JP2010164856A - Optical module - Google Patents

Optical module Download PDF

Info

Publication number
JP2010164856A
JP2010164856A JP2009008186A JP2009008186A JP2010164856A JP 2010164856 A JP2010164856 A JP 2010164856A JP 2009008186 A JP2009008186 A JP 2009008186A JP 2009008186 A JP2009008186 A JP 2009008186A JP 2010164856 A JP2010164856 A JP 2010164856A
Authority
JP
Japan
Prior art keywords
optical
light receiving
waveguide circuit
light
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009008186A
Other languages
Japanese (ja)
Inventor
Fumihiro Ebisawa
文博 海老澤
Hiroshi Terui
博 照井
Kazumi Shimizu
和美 清水
Kuniharu Kato
邦治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Electronics Corp
Original Assignee
NTT Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Electronics Corp filed Critical NTT Electronics Corp
Priority to JP2009008186A priority Critical patent/JP2010164856A/en
Publication of JP2010164856A publication Critical patent/JP2010164856A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical module which has improved heat dissipation efficiency of heat generating component. <P>SOLUTION: The optical module has a substrate which has a level difference between an upper stage and a lower stage in a normal direction on a surface, an optical waveguide circuit which has a waveguide arranged on the upper stage of the substrate, an optical element which is arranged on the lower stage of the substrate, and a reflective element which optically connects the optical waveguide circuit and the optical element. When the optical element is a light receiving element, the optical module is a light receiving module, and, when the optical element is a light emitting element, the optical module is a light emitting module. As the optical element and the optical waveguide circuit are spatially separated, heat is not directly transmitted between the optical element and the optical waveguide circuit. Therefore, heat generated by the optical element and the optical waveguide circuit is dissipated through the substrate, thereby heat dissipation efficiency is improved. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光導波回路を伝搬する光信号を送信あるいは受光する光学モジュールを提供する技術に関する。   The present invention relates to a technique for providing an optical module that transmits or receives an optical signal propagating through an optical waveguide circuit.

従来の受光モジュールは、光導波回路を伝わってきた光を反射ミラーで上方に反射し、自己形成光導波回路をさら伝搬して受光素子面上に光が到達して、受光される構造が知られている(例えば、特許文献1を参照。)。また、光導波回路フィルムのコア部にミラー付微小光学反射部品を配置し、コアを伝搬してきた光を斜め45度上方に反射させ、その光軸に配置された微小レンズを通してしてクラッド上部から集光ビームとして受光素子面で受光する構造も知られている(例えば、特許文献2を参照。)。微小レンズが設置されているため、光ビームの集光が容易であり、小さな受光面を持つPDの受光も可能である。   A conventional light receiving module is known to reflect light that has been transmitted through an optical waveguide circuit upward by a reflecting mirror, propagate further through a self-forming optical waveguide circuit, and reach the light receiving element surface to receive light. (For example, see Patent Document 1). In addition, a micro-optical reflective component with a mirror is disposed in the core portion of the optical waveguide circuit film, the light propagating through the core is reflected upward by 45 degrees obliquely, and from the upper part of the clad through the micro lens disposed on the optical axis. A structure that receives light on the light receiving element surface as a focused beam is also known (see, for example, Patent Document 2). Since the minute lens is installed, it is easy to collect the light beam, and the PD having a small light receiving surface can be received.

特開2007−071951号公報JP 2007-071951 A 特開2005−164801号公報JP 2005-164801 A

特許文献1のような受光モジュールは、45度ミラーで光路変換を行っているが、受光素子を導波路基板上に搭載する構造のため、受光素子あるいは送信部の発光素子の放熱が課題であった。また、特許文献2のような受光モジュールは、超高周波対応型になると受光素子やトランスインピーダンスアンプ(TIA)などの発熱部品を光導波回路の上に配置せざるを得なくなる。例えば、光導波回路がフッ素化ポリイミド、紫外線硬化型エポキシ、ポリメチルメタクリレート(PMMA)など高分子材料である場合、それぞれの熱伝導率は0.24W/mK、0.58W/mK、0.21W/mKと小さいため、熱伝導性が悪く、発熱部品の放熱に課題があった。このほかに光導波回路が石英ガラス(熱伝導率2W/mK)やSi基板上(熱伝導率150W/mK)に厚さ数十μmの石英ガラスを形成したものがあるが、いずれも光導波回路上に発熱部品を搭載する場合にその熱伝導率は小さく、放熱性に課題があった。   The light receiving module as in Patent Document 1 performs optical path conversion with a 45-degree mirror. However, because of the structure in which the light receiving element is mounted on the waveguide substrate, heat radiation of the light receiving element or the light emitting element of the transmitter is an issue. It was. In addition, when a light receiving module such as that disclosed in Patent Document 2 is an ultra-high frequency compatible type, heat generating components such as a light receiving element and a transimpedance amplifier (TIA) must be disposed on the optical waveguide circuit. For example, when the optical waveguide circuit is a polymer material such as fluorinated polyimide, ultraviolet curable epoxy, polymethyl methacrylate (PMMA), the thermal conductivity is 0.24 W / mK, 0.58 W / mK, 0.21 W, respectively. Since it is as small as / mK, the thermal conductivity is poor, and there is a problem in heat dissipation of the heat-generating component. In addition, there are optical waveguide circuits in which quartz glass (thermal conductivity 2 W / mK) or quartz glass with a thickness of several tens of μm is formed on a Si substrate (thermal conductivity 150 W / mK). When a heat-generating component is mounted on a circuit, its thermal conductivity is small and there is a problem in heat dissipation.

