JP2010156625A - Apparatus for measuring state of power supply element and apparatus for monitoring state of dc power supply - Google Patents

Apparatus for measuring state of power supply element and apparatus for monitoring state of dc power supply Download PDF

Info

Publication number
JP2010156625A
JP2010156625A JP2008335640A JP2008335640A JP2010156625A JP 2010156625 A JP2010156625 A JP 2010156625A JP 2008335640 A JP2008335640 A JP 2008335640A JP 2008335640 A JP2008335640 A JP 2008335640A JP 2010156625 A JP2010156625 A JP 2010156625A
Authority
JP
Japan
Prior art keywords
power supply
state
temperature
signal
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008335640A
Other languages
Japanese (ja)
Inventor
Isoo Moribayashi
磯雄 盛林
Yoshio Takeda
佳生 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YANAGI ELEC CO Ltd
Original Assignee
YANAGI ELEC CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YANAGI ELEC CO Ltd filed Critical YANAGI ELEC CO Ltd
Priority to JP2008335640A priority Critical patent/JP2010156625A/en
Publication of JP2010156625A publication Critical patent/JP2010156625A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a state measurement apparatus for simply and inexpensively measuring the state quantity, such as, an output voltage and a temperature, when a power supply element is charged and discharged. <P>SOLUTION: In a cell measurement circuit 11, a measurement computer 12 and a capacitor C1 are connected across both terminals of a battery cell B in parallel. An output 14b of an activation photocoupler 14 is connected to the measurement computer 12, a reference voltage generating IC 15 and a temperature sensor 16. THe output terminals of the reference voltage generating IC 15 and the temperature sensor 16 are connected to input terminals of the measurement computer 12. The measurement computer 12 is connected to an input 18a of an output photocoupler 18. The measurement computer 12 receives an activation signal from the activation photocoupler 14; detects the output voltage from each battery cell Bn; reads the temperature from the temperature sensor 16; and calculates the magnitude of the output voltage and the temperature, based on a reference voltage read from the reference voltage generating IC. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、リチウムイオン電池や電気二重層コンデンサのような2〜5.5v程度の範囲の電圧を蓄電し放電させる電源素子の出力電圧や温度のような状態量を検出する状態計測装置と、複数の電源素子を直列接続した電気自動車やハイブリッドカー等の電源として使用される直流電源の状態を監視する直流電源の状態監視装置に関する。   The present invention relates to a state measuring device that detects a state quantity such as an output voltage or temperature of a power supply element that stores and discharges a voltage in a range of about 2 to 5.5 v such as a lithium ion battery or an electric double layer capacitor, The present invention relates to a DC power supply state monitoring device that monitors the state of a DC power supply used as a power supply for an electric vehicle, a hybrid car, or the like in which a plurality of power supply elements are connected in series.

従来、リチウムイオン電池や電気二重層コンデンサのような電源素子を多数直列接続した直流電源については、個々の素子電圧にばらつきが生じやすく、そのために電源素子の寿命が低下するという問題があった。そのため、電源素子の充電時や放電時には、個々のセル単位で電圧や温度を監視し、セル電圧のばらつきを抑えることが必要となる。しかし、個々の電源素子の電圧を測定しようとした場合、測定のための配線が非常に複雑になり、測定が煩雑で測定コストが高価になり、また複数の電源素子を直列接続することにより取り扱い電圧が非常に高くなるという問題があった。これに対して、例えば特許文献1に示すように、フライングキャパシタを利用して個々のセル電圧を測定する装置があるが、この計測装置は切り替え回路が複雑になると共にリレー等多数の高価な部品が必要になるため、装置が非常に高価になるという問題があった。
特開2002−289263号公報
Conventionally, with respect to a DC power supply in which a large number of power supply elements such as lithium ion batteries and electric double layer capacitors are connected in series, there is a problem that individual element voltages are likely to vary, thereby reducing the life of the power supply elements. Therefore, when charging or discharging the power supply element, it is necessary to monitor the voltage and temperature in units of individual cells to suppress cell voltage variations. However, when trying to measure the voltage of each power supply element, the wiring for measurement becomes very complicated, the measurement is complicated and the measurement cost is expensive, and it is handled by connecting multiple power supply elements in series. There was a problem that the voltage became very high. On the other hand, as shown in Patent Document 1, for example, there is a device for measuring individual cell voltages using a flying capacitor, but this measuring device has a complicated switching circuit and many expensive components such as a relay. Therefore, there is a problem that the apparatus becomes very expensive.
JP 2002-289263 A

本発明は、電源素子の充電時と放電時における出力電圧や温度のような状態量を簡易かつ安価に計測できる状態計測装置とを提供することを目的とする。また、本発明は、複数の電源素子を直列接続した直流電源における個々の電源素子の出力電圧や温度状態を簡易かつ安価に監視できる直流電源の状態監視装置を提供することを他の目的とする。   An object of the present invention is to provide a state measurement device that can easily and inexpensively measure state quantities such as output voltage and temperature when a power supply element is charged and discharged. Another object of the present invention is to provide a DC power supply state monitoring device that can easily and inexpensively monitor the output voltage and temperature state of each power supply element in a DC power supply in which a plurality of power supply elements are connected in series. .

上記目的を達成するために請求項1の発明の構成上の特徴は、電源素子から給電されて電源素子の充電時と放電時の状態を計測する状態計測装置であって、外部からの検出開始入力を受けて起動信号を出力する起動フォトカプラと、起動信号に応じて基準電圧を発生する基準電圧発生手段と、起動信号に応じて電源素子の出力電圧を検出し、基準電圧発生手段から基準電圧を読み込み、基準電圧に基づいて出力電圧の大きさを演算することにより電圧演算信号として出力する計測制御手段と、計測制御手段からの電圧演算信号を受けて、電圧演算信号として出力する出力フォトカプラとを設けたことにある。ここで、電源素子としては、リチウムイオン電池のような二次電池や、電気二重層コンデンサ等のスーパーキャパシタである。また、電源素子の状態とは、出力電圧や温度である。   In order to achieve the above object, the constitutional feature of the invention of claim 1 is a state measuring apparatus for measuring the state when the power supply element is charged and discharged by being fed from the power supply element, and starts detection from the outside. A starting photocoupler that receives an input and outputs a starting signal, a reference voltage generating unit that generates a reference voltage in response to the starting signal, and a reference voltage generating unit that detects the output voltage of the power supply element in accordance with the starting signal. Measurement control means that reads the voltage and outputs the voltage calculation signal by calculating the magnitude of the output voltage based on the reference voltage, and the output photo that receives the voltage calculation signal from the measurement control means and outputs it as the voltage calculation signal A coupler is provided. Here, the power supply element is a secondary battery such as a lithium ion battery or a supercapacitor such as an electric double layer capacitor. The state of the power supply element is an output voltage or temperature.

本発明においては、電源素子の充電時と放電時に外部から検出開始入力が送信されると、起動フォトカプラがこれを受けて電源素子の状態の検出を開始するための起動信号を出力する。この起動信号に応じて基準電圧発生手段が基準電圧を発生し、計測制御手段が電源素子の出力電圧を検出し、さらに、計測制御手段が、基準電圧発生手段から基準電圧を読み込んでこの基準電圧に基づいて出力電圧の大きさを演算することにより電圧演算信号として出力する。計測制御手段からの電圧演算信号を受けて、出力フォトカプラが電圧演算信号として出力する。その結果、本発明においては、高速で電源素子の出力電圧を計測することができる。また、本発明においては、起動フォトカプラ、出力フォトカプラ、基準電圧発生装置、計測制御手段等の安価な部品のみで構成されるため、電源素子の状態計測装置が安価に提供される。   In the present invention, when a detection start input is transmitted from the outside during charging and discharging of the power supply element, the startup photocoupler receives this and outputs a start signal for starting detection of the state of the power supply element. In response to the start signal, the reference voltage generating means generates a reference voltage, the measurement control means detects the output voltage of the power supply element, and the measurement control means reads the reference voltage from the reference voltage generating means and reads this reference voltage. Is output as a voltage calculation signal by calculating the magnitude of the output voltage. In response to the voltage calculation signal from the measurement control means, the output photocoupler outputs the voltage calculation signal. As a result, in the present invention, the output voltage of the power supply element can be measured at high speed. Further, in the present invention, since it is composed only of inexpensive parts such as a start-up photocoupler, an output photocoupler, a reference voltage generation device, and a measurement control means, a power supply device state measurement device is provided at low cost.

