JP2010167339A - Apparatus and method of removing moisture in gas - Google Patents

Apparatus and method of removing moisture in gas Download PDF

Info

Publication number
JP2010167339A
JP2010167339A JP2009010449A JP2009010449A JP2010167339A JP 2010167339 A JP2010167339 A JP 2010167339A JP 2009010449 A JP2009010449 A JP 2009010449A JP 2009010449 A JP2009010449 A JP 2009010449A JP 2010167339 A JP2010167339 A JP 2010167339A
Authority
JP
Japan
Prior art keywords
gas
moisture
membrane
film
flat membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009010449A
Other languages
Japanese (ja)
Inventor
Seiichi Manabe
真鍋征一
Zenichi Yasuda
安田善一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUROSAKI KK
Original Assignee
KUROSAKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KUROSAKI KK filed Critical KUROSAKI KK
Priority to JP2009010449A priority Critical patent/JP2010167339A/en
Publication of JP2010167339A publication Critical patent/JP2010167339A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Drying Of Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of removing moisture from a gas, wherein (1) the moisture is removed while executing the control of a moisture rate in a target space without using heat energy, (2) a water molecule in a gas state has latent heat energy and is recovered as sensible heat energy, (3) limitation by a moisture rate in the atmosphere is mitigated for a moisture removing speed and a reachable zone of the moisture rate after removal, and (4) application is performed even in a place where a space part to remove the moisture is not adjacent to the atmosphere. <P>SOLUTION: The apparatus of removing the moisture from a gas which is wet by high humidity comprises a double cylinder provided with a circuit for making a wet high-temperature gas (gas A) flow inside a cylindrical porous flat membrane module and a circuit for making the gas (gas B) of absolute humidity lower than that of the gas flow formed on the outer side of the cylindrical flat membrane, the porous flat membrane comprises at least two hydrophilic polymer materials, and a moisture flat membrane transmission mechanism is the center of the contribution of diffusion in the method of removing the moisture. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は湿った高温気体(この気体を気体Aと略称)中に含まれる水分を膜を利用して除去し、かつ水蒸気の持つ蒸発潜熱を顕熱の形で回収する方法および該方法を適用した装置に関する。より詳しくは連結可能な多重円筒状の形状を持つ装置を用いて水分濃度の勾配に沿った水分子の拡散機構を利用した物質輸送と吸着熱を利用した潜熱回収の方法に関する。       The present invention uses a film to remove moisture contained in a wet high-temperature gas (this gas is abbreviated as gas A), and recovers the latent heat of vaporization of water vapor in the form of sensible heat, and to which the method is applied Related to the device. More particularly, the present invention relates to a method of material heat transfer using a diffusion mechanism of water molecules along a gradient of water concentration and a latent heat recovery method using heat of adsorption using a device having a connectable multi-cylindrical shape.

産業界での乾燥工程、家庭での洗濯後の乾燥は製品としてあるいは生活用品の使用可能状態にするのに不可欠な工程である。生活空間での快適性を維持するのにビルの空調での調湿、閉空間での除湿など気体中での水分除去は不可欠な要求である。また機器、機械類の保持管理上、空気中の水分が液体の水に液化して錆発生の原因となるので気体中の水分を除去して露点を低く維持することが必要である。気体中からの水分除去の方法として、気体の露点以下に温度を下げ水蒸気を液体の水として系外へ除去する方法が一般的である。除去後の気体を再び加熱することにより、結果的に気体中の水分のみを除去したことになる。この方法では冷却用と加熱用との両者の機能を持つ装置が必要であり、この方法での除湿は閉空間用に適する。     The drying process in the industry and drying after washing in the home are indispensable processes for making the product ready for use as a product or for daily use. In order to maintain the comfort in living space, moisture removal in gas such as air conditioning in buildings and dehumidification in closed spaces is an indispensable requirement. Also, in the maintenance management of equipment and machinery, moisture in the air liquefies into liquid water and causes rust, so it is necessary to remove the moisture in the gas and keep the dew point low. As a method for removing moisture from the gas, a method of reducing the temperature below the gas dew point and removing water vapor as liquid water outside the system is common. By heating the removed gas again, only the moisture in the gas is removed. This method requires a device having both cooling and heating functions, and dehumidification by this method is suitable for a closed space.

小規模での水分除去方法として乾燥剤を利用する方法がある。吸湿剤として再生利用が可能なシリカゲルや塩化カルシウムなどの固体乾燥剤あるいは活性炭などで調湿することが可能である。乾燥剤を用いれば小規模で閉鎖系で空気中の湿度を0%まで低下させることは可能であり、特別な装置を必要としない簡便な除湿方法である。ただし蒸発潜熱はほとんど回収されないし、また乾燥剤の再生には熱エネルギーが必要である。     There is a method using a desiccant as a method for removing moisture on a small scale. It is possible to adjust the humidity with a solid desiccant such as silica gel or calcium chloride, which can be recycled as a hygroscopic agent, or activated carbon. If a desiccant is used, it is possible to reduce the humidity in the air to 0% in a small-scale closed system, and this is a simple dehumidification method that does not require a special device. However, the latent heat of vaporization is hardly recovered, and heat energy is required to regenerate the desiccant.

従来より提案された高分子膜を利用した水分の除去は膜を介した水分子の溶解拡散機構を利用している。(特許文献1)除去対象の気体中の水分子は膜に溶解し、膜を構成する高分子素材の自由体積を利用して水分子は拡散する。膜への溶解度はヘンリー則に従うと考えられており、気体中の水分子の場合には水蒸気圧が膜への溶解をもたらす駆動力である。水分子の膜中での拡散の見掛けの活性化エネルギーは15Kcal/mole以上である。拡散係数は10−10〜10−12cm/sと小さく、そのため水分除去の工業的規模での適用に際しては大きな膜間差圧と膜面積とを必要とする。この方法は気体を構成するすべての成分分子に対しても適用されるのでこれからの分子に対して開放系といえる。そのためこの方法での水分移動では気体Aの持つ熱エネルギーを系外へ消失する。 The removal of moisture using a polymer membrane that has been proposed in the past utilizes the mechanism of dissolution and diffusion of water molecules through the membrane. (Patent Document 1) Water molecules in a gas to be removed dissolve in the film, and the water molecules diffuse using the free volume of the polymer material constituting the film. The solubility in the film is considered to follow Henry's law, and in the case of water molecules in gas, the water vapor pressure is the driving force that causes the film to dissolve. The apparent activation energy of diffusion of water molecules in the film is 15 Kcal / mole or more. The diffusion coefficient is as small as 10 −10 to 10 −12 cm 2 / s. Therefore, a large transmembrane pressure difference and membrane area are required for application on the industrial scale of water removal. Since this method is also applied to all component molecules constituting the gas, it can be said to be an open system for the future molecules. For this reason, in the water movement by this method, the thermal energy of the gas A is lost outside the system.

平均孔径が10nm以上で空孔率が30%以上の高分子多孔膜の素材を親水性高分子で作製し、これでシート状物を作製する。このシート状物の片側に気体Aを流し、もう一方の一方の側に気体Aよりも絶対湿度が低い気体あるいは大気(この気体を気体Bと略称)を流して気体A中の水分を気体B中へ輸送させる方法が提案された(特許文献2)。すなわち気体Aと気体Bとの流動量の和,シート状物に負荷される膜間差圧、シート状物の厚さ,シート状物の平均孔径と空孔率、シート状物の面積の6種の特性値間で一定の条件を満足させれば、気体Aより水分を除去し、しかも気体Aの持つエンタルピーの消失を極小化できる。この技術はシート状物を介して気体Aあるいは気体Bの体積の流れ(バルク流れ)の速度が気体Aと気体Bとの流れ速度の和の一定比率以下でなくてはならないことを指摘している。     A polymer porous membrane material having an average pore diameter of 10 nm or more and a porosity of 30% or more is prepared from a hydrophilic polymer, and a sheet-like material is prepared therefrom. Gas A is flowed to one side of this sheet-like material, and gas having a lower absolute humidity than gas A or the atmosphere (this gas is abbreviated as gas B) is flowed to the other side, and the moisture in gas A is changed to gas B. A method of transporting it in was proposed (Patent Document 2). That is, the sum of the flow amounts of gas A and gas B, the transmembrane differential pressure applied to the sheet material, the thickness of the sheet material, the average pore diameter and porosity of the sheet material, and the area of the sheet material 6 If a certain condition is satisfied among the characteristic values of the seeds, moisture can be removed from the gas A, and the disappearance of the enthalpy of the gas A can be minimized. This technique points out that the flow rate of the volume of gas A or gas B (bulk flow) through the sheet must be below a certain ratio of the sum of the flow rates of gas A and gas B. Yes.

