JP2010097882A - Extruded flat cable for differential transmission - Google Patents

Extruded flat cable for differential transmission Download PDF

Info

Publication number
JP2010097882A
JP2010097882A JP2008269203A JP2008269203A JP2010097882A JP 2010097882 A JP2010097882 A JP 2010097882A JP 2008269203 A JP2008269203 A JP 2008269203A JP 2008269203 A JP2008269203 A JP 2008269203A JP 2010097882 A JP2010097882 A JP 2010097882A
Authority
JP
Japan
Prior art keywords
differential transmission
flat cable
conductor
extruded flat
insulating resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008269203A
Other languages
Japanese (ja)
Inventor
Takaki Endo
崇樹 遠藤
Atsushi Shinchi
敦 新地
Jo Yagisawa
丈 八木澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008269203A priority Critical patent/JP2010097882A/en
Publication of JP2010097882A publication Critical patent/JP2010097882A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide aN extruded flat cable for differential transmission, capable of including DDC (display data channel) linea specialized in a low capacitance in a differential transmission line which requires transmission characteristics. <P>SOLUTION: Differential transmission conductors 3 constituting signal lines for differential transmission in sets each having two lines and low-capacitance lines are arranged in row and extrusion-coated with an insulating resin 12, and a common shield 13 is provided on the outside of the insulating resin. The short diameter of the insulating resin 12 is laterally uniform. The capacitance between a low-capacitance line conductor 4 constituting the low-capacitance line and the common shield is smaller than the capacitance between the differential transmission conductor 3 and the common shield 13, and the low-capacitance line conductor 4 is adjacent to only one pair of differential transmission conductors. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、デジタルデータ等を高速伝送する差動伝送押出フラットケーブルに関する。   The present invention relates to a differential transmission extruded flat cable that transmits digital data and the like at high speed.

デジタルデータを高速で伝送しようとする場合、データ信号を高レベルから低レベル(あるいは低レベルから高レベル)に移行するまでの時間(遷移時間と言われている)を短くする必要がある。遷移時間を短くするには、信号振幅を小さくすればよい。しかし、信号振幅を小さくすると、外部雑音に弱くなるという問題がある。そこで、1対の信号線を使って逆位相の信号を伝送し、データ受信側では、伝送信号の差分をデータとする差動伝送方法が知られている。この方法は、伝送信号の受信側で、逆位相の信号の差分を出力するものである。この差分出力は、受信側での信号振幅は2倍となる。伝送路中で入り込むノイズは一対の信号線に同じように重畳されるため相殺される。   When digital data is to be transmitted at a high speed, it is necessary to shorten the time (referred to as transition time) until the data signal is shifted from a high level to a low level (or from a low level to a high level). In order to shorten the transition time, the signal amplitude may be reduced. However, if the signal amplitude is reduced, there is a problem that it becomes weak against external noise. Therefore, a differential transmission method is known in which a signal having an opposite phase is transmitted using a pair of signal lines, and the difference between the transmission signals is used as data on the data reception side. In this method, a difference between signals having opposite phases is output on the reception side of the transmission signal. This differential output doubles the signal amplitude on the receiving side. Noise that enters the transmission line is canceled out because it is similarly superimposed on the pair of signal lines.

上記の信号伝送は、低電圧差動信号方式(LVDS:Low Voltage Differential Signaling)と言われているもので、データ信号を一対の導線で小さい電圧変化の差動信号で伝送し、高速・低消費電力・低ノイズを実現することができる。このような信号伝送方式は、1本のケーブルで映像信号・音声信号・制御信号を伝送する統合インタフェイスであるHDMI(High-Definition Multimedia Interface)およびパソコンとハードディスクを接続するインタフェイスであるシリアルATA(Advanced Technology Attachment)などに使用するのに効率的であるとされている。   The above signal transmission is said to be Low Voltage Differential Signaling (LVDS). Data signals are transmitted as a differential signal with small voltage change with a pair of conductors, and high speed and low consumption. Power and low noise can be realized. Such a signal transmission method includes HDMI (High-Definition Multimedia Interface), which is an integrated interface for transmitting video signals, audio signals, and control signals over a single cable, and Serial ATA, which is an interface for connecting a personal computer and a hard disk. It is said that it is efficient to use for (Advanced Technology Attachment).