また、請求項1の発明において、起動信号に応じて電源素子の温度を検出して温度検出値を出力する温度検出手段を設け、計測制御手段が、温度検出手段からの温度検出値を読み込み、基準電圧に基づいて温度検出値の大きさを演算することにより温度演算信号として出力し、温度演算信号を受けて、出力フォトカプラが温度演算信号として出力することができる。これにより、状態計測装置による電圧演算信号の演算出力に加えて、起動信号を受けて温度検出手段によって電源素子の温度が検出され、計測制御手段が温度検出手段からの温度検出値を読み込み、基準電圧に基づいて温度検出値の大きさを演算することにより温度演算信号として出力し、出力フォトカプラから温度演算信号として出力することができる。その結果、本発明によれば、電源素子の状態量として上記出力電圧に加えて温度を得ることができるので、電源素子の状態をより詳しく得ることができる。   Further, in the first aspect of the present invention, there is provided temperature detecting means for detecting the temperature of the power supply element in response to the activation signal and outputting a temperature detection value, and the measurement control means reads the temperature detection value from the temperature detection means, By calculating the magnitude of the temperature detection value based on the reference voltage, it is output as a temperature calculation signal, and upon receipt of the temperature calculation signal, the output photocoupler can output it as a temperature calculation signal. Thereby, in addition to the calculation output of the voltage calculation signal by the state measurement device, the temperature detection means detects the temperature of the power supply element upon receiving the start signal, the measurement control means reads the temperature detection value from the temperature detection means, and the reference By calculating the magnitude of the temperature detection value based on the voltage, it can be output as a temperature calculation signal and output from the output photocoupler as a temperature calculation signal. As a result, according to the present invention, since the temperature can be obtained in addition to the output voltage as the state quantity of the power supply element, the state of the power supply element can be obtained in more detail.

また、請求項3の発明の構成上の特徴は、直列接続された複数の電源素子からなる直流電源の状態を監視する状態監視装置であって、複数の電源素子のそれぞれに請求項1に記載の状態計測装置を接続し、直流電源の充電時あるいは放電時を検知して検知信号を出力する充放電検知手段と、充放電検知手段からの検知信号を受けて、起動フォトカプラに検出開始入力を送信し、複数の状態計測装置からの電圧演算信号を出力フォトカプラから受信する監視制御手段とを設けたことにある。   According to a third aspect of the present invention, there is provided a state monitoring device for monitoring a state of a DC power source composed of a plurality of power supply elements connected in series. Connected to the state measurement device, charge / discharge detection means that detects when the DC power supply is charged or discharged and outputs a detection signal, and receives a detection signal from the charge / discharge detection means, and inputs detection start to the startup photocoupler And a monitoring control means for receiving voltage calculation signals from a plurality of state measuring devices from the output photocoupler.

上記請求項3の発明においては、直列接続された複数の電源素子のそれぞれに請求項1に記載の状態計測装置を接続した状態で、直流電源の充電時あるいは放電時に、充放電検知手段によって検知信号が出力される。充放電検知手段からの検知信号を受けて、監視制御手段から個々の状態計測装置の起動フォトカプラに検出開始入力が送信され、起動フォトカプラがこれを受けて電源素子の状態の検出を開始するための起動信号を出力する。この起動信号を受けて請求項1に記載の各状態計測装置において、検出した電源素子の出力電圧について基準電圧発生手段からの基準電圧に基づいて出力電圧の大きさを演算することにより電圧演算信号として出力され、出力フォトカプラが電圧演算信号として送信し、監視制御手段によって受信される。   In the third aspect of the invention, the state measuring device according to the first aspect is connected to each of the plurality of power supply elements connected in series, and is detected by the charge / discharge detection means when the DC power supply is charged or discharged. A signal is output. Upon receiving a detection signal from the charge / discharge detection means, a detection start input is transmitted from the monitoring control means to the start photocoupler of each state measuring device, and the start photocoupler receives this and starts detecting the state of the power supply element. The start signal for output is output. The state calculation device according to claim 1, wherein the voltage calculation signal is obtained by calculating the magnitude of the output voltage on the basis of the reference voltage from the reference voltage generating means for the detected output voltage of the power supply element. The output photocoupler transmits as a voltage calculation signal and is received by the monitoring control means.

その結果、本発明においては、直流電源の各電源素子は直列接続されており、各電源素子間が絶縁されているため、状態計測装置による計測時に互いの電源素子が他から影響を受けることなく直流電源の各電源素子の状態を簡易かつ正確に監視することができる。また、本発明においては、状態監視装置は、状態計測手段、充放電検知手段、監視制御手段等の安価な部品のみで構成されるため、フライングキャパシタ等を用いた従来の監視装置に比べて大幅に安価に提供される。   As a result, in the present invention, each power supply element of the DC power supply is connected in series, and the power supply elements are insulated from each other, so that the power supply elements are not affected by each other during measurement by the state measuring device. The state of each power supply element of the DC power supply can be monitored easily and accurately. Further, in the present invention, the state monitoring device is composed only of inexpensive parts such as the state measuring unit, the charge / discharge detecting unit, the monitoring control unit, etc., so that it is much larger than the conventional monitoring device using a flying capacitor or the like. Provided at low cost.

また、請求項3の発明において、複数の電源素子を複数組に分けて、各組ごとにそれぞれ1つの温度検出手段を設け、いずれかの状態計測装置の起動フォトカプラからの起動信号を受けて温度検出手段が温度検出信号を出力し、温度検出信号を受けた計測制御手段により基準電圧に基づいて演算された温度演算信号を、出力フォトカプラを通して監視制御手段により受信することができる。これにより、複数の電源素子を複数組に分けた各組から、それぞれ1つの温度検出手段に基づいて温度検出値が得られ、温度検出値と基準電圧に基づいて演算された温度演算信号が出力フォトカプラから送信され、監視制御手段により受信される。その結果、温度検出手段の数を減らしつつ、所定の温度情報が得られる。   Further, in the invention of claim 3, a plurality of power supply elements are divided into a plurality of sets, and one temperature detection means is provided for each set, and a start signal is received from a start photocoupler of any of the state measuring devices. The temperature detection means outputs a temperature detection signal, and the temperature calculation signal calculated based on the reference voltage by the measurement control means that has received the temperature detection signal can be received by the monitoring control means through the output photocoupler. As a result, a temperature detection value is obtained from each set obtained by dividing a plurality of power supply elements into a plurality of sets based on one temperature detection means, and a temperature calculation signal calculated based on the temperature detection value and the reference voltage is output. It is transmitted from the photocoupler and received by the monitoring control means. As a result, predetermined temperature information can be obtained while reducing the number of temperature detecting means.

また、請求項5の発明の構成上の特徴は、直列接続された複数の電源素子からなる直流電源の状態を監視する状態監視装置であって、複数の電源素子のそれぞれに請求項2に記載の状態計測装置を接続し、直流電源の充電時あるいは放電時を検知して検知信号を出力する充放電検知手段と、充放電検知手段からの検知信号を受けて、起動フォトカプラに検出開始入力を送信し、複数の状態計測装置からの電圧演算信号と温度演算信号を出力フォトカプラから受信する監視制御手段とを設けたことにある。   According to a fifth aspect of the present invention, there is provided a state monitoring device for monitoring a state of a direct current power source composed of a plurality of power supply elements connected in series. Connected to the state measurement device, charge / discharge detection means that detects when the DC power supply is charged or discharged and outputs a detection signal, and receives a detection signal from the charge / discharge detection means, and inputs detection start to the startup photocoupler And a monitoring control means for receiving voltage calculation signals and temperature calculation signals from a plurality of state measurement devices from the output photocoupler.