そこで、本発明は、発熱部品の放熱効率を高めた光学モジュールを提供することを目的とする。   Therefore, an object of the present invention is to provide an optical module with improved heat dissipation efficiency of a heat-generating component.

上記目的を達成するために、本発明に係る光学モジュールは、発熱部品を光導波回路から空間分離し、光導波回路と独立に放熱できる構造とした。   In order to achieve the above object, the optical module according to the present invention has a structure in which the heat-generating component is spatially separated from the optical waveguide circuit and can radiate heat independently of the optical waveguide circuit.

具体的には、本発明に係る光学モジュールは、表面に法線方向に上段と下段の段差がある基板と、前記基板の上段面上に配置された導波路を有する光導波回路と、前記基板の下段面上に配置された光学素子と、前記光導波回路と前記光学素子とを光学的に結合する反射素子と、を備える。   Specifically, an optical module according to the present invention includes a substrate having a surface having upper and lower steps in a normal direction on the surface, an optical waveguide circuit having a waveguide disposed on the upper surface of the substrate, and the substrate And an optical element disposed on the lower surface of the optical waveguide circuit, and a reflective element that optically couples the optical waveguide circuit and the optical element.

光学素子と光導波回路とを空間分離したため、双方間で熱は直接伝達しない。このため、互いが発生する熱はそれぞれ基板を通じて放熱されることになり、放熱効率が向上する。従って、本発明は、発熱部品の放熱効率を高めた光学モジュールを提供することができる。   Since the optical element and the optical waveguide circuit are spatially separated, heat is not directly transferred between the two. For this reason, the heat which mutually generate | occur | produces will be thermally radiated through a board | substrate, respectively, and the thermal radiation efficiency will improve. Therefore, the present invention can provide an optical module with improved heat dissipation efficiency of the heat generating component.

前記光導波回路は、前記導波路の端面に前記反射素子を有することが好ましい。また、前記光学素子は、受光素子又は発光素子とすることができる。   The optical waveguide circuit preferably includes the reflective element on an end face of the waveguide. The optical element can be a light receiving element or a light emitting element.

本発明に係る光学モジュールは、前記反射素子と前記光学素子との間にレンズ部をさらに備える。光学素子と光導波回路とを空間分離すると温度変動や実装精度などから受光感度の低下が懸念される。本発明に係る光学モジュールは、レンズ部で受光素子の受光面に集光しており、このレンズ部を光の伝搬路のほぼ中間に設置するため、温度変動や実装精度変動があっても受光感度の変化が少ない。   The optical module according to the present invention further includes a lens portion between the reflective element and the optical element. If the optical element and the optical waveguide circuit are spatially separated, there is a concern that the light receiving sensitivity may be lowered due to temperature fluctuation, mounting accuracy, and the like. In the optical module according to the present invention, the lens unit collects light on the light receiving surface of the light receiving element, and the lens unit is installed in the middle of the light propagation path. There is little change in sensitivity.

本発明に係る光学モジュールは、前記光学素子を覆うガラス窓を有する。ガラス窓で光学素子を覆うことで気密構造とすることができ、光学素子の長期信頼性を確保することができる。また、ガラスであるため気密構造であっても光学素子はガラス窓を介して光を受光又は出射することができる。   The optical module according to the present invention has a glass window covering the optical element. By covering the optical element with a glass window, an airtight structure can be obtained, and long-term reliability of the optical element can be ensured. Moreover, since it is glass, even if it has an airtight structure, the optical element can receive or emit light through the glass window.

前記レンズ部は前記ガラス窓に配置することができる。フラットなガラス窓にマイクロレンズアレイのようなレンズを直接接着固定することでレンズ部の配置が容易であり、実装が容易になる。   The lens unit may be disposed on the glass window. By directly adhering and fixing a lens such as a microlens array to a flat glass window, the lens portion can be easily arranged and mounted.

また、前記レンズ部は前記反射素子の端面に配置してもよい。マイクロレンズアレイの作成方法として、金型による精密モールド成形法がある。本方法によれば、三角プリズムとマイクロレンズアレイを一体として製造可能であり、部品点数の削減によるコスト低減とともに一体化されたことで実装が容易になるという効果がある。   The lens unit may be disposed on the end surface of the reflective element. As a method for producing a microlens array, there is a precision molding method using a mold. According to this method, the triangular prism and the microlens array can be manufactured as one body, and there is an effect that the mounting is facilitated by reducing the cost by reducing the number of parts.

本発明に係る光学モジュールは、前記基板の下段面上に、前記光学素子に関する電気回路をさらに搭載してもよい。光学素子に関する電気回路とは、例えば、受光素子からの電気信号を増幅する増幅回路や発光素子のドライバである。このような電気回路からの熱も基板を通じて放熱することができる。   The optical module according to the present invention may further include an electric circuit related to the optical element on the lower surface of the substrate. The electric circuit related to the optical element is, for example, an amplifier circuit that amplifies an electric signal from the light receiving element or a driver of the light emitting element. Heat from such an electric circuit can also be dissipated through the substrate.

本発明は、発熱部品の放熱効率を高めた光学モジュールを提供することができる。また、温度変動や実装精度変動があっても受光感度あるいは光導波回路への光結合率の変化が少ない光学モジュールを提供することができる。   The present invention can provide an optical module with improved heat dissipation efficiency of a heat-generating component. Further, it is possible to provide an optical module in which there is little change in light receiving sensitivity or optical coupling rate to the optical waveguide circuit even when there are temperature fluctuations and mounting accuracy fluctuations.

