecular weight modifier for the purpose of adjusting the melt fluidity of the ethylene-α-olefin copolymer. An inert gas may coexist in the mixed gas. In addition, when using a prepolymerization catalyst component, you may use promoter components, such as an organoaluminum compound, suitably.

本発明におけるポリスチレンとしては、いわゆるGPPSといわれる市販のポリスチレンを使用することができ、添加剤が含まれていないポリスチレン(無添加ポリスチレン)を用いることが好ましい。無添加ポリスチレンとしては、例えば、日本ポリスチレン製 G690N、G797N等が例示される。 As the polystyrene in the present invention, commercially available polystyrene called so-called GPPS can be used, and it is preferable to use polystyrene (additive-free polystyrene) containing no additive. Examples of the additive-free polystyrene include G690N and G797N manufactured by Nippon Polystyrene.

本発明では、前記エチレン−α−オレフィン共重合体として、酸化防止剤、滑剤、帯電防止剤、加工性改良剤、抗ブロッキング剤等の公知の添加剤を含まない重合体を用いることが好ましい。また、後述するようにエチレン−α−オレフィン共重合体とポリスチレンとを混合、または溶融混練して成形する際にも、添加剤を添加しないことが好ましい。 In this invention, it is preferable to use the polymer which does not contain well-known additives, such as antioxidant, a lubricant, an antistatic agent, a processability improving agent, an antiblocking agent, as said ethylene-alpha-olefin copolymer. Moreover, it is preferable not to add an additive also when mixing and melt-kneading and shaping | molding an ethylene-alpha-olefin copolymer and a polystyrene so that it may mention later.

本発明は、前記エチレン−α−オレフィン共重合体と、前記ポリスチレンとを含有し、前記エチレン−α−オレフィン共重合体と前記ポリスチレンの合計量を100重量%として、ポリスチレンを5重量%以下含有する樹脂組成物からなるフィルムである。このような本発明のフィルムは、耐ブロッキング性に加えて、滑り性にも優れる。前記樹脂組成物に含まれるポリスチレンの含有量は、Tダイによる製膜時のドローダウン性の観点から好ましくは2重量%以下である。ポリスチレンの含有量は、好ましくは0.05重量%以上あり、より好ましくは0.1重量%以上である。   The present invention contains the ethylene-α-olefin copolymer and the polystyrene, the total amount of the ethylene-α-olefin copolymer and the polystyrene is 100% by weight, and contains 5% by weight or less of polystyrene. It is the film which consists of a resin composition to do. Such a film of the present invention is excellent in slipperiness in addition to blocking resistance. The content of polystyrene contained in the resin composition is preferably 2% by weight or less from the viewpoint of draw-down property during film formation with a T-die. The content of polystyrene is preferably 0.05% by weight or more, more preferably 0.1% by weight or more.

本発明では、タンブラーブレンダーやヘンシェルミキサーなどで、前記エチレン−α−オレフィン共重合体のペレットと前記ポリスチレンのペレットとを所定の割合でペレットブレンドした混合物を、単軸押出機や多軸押出機等の押出機にて混練し、該押出機に装着したTダイより押出してフィルムを製造することができる。また、前記エチレン−α−オレフィン共重合体のペレットと前記ポリスチレンのペレットとを所定の割合でペレットブレンドした混合物を、ニーダーやバンバリーミキサーなどで混練し、次いで単軸押出機や多軸押出機にて混練し、前記押出機に装着したTダイから押出してフィルムを製造することもできる。得られるフィルムの耐ブロッキング性および滑り性の観点から、前者の方法がより好ましい。   In the present invention, a mixture obtained by pellet-blending the ethylene-α-olefin copolymer pellets and the polystyrene pellets at a predetermined ratio using a tumbler blender, a Henschel mixer, or the like is used. The film can be produced by kneading with an extruder and extruding from a T die attached to the extruder. Further, a mixture obtained by pellet-blending the ethylene-α-olefin copolymer pellets and the polystyrene pellets at a predetermined ratio is kneaded with a kneader or a Banbury mixer, and then into a single-screw extruder or a multi-screw extruder. The film can also be produced by kneading and extruding from a T-die mounted on the extruder. From the viewpoint of blocking resistance and slipperiness of the film obtained, the former method is more preferable.

本発明のフィルムは、前記樹脂組成物からなる層を有するフィルムであり、単層フィルムであってもよく、多層フィルムであってもよい。   The film of the present invention is a film having a layer made of the resin composition, and may be a single layer film or a multilayer film.