上記請求項5の発明においては、直列接続された複数の電源素子のそれぞれに請求項2に記載の状態計測装置を接続した状態で、直流電源の充電時あるいは放電時に、充放電検知手段によって検知信号が出力される。充放電検知手段からの検知信号を受けて、監視制御手段から個々の状態計測装置の起動フォトカプラに検出開始入力が送信され、起動フォトカプラがこれを受けて電源素子の状態の検出を開始するための起動信号を出力する。この起動信号を受けて、請求項2に記載の各状態計測装置において、検出した電源素子の出力電圧と温度検出手段からの温度検出値について、基準電圧発生手段からの基準電圧に基づいて出力電圧と温度の大きさを演算することにより電圧演算信号と温度演算信号して出力され、出力フォトカプラが電圧演算信号と温度演算信号として送信し、各監視制御手段によって受信される。   In the invention of claim 5 above, the state measuring device according to claim 2 is connected to each of the plurality of power supply elements connected in series, and is detected by the charge / discharge detection means when the DC power supply is charged or discharged. A signal is output. Upon receiving a detection signal from the charge / discharge detection means, a detection start input is transmitted from the monitoring control means to the start photocoupler of each state measuring device, and the start photocoupler receives this and starts detecting the state of the power supply element. The start signal for output is output. In response to the activation signal, in each state measuring device according to claim 2, the output voltage of the detected power supply element and the temperature detection value from the temperature detection means are output based on the reference voltage from the reference voltage generation means. And the temperature calculation signal are output as a voltage calculation signal and a temperature calculation signal, and the output photocoupler transmits the voltage calculation signal and the temperature calculation signal as received by each monitoring control means.

その結果、本発明においては、直流電源の各電源素子は直列接続されており、各電源素子間が絶縁されているため、状態計測装置による計測時に互いの電源素子が他から影響を受けることなく直流電源の各電源素子の状態を簡易かつ正確に監視することができる。また、本発明においては、状態監視装置が、状態計測手段、充放電検知手段、監視制御手段等の安価な部品のみで構成されるため、フライングキャパシタ等を用いた従来の監視装置に比べて大幅に安価に提供される。   As a result, in the present invention, each power supply element of the DC power supply is connected in series, and the power supply elements are insulated from each other, so that the power supply elements are not affected by each other during measurement by the state measuring device. The state of each power supply element of the DC power supply can be monitored easily and accurately. Further, in the present invention, since the state monitoring device is composed only of inexpensive parts such as the state measuring means, the charge / discharge detecting means, and the monitoring control means, it is significantly larger than the conventional monitoring apparatus using a flying capacitor or the like. Provided at low cost.

本発明においては、状態計測装置により、高速で電源素子の出力電圧を計測することができる。また、本発明においては、起動フォトカプラ、出力フォトカプラ、基準電圧発生装置、計測制御手段等の安価な部品のみで構成されるため、電源素子の状態計測装置が安価に提供される。   In the present invention, the output voltage of the power supply element can be measured at high speed by the state measuring device. Further, in the present invention, since it is composed only of inexpensive parts such as a start-up photocoupler, an output photocoupler, a reference voltage generation device, and a measurement control means, a power supply device state measurement device is provided at low cost.

また、本発明においては、複数の電源素子を直列接続した直流電源の充放電時に、状態監視装置により直流電源の各電源素子の出力電圧や温度を、充放電時の電圧変動の影響を受けることなく計測することができ、各電源素子の状態を簡易かつ正確に監視することができる。また、状態監視装置は、状態計測装置、充放電検知手段、監視制御手段等の安価な部品のみで構成されるため、従来の状態監視装置に比べて大幅に安価に提供される。   In the present invention, during charging / discharging of a DC power supply in which a plurality of power supply elements are connected in series, the output voltage and temperature of each power supply element of the DC power supply are affected by voltage fluctuation during charging / discharging by the state monitoring device. It is possible to measure the power supply elements easily and accurately. Moreover, since the state monitoring device is composed of only inexpensive components such as the state measuring device, the charge / discharge detection unit, and the monitoring control unit, the state monitoring device is provided at a significantly lower price than the conventional state monitoring device.

以下、本発明の実施形態について説明する。図1は、実施例1であるリチウムイオン電池を多数直列接続した直流電源の状態監視装置を回路図により示し、図2は個々の電池に接続されて電池の出力電圧と温度を計測する状態計測装置であるセル計測回路を回路図により示したものである。直流電源の状態監視装置10は、多数の単一のリチウムイオン電池B1〜Bn(以下、電池セルBと記す。)を直列接続した直流電源1の各電池セルB毎にセル計測回路11(1)〜11(n)が接続されており、セル計測回路11(1)〜11(n)は直流電源1の状態の監視を行う監視用マイクロコンピュータ21(以下、監視用コンピュータと記す。)に接続されている。なお、セル計測回路11(1)〜11(n)はいずれも同一構成であり、以下、セル計測回路11として説明する。   Hereinafter, embodiments of the present invention will be described. FIG. 1 is a circuit diagram showing a DC power supply state monitoring apparatus in which a number of lithium ion batteries of Example 1 are connected in series, and FIG. 2 is a state measurement for measuring the output voltage and temperature of each battery connected to each battery. The cell measurement circuit which is an apparatus is shown with the circuit diagram. The DC power supply state monitoring device 10 includes a cell measuring circuit 11 (1) for each battery cell B of the DC power supply 1 in which a large number of single lithium ion batteries B1 to Bn (hereinafter referred to as battery cells B) are connected in series. ) To 11 (n) are connected, and the cell measuring circuits 11 (1) to 11 (n) are connected to a monitoring microcomputer 21 (hereinafter referred to as a monitoring computer) that monitors the state of the DC power supply 1. It is connected. The cell measurement circuits 11 (1) to 11 (n) have the same configuration, and will be described as the cell measurement circuit 11 below.

セル計測回路11は、電池セルBの両端に接続される図2の矢印X−X方向の部分であり、電池セルBの+端子に接続される(+)側リード線と−端子に接続される(−)側リード線を有し、両リード線間に計測制御手段である計測制御用マイクロコンピュータ12(以下、計測用コンピュータと記す)の給電端子12aと、電池セルBの電圧を計測用コンピュータ12に給電するためのコンデンサC1とが互いに並列に接続されている。(+)側ラインには起動フォトカプラ14の受光トランジスタである出力側14bの一端が接続されている。起動フォトカプラ14の発光ダイオードである入力側14aは監視用コンピュータ21の出力端子21aに接続されている。出力側14bの他方から延びたリード線は途中で分岐して、一方が抵抗r1を介して−側リード線に接続されると共に抵抗r1の前で計測用コンピュータ12の起動入力端子12bに接続されている。   The cell measuring circuit 11 is connected to both ends of the battery cell B in the direction of the arrow XX in FIG. 2, and is connected to the (+) side lead wire connected to the + terminal of the battery cell B and the − terminal. A power supply terminal 12a of a measurement control microcomputer 12 (hereinafter referred to as a measurement computer) which is a measurement control means between the lead wires and the voltage of the battery cell B. A capacitor C1 for supplying power to the computer 12 is connected in parallel with each other. One end of the output side 14b which is a light receiving transistor of the starting photocoupler 14 is connected to the (+) side line. An input side 14 a which is a light emitting diode of the starting photocoupler 14 is connected to an output terminal 21 a of the monitoring computer 21. A lead wire extending from the other of the output side 14b branches in the middle, and one is connected to the negative side lead wire via a resistor r1 and is connected to the start input terminal 12b of the measuring computer 12 before the resistor r1. ing.