本発明に係る光学モジュールを説明する概観図である。It is a general-view figure explaining the optical module which concerns on this invention. 光導波回路の一端部付近の断面と光ビームの伝搬の様子を説明する図である。It is a figure explaining the mode of propagation of a cross section near one end of an optical waveguide circuit, and a light beam. 光導波回路の一端部付近の断面と光ビームの伝搬の様子を説明する図である。It is a figure explaining the mode of propagation of a cross section near one end of an optical waveguide circuit, and a light beam. マイクロレンズアレイを説明する図である。It is a figure explaining a micro lens array. GRINレンズを搭載したマイクロレンズアレイを説明する図である。It is a figure explaining the micro lens array carrying a GRIN lens. プリズムマイクロレンズアレイを説明する図である。It is a figure explaining a prism micro lens array.

以下、具体的に実施形態を示して本発明を詳細に説明するが、本願の発明は以下の記載に限定して解釈されない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Hereinafter, the present invention will be described in detail with specific embodiments, but the present invention is not construed as being limited to the following description. In the present specification and drawings, the same reference numerals denote the same components.

(第1の実施形態)
図1は、本発明に係る光学モジュールの一実施形態である受光モジュールを説明する概観図である。受光モジュールは、基板11に搭載された光導波回路12と受光パッケージ16の2つの部品から構成される。この2つの部品は基板11に直接搭載されているが、空間的に分離されていることが特徴である。詳細には、図1の受光モジュールは、表面に法線方向に上段11bと下段11aの段差がある基板11と、基板11の上段11b面上に配置された導波路を有する光導波回路12と、光導波回路12の導波路端面に配置され、導波路端面からの光を基板11の下段11a方向に反射する反射素子13と、反射素子13からの入力光を集光するレンズ部14と、レンズ部14で集光された入力光を受光して電気信号に変換する受光素子15と、基板11の下段11a面上に配置され、受光素子15を搭載する受光パッケージ16と、を備える。なお、本明細書では、基板11の面から法線方向に離れる方向を上として説明している。
(First embodiment)
FIG. 1 is a schematic view illustrating a light receiving module which is an embodiment of an optical module according to the present invention. The light receiving module is composed of two components, an optical waveguide circuit 12 mounted on the substrate 11 and a light receiving package 16. These two components are directly mounted on the substrate 11, but are characterized by being spatially separated. Specifically, the light receiving module of FIG. 1 includes a substrate 11 having a step 11b and a lower step 11a in the normal direction on the surface, and an optical waveguide circuit 12 having a waveguide disposed on the upper surface 11b of the substrate 11. A reflection element 13 that is disposed on the waveguide end face of the optical waveguide circuit 12 and reflects light from the waveguide end face toward the lower stage 11a of the substrate 11, and a lens section 14 that collects input light from the reflection element 13. A light receiving element 15 that receives input light collected by the lens unit 14 and converts it into an electrical signal, and a light receiving package 16 that is disposed on the lower surface 11a of the substrate 11 and on which the light receiving element 15 is mounted. In the present specification, the direction away from the surface of the substrate 11 in the normal direction is described as the top.

基板11は下段部11aと上段部11bとからなる。下段部11aに受光パッケージ16が配置され、上段部11bに光導波回路12が配置される。このとき、光導波回路12の一端が受光パッケージ16の上方にあるように配置する。   The substrate 11 includes a lower step portion 11a and an upper step portion 11b. The light receiving package 16 is disposed in the lower step portion 11a, and the optical waveguide circuit 12 is disposed in the upper step portion 11b. At this time, the optical waveguide circuit 12 is disposed so that one end thereof is located above the light receiving package 16.

光導波回路12は、例えば、アレイ導波路格子である。他端から入射した波長多重通信光は、アレイ導波路格子の光導波回路12で波長分離され、本実施例では10個の異なる波長の光として光導波回路12の一端から出射される。その出射部に反射素子13である三角プリズムが接着剤で固定されている。光導波回路12は薄いため、光導波回路12の一端をやとい26で補強し、反射素子13が接着される。10個の異なる波長の光は、約90度下方に方向を変換され、三角プリズムの下面から空間に出射される。10個の異なる波長の光のビーム直径は光導波回路12出射後、伝搬距離に依存して次第に拡大する。   The optical waveguide circuit 12 is, for example, an arrayed waveguide grating. Wavelength multiplexed communication light incident from the other end is wavelength-separated by the optical waveguide circuit 12 of the arrayed waveguide grating, and is emitted from one end of the optical waveguide circuit 12 as light of ten different wavelengths in this embodiment. A triangular prism which is the reflection element 13 is fixed to the light emitting portion with an adhesive. Since the optical waveguide circuit 12 is thin, one end of the optical waveguide circuit 12 is reinforced by the shield 26 and the reflective element 13 is bonded. The light of ten different wavelengths is changed in direction by about 90 degrees downward and is emitted into the space from the lower surface of the triangular prism. The beam diameters of the ten light beams having different wavelengths gradually increase depending on the propagation distance after exiting the optical waveguide circuit 12.