多層フィルムの場合、本樹脂組成物からなる層以外の層としては、ポリエチレン樹脂やポリプロピレン樹脂などのポリオレフィン樹脂からなる層、ポリエチレンテレフタレートやポリブチレンテレフタレート等のポリエステル樹脂からなる層、ナイロン6やナイロン66等のポリアミド樹脂からなる層、セロハン、紙、アルミニウム箔などからなる層などが挙げられる。   In the case of a multilayer film, the layers other than the layer composed of the present resin composition include a layer composed of a polyolefin resin such as polyethylene resin and polypropylene resin, a layer composed of a polyester resin such as polyethylene terephthalate and polybutylene terephthalate, nylon 6 and nylon 66. And a layer made of polyamide resin such as cellophane, paper, aluminum foil, and the like.

本発明のフィルムの厚みは、通常20〜100μmであり、好ましくは30〜90μmであり、より好ましくは30〜80μmである。また、多層フィルムの場合、前記樹脂組成物からなる層の厚みは、通常50%以上であり、好ましくは65%以上である。   The thickness of the film of this invention is 20-100 micrometers normally, Preferably it is 30-90 micrometers, More preferably, it is 30-80 micrometers. In the case of a multilayer film, the thickness of the layer composed of the resin composition is usually 50% or more, preferably 65% or more.

フィルムの製造方法としては公知のTダイキャスト成形方法が用いられる。また、多層フィルムとする場合、例えば、共押出し法、ドライラミネート法、ウェットラミネート法、サンドラミネート法、ホットメルトラミネート法等を用いてもよい。   As a method for producing the film, a known T-die casting method is used. When a multilayer film is used, for example, a coextrusion method, a dry lamination method, a wet lamination method, a sand lamination method, a hot melt lamination method, or the like may be used.

また、Tダイキャストフィルム成形法などの押出成形を行う場合、押出成形温度は、通常、150〜280℃である。材料の熱劣化の観点から、好ましくは260℃以下であり、より好ましくは250℃以下である。また、押出成形性を高める観点から、好ましくは180℃以上であり、より好ましくは200℃以上であり、更に好ましくは210℃以上である。   Moreover, when performing extrusion molding, such as T die-cast film molding method, extrusion molding temperature is 150-280 degreeC normally. From the viewpoint of thermal degradation of the material, it is preferably 260 ° C. or lower, more preferably 250 ° C. or lower. Moreover, from a viewpoint of improving extrusion moldability, Preferably it is 180 degreeC or more, More preferably, it is 200 degreeC or more, More preferably, it is 210 degreeC or more.

以下、実施例および比較例により本発明を説明する。本発明は以下の実施例には限定されない。
実施例および比較例での物性は、次の方法に従って測定した。
Hereinafter, the present invention will be described with reference to examples and comparative examples. The present invention is not limited to the following examples.
The physical properties in Examples and Comparative Examples were measured according to the following methods.

[重合体の物性]
(1)メルトフローレート(MFR、単位:g/10分)
JIS K7210−1995に規定された方法に従い、荷重21.18N、温度190℃の条件で、A法により測定した。
[Physical properties of polymer]
(1) Melt flow rate (MFR, unit: g / 10 minutes)
According to the method defined in JIS K7210-1995, the measurement was performed by the A method under the conditions of a load of 21.18 N and a temperature of 190 ° C.

(2)密度(単位:Kg/m3
JIS K7112−1980のうち、A法に規定された方法に従って測定した。なお、試料には、JIS K6760−1995に記載のアニーリングを行った。
(2) Density (Unit: Kg / m 3 )
It measured according to the method prescribed | regulated to A method among JISK7112-1980. The sample was annealed according to JIS K6760-1995.

(3)分子量分布(Mw/Mn)
ゲル・パーミエイション・クロマトグラフ(GPC)法を用いて、下記の条件(1)〜(7)により、重量平均分子量(Mw)と数平均分子量(Mn)を測定し、分子量分布(Mw/Mn)を求めた。
(1)装置:Water製Waters150C
(2)分離カラム:TOSOH TSKgelGMH−HT
(3)測定温度:145℃
(4)キャリア:オルトジクロロベンゼン
(5)流量:1.0mL/分
(6)注入量:500μL
(7)検出器:示差屈折
(3) Molecular weight distribution (Mw / Mn)
Using a gel permeation chromatograph (GPC) method, the weight average molecular weight (Mw) and the number average molecular weight (Mn) were measured under the following conditions (1) to (7), and the molecular weight distribution (Mw / Mn) was determined.
(1) Equipment: Waters 150C manufactured by Water
(2) Separation column: TOSOH TSKgelGMH-HT
(3) Measurement temperature: 145 ° C
(4) Carrier: Orthodichlorobenzene
(5) Flow rate: 1.0 mL / min
(6) Injection volume: 500 μL
(7) Detector: Differential refraction