また、出力端子14bの他方から延びたリード線は途中で分岐し、一方は抵抗r2を介して基準電圧発生IC15の給電端子15aに接続され、他方は温度検出手段である温度センサ16の給電端子16aに接続され、基準電圧発生IC15と温度センサ16から(−)端子側リード線に接続されている。基準電圧発生IC15の出力端子15bは、計測用コンピュータ12の電圧入力端子12cに接続されると共に基準電圧供給用のコンデンサC2を介して−側リード線に接続されている。基準電圧発生IC15とコンデンサC2により基礎電圧発生手段が構成される。温度センサ16の出力端子16bは、計測用コンピュータ12の温度入力端子12dに接続されている。計測用コンピュータ12の出力端子12eは、出力フォトカプラ18の発光ダイオードである入力側18aに接続されている。入力側18aの他端は、抵抗r3を介して(−)側リード線に接続されている。出力フォトカプラ18の受光トランジスタである出力端子18bは、監視用コンピュータ21の入力端子21bに接続されている。   Further, the lead wire extending from the other of the output terminals 14b branches in the middle, one is connected to the power supply terminal 15a of the reference voltage generating IC 15 via the resistor r2, and the other is the power supply terminal of the temperature sensor 16 which is a temperature detecting means. The reference voltage generating IC 15 and the temperature sensor 16 are connected to the (−) terminal side lead wire. The output terminal 15b of the reference voltage generating IC 15 is connected to the voltage input terminal 12c of the measuring computer 12, and is connected to the negative lead via a reference voltage supply capacitor C2. The reference voltage generating IC 15 and the capacitor C2 constitute basic voltage generating means. The output terminal 16 b of the temperature sensor 16 is connected to the temperature input terminal 12 d of the measurement computer 12. An output terminal 12 e of the measurement computer 12 is connected to an input side 18 a that is a light emitting diode of the output photocoupler 18. The other end of the input side 18a is connected to the (−) side lead wire via a resistor r3. An output terminal 18 b that is a light receiving transistor of the output photocoupler 18 is connected to an input terminal 21 b of the monitoring computer 21.

監視用コンピュータ21は、セル計測回路11(1)〜11(n)から送信された各電池セルBa〜Bnの出力電圧や温度データを管理部門へ送信する送信端子21dと、管理部門からの指令信号等を受信する受信端子21eを設けている。直流電源1の充放電線には、直流電源1の充電時と放電時の電流を検出する充放電検知手段である充放電電流センサ22が接続されており、充放電電流センサ22の出力は監視用コンピュータ21の充放電入力端子21cに接続されている。直流電源1は、充電時には充電電源(図示しない)から給電され、放電時には負荷であるハイブリッド車等の駆動回路(図示しない)に放電される。   The monitoring computer 21 includes a transmission terminal 21d for transmitting output voltages and temperature data of the battery cells Ba to Bn transmitted from the cell measuring circuits 11 (1) to 11 (n) to the management department, and a command from the management department. A receiving terminal 21e for receiving signals and the like is provided. A charge / discharge current sensor 22, which is a charge / discharge detection means for detecting current during charging and discharging of the DC power supply 1, is connected to the charge / discharge line of the DC power supply 1, and the output of the charge / discharge current sensor 22 is monitored. Is connected to the charge / discharge input terminal 21c of the computer 21 for use. The DC power source 1 is supplied with power from a charging power source (not shown) at the time of charging, and discharged to a driving circuit (not shown) such as a hybrid vehicle as a load at the time of discharging.

上記構成の実施例1においては、監視用コンピュータ21は管理部門からの指令信号等を受信する受信端子21eよりの開始信号を受けて、監視用コンピュータ21から個々のセル計測回路装置11(1)〜11(n)の起動フォトカプラ14に検出開始入力が送信され、起動フォトカプラ14がこれを受けて電池セルBの状態の検出を開始するための起動信号を出力する。この起動信号を受けて各セル計測回路11の基準電圧発生IC15が基準電圧を発生して計測用コンピュータ12に入力する。計測用コンピュータ12は、各電池セルBnの出力電圧を検出し、基準電圧発生ICから読み込んだ基準電圧に基づいて出力電圧の大きさの演算を行う。計測用コンピュータ12は、基準電圧を読み込んでAD変換してデジタル信号とし、コンピュータの分解能に沿って処理を行い、電池セルBの出力電圧と比較演算することにより10msec程度の短時間で電圧演算信号を求めて出力フォトカプラ18に出力する。詳しくは、電池セルBの電圧は、AD変換の最大値を基準電圧をAD変換した読み取り値で割った値に基準電圧を掛けることにより求められる。電圧演算信号を受けて、出力フォトカプラ18が電圧演算信号として送信し、監視用コンピュータ21が受信する。   In the first embodiment having the above-described configuration, the monitoring computer 21 receives a start signal from the receiving terminal 21e that receives a command signal or the like from the management department, and receives an individual cell measurement circuit device 11 (1) from the monitoring computer 21. The detection start input is transmitted to the startup photocouplers 14 to 11 (n), and the startup photocoupler 14 receives this and outputs a startup signal for starting detection of the state of the battery cell B. In response to this activation signal, the reference voltage generation IC 15 of each cell measurement circuit 11 generates a reference voltage and inputs it to the measurement computer 12. The measurement computer 12 detects the output voltage of each battery cell Bn, and calculates the magnitude of the output voltage based on the reference voltage read from the reference voltage generation IC. The measurement computer 12 reads the reference voltage, AD converts it into a digital signal, performs processing according to the resolution of the computer, and compares the output voltage of the battery cell B with a voltage calculation signal in a short time of about 10 msec. Is output to the output photocoupler 18. Specifically, the voltage of the battery cell B is obtained by multiplying the reference voltage by the value obtained by dividing the maximum value of AD conversion by the read value obtained by AD conversion of the reference voltage. Upon receiving the voltage calculation signal, the output photocoupler 18 transmits it as a voltage calculation signal, and the monitoring computer 21 receives it.

また、起動信号を受けて温度センサ16が電池セルBの温度を検出して検出信号を計測用コンピュータ12に出力する。計測用コンピュータ12は、温度センサ16からの温度検出値を読み込み、基準電圧発生ICから読み込んだ基準電圧に基づいて電池温度の大きさの演算を行う。計測用コンピュータ12は、読み込んだ温度検出値とコンピュータの分解能に沿って処理された基準電圧と比較演算することにより10msec程度の短時間で温度検出値の大きさを表す温度演算信号を求めて出力フォトカプラ18に出力する。詳しくは、電池セルBの温度は、温度センサ16の電圧値をAD変換した読み取り値を基準電圧をAD変換した読み取り値で割った値に基準電圧を掛けることにより電圧値を求め、さらにこの電圧値に基づいて記憶装置に記憶された電圧と温度との関係から温度を求めることができる。出力フォトカプラ18から温度演算信号として監視用コンピュータ21に送信される。   In response to the activation signal, the temperature sensor 16 detects the temperature of the battery cell B and outputs a detection signal to the measurement computer 12. The measurement computer 12 reads the temperature detection value from the temperature sensor 16 and calculates the battery temperature based on the reference voltage read from the reference voltage generation IC. The measurement computer 12 obtains and outputs a temperature calculation signal representing the magnitude of the temperature detection value in a short time of about 10 msec by comparing the read temperature detection value with a reference voltage processed according to the resolution of the computer. Output to the photocoupler 18. Specifically, the temperature of the battery cell B is obtained by multiplying the reference voltage by a value obtained by dividing the read value obtained by AD conversion of the voltage value of the temperature sensor 16 by the read value obtained by AD conversion of the reference voltage. The temperature can be obtained from the relationship between the voltage and the temperature stored in the storage device based on the value. The output photocoupler 18 transmits the temperature calculation signal to the monitoring computer 21.