特許文献2の技術を実際に工業的規模で実施した場合に膜を介した水分の移動の律速は気体B側の膜面での水分子の蒸発速度にあることが明らかとなった。水分の蒸発速度を高めるための工夫が特許文献3に与えられた。すなわち特許文献2の問題点を解消する技術として気体Bに接する膜面に凹凸の激しい構造体を配することにより水分の膜移動速度が上昇し、蒸発潜熱の一部が回収された。膜の孔特性を設計し、気体中の成分分子にとっては膜を介しての出入は自由(拡散、対流等の出入)で、特定された大きさ以上の微生物や微粒子に対しては膜を介した移動は不可能である閉鎖系が完成する。しかしこの技術では(イ)気体Bとしては常に大気でありこの空気が自然の流れにまかせられそのため水分の移動速度の制御が出来なく、しかも大気の温度や湿度の影響も強く受ける。すなわち膜を介した水分の移動速度は時間差、日差、季節差が生じ、回収される気体A中の水分濃度は制御されていない。(ロ)気体Bの体積が気体Aの体積より大きく設計しなくてはならないため本技術を実現させた装置として大型化され、かつ大気に接する膜面積が大きくなり装置形状が制限される。(ハ)膜の裏面(気体Bに接する側の膜面)の構造が複雑なため膜モジュールの作製が困難である。(ニ)湿熱空気の持つ顕熱エネルギー(温度、圧力や運動エネルギーの形での流体としての速度など)は利用されていない、等の問題点を持つ。   When the technique of Patent Document 2 was actually implemented on an industrial scale, it became clear that the rate of moisture movement through the membrane lies in the evaporation rate of water molecules on the membrane surface on the gas B side. A device for increasing the evaporation rate of moisture was given in Patent Document 3. That is, as a technique for solving the problem of Patent Document 2, by arranging a structure with severe irregularities on the film surface in contact with the gas B, the film moving speed of the water increased, and a part of latent heat of evaporation was recovered. Designing the pore characteristics of the membrane, the component molecules in the gas are free to enter and exit through the membrane (diffusion, convection, etc.), and for microorganisms and microparticles of a specified size or more through the membrane The closed system, which is impossible to move, is completed. However, in this technique, (a) the gas B is always the atmosphere, and this air is left to flow naturally, so that the movement speed of moisture cannot be controlled, and it is strongly influenced by the temperature and humidity of the atmosphere. That is, the movement speed of the moisture through the membrane has a time difference, a day difference, and a season difference, and the moisture concentration in the recovered gas A is not controlled. (B) Since the volume of the gas B must be designed to be larger than the volume of the gas A, the size of the apparatus realizing the present technology is increased, and the area of the film in contact with the atmosphere is increased, thereby limiting the shape of the apparatus. (C) Since the structure of the back surface of the membrane (the membrane surface on the side in contact with the gas B) is complicated, it is difficult to produce a membrane module. (D) There is a problem that the sensible heat energy (temperature, pressure, velocity as a fluid in the form of kinetic energy, etc.) possessed by wet hot air is not used.

扇の開閉の頻度が少なく空気の流れのない室内においても大気温度の日間変動に伴なって室内の相対湿度が高まり、露点以下となり水滴が生じる場合もある。電源ボックス内、変電室内、あるいは山間部での電源関連施設内での水滴の発生は絶縁性の低下など電気的トラブルの原因ともなり得る。水滴発生の防止策として高温の発熱体を設置する。一時的な対策としてこの方法は効果を発揮するが大気の流れのない空間内では絶対湿度は高まっており、空間温度の低下に伴って水滴が生じる。この水滴発生を防止の基本策は水分を室内から外気へ移動させることである。密閉に近い状態にある空間部内での水分除去は遠隔地にある無人の施設にとっては重要な技術課題であるが現在まで有効な解決手段はない。   Even in a room where the fan is not opened and closed frequently and where there is no air flow, the relative humidity in the room increases with daily fluctuations in the atmospheric temperature, and the dew point may be reached. The generation of water droplets in the power supply box, in the substation room, or in the power supply facilities in the mountains can cause electrical problems such as a decrease in insulation. Install a high-temperature heating element to prevent water droplets from being generated. Although this method is effective as a temporary measure, the absolute humidity increases in a space where there is no air flow, and water drops are generated as the space temperature decreases. The basic measure for preventing the generation of water droplets is to move moisture from the room to the outside air. Moisture removal in a space that is close to sealing is an important technical problem for unattended facilities in remote locations, but there is no effective solution to date.

特開 昭54−152679号JP 54-152679 A 特公 平4−13006号Japanese Patent Publication No.4-130006 特公 第3891808Japanese Patent No.38991808

本発明では膜を介した水分の時間内の移動量(移動速度)の制御が可能な装置でかつ下記の課題を解決しようとする。すなわち(1)気体A中の水分を熱エネルギーを使うことなく除去し、(2)気体Aの水蒸気が持つ潜熱エネルギーを顕熱エネルギーの形で回収し、(3)気体Aおよび気体B中の成分分子(酸素、窒素、炭酸ガス、水)に対しては膜を介して移動が可能な開空間であるが気体中に分散する粒子(ウイルス、細菌、マイコプラズマ等の感染性微粒子やナノ微粒子)に対しては気体Aと気体B間での相互の移動ができない閉空間をつくり、(4)利用とする膜として作製の容易な構造体であるという4種の課題である。       In the present invention, an apparatus capable of controlling the amount of movement (movement speed) of moisture through a membrane within a time period and attempts to solve the following problems. That is, (1) the moisture in the gas A is removed without using thermal energy, (2) the latent heat energy of the vapor of the gas A is recovered in the form of sensible heat energy, and (3) the gas A and the gas B Particles (infectious particles such as viruses, bacteria, and mycoplasmas, and nanoparticles) that are open spaces that can move through the membrane for component molecules (oxygen, nitrogen, carbon dioxide, water) but are dispersed in the gas There are four types of problems: a closed space that cannot move between gas A and gas B, and (4) a structure that can be easily produced as a film to be used.

気体(本発明では気体A)中の水分を熱エネルギーを使うことなく系外へ除去する方法として吸着剤(吸湿剤も含む)による方法と膜を介した除去とがある。吸着剤を用いる場合には閉空間内の水分除去には適するが水分を吸着した吸着剤より水分を除去するのに熱エネルギーを要するために吸着剤を繰り返し使用を前提とする限り結果的には熱エネルギーを使うことになる。一方、膜を介して水分を除去する技術では水分移動の駆動力として圧力差が利用される。この場合には膜の平均孔径が大きくなると圧力差によって発生する膜濾過によって水分を系外へ移動されることになる。膜濾過での水分子の系外への移動は同時に気体中の他の成分分子(酸素や窒素など)も系外へ流出される。大気の成分分子の流出は気体の持つ熱エネルギーの流失になる。そのため膜濾過機構による物質輸送の寄与を可能な限り少なくする必要がある。     There are a method using an adsorbent (including a hygroscopic agent) and a method using a membrane as a method for removing moisture in the gas (in the present invention, gas A) from the system without using thermal energy. When adsorbent is used, it is suitable for removing moisture in a closed space, but it requires heat energy to remove moisture from the adsorbent that has adsorbed moisture. Heat energy will be used. On the other hand, in a technique for removing moisture through a film, a pressure difference is used as a driving force for moisture movement. In this case, when the average pore diameter of the membrane increases, the moisture is moved out of the system by membrane filtration generated by a pressure difference. The movement of water molecules outside the system during membrane filtration simultaneously causes other component molecules (oxygen, nitrogen, etc.) in the gas to flow out of the system. The outflow of component molecules in the atmosphere results in the loss of the thermal energy of the gas. Therefore, it is necessary to reduce the contribution of mass transport by the membrane filtration mechanism as much as possible.