(4)融解曲線の変曲点の数
エチレン−α−オレフィン共重合体を、150℃の熱プレス機により10MPaの圧力で5分間プレスした後、30℃の冷却プレス機で5分間冷却して、厚さ約100μmのシートに成形し、該シートから約10mgの試料を切り出し、アルミニウムパンに封入した。次に、試料を封入したアルミニウムパンを、示差走査熱量計(パーキンエルマー社製の示差走査型熱量計DSC−7型)にて、(1)150℃で5分間保持し、(2)5℃/分で150℃から20℃まで降温し、(3)20℃で2分間保持し、(4)5℃/分で20℃から150℃まで昇温して、(4)での融解曲線を測定した。得られた融解曲線より、25℃から融解終了温度(融解曲線が高温側のベースラインに戻る温度)までの間に観察されるピークのうち、ピーク高さが最も大きい融解ピークの頂点の温度、25℃から融解終了温度までの範囲に存在する変曲点の数を求めた。
(4) Number of inflection points of melting curve The ethylene-α-olefin copolymer was pressed at a pressure of 10 MPa for 5 minutes with a hot press at 150 ° C and then cooled for 5 minutes with a cooling press at 30 ° C. The sheet was formed into a sheet having a thickness of about 100 μm, and a sample of about 10 mg was cut out from the sheet and sealed in an aluminum pan. Next, the aluminum pan in which the sample was sealed was held at a differential scanning calorimeter (differential scanning calorimeter DSC-7 manufactured by Perkin Elmer Co., Ltd.) (1) at 150 ° C. for 5 minutes, and (2) 5 ° C. (3) Hold at 20 ° C. for 2 minutes, (4) Increase the temperature from 20 ° C. to 150 ° C. at 5 ° C./minute, and calculate the melting curve in (4) It was measured. Of the peaks observed between 25 ° C. and the melting end temperature (the temperature at which the melting curve returns to the high temperature base line) from the obtained melting curve, the temperature at the top of the melting peak with the highest peak height, The number of inflection points existing in the range from 25 ° C. to the melting end temperature was determined.

(5)流動の活性化エネルギー(Ea、単位:kJ/mol)
粘弾性測定装置(Rheometrics社製Rheometrics Mechanical Spectrometer RMS−800)を用いて、下記測定条件で130℃、150℃、170℃および190℃での溶融複素粘度−角周波数曲線を測定し、次に、得られた溶融複素粘度−角周波数曲線から、Rheometrics社製計算ソフトウェア Rhios V.4.4.4を用いて、活性化エネルギー(Ea)を求めた。
<測定条件>
ジオメトリー:パラレルプレート
プレート直径:25mm
プレート間隔:1.5〜2mm
ストレイン :5%
角周波数 :0.1〜100rad/秒
測定雰囲気 :窒素下
(5) Flow activation energy (Ea, unit: kJ / mol)
Using a viscoelasticity measuring device (Rheometrics Mechanical Spectrometer RMS-800 manufactured by Rheometrics), a melt complex viscosity-angular frequency curve at 130 ° C., 150 ° C., 170 ° C. and 190 ° C. was measured under the following measurement conditions. From the obtained melt complex viscosity-angular frequency curve, calculation software Rhios V. The activation energy (Ea) was determined using 4.4.4.
<Measurement conditions>
Geometry: Parallel plate Plate diameter: 25mm
Plate spacing: 1.5-2mm
Strain: 5%
Angular frequency: 0.1 to 100 rad / sec Measurement atmosphere: Under nitrogen

[フィルムの物性]
(6)耐ブロッキング性(単位:g/100cm2
10cm×10cmのフィルム2枚を、一方のフィルムの、製造時に冷却ロール側であった面と、他方のフィルムの反冷却ロール側であった面とが接触するようにして重ね合わせ、400g/cm2の荷重を負荷し、40℃に調整されたオーブン中、7日間状態調整を行った。状態調整後、マッケンジーブロッキングテスター(島津製作所製)を用い、剥離荷重速度20g/分で垂直方向に剥離させるために必要な荷重量を測定した。この値が小さいほど、耐ブロッキング性に優れる。
[Physical properties of film]
(6) Blocking resistance (unit: g / 100 cm 2 )
Two 10 cm × 10 cm films were superposed so that the surface of one film that was on the side of the cooling roll at the time of manufacture and the surface that was on the side of the other film that was on the side of the anti-cooling roll were in contact with each other. Conditioning was performed for 7 days in an oven adjusted to 40 ° C. under a load of 2 . After the condition adjustment, a load amount necessary for peeling in the vertical direction at a peeling load rate of 20 g / min was measured using a Mackenzie blocking tester (manufactured by Shimadzu Corporation). The smaller this value, the better the blocking resistance.