その結果、実施例1においては、計測用コンピュータ12の計測処理により、直列接続された各電池セルBの出力電圧と温度を高速で得ることができ、充放電時の電圧変動の影響を受けることはない。また、本実施例1においては、セル計測回路11は、計測用コンピュータ12、起動フォトカプラ14、出力フォトカプラ18、基準電圧発生IC15、温度センサ16、コンデンサ、抵抗のような安価な部品で構成されているので、非常に安価に提供される。そのため、この安価なセル計測回路11と、充放電電流センサ22と、監視用コンピュータ21を組み合わせた直流電源の状態監視装置10も、フライングキャパシタ等を用いた従来の電池監視装置に比べて大幅に安価に提供される。また、実施例1においては、各電池セルBは直列接続されており、各電池セルB間が絶縁されているため、セル計測回路11による計測制御時に、互いの電池セルBが他から影響を受けることがなく、直流電源1の各電池セルBの状態を簡易かつ正確に監視することができる。さらに、実施例1においては、計測用コンピュータ12、基準電圧発生IC15、温度センサ16を電池セルBの電圧で駆動できるため、電源を別途用意する必要がないので、セル計測回路11の価格がさらに低く抑えられる。   As a result, in the first embodiment, the measurement processing of the measurement computer 12 can obtain the output voltage and temperature of each battery cell B connected in series at high speed, and is affected by voltage fluctuation during charging and discharging. There is no. In the first embodiment, the cell measurement circuit 11 is composed of inexpensive components such as a measurement computer 12, a start-up photocoupler 14, an output photocoupler 18, a reference voltage generation IC 15, a temperature sensor 16, a capacitor, and a resistor. So it is offered very cheaply. For this reason, the state monitoring device 10 of the DC power source combining the inexpensive cell measuring circuit 11, the charge / discharge current sensor 22 and the monitoring computer 21 is also significantly larger than the conventional battery monitoring device using a flying capacitor or the like. Provided at low cost. Moreover, in Example 1, since each battery cell B is connected in series and each battery cell B is insulated, each battery cell B has influence from others at the time of the measurement control by the cell measurement circuit 11. Without being received, the state of each battery cell B of the DC power source 1 can be monitored easily and accurately. Furthermore, in the first embodiment, since the measurement computer 12, the reference voltage generation IC 15, and the temperature sensor 16 can be driven by the voltage of the battery cell B, there is no need to separately prepare a power source. It can be kept low.

次に、実施例1の変形例1であるセル計測回路11Aについて説明する。変形例1は、図3に示すように、実施例1のセル計測回路11において、温度センサ16を省いたものであり、他の構成は変わりない。これにより、変形例1においては、セル計測回路11Aにより電池セルBの出力電圧のみを計測するもので、温度は検知しないことになるが、出力電圧のみでも電池セルBの状態を把握することが可能なため、電池セルBの状態管理の用途に応じて採用することも可能である。変形例1においては、温度センサと温度処理に要するコストを削減できる。   Next, a cell measurement circuit 11A that is Modification 1 of Embodiment 1 will be described. As shown in FIG. 3, the modification 1 is obtained by omitting the temperature sensor 16 in the cell measurement circuit 11 of the first embodiment, and other configurations are not changed. Thereby, in the modification 1, only the output voltage of the battery cell B is measured by the cell measurement circuit 11A and the temperature is not detected, but the state of the battery cell B can be grasped only by the output voltage. Since it is possible, it is also possible to employ | adopt according to the use of the state management of the battery cell B. FIG. In the first modification, the cost required for the temperature sensor and the temperature processing can be reduced.

次に、実施例1の変形例2である直流電源の状態監視装置について説明する。変形例2は、図4に示すように、直列接続された電池セルを複数個ずつ(変形例2では3個ずつ)に分けて複数の組G1〜Gxとし、各組に1個ずつの温度センサ16(1)〜16(x)を配置し、状態監視装置30のセル計測回路31を変形例1に示したものとし、各組のうちの1つのセル計測回路31(変形例2では各組の2番目の回路とする)の計測用コンピュータ12に1個の温度センサ16を接続したものである。   Next, a DC power supply state monitoring apparatus that is a second modification of the first embodiment will be described. As shown in FIG. 4, in the second modification, the battery cells connected in series are divided into a plurality of groups (three in the second modification) to form a plurality of groups G1 to Gx, one temperature for each group. Sensors 16 (1) to 16 (x) are arranged, and the cell measurement circuit 31 of the state monitoring device 30 is shown in the first modification. One cell measurement circuit 31 in each group (in the second modification, each One temperature sensor 16 is connected to the measuring computer 12 of the second circuit in the set).

変形例2においては、個々の電池セルBについて出力電圧の計測は行われ、電池セルBの温度については、複数個の電池セルをまとめた組G1〜Gx毎に計測されるようになっている。その結果、変形例2においては、全ての電池セルBについて温度の計測は行われないが、電池セルの組G1〜Gx毎に温度計測が行われるため、温度センサのコストと計測の手間を減らしつつ、実施例1に比べて大まかではあるが電池セルBの温度情報も得られるので、直流電源の監視の用途に応じて使用することができ、変形例1より多くの情報が得られる。   In the modification 2, the output voltage is measured for each battery cell B, and the temperature of the battery cell B is measured for each of the groups G1 to Gx in which a plurality of battery cells are collected. . As a result, in the second modification, the temperature is not measured for all the battery cells B, but the temperature measurement is performed for each of the battery cell groups G1 to Gx, thereby reducing the cost of the temperature sensor and the measurement effort. On the other hand, since the temperature information of the battery cell B is also roughly obtained as compared with the first embodiment, it can be used according to the purpose of monitoring the DC power supply, and more information than the first modification can be obtained.

次に、実施例2の直流電源の状態監視装置について説明する。実施例2は、実施例1の直流電源の状態監視装置10において、セル計測回路を図5の回路図に示す構成にしたものである。実施例2の状態監視装置30の構成について、その他に変更はない。セル計測回路31は、(+)側リード線と(−)側リード線間に計測用コンピュータ32が給電端子32aにて接続されており、コンデンサC1、起動フォトカプラ14と抵抗r1、出力フォトカプラ18と抵抗r3の接続については実施例1と同様である。起動フォトカプラ14の出力端子14bの他方から延びたリード線は途中で分岐することなく抵抗r1を介して−側リード線に接続されると共に抵抗r1の前で計測用コンピュータ32の入力端子32bに接続されているのみである。   Next, a DC power supply state monitoring apparatus according to the second embodiment will be described. In the second embodiment, in the DC power supply state monitoring apparatus 10 of the first embodiment, the cell measurement circuit is configured as shown in the circuit diagram of FIG. There is no other change in the configuration of the state monitoring device 30 of the second embodiment. In the cell measurement circuit 31, a measurement computer 32 is connected between a (+) side lead wire and a (−) side lead wire by a power supply terminal 32a, and a capacitor C1, a starting photocoupler 14, a resistor r1, and an output photocoupler. The connection between the resistor 18 and the resistor r3 is the same as that in the first embodiment. The lead wire extending from the other of the output terminals 14b of the starting photocoupler 14 is connected to the negative lead wire via the resistor r1 without branching on the way and to the input terminal 32b of the measuring computer 32 before the resistor r1. It is only connected.