膜の平均孔径を5nm以下にすることにより、膜中での水分子を溶解拡散機構にもとづく輸送が期待できる。この方法では水分子のみを系外へ除去することも、膜素材の選択により可能となるが物質移動速度の絶対値が小さすぎるため工業的には利用できない。溶解拡散機構にもとずく水分の膜除去技術では、水分子の透過の選択性を高め、しかも水分子の膜移動速度を高める新しい膜透過機構を加える必要がある。   By setting the average pore size of the membrane to 5 nm or less, it is possible to expect water molecules in the membrane to be transported based on the dissolution and diffusion mechanism. In this method, it is possible to remove only water molecules out of the system by selecting a membrane material. However, since the absolute value of the mass transfer rate is too small, it cannot be used industrially. In the water membrane removal technique based on the dissolution / diffusion mechanism, it is necessary to add a new membrane permeation mechanism that enhances the selectivity of water molecule permeation and increases the water molecule migration rate.

気体中(本発明では気体A中)の水分子の持つ潜熱エネルギーとは液体状態にある水分子が蒸発して気体の水分子(水蒸気)に変化するのに際し、蒸発熱を得て気相の水分子となる。したがって気相の水分子は液相の水分子に比較して蒸発熱の分だけエンタルピーは増加している。この増加分が潜熱エネルギーである。潜熱エネルギーを顕熱エネルギーとして変換し、これを回収するには再び相変化を起こさせ、そこで発生するエネルギーを温度上昇の形で顕熱エネルギーとする必要がある。この顕熱エネルギーを気体A中に蓄える方法を検討する必要がある。     The latent heat energy of water molecules in gas (in the present invention, gas A) means that when water molecules in a liquid state evaporate and change into gas water molecules (water vapor), the heat of evaporation is obtained and It becomes a water molecule. Therefore, the enthalpy of the vapor phase water molecule is increased by the amount of heat of vaporization compared to the liquid phase water molecule. This increase is latent heat energy. In order to convert latent heat energy into sensible heat energy and recover it, it is necessary to cause a phase change again, and to generate the sensible heat energy in the form of a temperature rise. It is necessary to examine a method for storing this sensible heat energy in the gas A.

気体中の成分分子(酸素や窒素で水分子以外の成分)に対しては開空間で、気体中に分散する微粒子(感染性の微生物あるいはナノサイズの無機粒子で水の微粒子を除く)に対しては閉空間にするためには両空間を隔てる膜に特別な孔構造を持たせるか、あるいは物質を移動させるための駆動力に特種な工夫がいる。特別な孔構造としては孔径分布が非常に鋭いかあるいは層状構造で表現される多層構造膜のいずれかが物質(微粒子)の除去の点では最適と考えられる。ここで多層構造膜とは、膜の縦断面を透過型電子顕微鏡で観察した際、厚さ約0.2μmの薄膜の積層構造が観察される膜である。この薄膜の積層数が20以上である膜を多層構造膜と定義される。水に対して特別な性質を持たせるには膜を構成する素材も特定しなくてはならない。     For gas molecules (oxygen and nitrogen other than water molecules), in open space, for fine particles dispersed in gas (infectious microorganisms or nano-sized inorganic particles excluding water) In order to make a closed space, the membrane that separates the two spaces has a special pore structure, or there is a special contrivance in the driving force for moving the substance. As a special pore structure, any one of a multilayer structure film having a very sharp pore size distribution or a layered structure is considered to be optimal in terms of removing substances (fine particles). Here, the multilayer structure film is a film in which a laminated structure of a thin film having a thickness of about 0.2 μm is observed when a longitudinal section of the film is observed with a transmission electron microscope. A film having 20 or more laminated thin films is defined as a multilayer structure film. In order to have special properties for water, the materials that make up the membrane must also be specified.

膜を介しての水分子の除去速度を高めるには特許文献3に述べるように膜の裏面側に特別な構造体を持たせる必要性が明らかにされている。このように膜の構造体としての最適設計の他に膜の裏面での水の蒸発速度を高める必要がある。水の蒸発速度を高めるには膜表面で生じる境膜の厚みを薄くし、外部からの熱エネルギーの供給速度が高まれば膜を介した熱エネルギーの消失を極小化することも可能であろう。この種の工夫については現在まで具体的な提案はない。       In order to increase the removal rate of water molecules through the membrane, as described in Patent Document 3, the necessity of providing a special structure on the back side of the membrane has been clarified. Thus, in addition to the optimum design of the membrane structure, it is necessary to increase the evaporation rate of water on the back surface of the membrane. In order to increase the evaporation rate of water, it is possible to reduce the thickness of the film formed on the film surface and minimize the disappearance of the heat energy through the film if the supply rate of heat energy from the outside increases. There is no concrete proposal for this kind of device until now.

膜を介した水分の移動速度を制御できれば気体A中の水分濃度(したがって湿度)を制御することが可能となる。膜を介した水分の移動の機構が明らかになれば原理的には水分の移動速度を制御できる。例えば水分移動が膜内部での拡散機構のみでなされる場合には水分の移動速度は利用した膜の特性Pmと膜の表面での水分濃度差△Cと気体Aおよび気体Bの温度の平均Tavを用いて(1)式で表現される。
水分の移動速度=Pm・△C・Tav (1)
Pmは膜面積Aと膜の水分拡散係数Dと膜厚dを用いると
Pm=D・(A/d) (2)
(1)で表現される水分の移動速度を実際に実現するための膜のモジュール化と水分除去のための回路を含めた装置化とか重要であるが現在までにそのような提案は見当らない。
If the movement speed of moisture through the membrane can be controlled, the moisture concentration (and hence humidity) in the gas A can be controlled. If the mechanism of moisture movement through the membrane is clarified, in principle, the moisture movement speed can be controlled. For example, when the water movement is performed only by the diffusion mechanism inside the film, the water movement speed is determined based on the characteristics Pm of the film used, the moisture concentration difference ΔC on the surface of the film, and the average T of the temperatures of the gases A and B. It is expressed by equation (1) using av .
Moisture moving speed = Pm · ΔC · T av (1)
Pm is obtained by using the film area A, the moisture diffusion coefficient D of the film, and the film thickness d. Pm = D · (A / d) (2)
It is important to modularize the membrane to actually realize the moisture transfer speed expressed in (1) and to implement a device including a circuit for removing moisture, but no such proposal has been found so far.

本発明では乾燥機より出てくる湿度(絶対湿度)が高い気体(気体A)より水分を制御された速度で除去し、気体Aの温度をほとんど低下させない気体Aとして乾燥機の出口からの気体、電源室内の気体、動物舎の気体、密閉された室内(ビルの室内)の気体、乗物内の気体、溶室内の気体、台所内の気体などである。気体Aに接する気体Bの流速は制御されていることが本発明方法の第1の特徴である。       In the present invention, moisture is removed at a controlled rate from a gas (gas A) having a high humidity (absolute humidity) coming out of the dryer, and the gas from the outlet of the dryer is gas A that hardly reduces the temperature of the gas A. Gas in a power supply room, gas in an animal house, gas in a sealed room (building room), gas in a vehicle, gas in a melting room, gas in a kitchen, and the like. The first feature of the method of the present invention is that the flow rate of the gas B in contact with the gas A is controlled.