(7)滑り性(静摩擦係数μs、動摩擦係数μk)
JIS K7125−1987に従って測定した。この値が小さいほど滑り性が優れる。
(7) Sliding property (static friction coefficient μs, dynamic friction coefficient μk)
The measurement was performed according to JIS K7125-1987. The smaller this value, the better the slipperiness.

[実施例1]
(1)助触媒担体の調製
窒素置換した撹拌機を備えた反応器に、窒素流通下で300℃において加熱処理したシリカ(デビソン社製 Sylopol948;50%体積平均粒子径=55μm;細孔容量=1.67ml/g;比表面積=325m2/g)2.8kgとトルエン24kgとを入れて、撹拌した。その後、5℃に冷却した後、1,1,1,3,3,3−ヘキサメチルジシラザン0.9kgとトルエン1.4kgとの混合溶液を反応器の温度を5℃に保ちながら30分間で滴下した。滴下終了後、5℃で1時間撹拌し、次に95℃に昇温し、95℃で3時間撹拌し、ろ過した。得られた固体生成物をトルエン20.8kgで6回、洗浄を行った。その後、トルエン7.1kgを加えスラリーとし、一晩静置した。
[Example 1]
(1) Preparation of co-catalyst support Silica (Sypolol 948 manufactured by Devison Corp .; 50% volume average particle size = 55 μm; pore capacity = 1.67 ml / g; specific surface area = 325 m 2 / g) 2.8 kg and 24 kg of toluene were added and stirred. Thereafter, after cooling to 5 ° C., a mixed solution of 0.9 kg of 1,1,1,3,3,3-hexamethyldisilazane and 1.4 kg of toluene was maintained for 30 minutes while maintaining the reactor temperature at 5 ° C. It was dripped at. After completion of dropping, the mixture was stirred at 5 ° C. for 1 hour, then heated to 95 ° C., stirred at 95 ° C. for 3 hours, and filtered. The obtained solid product was washed 6 times with 20.8 kg of toluene. Thereafter, 7.1 kg of toluene was added to form a slurry, which was allowed to stand overnight.

前記で得られたスラリーに、ジエチル亜鉛のヘキサン溶液(ジエチル亜鉛濃度:50重量%)3.46kgとヘキサン2.05kgとを投入し、撹拌した。その後、5℃に冷却した後、3,4,5−トリフルオロフェノール1.55kgとトルエン2.88kgとの混合溶液を、反応器の温度を5℃に保ちながら60分間で滴下した。滴下終了後、5℃で1時間撹拌し、次に40℃に昇温し、40℃で1時間撹拌した。その後、5℃に冷却し、H2O0.221kgを反応器の温度を5℃に保ちながら1.5時間で滴下した。滴下終了後、5℃で1.5時間撹拌し、次に40℃に昇温し、40℃で2時間撹拌し、更に80℃に昇温し、80℃で2時間撹拌した。撹拌後、室温にて、残量16Lまで上澄み液を抜き出し、トルエン11.6kgを投入し、次に、95℃に昇温し、4時間撹拌した。撹拌後、室温にて、上澄み液を抜き出し、固体生成物を得た。得られた固体生成物をトルエン20.8kgで4回、ヘキサン24リットルで3回、洗浄を行った。その後、乾燥することにより、固体成分(以下、助触媒担体(a)と称する。)を得た。 To the slurry obtained above, 3.46 kg of diethylzinc in hexane (diethylzinc concentration: 50% by weight) and 2.05 kg of hexane were added and stirred. Then, after cooling to 5 ° C., a mixed solution of 1.54 kg of 3,4,5-trifluorophenol and 2.88 kg of toluene was added dropwise over 60 minutes while maintaining the temperature of the reactor at 5 ° C. After completion of dropping, the mixture was stirred at 5 ° C. for 1 hour, then heated to 40 ° C. and stirred at 40 ° C. for 1 hour. Then cooled to 5 ° C., was added dropwise for 1.5 hours while maintaining the H 2 O0.221kg the temperature of the reactor to 5 ° C.. After completion of dropping, the mixture was stirred at 5 ° C for 1.5 hours, then heated to 40 ° C, stirred at 40 ° C for 2 hours, further heated to 80 ° C, and stirred at 80 ° C for 2 hours. After stirring, at room temperature, the supernatant was withdrawn to a residual amount of 16 L, charged with 11.6 kg of toluene, then heated to 95 ° C. and stirred for 4 hours. After stirring, the supernatant liquid was extracted at room temperature to obtain a solid product. The obtained solid product was washed 4 times with 20.8 kg of toluene and 3 times with 24 liters of hexane. Thereafter, drying was performed to obtain a solid component (hereinafter referred to as a promoter support (a)).