さらに、計測用コンピュータ32の電圧供給端子32cから延びたリード線は途中で分岐し、一方は抵抗r2を介して基準電圧発生IC15の給電端子15aに他方は温度センサ16の給電端子16aにそれぞれ並列に接続され、基準電圧発生IC15と温度センサ16から−端子側リード線に接続されている。基準電圧発生IC15の出力端子15bは、計測用コンピュータ32の電圧入力端子32dに接続されると共に基準電圧供給用のコンデンサC2を介して−側リード線に接続されている。温度センサ16の出力端子16bは、計測用コンピュータ32の温度入力端子32eに接続されている。計測用コンピュータ32の出力端子32fは、出力フォトカプラ18の発光ダイオードである入力側18aに接続されている。実施例2では、計測用コンピュータ32は給電開始スイッチ機能を有しており、起動信号の入力を受けて、給電開始スイッチ機能により、未給電状態の基準電圧発生IC15と温度センサ16を電池セルBに接続させてセル電圧を給電させ、起動信号の入力停止により、基準電圧発生IC15と温度センサ16への電池セルBの接続を停止させるようになっている。そのため、基準電圧発生手段としては、基準電圧発生IC15とコンデンサC2に加えて計測用コンピュータ32の給電開始スイッチ機能を有する給電開始スイッチ部が含まれる。また、温度検出手段についても、温度センサ16に加えて計測用コンピュータ32の給電開始スイッチ部が含まれる。   Further, the lead wire extending from the voltage supply terminal 32c of the measuring computer 32 branches in the middle, one being parallel to the power supply terminal 15a of the reference voltage generating IC 15 via the resistor r2 and the other being parallel to the power supply terminal 16a of the temperature sensor 16. To the negative terminal side lead wire from the reference voltage generating IC 15 and the temperature sensor 16. The output terminal 15b of the reference voltage generating IC 15 is connected to the voltage input terminal 32d of the measuring computer 32 and is connected to the negative lead via a reference voltage supply capacitor C2. The output terminal 16 b of the temperature sensor 16 is connected to the temperature input terminal 32 e of the measurement computer 32. An output terminal 32 f of the measurement computer 32 is connected to an input side 18 a that is a light emitting diode of the output photocoupler 18. In the second embodiment, the measurement computer 32 has a power supply start switch function. When the start signal is input, the measurement computer 32 causes the reference voltage generation IC 15 and the temperature sensor 16 in the non-powered state to be connected to the battery cell B by the power supply start switch function. The cell voltage is fed to the power source and the connection of the battery cell B to the reference voltage generating IC 15 and the temperature sensor 16 is stopped by stopping the input of the start signal. Therefore, the reference voltage generation means includes a power supply start switch unit having a power supply start switch function of the measurement computer 32 in addition to the reference voltage generation IC 15 and the capacitor C2. In addition to the temperature sensor 16, the temperature detection means also includes a power supply start switch portion of the measurement computer 32.

上記構成の実施例2においては、監視用コンピュータ21は管理部門からの指令信号等を受信する受信端子21eよりの開始信号を受けて、監視用コンピュータ21から個々のセル計測回路31(1)〜31(n)の起動フォトカプラ14に検出開始入力が送信され、起動フォトカプラ14がこれを受けて電池セルBの状態の検出を開始するための起動信号を出力する。この起動信号を受けて計測用コンピュータ32は、給電開始スイッチ機能により、未給電状態の基準電圧発生IC15と温度センサ16を電池セルBに接続させてセル電圧を給電させる。これにより、基準電圧発生IC15が基準電圧を発生して計測用コンピュータ32に入力し、温度センサ16が電池セルBの温度を検出して計測用コンピュータ32に入力する。   In the second embodiment having the above-described configuration, the monitoring computer 21 receives a start signal from the receiving terminal 21e that receives a command signal or the like from the management department, and receives the individual cell measurement circuits 31 (1) to 31 (1) from the monitoring computer 21. A detection start input is transmitted to the start photocoupler 31 (n), and the start photocoupler 14 receives this and outputs a start signal for starting detection of the state of the battery cell B. In response to this activation signal, the measurement computer 32 uses the power supply start switch function to connect the reference voltage generation IC 15 and the temperature sensor 16 that are in an unpowered state to the battery cell B to supply the cell voltage. Thereby, the reference voltage generation IC 15 generates a reference voltage and inputs it to the measurement computer 32, and the temperature sensor 16 detects the temperature of the battery cell B and inputs it to the measurement computer 32.

計測用コンピュータ32は、実施例1と同様、基準電圧を読み込んでAD変換してデジタル信号とし、コンピュータの分解能に沿って処理を行い、検出した電池セルBの出力電圧と比較演算することにより10msec程度の短時間で電圧演算信号を求めて出力フォトカプラ18に出力する。電圧演算信号を受けて、出力フォトカプラ18が電圧演算信号として送信し、監視用コンピュータ21に受信される。また、計測用コンピュータ32は、温度センサ16からの温度検出値を読み込み、基準電圧発生ICから読み込んだ基準電圧に基づいて電池温度の大きさの演算を行う。計測用コンピュータ32は、実施例1と同様、読み込んだ温度検出値とコンピュータのAD変換の分解能に沿って処理された基準電圧と比較演算することにより10msec程度の短時間で温度検出値の大きさを表す温度演算信号を求めて出力フォトカプラ18に出力する。温度演算信号を受けて、出力フォトカプラ18が温度演算信号として送信し、監視用コンピュータ21に受信される。   As in the first embodiment, the measurement computer 32 reads the reference voltage, AD converts it into a digital signal, performs processing according to the resolution of the computer, and compares the detected output voltage of the battery cell B with 10 msec. A voltage calculation signal is obtained and output to the output photocoupler 18 in a short time. In response to the voltage calculation signal, the output photocoupler 18 transmits it as a voltage calculation signal and is received by the monitoring computer 21. Further, the measurement computer 32 reads the temperature detection value from the temperature sensor 16 and calculates the battery temperature based on the reference voltage read from the reference voltage generation IC. Similar to the first embodiment, the measurement computer 32 compares the read temperature detection value with the reference voltage processed in accordance with the AD conversion resolution of the computer, thereby calculating the magnitude of the temperature detection value in a short time of about 10 msec. Is calculated and output to the output photocoupler 18. In response to the temperature calculation signal, the output photocoupler 18 transmits it as a temperature calculation signal and is received by the monitoring computer 21.

その結果、実施例2においても、実施例1と同様、状態監視装置30にセル計測回路31を採用したことにより、電池セルBの充電時と放電時における各電池セルBの出力電圧と温度を簡易かつ正確に計測し監視することができる。また、実施例2においては、計測用コンピュータ32の給電開始スイッチ機能により、電池セルBの基準電圧発生IC15と温度センサ16へ接続を制御しているので、計測制御時間が実施例1に比べて長くなるが、充電時と放電時以外は基準電圧発生IC15、温度センサ16が電池セルBから切り離された非通電の待機状態となるため、消費電流がμAオーダーの低い値に抑えられ、状態監視装置30の省エネルギー効果が高められる。   As a result, also in the second embodiment, similarly to the first embodiment, by adopting the cell measuring circuit 31 in the state monitoring device 30, the output voltage and temperature of each battery cell B at the time of charging and discharging of the battery cell B can be obtained. It can be measured and monitored easily and accurately. Further, in the second embodiment, the connection to the reference voltage generation IC 15 and the temperature sensor 16 of the battery cell B is controlled by the power supply start switch function of the measurement computer 32, so that the measurement control time is compared with the first embodiment. Although it becomes longer, since the reference voltage generation IC 15 and the temperature sensor 16 are in a non-energized standby state separated from the battery cell B except during charging and discharging, the current consumption is suppressed to a low value on the order of μA, and the state is monitored. The energy saving effect of the device 30 is enhanced.

さらに、実施例2においては、計測用コンピュータ32、起動フォトカプラ14、出力フォトカプラ18、基準電圧発生装置15、温度センサ16等の安価な部品のみで構成されるため、電池セルBのセル計測回路31が安価に提供される。そのため、安価なセル計測回路31と、充放電電流センサ22と、監視用コンピュータ21を組み合わせた直流電源の状態監視装置30も、フライングキャパシタとを用いた従来の電池監視装置に比べて非常に安価に提供される。また、実施例2においては、各電池セルBは直列接続されており、各電池セルB間が絶縁されているため、セル計測回路11による計測制御時に、互いの電池セルBが他から影響を受けることがなく、直流電源1の各電池セルBの状態を簡易かつ正確に監視することができる。さらに、実施例2においては、計測用コンピュータ32、基準電圧発生IC15、温度センサ16を電池セルBの電圧で駆動できるため、電源を別途用意する必要がないので、セル計測回路31の価格がさらに低く抑えられる。   Further, in the second embodiment, since the measurement computer 32, the start photocoupler 14, the output photocoupler 18, the reference voltage generator 15, the temperature sensor 16 and the like are used, the cell measurement of the battery cell B is performed. The circuit 31 is provided at a low cost. Therefore, the state monitoring device 30 of the DC power source combining the inexpensive cell measuring circuit 31, the charge / discharge current sensor 22, and the monitoring computer 21 is also very inexpensive as compared with the conventional battery monitoring device using the flying capacitor. Provided to. Moreover, in Example 2, since each battery cell B is connected in series and each battery cell B is insulated, each battery cell B has influence from others at the time of the measurement control by the cell measurement circuit 11. Without being received, the state of each battery cell B of the DC power source 1 can be monitored easily and accurately. Furthermore, in the second embodiment, since the measurement computer 32, the reference voltage generation IC 15, and the temperature sensor 16 can be driven by the voltage of the battery cell B, it is not necessary to prepare a separate power source. It can be kept low.