本発明方法の第1の特徴を実現する膜モジュールは平膜モジュールの内部に気体Aを流す回路を有し、さらに平膜は筒状に設置されその外側を気体Bを流す回路を形成する二重筒で構成する特徴を持つ。二重筒のためこの平膜モジュールを直列に連結することが可能となり、外気に接していない空間についても水分除去が可能となる。二重筒の内筒(この内筒を平膜が構成している)を回転させる機構を取り入れるとさらに安定に水分除去が可能となる。二重筒にすることにより顕熱として大気中に消失するエネルギーを小さくできる。     The membrane module realizing the first feature of the method of the present invention has a circuit for flowing gas A inside the flat membrane module, and the flat membrane is installed in a cylindrical shape to form a circuit for flowing gas B outside. It has the characteristics that consist of heavy cylinders. Because of the double cylinder, the flat membrane modules can be connected in series, and moisture can be removed even in a space that is not in contact with the outside air. Incorporating a mechanism for rotating a double-cylinder inner cylinder (a flat membrane is formed by the inner cylinder) makes it possible to remove moisture more stably. By making a double cylinder, the energy lost to the atmosphere as sensible heat can be reduced.

本発明方法の第2の特徴は膜を介した水分の輸送機構として孔拡散、表面拡散、および溶解拡散の3種の拡散機構を利用する点にある。本発明ではさらに濾過機構を加えてエネルギーの回収率を高めることも可能である。たとえば気体B側の圧力が気体A側の圧力よりわずかに高め気体Bの一部が気体Aに混入させる。顕熱として膜の気体Aに接する裏面の温度が上昇し、この顕熱を気体Bの加熱に効率的に利用できる。     The second feature of the method of the present invention is that three kinds of diffusion mechanisms of pore diffusion, surface diffusion, and dissolution diffusion are used as a mechanism for transporting moisture through the membrane. In the present invention, it is also possible to increase the energy recovery rate by adding a filtration mechanism. For example, the pressure on the gas B side is slightly higher than the pressure on the gas A side, and a part of the gas B is mixed into the gas A. As the sensible heat, the temperature of the back surface in contact with the gas A of the film rises, and this sensible heat can be efficiently used for heating the gas B.

孔拡散とは膜の孔中での水分子の拡散で、その拡散係数はほぼ分子量の1/2乗に反比例する。孔拡散は膜の平均孔径が約100nm以下で40nmでかつ気体の圧力が低いほど起りやすい。表面拡散は膜中の孔壁表面に水分子が吸着し、吸着後の水分子が二次元的液体面を形成し、この液体面での拡散を意味し、平均孔径が5〜80nmの膜で起りやすい。溶解拡散は多孔膜を形成する素材高分子に水分子が溶解し、溶解した水分子の素材高分子実体内部での拡散を意味する。孔拡散による水分子の移動速度は空孔率に比例し、表面拡散による水分子の移動速度は単位膜面積当りの孔数および平均孔径に比例し、溶解拡散による水分子の移動速度は(1−空孔率)に比例する。これらの拡散により水分子の膜中での拡散速度が早くなる。拡散機構を利用することにより気体中の水分を熱エネルギーを使うことなく水分子を除去できる。     Pore diffusion is the diffusion of water molecules in the pores of the membrane, and the diffusion coefficient is approximately inversely proportional to the 1/2 power of the molecular weight. The pore diffusion is more likely to occur as the average pore diameter of the membrane is about 100 nm or less and 40 nm and the gas pressure is lower. Surface diffusion means that water molecules are adsorbed on the surface of the pore walls in the membrane, and the water molecules after adsorption form a two-dimensional liquid surface, which means diffusion on this liquid surface, which is a membrane with an average pore diameter of 5 to 80 nm. Easy to happen. Dissolving diffusion means diffusion of water molecules dissolved in the material polymer forming the porous membrane, and the dissolved water molecules inside the material polymer entity. The movement speed of water molecules by pore diffusion is proportional to the porosity, the movement speed of water molecules by surface diffusion is proportional to the number of pores per unit membrane area and the average pore diameter, and the movement speed of water molecules by dissolution diffusion is (1 -It is proportional to the porosity. These diffusions increase the diffusion rate of water molecules in the film. By utilizing the diffusion mechanism, water molecules can be removed from the gas without using heat energy.

本発明では気体Bから気体A中への物質移動を圧力差を駆動力として起こさせることが特徴となる。この濾過による物質移動は膜表面で起る吸着熱の発生を効率良く気体Aの顕熱エネルギーとして回収するのに利用する。濾過による物質移動速度は拡散による水分子の移動速度に匹敵する程度に設定する。両者の物質移動の方向は逆である。濾過による移動速度は膜間差圧△Pに比例する。この際の△Pは気体Bの圧力と気体Aの圧力の差である。       The present invention is characterized in that mass transfer from the gas B to the gas A is caused by using a pressure difference as a driving force. This mass transfer by filtration is used to efficiently recover the heat of adsorption occurring on the membrane surface as the sensible heat energy of the gas A. The mass transfer rate by filtration is set to be comparable to the transfer rate of water molecules by diffusion. Both mass transfer directions are opposite. The moving speed by filtration is proportional to the transmembrane pressure difference ΔP. ΔP at this time is the difference between the pressure of the gas B and the pressure of the gas A.

拡散機構にもとづく膜中での物質移動は濾過機構に比較して(イ)微粒子による孔の目詰まりがない,(ロ)微粒子の除去性能が大,(ハ)物質移動に必要なエネルギーを加える必要がない(すなわち水分の除去に必要なエネルギーが極小化できる)等の特徴を持つが、一方では物質移動速度が小さい問題点を持つ。本発明で利用される膜中での水分移動の機構は拡散であるため、水分除去に限れば原理上△Pの負の値は不要である。     Compared with the filtration mechanism, mass transfer in the membrane based on the diffusion mechanism is (a) no clogging of the pores by the fine particles, (b) high particle removal performance, and (c) adding energy necessary for mass transfer. Although there is a feature that it is not necessary (that is, the energy required for water removal can be minimized), it has a problem that the mass transfer rate is low. Since the mechanism of moisture movement in the film used in the present invention is diffusion, a negative value of ΔP is not necessary in principle as far as moisture removal is concerned.

本発明方法の第2の特徴を生かす装置としては平膜の膜面積を大きくするプリーツ型で、しかも拡散のために△Pに耐える支持体を必要としない膜モジュールである。気体Aおよび気体Bの流れに伴なう圧力損失を少なくする膜モジュールが望ましい。平膜円筒モジュールの内筒には6〜12角形の星型に折りたたまれた平膜が設置されている。内筒部分に風車の機構を持つ羽根を加えることにより気体Aの流れの力で内筒を回転させることも可能である。     A device that takes advantage of the second feature of the method of the present invention is a pleated type that increases the membrane area of a flat membrane, and that does not require a support that can withstand ΔP for diffusion. A membrane module that reduces the pressure loss associated with the flow of gas A and gas B is desirable. A flat membrane folded into a 6-12 domed star shape is installed on the inner cylinder of the flat membrane cylindrical module. It is also possible to rotate the inner cylinder by the force of the flow of the gas A by adding a blade having a windmill mechanism to the inner cylinder portion.

本発明方法および装置の第3の特徴は、膜として親水性多孔性平膜を用いる点にある。親水性とは溶解度パラメータの水素結合の成分量が8(cal1/2cm−3/2)以上である物質を意味する。例えばセルロース(再生セルロースを含む)、ポリビニールアルコールなどである。多孔性とは空孔率が30%以上で膜の表裏面を電子顕微鏡で観察した場合に5nm以上の孔の存在が認められる膜である。平膜と膜厚10μm〜1mmで膜平面として幅1cm以上でかつ長さ1cm以上の大きさを持つ膜で形態的に平面状の膜を意味する。平均孔径を異にする平膜や不織布等の2種以上の組み合せで構成される2種以上の組合せにより膜間差圧の負荷も可能となり、さらに微粒子に対する閉空間の完全度が高まる。 The third feature of the method and apparatus of the present invention is that a hydrophilic porous flat membrane is used as the membrane. The hydrophilic property means a substance having a hydrogen bond component amount of 8 (cal 1/2 cm −3/2 ) or more as a solubility parameter. For example, cellulose (including regenerated cellulose), polyvinyl alcohol, and the like. The porosity is a film having a porosity of 30% or more and the presence of pores of 5 nm or more when the front and back surfaces of the film are observed with an electron microscope. A flat film and a film having a thickness of 10 μm to 1 mm, a film having a width of 1 cm or more and a length of 1 cm or more as a film plane means a morphologically flat film. A combination of two or more types of combinations of two or more types of flat membranes and nonwoven fabrics having different average pore diameters can be loaded with a differential pressure between the membranes, and the completeness of the closed space for the fine particles is increased.