(2)予備重合触媒成分の調製
予め窒素置換した内容積210リットルの撹拌機付きオートクレーブに、ブタン80リットルを投入した後、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド144mmolを投入し、オートクレーブを50℃まで昇温して撹拌を2時間行った。次に前記助触媒担体(a)0.5kgを投入し、オートクレーブを31℃まで降温して系内が安定した後、エチレンを0.1kg、水素を0.1リットル(常温常圧体積)仕込み、続いてトリイソブチルアルミニウム207mmolを投入して重合を開始した。エチレンと水素をそれぞれ0.6kg/Hrと0.5リットル(常温常圧体積)で連続供給しながら30分経過した後、50℃へ昇温するとともに、エチレンと水素をそれぞれ3.6kg/Hrと10.9リットル(常温常圧体積)/Hrで連続供給することによって合計6時間の予備重合を実施した。重合終了後、エチレン、ブタン、水素などをパージして残った固体を室温にて真空乾燥し、助触媒担体(a)1g当り37gのポリエチレンを含有する予備重合触媒成分を得た。該ポリエチレンの[η]は1.51dl/gであった。
(2) Preparation of pre-polymerization catalyst component After adding 80 liters of butane to an autoclave equipped with a stirrer with an internal volume of 210 liters previously purged with nitrogen, 144 mmol of racemic-ethylenebis (1-indenyl) zirconium diphenoxide was added and the autoclave The mixture was heated to 50 ° C. and stirred for 2 hours. Next, 0.5 kg of the co-catalyst carrier (a) is added, and after the temperature of the autoclave is lowered to 31 ° C. and the system is stabilized, 0.1 kg of ethylene and 0.1 liter of hydrogen (room temperature and normal pressure volume) are charged. Subsequently, 207 mmol of triisobutylaluminum was added to initiate polymerization. After 30 minutes while continuously supplying ethylene and hydrogen at 0.6 kg / Hr and 0.5 liter (room temperature and normal pressure volume), respectively, the temperature was raised to 50 ° C., and ethylene and hydrogen were each 3.6 kg / Hr. And 10.9 liters (normal temperature and normal pressure volume) / Hr were continuously fed to carry out preliminary polymerization for a total of 6 hours. After the polymerization was completed, ethylene, butane, hydrogen and the like were purged and the remaining solid was vacuum dried at room temperature to obtain a prepolymerized catalyst component containing 37 g of polyethylene per 1 g of the promoter support (a). The [η] of the polyethylene was 1.51 dl / g.

(3)エチレン−1−ブテン−1−ヘキセン共重合体の製造
前記の予備重合触媒成分を用い、連続式流動床気相重合装置でエチレンと1−ブテンと1−ヘキセンとの共重合を実施した。重合条件は、温度84℃、全圧2MPa、エチレンに対する水素のモル比は1.04%、エチレンに対する1−ブテンのモル比は2.16%、エチレンに対する1−ヘキセンのモル比は0.73%で、重合中はガス組成を一定に維持するためにエチレン、1−ブテン、1−ヘキセン、水素を連続的に供給した。さらに、流動床の総パウダー重量を80kgに維持し、平均重合時間4hrとなるように、前記予備重合触媒成分と、トリイソブチルアルミニウムとを一定の割合で連続的に供給した。重合により、22.9kg/hrの重合効率でエチレン−1−ブテン−1−ヘキセン共重合体(以下、PE−1と称する。)のパウダーを得た。
(3) Production of ethylene-1-butene-1-hexene copolymer Copolymerization of ethylene, 1-butene and 1-hexene was carried out in a continuous fluidized bed gas phase polymerization apparatus using the above prepolymerization catalyst component. did. The polymerization conditions were a temperature of 84 ° C., a total pressure of 2 MPa, a molar ratio of hydrogen to ethylene of 1.04%, a molar ratio of 1-butene to ethylene of 2.16%, and a molar ratio of 1-hexene to ethylene of 0.73. %, Ethylene, 1-butene, 1-hexene and hydrogen were continuously fed to keep the gas composition constant during the polymerization. Further, the pre-polymerization catalyst component and triisobutylaluminum were continuously supplied at a constant ratio so that the total powder weight of the fluidized bed was maintained at 80 kg and the average polymerization time was 4 hours. By polymerization, a powder of ethylene-1-butene-1-hexene copolymer (hereinafter referred to as PE-1) was obtained with a polymerization efficiency of 22.9 kg / hr.