受光パッケージ16は、受光素子15や図示しないトランスインピーダンスアンプ(TIA)18等の電子部品が内蔵され、窓ガラス17(図1において不図示)で気密封止された構造を持っている。トランスインピーダンスアンプ18は、受光素子15からの電気信号を増幅する増幅素子である。トランスインピーダンスアンプ18は、超高周波の変調光に対応するため受光素子15に近接した場所に配置される。   The light receiving package 16 has a structure in which electronic components such as a light receiving element 15 and a transimpedance amplifier (TIA) 18 (not shown) are built and hermetically sealed with a window glass 17 (not shown in FIG. 1). The transimpedance amplifier 18 is an amplifying element that amplifies the electric signal from the light receiving element 15. The transimpedance amplifier 18 is disposed at a location close to the light receiving element 15 in order to cope with the ultrahigh frequency modulated light.

本実施例では10個の異なる波長の光を同時並列的に受光するため、受光パッケージ16は、受光素子15とトランスインピーダンスアンプ18を10組内蔵している。10本の光ビームをそれぞれ10個の受光素子15に集光させるために受光パッケージ16の窓ガラス17の直上にマイクロレンズアレイ21が接着剤などで固定されている。   In the present embodiment, ten light receiving packages 16 contain ten sets of light receiving elements 15 and transimpedance amplifiers 18 in order to simultaneously receive light of ten different wavelengths in parallel. A microlens array 21 is fixed with an adhesive or the like directly above the window glass 17 of the light receiving package 16 in order to focus the ten light beams on the ten light receiving elements 15 respectively.

図4に示すように、マイクロレンズアレイ21は10個のレンズ部14を搭載している。レンズ部14は凸レンズである。マイクロレンズアレイ21は、図5のようにGRINレンズ24を搭載してもよい。反射素子13から空間に放射された10本の光ビームはマイクロレンズアレイ21で集光されて各受光素子15の受光面に到達する。   As shown in FIG. 4, the microlens array 21 has ten lens portions 14 mounted thereon. The lens unit 14 is a convex lens. The microlens array 21 may be equipped with a GRIN lens 24 as shown in FIG. The ten light beams radiated into the space from the reflecting element 13 are collected by the microlens array 21 and reach the light receiving surface of each light receiving element 15.

10Gbps程度の変調光を受光するため、受光素子15の受光面直径は10〜30μm程度と小さいが、マイクロレンズアレイ21のレンズ部14又はGRINレンズ24で受光素子15の受光面直径よりも小さい光ビームに集光させることが可能である。受光パッケージ16が基板11の下段11aに直接搭載されているため、受光素子15やトランスインピーダンスアンプ18からの熱は直接基板11を介して排熱可能である。一方、光導波回路12にも熱光学(TO)効果による可変光減衰器などの光回路を設置することが多い。光導波回路12が基板11の上段11bに直接搭載されているため、光回路からの熱も直接基板11を介して排熱可能である。ここでは基板材料として、熱伝導性のよい金属材料(例えば、CuW、KOVAR、INVARなどでそれぞれの熱伝導率は255W/mK、18W/mK、13W/mK)を用い、また受光パッケージの底面にはCuWやアルミナ積層セラミックス(熱伝導率17W/mK)を用いているために、発熱素子の排熱性が優れている。   In order to receive modulated light of about 10 Gbps, the light receiving surface diameter of the light receiving element 15 is as small as about 10 to 30 μm, but the light is smaller than the light receiving surface diameter of the light receiving element 15 by the lens portion 14 or the GRIN lens 24 of the microlens array 21. It is possible to focus the beam. Since the light receiving package 16 is directly mounted on the lower stage 11 a of the substrate 11, heat from the light receiving element 15 and the transimpedance amplifier 18 can be exhausted directly through the substrate 11. On the other hand, the optical waveguide circuit 12 is often provided with an optical circuit such as a variable optical attenuator using a thermo-optic (TO) effect. Since the optical waveguide circuit 12 is directly mounted on the upper stage 11 b of the substrate 11, heat from the optical circuit can also be exhausted directly through the substrate 11. Here, a metal material with good thermal conductivity is used as the substrate material (for example, CuW, KOVAR, INVAR, etc., the thermal conductivity is 255 W / mK, 18 W / mK, 13 W / mK), and the bottom surface of the light receiving package is used. Uses CuW or alumina laminated ceramics (thermal conductivity 17 W / mK), and therefore has excellent heat exhaustion of the heating element.

図2は、光導波回路12の一端部付近の断面と光ビームの伝搬の様子を説明する図である。光導波回路12のコア12bを伝搬した光は出力端12aから出射する。以下、出射した光を光ビームとして説明する。光ビームは出力端12aの開口角(NA)によって決まるある特定のコーン角度を持つガウスビームとして放射される。この光ビームは、広がりながら、光導波回路12と反射素子13との接着層、三角プリズムである反射素子13に入射し、さらに広がりながら、反射素子13の45度傾斜面で全反射により、下方90度に方向が変換される。さらに光ビームは広がりながら、反射素子13下面まで進み、空間に放射される。   FIG. 2 is a diagram for explaining a cross section near one end of the optical waveguide circuit 12 and a state of propagation of the light beam. The light propagated through the core 12b of the optical waveguide circuit 12 is emitted from the output end 12a. Hereinafter, the emitted light will be described as a light beam. The light beam is emitted as a Gaussian beam having a certain cone angle determined by the aperture angle (NA) of the output end 12a. This light beam spreads and enters the adhesive layer of the optical waveguide circuit 12 and the reflective element 13 and the reflective element 13 that is a triangular prism, and further spreads and is reflected by the total reflection on the 45-degree inclined surface of the reflective element 13. The direction is changed to 90 degrees. Further, the light beam spreads to the lower surface of the reflecting element 13 and is emitted to the space.