親水性膜は空気中の水分を吸着し吸着熱を発生する。吸着によって空気中の水分濃度は低下し同時に吸着熱によって空気の温度および膜表面の温度が上昇する。すなわち潜熱を顕熱に変えるのが吸着である。水分の吸着性能は膜の素材を水分子との間の親和力の結果でもある。製膜の容易さと親水性の強さとから再生セルロースが特に望ましい。セルロースの場合、相対湿度が60%の気体に対してセルロース1kg当り約300kJの微分吸着熱が発生する。     The hydrophilic film absorbs moisture in the air and generates heat of adsorption. Adsorption reduces the moisture concentration in the air, and at the same time, the heat of adsorption increases the temperature of the air and the surface of the membrane. That is, adsorption changes latent heat to sensible heat. The moisture adsorption performance is also a result of the affinity between the membrane material and water molecules. Regenerated cellulose is particularly desirable because of its ease of film formation and hydrophilic strength. In the case of cellulose, a differential adsorption heat of about 300 kJ per kg of cellulose is generated for a gas having a relative humidity of 60%.

平膜の平均孔径は300nm以下で5nm以上で空孔率は30%以上であり、気体B側の膜面の平均孔径(電子顕微鏡観察で決定)が湿った高温の気体Aに接する膜表面の平均孔径より大きく、親水性高分子の材料として再生セルロースでかつ再生セルロース不織布と再生セルロース多孔膜との複合体であることが膜間差圧を負荷する場合には膜の変形を防ぎかつ微粒子除去性を高めるのに好ましい。     The average pore diameter of the flat membrane is 300 nm or less, 5 nm or more, and the porosity is 30% or more. The average pore size of the membrane surface on the gas B side (determined by electron microscope observation) Larger than average pore size, regenerated cellulose as hydrophilic polymer material, and composite of regenerated cellulose nonwoven fabric and regenerated cellulose porous membrane prevents membrane deformation and removes fine particles when the transmembrane pressure is applied It is preferable for enhancing the properties.

平膜として再生セルロース多孔膜を用いると結晶化度は30%以下となり親水性がより高まる。また膜厚を100μm以上にすることにより平均孔径を異にする2種の膜を重ね合わせることが容易となる。また多孔膜の孔構造としては多層構造膜にすることにより、孔の目詰りに対する水分の輸送速度の低下の程度を緩和されるし、また平膜の微粒子除去性能を高める。ここで多層構造膜とは膜の断面を透過型電子顕微鏡で観察した際に幅約0.2μmの筋状物が膜表面に沿って存在することによって確認できる膜である。この筋が膜厚方向で20本以上観察される膜を多層構造膜と定義する。     When a regenerated cellulose porous membrane is used as the flat membrane, the crystallinity becomes 30% or less and the hydrophilicity is further increased. Further, by setting the film thickness to 100 μm or more, it becomes easy to superimpose two kinds of films having different average pore diameters. In addition, by using a multilayer structure film as the pore structure of the porous film, the degree of decrease in the moisture transport rate against pore clogging can be mitigated, and the fine particle removal performance of the flat film can be enhanced. Here, the multilayer structure film is a film that can be confirmed by the presence of stripes having a width of about 0.2 μm along the film surface when the cross section of the film is observed with a transmission electron microscope. A film in which 20 or more of these streaks are observed in the film thickness direction is defined as a multilayer structure film.

二重筒で構成させた装置で膜間での圧力勾配をわずかに加え平膜の表裏面に強制的に気体Aと気体Bとを流すことによって回収される気体A中の水分濃度を制御することが可能となる。ただし制御される水分濃度としては、気体Bとして大気を利用すると大気中の水分濃度以下にすることは不可能である。この欠点をなくするには水分除去の気体Aおよび膜による水分移動前の気体Bを乾燥剤で吸着処理すれば良い。     The water concentration in the recovered gas A is controlled by applying a slight pressure gradient between the membranes and forcing the gas A and gas B to flow on the front and back surfaces of the flat membrane with an apparatus constituted by a double cylinder. It becomes possible. However, the controlled moisture concentration cannot be reduced below the moisture concentration in the atmosphere when the atmosphere is used as the gas B. In order to eliminate this defect, the gas A for moisture removal and the gas B before moisture transfer by the film may be adsorbed with a desiccant.

吸着処理の方法として例えば金属塩の飽和水溶液が利用できる。飽和状態にある水溶液の気相内の水蒸気圧は一定に保持される。利用できる塩の種類としては目標とする気体A中の水分濃度によって定められる。例えば塩化カルシウムの6水塩の飽和水溶液では25℃ではその水溶液からの水蒸気圧で達成される相対湿度は29%である。もし気体Aに接する側に塩化カルシウムの6水塩の飽和水溶液であれば気体Aの湿度を25℃での相対湿度29%に到達できる。     As a method for the adsorption treatment, for example, a saturated aqueous solution of a metal salt can be used. The water vapor pressure in the gas phase of the saturated aqueous solution is kept constant. The type of salt that can be used is determined by the moisture concentration in the target gas A. For example, in a saturated aqueous solution of calcium chloride hexahydrate, at 25 ° C., the relative humidity achieved by the water vapor pressure from the aqueous solution is 29%. If the saturated aqueous solution of calcium chloride hexahydrate is in contact with the gas A, the humidity of the gas A can reach 29% relative humidity at 25 ° C.

本発明方法および装置によって(1)極小化されたエネルギーを用いて除湿が可能となり乾燥空気のリサイクルと回収された気体中の水分濃度と水分除去速度を制御することが可能となり、(2)蒸発潜熱を顕熱としてエネルギー回収が可能となり、(3)大気に平膜が直接接する必要がなくなり、(4)気体A中の水分濃度を大幅に低下でき、(5)除湿工程の小型軽量化が達成され、(6)大気中の炭素ガス、酸素、窒素に対しては充分な換気が自然になされ、ウイルスや細菌等の感染性微粒子に対しては隔離状態となる。     With the method and apparatus of the present invention, (1) it is possible to dehumidify using the minimized energy, it becomes possible to control the recycling of dry air, the moisture concentration in the recovered gas and the moisture removal rate, and (2) evaporation Energy can be recovered by using latent heat as sensible heat, (3) the flat film does not need to be in direct contact with the atmosphere, (4) the moisture concentration in gas A can be greatly reduced, and (5) the dehumidification process is reduced in size and weight. (6) Sufficient ventilation is naturally provided for carbon gas, oxygen, and nitrogen in the atmosphere, and isolation is achieved for infectious particles such as viruses and bacteria.

酢酸セルロース(酢酸の置換度2.4)をアセトンに溶解後、公知の方法でミクロ相分離を起こし、多孔性平膜を作製する。この多孔性平膜は多層構造で構成される。平膜の平均孔径はレトロウイルスやマイコプラズマの移動を防止する目的で80nmに設定し、空孔率は80%に膜厚を400μmとする。図1に示す二重円筒のモジュールの内筒部分を該平膜2を多重に折りまげて装着する。この際平膜の内側を再生セルロース不織布で重ね合せて装置すると膜としての力学的強度を増すことができる。平膜はモジュールの両端に包埋剤8で埋込まれ円筒状平膜の内部11には気体Aの流れ6用の空間部が確保されている。包埋剤8によって内筒の円形状枠7も平膜と同時に埋め込まれている。     Cellulose acetate (degree of substitution of acetic acid 2.4) is dissolved in acetone, and then microphase separation is caused by a known method to produce a porous flat membrane. This porous flat membrane has a multilayer structure. The average pore diameter of the flat membrane is set to 80 nm for the purpose of preventing the movement of retrovirus and mycoplasma, the porosity is 80%, and the film thickness is 400 μm. The inner cylinder portion of the double cylinder module shown in FIG. 1 is mounted by folding the flat membrane 2 in multiple layers. At this time, if the inside of the flat membrane is overlapped with a regenerated cellulose nonwoven fabric, the mechanical strength as the membrane can be increased. The flat membrane is embedded with embedding agent 8 at both ends of the module, and a space for gas A flow 6 is secured in the inside 11 of the cylindrical flat membrane. The inner cylindrical circular frame 7 is also embedded by the embedding agent 8 simultaneously with the flat membrane.