(4)エチレン−1−ブテン−1−ヘキセン共重合体パウダーの造粒
前記で得たPE−1のパウダーを、押出機(神戸製鋼所社製 LCM50)により、フィード速度50kg/hr、スクリュー回転数450rpm、ゲート開度4.2mm、サクション圧力0.2MPa、樹脂温度200〜230℃条件で造粒することにより、PE−1のペレットを得た。PE−1のペレットの評価結果を表1に示す。
(4) Granulation of ethylene-1-butene-1-hexene copolymer powder The PE-1 powder obtained above was fed at a feed rate of 50 kg / hr and screw rotation with an extruder (LCM50 manufactured by Kobe Steel). PE-1 pellets were obtained by granulation under conditions of several 450 rpm, a gate opening of 4.2 mm, a suction pressure of 0.2 MPa, and a resin temperature of 200 to 230 ° C. The evaluation results of PE-1 pellets are shown in Table 1.

(5)PE−1ペレットとポリスチレンのブレンド
PE−1ペレットを99重量部と、無添加ポリスチレンである日本ポリスチレン(株)製G690N(以下、PS−1ペレットと称する。)を1重量部とをタンブラーブレンダーにてペレットブレンドし(以下A法と称する)、ブレンド物を得た。
(5) Blend of PE-1 pellet and polystyrene 99 parts by weight of PE-1 pellets and 1 part by weight of G690N (hereinafter referred to as PS-1 pellets) manufactured by Nippon Polystyrene Co., Ltd., which is an additive-free polystyrene. Pellet blending was carried out using a tumbler blender (hereinafter referred to as method A) to obtain a blended product.

(6)フィルムの加工
前記A法にて得たブレンド物を、SHIモダンマシナリー(株)社製のTダイフィルム成形機にて製造した。直径50mm、L/Dが32(Lは押出機のシリンダーの長さ、Dは押出機のシリンダーの直径)の押出機のブレーカープレート(φ51mm)に、焼結フィルター(日本精線社製MFF NF06、ろ過径:10μm)を、80メッシュの金網で挟む構成でセットした。230℃にて前記ブレンド物を溶融混練した後、前記焼結フィルターを通して230℃に温調したTダイ(600mm幅)へ供給し、該Tダイから押し出した後、60℃のチルロールで引き取ることによって冷却固化し、50μm厚みのフィルムを得た。得られたフィルムの物性評価結果を表2に示した。
(6) Processing of film The blend obtained by the method A was produced with a T-die film molding machine manufactured by SHI Modern Machinery Co., Ltd. A sintered filter (MFF NF06 manufactured by Nippon Seisen Co., Ltd.) is placed on the breaker plate (φ51 mm) of the extruder having a diameter of 50 mm and L / D of 32 (L is the length of the cylinder of the extruder, D is the diameter of the cylinder of the extruder). , Filtration diameter: 10 μm) was set in a configuration sandwiched between 80 mesh wire nets. By melt-kneading the blend at 230 ° C., supplying it to a T die (600 mm width) adjusted to 230 ° C. through the sintered filter, extruding from the T die, and then pulling it off with a chill roll at 60 ° C. After cooling and solidification, a film having a thickness of 50 μm was obtained. Table 2 shows the physical property evaluation results of the obtained film.

実施例2
PE−1ペレットを99.5重量部、PS−1ペレットを0.5重量部とした以外は、実施例1同様にしてフィルムを製造した。得られたフィルムの物性評価結果を表2に示した。
Example 2
A film was produced in the same manner as in Example 1 except that 99.5 parts by weight of PE-1 pellets and 0.5 parts by weight of PS-1 pellets were used. Table 2 shows the physical property evaluation results of the obtained film.

実施例3
PE−1ペレットを98重量部、PS−1ペレットに変えて日本ポリスチレン製G797N(無添加ポリスチレン)(以下、PS−2ペレットと称する。)を2重量部とした以外は実施例1と同様にしてフィルムを製造した。得られたフィルムの物性評価結果を表2に示した。
Example 3
The PE-1 pellet was changed to 98 parts by weight, and the PS-1 pellet was changed to 2 parts by weight of Nippon Polystyrene G797N (additive polystyrene) (hereinafter referred to as PS-2 pellet). The film was manufactured. Table 2 shows the physical property evaluation results of the obtained film.