次に、実施例2の変形例であるセル計測回路31Aについて説明する。変形例は、図6に示すように、実施例2のセル計測回路31において、温度センサ16を省いたものであり、他の構成は変わりない。これにより、変形例においては、セル計測回路31Aにより電池セルBの出力電圧のみを計測し温度は検知しないことになるが、出力電圧のみでも電池セルBの状態を把握することが可能なため、電池セルBの状態管理の用途に応じて採用することも可能である。また、変形例においては、温度センサと温度処理に要するコストを削減できる。   Next, a cell measurement circuit 31A that is a modification of the second embodiment will be described. As shown in FIG. 6, the modification is obtained by omitting the temperature sensor 16 in the cell measurement circuit 31 of the second embodiment, and other configurations are not changed. Thereby, in the modified example, only the output voltage of the battery cell B is measured by the cell measurement circuit 31A and the temperature is not detected, but it is possible to grasp the state of the battery cell B only by the output voltage. It is also possible to employ according to the use of state management of the battery cell B. Moreover, in a modification, the cost which a temperature sensor and temperature processing require can be reduced.

なお、変形例のように各セル計測回路31から温度センサ16を省いた場合に、上記実施例1の変形例2のように、多数の電池セルBを複数の組に分けて、組毎に温度センサを設けて温度管理することも可能である。また、各実施例においては、電源素子としてリチウムイオン電池を用いているが、これに代えて他の二次電池、あるいは電気二重層コンデンサ等を用いることができる。その他、上記各実施例に示したものは一例であり、本発明の趣旨を逸脱しない範囲で種々変更して実施することも可能である。   In addition, when the temperature sensor 16 is omitted from each cell measurement circuit 31 as in the modification, a large number of battery cells B are divided into a plurality of groups as in Modification 2 of Example 1 described above. It is also possible to manage the temperature by providing a temperature sensor. In each embodiment, a lithium ion battery is used as the power supply element, but another secondary battery, an electric double layer capacitor, or the like can be used instead. In addition, what was shown in each said Example is an example, It is also possible to implement in various changes in the range which does not deviate from the meaning of this invention.

本発明の電源素子の状態計測装置は、高速で電源素子の出力電圧や温度を計測することができ、起動フォトカプラ、出力フォトカプラ、基準電圧発生装置、計測制御手段等の安価な部品のみで構成されるため、安価に提供される。また、本発明の直流電源の状態監視装置は、複数の電源素子を直列接続した直流電源の各電源素子の出力電圧や温度を得ることができ、充放電時の電圧変動の影響を受けることなく各電源素子の状態を簡易かつ正確に監視することができ、安価な状態計測装置と、充放電検知手段と、監視制御手段等の安価な部品のみで構成されるため、従来の電池電圧等の監視装置に比べて安価に提供される。従って、本発明は有用である。   The power supply device state measurement apparatus of the present invention can measure the output voltage and temperature of the power supply device at high speed, and only with inexpensive parts such as a start photocoupler, output photocoupler, reference voltage generator, and measurement control means. Because it is configured, it is provided at low cost. In addition, the DC power supply state monitoring device of the present invention can obtain the output voltage and temperature of each power supply element of a DC power supply in which a plurality of power supply elements are connected in series, and is not affected by voltage fluctuations during charging and discharging. The state of each power supply element can be easily and accurately monitored, and is composed of only inexpensive parts such as an inexpensive state measurement device, charge / discharge detection means, and monitoring control means. It is provided at a lower cost than the monitoring device. Therefore, the present invention is useful.

本発明の実施例1である直流電源の状態監視装置の概略構成を示す回路図である。It is a circuit diagram which shows schematic structure of the state monitoring apparatus of the DC power supply which is Example 1 of this invention. 状態監視装置を構成するセル計測回路を示す回路図である。It is a circuit diagram which shows the cell measurement circuit which comprises a state monitoring apparatus. 変形例1であるセル計測回路を示す回路図である。FIG. 9 is a circuit diagram showing a cell measurement circuit that is a first modification. 変形例2である直流電源の状態監視装置の概略構成を示す回路図である。It is a circuit diagram which shows schematic structure of the state monitoring apparatus of the DC power supply which is the modification 2. 実施例2である直流電源の状態監視装置の概略構成を示す回路図である。It is a circuit diagram which shows schematic structure of the state monitoring apparatus of the DC power supply which is Example 2. FIG. 実施例2の変形例であるセル計測回路を示す回路図である。FIG. 10 is a circuit diagram showing a cell measuring circuit which is a modification of the second embodiment.

符号の説明Explanation of symbols

10,30…直流電源の状態監視装置、11,11A,31…セル計測回路、12,32…計測制御用マイクロコンピュータ、14…起動フォトカプラ、15…基準電圧発生IC、16…温度センサ、18…出力フォトカプラ、21…監視用マイクロコンピュータ、22…充放電電流センサ。 DESCRIPTION OF SYMBOLS 10,30 ... DC power supply state monitoring device 11, 11, A, 31 ... Cell measurement circuit, 12, 32 ... Measurement control microcomputer, 14 ... Start-up photocoupler, 15 ... Reference voltage generation IC, 16 ... Temperature sensor, 18 ... output photocoupler, 21 ... monitoring microcomputer, 22 ... charge / discharge current sensor.

Claims (5)