図1の内筒は図2の円筒状外筒に固定される。図2には外筒の横断面図と外筒の下側より観察した正面図を示す。円筒の筒面1の両端にはつば状のひざし10と10´とを持つ。10および10´は複数の外筒を連結するために締め付け具4と共に必要である。締め付け具4によって複数の外筒は連結されるが10と10´との間にはパッキング用Oリング3を挿入し、円形状枠7と7´間には変形可能なゴムあるいはスポンジのパッキングを挿入する。つば状物質10´のより内筒側えには気体Bの流路13の連結のために空間部9が確保されている。図3に2台の二重内筒装置を直列に連結した部分の断面図を示す。     The inner cylinder of FIG. 1 is fixed to the cylindrical outer cylinder of FIG. FIG. 2 shows a cross-sectional view of the outer cylinder and a front view observed from the lower side of the outer cylinder. At both ends of the cylindrical surface 1 of the cylinder, there are collar-shaped knees 10 and 10 '. 10 and 10 'are necessary together with the fastening tool 4 to connect a plurality of outer cylinders. A plurality of outer cylinders are connected by the fastening tool 4, but a packing O-ring 3 is inserted between 10 and 10 ', and a deformable rubber or sponge packing is inserted between the circular frames 7 and 7'. insert. A space 9 is secured on the inner cylinder side of the brim-like substance 10 ′ for connection of the flow path 13 of the gas B. FIG. 3 shows a cross-sectional view of a portion where two double inner cylinder devices are connected in series.

気体Aを流路12を通し内筒内の空間部11を流入させ平膜2の膜表面に接触させる。気体Bを流路13を通して平膜2の膜裏面に接触させる。この際気体Bの圧力は気体Aよりわずかに大きくする。この膜間差圧△Pとしては(1)式を満足させる。
△P≦1×10−4・d/(Pr・r ・A) (1)
ここで△Pの単位はmmHg,Jは気体Aの流速(ml/min),dは平膜の厚さ(cm),Prは空孔率(%)Aは平膜の有効濾過面積(cm)である。rは平膜の孔半径(平均)である。
The gas A is introduced into the space 11 in the inner cylinder through the flow path 12 and brought into contact with the membrane surface of the flat membrane 2. Gas B is brought into contact with the back surface of the flat membrane 2 through the flow path 13. At this time, the pressure of the gas B is slightly higher than that of the gas A. The transmembrane pressure difference ΔP satisfies the expression (1).
ΔP ≦ 1 × 10 −4 J A · d / (Pr · r f 2 · A) (1)
Here △ units of P is mmHg, J A flow velocity (ml / min) of the gas A, d is the thickness of the flat membrane (cm), Pr is the porosity (%) A is the effective filtration area of the flat film ( cm 2 ). r f is the pore radius (average) of the flat membrane.

気体A中の水分を最終的に25℃の相対湿度で30%にしたい場合には図4の装置を用いる。水槽aの内部が多孔膜bで2槽A,Bとに仕切られる。多層膜bの平均孔径は80nmでレトロウイルス,マイコプラズマ,細菌は該膜を通過できないが水や溶解した金属塩類は自由に通過できる。水槽a中に水をいれCaCl・6Hoを過剰にそそぎ水溶液を飽和状態に保つ。気体AはパイプPaを通して飽和水液中で泡を発生させ、再びこの泡より気体Aを回収し、Pより気体Aを流出させる。Pより流出される気体A中の相対湿度(25℃精算)は約30%である。気体A中の水分は槽A側の水として回収され、この水分の増加量が濾過と拡散機構との両者により槽B側へ移動する。大気中の湿度が槽B中の飽和水溶液の蒸気圧より低ければ大気をパイプPrを通して起こさせ水分を大気中に放出する。逆に大気中の湿度が高い場合には槽aは水分の貯蔵をする。 The apparatus shown in FIG. 4 is used when the moisture in the gas A is finally set to 30% at a relative humidity of 25 ° C. The inside of the water tank a is partitioned into two tanks A and B by the porous film b. The average pore size of the multilayer film b is 80 nm, and retroviruses, mycoplasmas, and bacteria cannot pass through the membrane, but water and dissolved metal salts can pass freely. Water is poured into the water tank a, and CaCl 2 .6H 2 o is poured in excess to keep the aqueous solution saturated. Gas A generates a foaming saturated aqueous solution through a pipe Pa, the bubbles of gas A was recovered from, to efflux gas A from P b again. The relative humidity in the gas A flowing out from the P b (25 ° C. settlement) is about 30%. Moisture in the gas A is recovered as water on the tank A side, and this increased amount of water moves to the tank B side by both filtration and a diffusion mechanism. If the humidity in the atmosphere is lower than the vapor pressure of the saturated aqueous solution in the tank B, the atmosphere is raised through the pipe Pr to release moisture into the atmosphere. Conversely, when the humidity in the atmosphere is high, the tank a stores moisture.

公知の方法(上出、真鍋、松井、坂本、梶田、高分子論文集、34巻、205頁(1977)で酢酸セルロース(平均置換度2.40,平均重合度205)の多孔膜をポリエステル不織布と再生セルロース不織布上に作製したこの膜を0.1規定の苛性ソーダ水溶液(25℃)中に浸漬し、ケン化反応を行い再生セルロースの多孔性で多層構造膜を作製した。水の濾過速度法で決定した平均孔径は80nm、空孔率85%、不織布部分を除去した多孔膜部分の膜厚400μmの孔特性を持つ乾燥した膜を作製した。乾燥法はアセトン/水系の溶媒置換法であった。       Polyester nonwoven fabric with a porous film of cellulose acetate (average degree of substitution 2.40, average degree of polymerization 205) by a known method (Kamide, Manabe, Matsui, Sakamoto, Iwata, Kobunshi Shigshu, 34, 205 (1977) This membrane prepared on a regenerated cellulose nonwoven fabric was immersed in a 0.1 N aqueous sodium hydroxide solution (25 ° C.) and subjected to a saponification reaction to produce a porous membrane of regenerated cellulose to produce a water filtration rate method. A dried membrane having a pore characteristic of an average pore size of 80 nm, a porosity of 85%, and a porous membrane portion having a thickness of 400 μm from which the nonwoven fabric portion was removed was prepared.The drying method was an acetone / water solvent substitution method. It was.

図1に示す内筒を8角の星型に膜を折り込み、内筒の星の角部分の直径を8cmにして有効膜面積を0.10mとした内筒の長さは30cmであった。膜の両端を円筒状枠と共にウレタン樹脂で包埋した。ただし円筒の全体の形の維持のための枠(図1の7,7´と6)をアルミニウムの作製し、この枠の両端7,7´をウレタン樹脂内に同時に包埋された。この内筒を10個をポリ塩化ビニールで作製した外筒(図2)10個によって図3に示すパッキング3,5を用いて直列に連結する。外筒の連結部を締め付け金具によって固定する。外筒間のパッキングのためには耐熱性を持つOリングを用い内筒間のパッキングには耐熱性を持つスポンジ状の素材(例、発泡状のポリウレタン)が適する。 The inner cylinder shown in FIG. 1 was folded into an octagonal star shape, the diameter of the star corner of the inner cylinder was 8 cm, the effective membrane area was 0.10 m 2, and the length of the inner cylinder was 30 cm. . Both ends of the membrane were embedded with urethane resin together with a cylindrical frame. However, the frame (7, 7 'and 6 in FIG. 1) for maintaining the entire shape of the cylinder was made of aluminum, and both ends 7, 7' of this frame were simultaneously embedded in urethane resin. Ten inner cylinders (Fig. 2) made of polyvinyl chloride are connected in series using 10 packings 3 and 5 shown in Fig. 3. The connecting part of the outer cylinder is fixed with a fastening bracket. A heat-resistant O-ring is used for packing between the outer cylinders, and a heat-resistant sponge-like material (for example, foamed polyurethane) is suitable for the packing between the inner cylinders.