実施例4
PE−1ペレットを99重量部、PS−2ペレットを1重量部とした以外は、実施例1と同様にしてフィルムを製造した。得られたフィルムの物性評価結果を表2に示した。
Example 4
A film was produced in the same manner as in Example 1 except that 99 parts by weight of PE-1 pellets and 1 part by weight of PS-2 pellets were used. Table 2 shows the physical property evaluation results of the obtained film.

実施例5
PE−1ペレットを99.5重量部、PS−2ペレットを0.5重量部とした以外は、実施例1と同様にしてフィルムを製造した。得られたフィルムの物性評価結果を表2に示した。
Example 5
A film was produced in the same manner as in Example 1 except that 99.5 parts by weight of PE-1 pellets and 0.5 parts by weight of PS-2 pellets were used. Table 2 shows the physical property evaluation results of the obtained film.

実施例6
PE−1ペレットを99重量部と、PS−1ペレットを1重量部とをタンブラーブレンダーにてペレットブレンドし、その後、ユニオンプラスチックス(株)製、30mmφ単軸押出機、L/D=26、230℃、スクリュー回転数100rpmの条件で造粒し(以下B法と称する)、混練物を得た。原料としてブレンド物に変えて該混練物を用いた以外は実施例1と同様にして、フィルムを製造した。得られたフィルムの物性評価結果を表2に示した。
Example 6
99 parts by weight of PE-1 pellets and 1 part by weight of PS-1 pellets were blended in a tumbler blender, and then 30 mmφ single screw extruder, L / D = 26, manufactured by Union Plastics Co., Ltd. Granulation was carried out under the conditions of 230 ° C. and screw rotation speed of 100 rpm (hereinafter referred to as “B method”) to obtain a kneaded product. A film was produced in the same manner as in Example 1 except that the kneaded material was used instead of the blended material. Table 2 shows the physical property evaluation results of the obtained film.

比較例1
原料としてPS−1ペレットを用いず、PE−1ペレットを100重量部とした以外は、実施例1と同様にしてフィルムを製造した。得られたフィルムの物性評価結果を表2に示した。
Comparative Example 1
A film was produced in the same manner as in Example 1 except that PS-1 pellets were not used as raw materials, and the PE-1 pellets were changed to 100 parts by weight. Table 2 shows the physical property evaluation results of the obtained film.

Figure 2010168459
Figure 2010168459

Figure 2010168459
Figure 2010168459

Claims (4)

エチレンに基づく単量体単位と炭素原子数3〜20のα−オレフィンに基づく単量体単位とを有するエチレン−α−オレフィン共重合体と、ポリスチレンとを含有し、前記エチレン−α−オレフィン共重合体と前記ポリスチレンの合計量を100重量%として、ポリスチレンを5重量%以下含有する樹脂組成物からなるフィルム。   An ethylene-α-olefin copolymer having a monomer unit based on ethylene and a monomer unit based on an α-olefin having 3 to 20 carbon atoms, and polystyrene; The film which consists of a resin composition which contains 5 weight% or less of polystyrenes by making the total amount of a polymer and the said polystyrene into 100 weight%. 添加剤を含まない請求項1に記載のフィルム。   The film of Claim 1 which does not contain an additive. 前記エチレン−α−オレフィン共重合体が、下記要件(a1)及び(a2)を充足するエチレン−α−オレフィン共重合体である請求項1または2に記載のフィルム。
(a1):流動の活性化エネルギー(Ea)が35kJ/mol以上
(a2):分子量分布(Mw/Mn)が5〜25
The film according to claim 1 or 2, wherein the ethylene-α-olefin copolymer is an ethylene-α-olefin copolymer that satisfies the following requirements (a1) and (a2).
(A1): Flow activation energy (Ea) is 35 kJ / mol or more (a2): Molecular weight distribution (Mw / Mn) is 5 to 25
エチレンに基づく単量体単位と炭素原子数3〜20のα−オレフィンに基づく単量体単位とを有するエチレン−α−オレフィン共重合体ペレットと、ポリスチレンペレットとを、前記エチレン−α−オレフィン共重合体ペレットと前記ポリスチレンペレットの合計量を100重量%として、ポリスチレンペレットを5重量%以下含有するようにペレットブレンドした混合物を、押出機にて混練し、該押出機に装着したTダイより押出して請求項1に記載のフィルムを製造する方法。   An ethylene-α-olefin copolymer pellet having a monomer unit based on ethylene and a monomer unit based on an α-olefin having 3 to 20 carbon atoms and a polystyrene pellet are combined with the ethylene-α-olefin copolymer. A mixture obtained by blending pellets so that the total amount of polymer pellets and polystyrene pellets is 100% by weight and containing 5% by weight or less of polystyrene pellets is kneaded by an extruder and extruded from a T die attached to the extruder. A method for producing the film according to claim 1.
JP2009011805A 2009-01-22 2009-01-22 Film and method for producing film Pending JP2010168459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009011805A JP2010168459A (en) 2009-01-22 2009-01-22 Film and method for producing film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009011805A JP2010168459A (en) 2009-01-22 2009-01-22 Film and method for producing film