電源素子から給電されて該電源素子の充電時と放電時の状態を計測する状態計測装置であって、
外部からの検出開始入力を受けて起動信号を出力する起動フォトカプラと、
前記起動信号に応じて基準電圧を発生する基準電圧発生手段と、
前記起動信号に応じて電源素子の出力電圧を検出し、前記基準電圧発生手段から基準電圧を読み込み、該基準電圧に基づいて該出力電圧の大きさを演算することにより電圧演算信号として出力する計測制御手段と、
該計測制御手段からの電圧演算信号を受けて、該電圧演算信号として出力する出力フォトカプラと
を設けたことを特徴とする電源素子の状態計測装置。
A state measuring device that is fed from a power supply element and measures the state of charging and discharging of the power supply element,
A startup photocoupler that receives a detection start input from the outside and outputs a startup signal;
Reference voltage generating means for generating a reference voltage in response to the activation signal;
Measurement that outputs a voltage calculation signal by detecting the output voltage of the power supply element according to the activation signal, reading the reference voltage from the reference voltage generating means, and calculating the magnitude of the output voltage based on the reference voltage Control means;
An apparatus for measuring a state of a power supply element, comprising: an output photocoupler that receives a voltage calculation signal from the measurement control means and outputs the voltage calculation signal.
前記起動信号に応じて電源素子の温度を検出して温度検出値を出力する温度検出手段を設け、
前記計測制御手段が、前記温度検出手段からの温度検出値を読み込み、前記基準電圧に基づいて該温度検出値の大きさを演算することにより温度演算信号として出力し、
該温度演算信号を受けて、前記出力フォトカプラが温度演算信号として出力することを特徴とする請求項1に記載の電源素子の状態計測装置。
A temperature detecting means for detecting the temperature of the power supply element in accordance with the activation signal and outputting a temperature detection value;
The measurement control means reads the temperature detection value from the temperature detection means, calculates the temperature detection value based on the reference voltage, and outputs it as a temperature calculation signal,
2. The power element state measuring apparatus according to claim 1, wherein the output photocoupler receives the temperature calculation signal and outputs the temperature calculation signal as a temperature calculation signal.
直列接続された複数の電源素子からなる直流電源の状態を監視する状態監視装置であって、
前記複数の電源素子のそれぞれに請求項1に記載の状態計測装置を接続し、
前記直流電源の充電時あるいは放電時を検知して検知信号を出力する充放電検知手段と、
該充放電検知手段からの検知信号を受けて、前記起動フォトカプラに検出開始入力を送信し、前記複数の状態計測装置からの電圧演算信号を前記出力フォトカプラから受信する監視制御手段とを設けたことを特徴とする直流電源の状態監視装置。
A state monitoring device for monitoring the state of a DC power source composed of a plurality of power supply elements connected in series,
The state measuring device according to claim 1 is connected to each of the plurality of power supply elements,
Charge / discharge detection means for detecting a charge or discharge of the DC power supply and outputting a detection signal;
Monitoring control means for receiving a detection signal from the charge / discharge detection means, transmitting a detection start input to the activation photocoupler, and receiving voltage calculation signals from the plurality of state measurement devices from the output photocoupler; A DC power supply state monitoring device.
前記複数の電源素子を複数組に分けて、各組ごとにそれぞれ1つの温度検出手段を設け、いずれかの前記状態計測装置の起動フォトカプラからの起動信号を受けて該温度検出手段が温度検出信号を出力し、該温度検出信号を受けた前記計測制御手段により前記基準電圧に基づいて演算された温度演算信号を、前記出力フォトカプラを通して前記監視制御手段により受信することを特徴とする請求項3に記載の直流電源の状態監視装置。   The plurality of power supply elements are divided into a plurality of groups, and one temperature detection unit is provided for each group, and the temperature detection unit detects a temperature in response to a start signal from a start photocoupler of any of the state measurement devices. 2. A temperature calculation signal calculated based on the reference voltage by the measurement control means that outputs a signal and receives the temperature detection signal is received by the monitoring control means through the output photocoupler. 3. A state monitoring apparatus for a DC power source according to 3. 直列接続された複数の電源素子からなる直流電源の状態を監視する状態監視装置であって、
前記複数の電源素子のそれぞれに請求項2に記載の状態計測装置を接続し、
前記直流電源の充電時あるいは放電時を検知して検知信号を出力する充放電検知手段と、
該充放電検知手段からの検知信号を受けて、前記起動フォトカプラに検出開始入力を送信し、前記複数の状態計測装置からの電圧演算信号と温度演算信号を前記出力フォトカプラから受信する監視制御手段とを設けたことを特徴とする直流電源の状態監視装置。
A state monitoring device for monitoring the state of a DC power source composed of a plurality of power supply elements connected in series,
The state measuring device according to claim 2 is connected to each of the plurality of power supply elements,
Charge / discharge detection means for detecting a charge or discharge of the DC power supply and outputting a detection signal;
Monitoring control that receives a detection signal from the charge / discharge detection means, transmits a detection start input to the start photocoupler, and receives voltage calculation signals and temperature calculation signals from the plurality of state measurement devices from the output photocoupler. And a DC power supply state monitoring device.
JP2008335640A 2008-12-29 2008-12-29 Apparatus for measuring state of power supply element and apparatus for monitoring state of dc power supply Pending JP2010156625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008335640A JP2010156625A (en) 2008-12-29 2008-12-29 Apparatus for measuring state of power supply element and apparatus for monitoring state of dc power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008335640A JP2010156625A (en) 2008-12-29 2008-12-29 Apparatus for measuring state of power supply element and apparatus for monitoring state of dc power supply

Publications (1)

Publication Number Publication Date
JP2010156625A true JP2010156625A (en) 2010-07-15

Family

ID=42574646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008335640A Pending JP2010156625A (en) 2008-12-29 2008-12-29 Apparatus for measuring state of power supply element and apparatus for monitoring state of dc power supply

Country Status (1)

Country Link
JP (1) JP2010156625A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012015094A (en) * 2010-06-29 2012-01-19 O2 Micro Inc Battery management system for protecting battery from fault condition
JP2015089212A (en) * 2013-10-30 2015-05-07 株式会社Gsユアサ Monitoring system for power storage element
CN106093656A (en) * 2016-07-19 2016-11-09 襄阳赛克斯电气股份有限公司 High-voltage solid-state soft initiator controllable silicon on-line condition monitoring device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735834A (en) * 1993-07-23 1995-02-07 Yazaki Corp Battery voltmeter for vehicle
JPH08140209A (en) * 1994-11-11 1996-05-31 Fuji Heavy Ind Ltd Battery managing system for electric motor vehicle
JPH11258280A (en) * 1998-03-09 1999-09-24 Toshiba Battery Co Ltd Voltage detector for secondary battery and secondary battery device
JPH11339858A (en) * 1998-05-28 1999-12-10 Honda Motor Co Ltd Battery condition detecting device and battery condition detecting unit
JP2008281464A (en) * 2007-05-11 2008-11-20 Panasonic Ev Energy Co Ltd State detection device of energy storage device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735834A (en) * 1993-07-23 1995-02-07 Yazaki Corp Battery voltmeter for vehicle
JPH08140209A (en) * 1994-11-11 1996-05-31 Fuji Heavy Ind Ltd Battery managing system for electric motor vehicle
JPH11258280A (en) * 1998-03-09 1999-09-24 Toshiba Battery Co Ltd Voltage detector for secondary battery and secondary battery device
JPH11339858A (en) * 1998-05-28 1999-12-10 Honda Motor Co Ltd Battery condition detecting device and battery condition detecting unit
JP2008281464A (en) * 2007-05-11 2008-11-20 Panasonic Ev Energy Co Ltd State detection device of energy storage device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012015094A (en) * 2010-06-29 2012-01-19 O2 Micro Inc Battery management system for protecting battery from fault condition
JP2015089212A (en) * 2013-10-30 2015-05-07 株式会社Gsユアサ Monitoring system for power storage element
CN106093656A (en) * 2016-07-19 2016-11-09 襄阳赛克斯电气股份有限公司 High-voltage solid-state soft initiator controllable silicon on-line condition monitoring device

Similar Documents

Publication Publication Date Title
JP5718731B2 (en) Voltage monitoring system and voltage monitoring module
JP5481146B2 (en) Battery management device, secondary battery device and vehicle
JP5228403B2 (en) Power storage device
JP5609071B2 (en) Power storage device
TW521467B (en) Battery status monitor circuit and battery device
JP2007174894A (en) Battery management system, battery management method, battery system, and automobile
WO2012053643A1 (en) Battery system
CN104283297A (en) Autonomous power supply system
JPH08140204A (en) Monitor for battery assembly
JP3196612B2 (en) Battery monitoring device
JP2010259234A (en) Battery pack
WO2012005186A1 (en) Voltage measuring circuit and method
JP2011128010A (en) Secondary battery device and vehicle
JP2008067526A (en) Power storage apparatus
KR101877564B1 (en) Battery pack
JP4905419B2 (en) Battery monitoring device
CN113728489B (en) Battery controller, wireless battery control system, battery pack and battery balancing method
JP2010156625A (en) Apparatus for measuring state of power supply element and apparatus for monitoring state of dc power supply
JPH0883630A (en) Abnormality detecting device for battery set
JP2020018085A (en) Electrical power system and management device
JP5423428B2 (en) Power storage device
JP2022521953A (en) Temperature measuring device, battery device including this and temperature measuring method
JP2005328603A (en) Battery control system
CN112513652A (en) Internal resistance detection device and power supply device
JP5572484B2 (en) Voltage monitoring circuit and battery power supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130212