気体Aとして温度80℃における相対湿度80%の気体を大気圧より0.2気圧高い圧力(絶対値としての圧力は1.2気圧)で加圧状態で内筒内を20リットル/分で流した。気体Bとして大気の温度15℃で相対湿度30%でこの気体Bを外筒内を80リットル/分で流した圧力は0.05気圧であった。装置の出口での気圧Aは温度75℃で30%となり湿度としては半分以下となった。したがって本装置の水分除去速度は3.5g/分であった。     As gas A, a gas having a relative humidity of 80% at a temperature of 80 ° C. was flowed through the inner cylinder at 20 liters / minute in a pressurized state at a pressure 0.2 bar higher than the atmospheric pressure (the absolute value was 1.2 bar). As the gas B, the pressure at which the gas B was flowed at 80 liters / minute in the outer cylinder at an atmospheric temperature of 15 ° C. and a relative humidity of 30% was 0.05 atm. The atmospheric pressure A at the outlet of the apparatus was 30% at a temperature of 75 ° C., and the humidity was less than half. Therefore, the water removal rate of this apparatus was 3.5 g / min.

図4の装置にCaCl・6HOを飽和状態の水溶液の状態で溶解された。図中のA側のパイプPaを通して除湿後の気体Aを泡状で通過させた後の気体Aは温度76℃で相対湿度20%であった。結果的には水分除去速度は6.1g/分であった。気体Aの湿度を低く下げ、しかも気体Bの湿度に左右されないで目的とする湿度と設定可能である。図4に用いる膜bの平均孔径を20nmにすると気体Aは気体Bあるいは大気に対して微生物の隔離された状態が維持できる。 In the apparatus of FIG. 4, CaCl 2 .6H 2 O was dissolved in a saturated aqueous solution state. The gas A after passing the dehumidified gas A in the form of bubbles through the pipe Pa on the A side in the figure was a temperature of 76 ° C. and a relative humidity of 20%. As a result, the water removal rate was 6.1 g / min. The humidity of the gas A can be lowered and set to the target humidity without being influenced by the humidity of the gas B. When the average pore diameter of the membrane b used in FIG. 4 is 20 nm, the gas A can maintain a state where microorganisms are isolated from the gas B or the atmosphere.

一般的な産業において乾燥工程を必要とする分野すべてに適用できる。乾燥に必要なエネルギーコストを本技術によって低下させることも可能である。しかも得られた気体の湿度が制御できるようになるので室内における住空間の快適性設計に利用できる。その他病院などでの感染源の隔離、動物実験施設、家庭のバスルームや乾燥機に設置される。     It can be applied to all fields that require a drying process in general industries. The energy cost required for drying can also be reduced by this technique. Moreover, since the humidity of the obtained gas can be controlled, it can be used for comfort design of indoor living spaces. In addition, isolation of infection sources in hospitals, animal testing facilities, home bathrooms and dryers.

本発明の2重円筒形状を持つ一単位装置の内部を構成する内筒の外観図External view of an inner cylinder constituting the inside of a unit device having a double cylindrical shape of the present invention 外筒の断面図(上)と下部から観めた本装置の概略図Cross-sectional view of the outer cylinder (top) and schematic view of the device viewed from the bottom 本発明装置(単位)を2個連結した際の断面図Sectional view when connecting two devices (units) of the present invention 気体Aの湿度を一定にするための付属装置Attached device for keeping humidity of gas A constant

1:外筒:両末端につば状のリムを有する
2:平膜
3:複数の装置を連結する際の外筒間を密閉に連結するためのパッキング
4:外筒間を連結するための締め付け具
5:内筒間を連結する際に気体Aと気体Bとの混合を防止するためのスポンジ状パッキング
6:内筒の円形状枠を支える支持棒
7,7´:円筒を形成する円形状枠
8:平膜と外枠(6,7,7´)とを埋め込むための包理剤(ウレタン樹脂など)
9:気体Bの流路連結用の空間部
10:外筒の出口部ある締め付け用のツバ状のリム
10´:外筒の出口部にある締め付け用のツバで10よりも内部のツバの幅が広い
11:内筒の内部の気体Aの流路
12:気体Aの流れの方向
13:気体Bの流れの方向
a:樹脂製の水槽で、A、Bの2室に区切られている
b:A、B室に隔離するための平膜でイオンと水とは膜の出入可能であるが微粒子の出入は不能、ポリエステル不織布を基布として、平均孔径300nmの酢酸セルロース多孔性膜
c:A室側の底部に存在する未溶解の金属塩
d:B室内の底部に残留する金属塩
e:A,B室中の液体の流出入口
A:気体A側に連結する室
B:気体B側に連結する室
C:不織布と平膜とで構成する水粒子および金属塩の微粒子の分離層
Pa:気体Aが流入するパイプで底部が気泡発生用小孔を持つ
Pb:気体Aの流出口
Pr:気体Bまたは大気の流出入口
1: outer cylinder: having brim-shaped rims at both ends 2: flat membrane 3: packing for tightly connecting the outer cylinders when connecting a plurality of devices 4: tightening for connecting the outer cylinders Tool 5: Sponge-like packing for preventing mixing of gas A and gas B when connecting the inner cylinders 6: Support rod for supporting the circular frame of the inner cylinder 7, 7 ': Circular shape forming a cylinder Frame 8: Embedding agent (urethane resin, etc.) for embedding the flat membrane and the outer frame (6, 7, 7 ')
9: Space portion for connecting the flow path of the gas B 10: A flange-shaped rim for tightening at the outlet portion of the outer cylinder 10 ': A width of the flange inside than the flange 10 for tightening at the outlet portion of the outer cylinder 11: Flow path of gas A inside the inner cylinder 12: Flow direction of gas A 13: Flow direction of gas B a: Resin water tank divided into two chambers A and B b : A flat membrane for separation into the A and B chambers. Ion and water can enter and exit the membrane, but fine particles cannot enter and exit. Cellulose acetate porous membrane with an average pore size of 300 nm using a polyester nonwoven fabric as a base fabric c: A Undissolved metal salt present at the bottom of the chamber side d: Metal salt remaining at the bottom of the B chamber e: Outflow inlet for liquid in the A and B chambers A: Chamber connected to the gas A side B: On the gas B side Chamber C: Separation layer of water particles and metal salt fine particles composed of nonwoven fabric and flat membrane Pa: gas A pipe into which the body A flows in, and a bottom portion having a small hole for generating bubbles Pb: Outlet for gas A
Pr: Gas B or air outlet

Claims (4)