このときの光ビーム直径は伝搬距離や光導波回路12の出力端12aのNAで決まるが、反射素子13下面とレンズ部14面との間(ギャップ)でおおよそ数百ミクロン程度に広がった。この光ビーム直径より十分大きな有効径を持つレンズ部14を10個搭載したマイクロレンズアレイ21を準備し、受光パッケージ16の上面に配置した窓ガラス17に直接取り付けた。例えば、レンズ部14のレンズ有効径は500μmφとする。例えば、受光素子15の受光面の直径は25μmφとする。光ビームはレンズ部14により6〜7μmφ程度の十分に小さいビームスポットとなって受光素子15の受光面に照射される。   The diameter of the light beam at this time is determined by the propagation distance and the NA of the output end 12a of the optical waveguide circuit 12, but spreads to about several hundred microns between the lower surface of the reflecting element 13 and the surface of the lens portion 14 (gap). A microlens array 21 having 10 lens portions 14 having an effective diameter sufficiently larger than the light beam diameter was prepared and directly attached to the window glass 17 disposed on the upper surface of the light receiving package 16. For example, the effective lens diameter of the lens unit 14 is 500 μmφ. For example, the diameter of the light receiving surface of the light receiving element 15 is 25 μmφ. The light beam is applied to the light receiving surface of the light receiving element 15 by the lens unit 14 as a sufficiently small beam spot of about 6 to 7 μmφ.

光導波回路12はわずかではあるがどちらかの面方向に反っている場合が多い。例えば、光導波回路12の一端が最大で10μm程度の反り(図2において紙面に垂直方向に反り、出力端12aが弓なりに配列する。)があったと仮定すると光導波回路12の出力端12aの位置は上下方向にそり量だけずれ、光ビームが反射素子13へ入射する入射点はおよそ上下方向に10μm程度変位する。図2の光学配置で反射素子13へ入射する入射点が10μm程度変位した場合、受光素子15の受光面上の照射スポットはおよそ5μmの変位があることがわかった。   In many cases, the optical waveguide circuit 12 is slightly warped in either direction. For example, if it is assumed that one end of the optical waveguide circuit 12 has a warp of about 10 μm at the maximum (warping in the direction perpendicular to the paper surface in FIG. 2 and the output end 12a is arranged like a bow), the output end 12a of the optical waveguide circuit 12 The position is shifted in the vertical direction by the amount of warpage, and the incident point where the light beam enters the reflecting element 13 is displaced approximately 10 μm in the vertical direction. When the incident point incident on the reflecting element 13 is displaced by about 10 μm in the optical arrangement of FIG. 2, the irradiation spot on the light receiving surface of the light receiving element 15 is found to be displaced by about 5 μm.

ビームスポット直径が7μmφでその中心が5μmシフトしていた場合、受光面中心から最大で8.5μm離れた位置にまで光ビームの照射領域が広がることになる。受光素子15の受光面直径が25μmφなので、光導波回路12の反りがあったとしても受光素子15の受光面から外れることはない。つまり、本受光モジュールの受光感度は光導波回路12のそりが最大10μmあっても十分な余裕がある。   When the beam spot diameter is 7 μmφ and the center is shifted by 5 μm, the irradiation area of the light beam spreads to a position that is at most 8.5 μm away from the center of the light receiving surface. Since the diameter of the light receiving surface of the light receiving element 15 is 25 μmφ, even if the optical waveguide circuit 12 is warped, it does not deviate from the light receiving surface of the light receiving element 15. That is, the light receiving sensitivity of the present light receiving module has a sufficient margin even when the warp of the optical waveguide circuit 12 is 10 μm at the maximum.

光導波回路12が反った場合、反射素子13とレンズ部14との間の距離も変化する。反射素子13とレンズ部14とのギャップ間が設計上0.2mmに対して、光導波回路12の反りにより0.3mmに変化した場合について、光ビーム位置、および直径の変化について説明する。   When the optical waveguide circuit 12 warps, the distance between the reflective element 13 and the lens unit 14 also changes. A change in the light beam position and the diameter in the case where the gap between the reflecting element 13 and the lens unit 14 is changed to 0.3 mm due to warpage of the optical waveguide circuit 12 with respect to 0.2 mm in design will be described.

前記ギャップが0.2mmから0.3mmに0.1mm増加した場合、受光素子15の受光面上の光ビームスポット直径は11〜12μmφに増加し、かつ光ビーム中心シフトは5μmであった。光ビームは、受光素子15の受光面中心から最大11μmだけ離れた位置にまで光ビームの照射領域が広がることになるが、光ビームスポットは全て受光素子15の受光面内に存在し、本受光モジュールの受光感度は変化しない。   When the gap increased 0.1 mm from 0.2 mm to 0.3 mm, the light beam spot diameter on the light receiving surface of the light receiving element 15 increased to 11 to 12 μmφ, and the light beam center shift was 5 μm. The light beam irradiates the light beam at a maximum distance of 11 μm from the center of the light receiving surface of the light receiving element 15, but all the light beam spots exist within the light receiving surface of the light receiving element 15. The light sensitivity of the module does not change.

以上説明したように、本受光モジュールは、光導波回路12の反りや実装時の実装トレランスが大きく、安定した受光感度が得られる。また、本受光モジュールは、寸法トレランスも大きいため環境温度変化(−5℃〜75℃)でも受光感度がほとんど低下しない。   As described above, the light receiving module has a large warp of the optical waveguide circuit 12 and a large mounting tolerance at the time of mounting, and a stable light receiving sensitivity can be obtained. Further, since the light receiving module has a large dimensional tolerance, the light receiving sensitivity hardly decreases even when the environmental temperature changes (−5 ° C. to 75 ° C.).