Publications (1)

Publication Number Publication Date
JP2010168459A true JP2010168459A (en) 2010-08-05

Family

ID=42700897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009011805A Pending JP2010168459A (en) 2009-01-22 2009-01-22 Film and method for producing film

Country Status (1)

Country Link
JP (1) JP2010168459A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940339A (en) * 1972-08-24 1974-04-15
JPS4928035B1 (en) * 1968-10-09 1974-07-23
JPS5927937A (en) * 1982-08-06 1984-02-14 Toshiaki Tani Ethylene/alpha-olefin copolymer film having improved physical properties
JPH06293846A (en) * 1985-06-27 1994-10-21 Du Pont Canada Inc Production of article from blend of polyolefin with polymer containing reactive additive
JPH10235815A (en) * 1997-02-24 1998-09-08 Kohjin Co Ltd Polyethylene-based multilayered film
JPH10329195A (en) * 1997-06-03 1998-12-15 Sumitomo Chem Co Ltd Manufacture of t-die cast film and the film
JP2005103756A (en) * 2003-09-26 2005-04-21 Sumitomo Chemical Co Ltd Manufacturing method of ethylene polymer resin film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928035B1 (en) * 1968-10-09 1974-07-23
JPS4940339A (en) * 1972-08-24 1974-04-15
JPS5927937A (en) * 1982-08-06 1984-02-14 Toshiaki Tani Ethylene/alpha-olefin copolymer film having improved physical properties
JPH06293846A (en) * 1985-06-27 1994-10-21 Du Pont Canada Inc Production of article from blend of polyolefin with polymer containing reactive additive
JPH10235815A (en) * 1997-02-24 1998-09-08 Kohjin Co Ltd Polyethylene-based multilayered film
JPH10329195A (en) * 1997-06-03 1998-12-15 Sumitomo Chem Co Ltd Manufacture of t-die cast film and the film
JP2005103756A (en) * 2003-09-26 2005-04-21 Sumitomo Chemical Co Ltd Manufacturing method of ethylene polymer resin film

Similar Documents

Publication Publication Date Title
US7595371B2 (en) Ethylene-α-olefin copolymer and food packaging material
JP5205899B2 (en) Ethylene-α-olefin copolymer and food packaging material
US7999048B2 (en) Process for producing prepolymerization catalyst for polymerization of olefin and process for producing olefin polymer
JP5151838B2 (en) Agricultural film
JP5135731B2 (en) Prepolymerization catalyst component production method, prepolymerization catalyst component and olefin polymer production method
JP5369368B2 (en) Ethylene-α-olefin copolymer, molded product, and method for producing ethylene-α-olefin copolymer
US8410231B2 (en) Production process of olefin polymer
US7485687B2 (en) Ethylene-α-olefin copolymer, molding thereof and process for producing the copolymer
JP2010168460A (en) Film
WO2008105546A1 (en) Production process of olefin polymer
US20070105711A1 (en) Process for producing prepolymerization catalyst component, prepolymerization catalyst component and process for producing olefin polymer using the same
JP4807026B2 (en) Prepolymerization catalyst component and method for producing olefin polymer
US20110021726A1 (en) Prepolymerization catalyst component and process for producing the same
JP2010168459A (en) Film and method for producing film
JP2009079182A (en) Manufacturing method for olefinic polymer
JP4967301B2 (en) Process for producing olefin polymer
JP2009138176A (en) Rubber-packaging film and packaged rubber body
JP4539346B2 (en) Method for producing prepolymerized catalyst component and method for producing olefin polymer
JP4483603B2 (en) Method for producing prepolymerized catalyst component and method for producing olefin polymer
JP4433978B2 (en) Process for producing olefin polymer
JP5714957B2 (en) Process for producing olefin polymer
JP2013159713A (en) Manufacturing method for prepolymerized catalyst component
JP2008044978A (en) Method for producing olefin polymer
JP2011016994A (en) Method for producing olefin polymer
JP2010120999A (en) Prepolymerized catalyst for olefin polymerization, and method for producing olefin polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130129