高温で湿った気体より水分を除去する装置において筒状の多孔性平膜モジュールの内部に湿った高温の気体(これを気体Aと略称)を流す回路を有し該筒状平膜の外側を該気体より絶対湿度の低い気体(これを気体Bと略称)を流す回路を形成する二重筒で構成された装置で多孔性の平膜は2種以上の親水性高分子の材料で構成されていることを特徴とする装置であり水分の膜透過機構において拡散の寄与が中心であることを特徴とする水分除去方法。       In an apparatus for removing moisture from a gas wet at a high temperature, a circuit for flowing a high temperature wet gas (abbreviated as gas A) inside the cylindrical porous flat membrane module is provided. A device composed of a double cylinder that forms a circuit for flowing a gas having an absolute humidity lower than that of the gas (this is abbreviated as gas B), and the porous flat membrane is composed of two or more hydrophilic polymer materials. A moisture removal method characterized in that the contribution of diffusion is central in the moisture membrane permeation mechanism. 請求項1において平膜の平均孔径は300nm以下で5nm以上で空孔率は30%以上であり、気体B側の膜面の平均孔径が湿った高温の気体Aに接する膜表面の平均孔径より大きく、親水性高分子材料として再生セルロースで、再生セルロース不織布と再生セルロース多孔膜との複合体であることを特徴とする装置であり、気体B側の圧力が湿った高湿の気体Aの圧力より大きく圧力を設定することを特徴とする水分除去方法。     In claim 1, the average pore diameter of the flat membrane is 300 nm or less, 5 nm or more, the porosity is 30% or more, and the average pore size of the membrane surface on the gas B side is higher than the average pore size of the membrane surface in contact with the wet gas A It is a large and regenerated cellulose as a hydrophilic polymer material, which is a composite of a regenerated cellulose nonwoven fabric and a regenerated cellulose porous membrane, and the pressure of the high-humidity gas A in which the pressure on the gas B side is wet A method for removing moisture, characterized by setting a larger pressure. 請求項2において再生セルロース多孔膜として膜厚が100μm以上であり、膜構造として多層構造膜であることが特徴である水分除去装置および水分除去方法。     The moisture removing apparatus and the moisture removing method according to claim 2, wherein the regenerated cellulose porous membrane has a film thickness of 100 µm or more and the membrane structure is a multilayer structure membrane. 請求項3において平膜での拡散機構での水分除去後の気体Aおよび膜による水分移動前の気体Bを乾燥剤で吸着処理することを特徴とする水分除去方法。     The moisture removal method according to claim 3, wherein the gas A after moisture removal by the diffusion mechanism in the flat membrane and the gas B before moisture migration by the membrane are adsorbed with a desiccant.
JP2009010449A 2009-01-21 2009-01-21 Apparatus and method of removing moisture in gas Pending JP2010167339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009010449A JP2010167339A (en) 2009-01-21 2009-01-21 Apparatus and method of removing moisture in gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009010449A JP2010167339A (en) 2009-01-21 2009-01-21 Apparatus and method of removing moisture in gas

Publications (1)

Publication Number Publication Date
JP2010167339A true JP2010167339A (en) 2010-08-05

Family

ID=42699976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009010449A Pending JP2010167339A (en) 2009-01-21 2009-01-21 Apparatus and method of removing moisture in gas

Country Status (1)

Country Link
JP (1) JP2010167339A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012071250A (en) * 2010-09-28 2012-04-12 Sepa Sigma Inc Method of manufacturing regenerated cellulose multilayer structure flat membrane
JP2012076066A (en) * 2010-10-06 2012-04-19 Sepa Sigma Inc Energy-saving type dehumidifying and heat-recovering device
CN116632767A (en) * 2023-07-24 2023-08-22 中韶电气股份有限公司 High-voltage cable branch box

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5437498Y2 (en) * 1975-07-24 1979-11-09
JPS5959236A (en) * 1982-09-28 1984-04-05 Asahi Chem Ind Co Ltd Dehumidification and heat recovery of wet hot air
JPS60259897A (en) * 1984-06-05 1985-12-21 Japan Vilene Co Ltd Total heat exchange element
JPS62241527A (en) * 1986-04-14 1987-10-22 Daicel Chem Ind Ltd Dehumidifying method for air
JPS63264123A (en) * 1986-02-05 1988-11-01 ロ−ヌ−プ−ラン・ルシエルシユ Composite hollow fiber for removing steam from air or carbon dioxide
JPH01194927A (en) * 1988-01-27 1989-08-04 Japan Gore Tex Inc Steam permselective membrane
JPH03186315A (en) * 1989-12-14 1991-08-14 Ckd Corp Dehumidifier device
JPH1176778A (en) * 1997-09-05 1999-03-23 Nok Corp Polyether imide dehumidifying membrane
JP2006055780A (en) * 2004-08-20 2006-03-02 Seiichi Manabe Flat-membrane-pore diffusion separator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5437498Y2 (en) * 1975-07-24 1979-11-09
JPS5959236A (en) * 1982-09-28 1984-04-05 Asahi Chem Ind Co Ltd Dehumidification and heat recovery of wet hot air
JPS60259897A (en) * 1984-06-05 1985-12-21 Japan Vilene Co Ltd Total heat exchange element
JPS63264123A (en) * 1986-02-05 1988-11-01 ロ−ヌ−プ−ラン・ルシエルシユ Composite hollow fiber for removing steam from air or carbon dioxide
JPS62241527A (en) * 1986-04-14 1987-10-22 Daicel Chem Ind Ltd Dehumidifying method for air
JPH01194927A (en) * 1988-01-27 1989-08-04 Japan Gore Tex Inc Steam permselective membrane
JPH03186315A (en) * 1989-12-14 1991-08-14 Ckd Corp Dehumidifier device
JPH1176778A (en) * 1997-09-05 1999-03-23 Nok Corp Polyether imide dehumidifying membrane
JP2006055780A (en) * 2004-08-20 2006-03-02 Seiichi Manabe Flat-membrane-pore diffusion separator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012071250A (en) * 2010-09-28 2012-04-12 Sepa Sigma Inc Method of manufacturing regenerated cellulose multilayer structure flat membrane
JP2012076066A (en) * 2010-10-06 2012-04-19 Sepa Sigma Inc Energy-saving type dehumidifying and heat-recovering device
CN116632767A (en) * 2023-07-24 2023-08-22 中韶电气股份有限公司 High-voltage cable branch box
CN116632767B (en) * 2023-07-24 2023-10-17 中韶电气股份有限公司 High-voltage cable branch box

Similar Documents

Publication Publication Date Title
EP2717999B1 (en) A heat and moisture exchanger
Bui et al. Water vapor permeation and dehumidification performance of poly (vinyl alcohol)/lithium chloride composite membranes
CN107249715B (en) Liquid-gas film energy exchanger
Bui et al. Effect of hygroscopic materials on water vapor permeation and dehumidification performance of poly (vinyl alcohol) membranes
US11976445B2 (en) Atmospheric water generation method and device
US20140157985A1 (en) Dehumidification Systems and Methods Thereof
Bui et al. Studying the characteristics and energy performance of a composite hollow membrane for air dehumidification
Gebreyohannes et al. Hollow fibers with encapsulated green amino acid-based ionic liquids for dehydration
Ataeivarjovi et al. Study on CO2 desorption behavior of a PDMS–SiO2 hybrid membrane applied in a novel CO2 capture process
Lim et al. Membrane-based air dehumidification: A comparative review on membrane contactors, separative membranes and adsorptive membranes
WO2022014652A1 (en) Humidity conditioning system, adsorption and desorption device, humidity conditioning device, and humidity conditioning method
JP2010167339A (en) Apparatus and method of removing moisture in gas
Hung et al. Tuneable interlayer spacing self-assembling on graphene oxide-framework membrane for enhance air dehumidification
Khan et al. Fabrication of highly selective PEBA mixed matrix membranes by incorporating metal-organic framework MIL-53 (Al) for the pervaporation separation of pyridine-water mixture
Sainath et al. Zeolitic imidazolate framework-8 nanoparticles coated composite hollow fiber membranes for CO2/CH4 separation
Kachhadiya et al. Preparation and characterization of ZIF-8 and ZIF-67 engineered PVDF mixed-matrix membranes: stability enhancement in pervaporation study
Zhao et al. Pre-anchoring matrix onto zeolitic imidazolate frameworks towards defect-free mixed matrix membranes for efficient CO2 separation
JP5782669B2 (en) How to remove moisture from the air
Zha et al. Mixed-matrix membranes comprising porous organic molecular cage for efficient CO2 capture
Gallardo et al. Construction of graphene oxide intercalated with UiO-66-PEI heterostructure membrane for efficient pervaporation dehydration of isopropanol
JP2022520451A (en) Solar drive membrane type open cycle adsorption air conditioner
WO2015094124A1 (en) A membrane and hybrid air dehumidification system using same for improved moisture removal
JP2012076066A (en) Energy-saving type dehumidifying and heat-recovering device
JP2012024679A (en) Method for removing water in gas
JP6093678B2 (en) Method for producing asymmetric membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141118