(第2の実施形態)
図3は、本発明に係る光学モジュールの他の実施形態である受光モジュールにおいて、光導波回路12の一端部付近の断面と光ビームの伝搬の様子を説明する図である。本受光モジュールと図2の受光モジュールとの違いは、マイクロレンズアレイ21を用いず、レンズ部14が反射素子23の出射端面に配置されていることである。
(Second Embodiment)
FIG. 3 is a diagram for explaining a cross section near one end of the optical waveguide circuit 12 and a state of propagation of the light beam in a light receiving module which is another embodiment of the optical module according to the present invention. A difference between the light receiving module and the light receiving module of FIG. 2 is that the lens unit 14 is arranged on the emission end face of the reflecting element 23 without using the microlens array 21.

反射素子23は、例えば、図6のようなプリズム31とレンズ部14を一体化したプリズムマイクロレンズアレイである。プリズムマイクロレンズアレイは精密ガラスモールド法で作製することができる。反射素子23のレンズ部14で光ビームを受光素子15の受光面に集光できるので、本受光モジュールの光学特性は図2の受光モジュールとほぼ同等であり、図2の説明と同様の効果を得ることができる。さらに、反射素子23を用いることで、図2の受光モジュールで必要であった反射素子13とマイクロレンズアレイ21との光軸調整が不要となる。このため、本受光モジュールは実装が簡単であり、部品数も低減したことから低価格が実現できる。   The reflective element 23 is, for example, a prism microlens array in which a prism 31 and a lens unit 14 as shown in FIG. 6 are integrated. The prism microlens array can be produced by a precision glass mold method. Since the light beam can be condensed on the light receiving surface of the light receiving element 15 by the lens portion 14 of the reflecting element 23, the optical characteristics of the light receiving module are almost the same as those of the light receiving module of FIG. Obtainable. Furthermore, by using the reflective element 23, it is not necessary to adjust the optical axis between the reflective element 13 and the microlens array 21, which is necessary in the light receiving module of FIG. For this reason, the light receiving module is easy to mount and the number of parts is reduced, so that a low price can be realized.

(第3の実施形態)
本発明の光学モジュールは、発熱の多い可変減衰器を搭載する光学モジュールにも適用できる。このため本光学モジュールは、例えば、波長多重通信光を波長分離し、かつ各波長の光を最適な受光量に減衰調整しながら、高感度で受光できる光多重通信光用の集積化受光モジュールとして利用可能である。
(Third embodiment)
The optical module of the present invention can also be applied to an optical module equipped with a variable attenuator that generates a lot of heat. For this reason, this optical module is, for example, as an integrated light receiving module for optical multiplexed communication light that can receive light with high sensitivity while wavelength-separating wavelength multiplexed communication light and adjusting the attenuation of light of each wavelength to an optimum light receiving amount. Is available.

(第4の実施形態)
本発明の光学モジュールは、発光素子を搭載した発光モジュールとすることもできる。発光素子は端面発光LDと面発光LDがある。面発光LDを使用する発光モジュールの場合、前述の受光素子の代替として面発光LDに置き換え、TIAの代替としてLDドライバに置き換えて配置する構成となる。このため、面発光LDを使用する発光モジュールは、第1の実施形態及び第2の実施形態の受光モジュールの構造と同様になる。発光モジュールの場合、レンズ部で面発光LDの放射角度を調整して結合効率を上げることができる。
(Fourth embodiment)
The optical module of the present invention may be a light emitting module equipped with a light emitting element. There are two types of light emitting elements: edge emitting LDs and surface emitting LDs. In the case of a light emitting module using a surface emitting LD, the light emitting module is replaced with a surface emitting LD as an alternative to the light receiving element, and is replaced with an LD driver as an alternative to TIA. For this reason, the light emitting module using surface emitting LD becomes the same as the structure of the light receiving module of 1st Embodiment and 2nd Embodiment. In the case of the light emitting module, the coupling efficiency can be increased by adjusting the radiation angle of the surface emitting LD at the lens portion.

一方、端面発光LD(直接変調LD、EA変調器付きLDなど)では端面を上部に向ける必要がある。端面発光LDを使用する発光モジュールの場合、端面発光LDを基板の下段面ではなく、側面に搭載して発光部を上部に向けること以外は、面発光LDと同じ構成である。   On the other hand, in an end surface light emitting LD (direct modulation LD, LD with an EA modulator, etc.), the end surface needs to face upward. In the case of a light emitting module using an end surface light emitting LD, the configuration is the same as that of the surface light emitting LD except that the end surface light emitting LD is mounted not on the lower surface of the substrate but on the side surface and the light emitting portion faces upward.

発光素子を使用する発光モジュールの場合、発光素子が熱の影響を受けやすいが、光導波回路と発光素子とが分離されているため、光導波回路が熱光学効果(TO効果)を利用したものであっても、発光素子は光導波回路の熱の影響を受け難い。   In the case of a light emitting module using a light emitting element, the light emitting element is easily affected by heat, but since the optical waveguide circuit and the light emitting element are separated, the optical waveguide circuit uses the thermo-optic effect (TO effect). Even so, the light emitting element is hardly affected by the heat of the optical waveguide circuit.

(第5の実施形態)
第1の実施形態及び第2の実施形態では、光導波回路12の出力端12aに反射素子13を取り付ける構造を説明したが、光導波回路12中にミラーを設けてもよい。具体的には、光導波回路12の表面から反応性イオンエッチング(RIE)などでコア12bを突き抜けて、クラッド層の下部程度まで掘り下げ、そこに反射素子13を埋め込む構造とすることができる。このような構造とすることで光導波回路12の途中で下方に光を取り出すことができる。この光は、Siや石英ガラスなどの材質である基板11を透過して基板11の下面を照射する。基板11の下面が光学研磨されていない場合、散乱による損失が発生するため、基板11の下面を光学研磨し、さらに無反射コーティングを施すことが好ましい。
(Fifth embodiment)
In the first and second embodiments, the structure in which the reflective element 13 is attached to the output end 12a of the optical waveguide circuit 12 has been described. However, a mirror may be provided in the optical waveguide circuit 12. Specifically, a structure in which the core 12b is penetrated from the surface of the optical waveguide circuit 12 by reactive ion etching (RIE) or the like, is dug down to the lower part of the cladding layer, and the reflecting element 13 is embedded therein. With such a structure, light can be extracted downward in the middle of the optical waveguide circuit 12. This light passes through the substrate 11 made of a material such as Si or quartz glass and irradiates the lower surface of the substrate 11. When the lower surface of the substrate 11 is not optically polished, loss due to scattering occurs. Therefore, it is preferable to optically polish the lower surface of the substrate 11 and further apply a non-reflective coating.

11:基板
11a:下段
11b:上段
12:光導波回路
12a:出力端
12b:コア
13:反射素子
14:レンズ部
15:受光素子
16:受光パッケージ
17:窓ガラス
18:トランスインピーダンスアンプ(TIA)
21:マイクロレンズアレイ
23:反射素子
24:GRINレンズ
26:やとい
31:プリズム
11: Substrate 11a: Lower stage 11b: Upper stage 12: Optical waveguide circuit 12a: Output end 12b: Core 13: Reflective element 14: Lens unit 15: Light receiving element 16: Light receiving package 17: Window glass 18: Transimpedance amplifier (TIA)
21: Micro lens array 23: Reflecting element 24: GRIN lens 26: Short 31: Prism

Claims (7)

表面に法線方向に上段と下段の段差がある基板と、
前記基板の上段面上に配置された導波路を有する光導波回路と、
前記基板の下段面上に配置された光学素子と、
前記光導波回路と前記光学素子とを光学的に結合する反射素子と、
を備える光学モジュール。
A substrate having upper and lower steps in the normal direction on the surface;
An optical waveguide circuit having a waveguide disposed on an upper surface of the substrate;
An optical element disposed on a lower surface of the substrate;
A reflective element that optically couples the optical waveguide circuit and the optical element;
An optical module comprising:
前記光導波回路は、前記導波路の端面に前記反射素子を有することを特徴とする請求項1に記載の光学モジュール。   The optical module according to claim 1, wherein the optical waveguide circuit includes the reflective element on an end face of the waveguide. 前記光学素子は、受光素子又は発光素子であることを特徴とする請求項1又は2に記載の光学モジュール。   The optical module according to claim 1, wherein the optical element is a light receiving element or a light emitting element. 前記反射素子と前記光学素子との間にレンズ部をさらに備えることを特徴とする請求項1から3のいずれかに記載の光学モジュール。   The optical module according to claim 1, further comprising a lens portion between the reflective element and the optical element. 前記光学素子を覆うガラス窓を有し、
前記レンズ部は前記ガラス窓に配置されることを特徴とする請求項4に記載の光学モジュール。
A glass window covering the optical element;
The optical module according to claim 4, wherein the lens unit is disposed on the glass window.
前記レンズ部は前記反射素子の端面に配置されていることを特徴とする請求項4に記載の光学モジュール。   The optical module according to claim 4, wherein the lens unit is disposed on an end surface of the reflective element. 前記基板の下段面上に、前記光学素子に関する電気回路をさらに搭載することを特徴とする請求項1から6のいずれかに記載の光学モジュール。   The optical module according to claim 1, further comprising an electric circuit related to the optical element mounted on a lower surface of the substrate.
JP2009008186A 2009-01-16 2009-01-16 Optical module Pending JP2010164856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009008186A JP2010164856A (en) 2009-01-16 2009-01-16 Optical module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009008186A JP2010164856A (en) 2009-01-16 2009-01-16 Optical module

Publications (1)

Publication Number Publication Date
JP2010164856A true JP2010164856A (en) 2010-07-29

Family

ID=42581050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009008186A Pending JP2010164856A (en) 2009-01-16 2009-01-16 Optical module

Country Status (1)

Country Link
JP (1) JP2010164856A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061742A1 (en) 2011-10-26 2013-05-02 古河電気工業株式会社 Optical module
JP2013125045A (en) * 2011-12-13 2013-06-24 Sumitomo Electric Ind Ltd Optical receiving module
WO2013099685A1 (en) * 2011-12-28 2013-07-04 日本電気株式会社 Optical module and method for manufacturing same
JP2013140292A (en) * 2012-01-06 2013-07-18 Sumitomo Electric Ind Ltd Optical receiver module
JP2013195983A (en) * 2012-03-23 2013-09-30 National Institute Of Information & Communication Technology Reflector array optical device and manufacturing method thereof
WO2018058859A1 (en) * 2016-09-30 2018-04-05 Source Photonics (Chengdu) Company Limited Optical subassembly for an optical receiver, optical receiver and transceiver comprising the same, and methods of making and using the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292656A (en) * 1999-04-01 2000-10-20 Sony Corp Light transmitter, and its manufacture
JP2001174671A (en) * 1999-12-16 2001-06-29 Japan Aviation Electronics Industry Ltd Optical element module
JP2003131088A (en) * 2001-10-30 2003-05-08 Kyocera Corp Optical path converting body, method for manufacturing the same, and optical module using the same
JP2003207694A (en) * 2002-01-15 2003-07-25 Nec Corp Optical module
JP2005031556A (en) * 2003-07-10 2005-02-03 Omron Corp Optical path converting type optical coupling element
JP2006119464A (en) * 2004-10-22 2006-05-11 Toshiba Components Co Ltd Single core bidirectional optical transceiver
JP2007148107A (en) * 2005-11-29 2007-06-14 Omron Corp Optical cable module, its manufacturing method and electronic equipment having the same
JP2008015224A (en) * 2006-07-06 2008-01-24 Namiki Precision Jewel Co Ltd Optical connection device and mounting method
JP2008145684A (en) * 2006-12-08 2008-06-26 Sony Corp Optical waveguide and optical module

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292656A (en) * 1999-04-01 2000-10-20 Sony Corp Light transmitter, and its manufacture
JP2001174671A (en) * 1999-12-16 2001-06-29 Japan Aviation Electronics Industry Ltd Optical element module
JP2003131088A (en) * 2001-10-30 2003-05-08 Kyocera Corp Optical path converting body, method for manufacturing the same, and optical module using the same
JP2003207694A (en) * 2002-01-15 2003-07-25 Nec Corp Optical module
JP2005031556A (en) * 2003-07-10 2005-02-03 Omron Corp Optical path converting type optical coupling element
JP2006119464A (en) * 2004-10-22 2006-05-11 Toshiba Components Co Ltd Single core bidirectional optical transceiver
JP2007148107A (en) * 2005-11-29 2007-06-14 Omron Corp Optical cable module, its manufacturing method and electronic equipment having the same
JP2008015224A (en) * 2006-07-06 2008-01-24 Namiki Precision Jewel Co Ltd Optical connection device and mounting method
JP2008145684A (en) * 2006-12-08 2008-06-26 Sony Corp Optical waveguide and optical module

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061742A1 (en) 2011-10-26 2013-05-02 古河電気工業株式会社 Optical module
CN103765270A (en) * 2011-10-26 2014-04-30 古河电气工业株式会社 Optical module
US9122025B2 (en) 2011-10-26 2015-09-01 Furukawa Electric Co., Ltd. Optical module
JP2013125045A (en) * 2011-12-13 2013-06-24 Sumitomo Electric Ind Ltd Optical receiving module
US9197345B2 (en) 2011-12-13 2015-11-24 Sumitomo Electric Industries, Ltd. Receiver optical module for receiving wavelength multiplexed optical signals and method to assemble the same
WO2013099685A1 (en) * 2011-12-28 2013-07-04 日本電気株式会社 Optical module and method for manufacturing same
JPWO2013099685A1 (en) * 2011-12-28 2015-05-07 日本電気株式会社 Optical module and manufacturing method thereof
JP2013140292A (en) * 2012-01-06 2013-07-18 Sumitomo Electric Ind Ltd Optical receiver module
JP2013195983A (en) * 2012-03-23 2013-09-30 National Institute Of Information & Communication Technology Reflector array optical device and manufacturing method thereof
WO2018058859A1 (en) * 2016-09-30 2018-04-05 Source Photonics (Chengdu) Company Limited Optical subassembly for an optical receiver, optical receiver and transceiver comprising the same, and methods of making and using the same
US10168500B2 (en) 2016-09-30 2019-01-01 Source Photonics (Chengdu) Co., Ltd. Optical subassembly for an optical receiver, optical receiver and transceiver comprising the same, and methods of making and using the same

Similar Documents

Publication Publication Date Title
JP6380069B2 (en) Optical transmission module
JP5922042B2 (en) Optical module
JP2010164856A (en) Optical module
KR20090010100A (en) Printed circuit board element comprising an optoelectronic component and an optical waveguide
JP2017041618A (en) Optical module
CN112334821B (en) Optical modulator and optical module using the same
JP2015087756A (en) Double mirror structure for wavelength division multiplexing with polymer waveguides
US11307376B2 (en) Optical module
JP5598845B2 (en) Laser module
JP2017194565A (en) Optical communication module and manufacturing method thereof
JP4704126B2 (en) Optical module
JP6649843B2 (en) Optical circuit
JP3908751B2 (en) Acoustoelectric transducer
JP5028503B2 (en) Optical module
JP2012113094A (en) Optical module
JP6728639B2 (en) Optical wiring connection structure and optical wiring connection method
JP6774885B2 (en) Fiber optic mounting structure and optical module
JP2004233687A (en) Optical waveguide substrate and optical module
JP2005084673A (en) Photo-detector with improved optical coupling efficiency, optical fiber device, and method for forming the same
JP2006003818A (en) Semiconductor integrated circuit chip and its manufacturing method
JP2008166577A (en) Laser module with wavelength monitor
JP2012098756A (en) Optical path converting body and packaging structure thereof, and optical module with the same
JP2016218327A (en) Optical transmission module, optical transmission/reception module, and optical module substrate
KR20150116707A (en) cost effective optical coupling module
JP2008047701A (en) Optical module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120911