上記のような用途で、高速差動信号を伝送するのに、例えば、特許文献1に開示のようなケーブルを使用することが知られている。このケーブルには、例えば、図7に示すような差動ケーブルの複数本を、スダレ状に並べたスダレケーブルと称されているものがある。このスダレケーブル509は、図7(a)に示すような一対の信号線をシールドしてなる差動ケーブル508を、図7(b)に示すように、複数本平行一列に並べて隣り合う差動ケーブル同士を熱融着させて形成される。   It is known that, for example, a cable as disclosed in Patent Document 1 is used to transmit a high-speed differential signal in the above-described application. As this cable, for example, there is a cable called a suede cable in which a plurality of differential cables as shown in FIG. 7A, a differential cable 508 formed by shielding a pair of signal lines as shown in FIG. 7A is arranged adjacent to each other in a plurality of parallel lines as shown in FIG. 7B. It is formed by heat-sealing cables.

各差動ケーブル508は、中心導体501を誘電体層502で被覆し、その外周にスキン層503を設けて信号線とし、この信号線の2本(504a,504b)を平行に並べて形成される。次いで、平行に並べられた信号線504aと504bの両外側には、ドレイン線505a,505bが配設される。そして、この配置構造を保持しつつ、その外周に金属箔テープからなる外部導体506が巻き付けられ、さらにその外側をジャケット層507で被覆して最終構造とされる。   Each differential cable 508 is formed by covering a central conductor 501 with a dielectric layer 502 and providing a skin layer 503 on the outer periphery thereof as a signal line, and arranging two of these signal lines (504a, 504b) in parallel. . Next, drain lines 505a and 505b are disposed on both outer sides of the signal lines 504a and 504b arranged in parallel. Then, while maintaining this arrangement structure, the outer conductor 506 made of a metal foil tape is wound around the outer periphery, and the outer side thereof is covered with the jacket layer 507 to obtain a final structure.

中心導体501は、例えば、7本の銀メッキ軟銅線を撚って、外径が0.609mm(AWG24番)とした撚り線が用いられる。誘電体層502は、多孔質PTFE(四フッ化エチレン樹脂)テープを0.37mmの厚さで中心導体501の外周に被覆して形成される。スキン層503は、厚さが0.09mmのFEP(四フッ化エチレン−六フッ化プロピレン共重合体樹脂)で形成され、誘電体層502の外面を覆っている。   For example, a twisted wire having an outer diameter of 0.609 mm (AWG No. 24) is used as the center conductor 501 by twisting seven silver-plated annealed copper wires. The dielectric layer 502 is formed by covering the outer periphery of the central conductor 501 with a porous PTFE (tetrafluoroethylene resin) tape having a thickness of 0.37 mm. The skin layer 503 is formed of FEP (tetrafluoroethylene-hexafluoropropylene copolymer resin) having a thickness of 0.09 mm and covers the outer surface of the dielectric layer 502.

ドレイン線505a,505bは、中心導体501よりも細径で、7本の銀メッキ軟銅線を撚って外径が0.306mm(AWG30番)とした撚り線が用いられる。外部導体506は、金属蒸着テープ等を螺旋状、または、縦添えで巻き付けて形成される。ジャケット層507は、厚さ0.25mmでノンハロゲン難燃性オレフィン樹脂で形成され、長径側の外径を4.3mmとし、これを複数組平行一列に並べて長径側の側面同士を融着し、一体化させている。
特開2002−304921号公報
The drain wires 505a and 505b have a diameter smaller than that of the central conductor 501, and a stranded wire having an outer diameter of 0.306 mm (AWG 30) is formed by twisting seven silver-plated annealed copper wires. The outer conductor 506 is formed by winding a metal vapor-deposited tape or the like spirally or vertically. The jacket layer 507 is formed of a halogen-free flame-retardant olefin resin with a thickness of 0.25 mm, the outer diameter on the longer diameter side is 4.3 mm, and a plurality of sets of these are arranged in a parallel row to fuse the long diameter side surfaces. It is integrated.
JP 2002-304921 A

プラズマディスプレイや液晶ディスプレイが大型化するにつれて、その機器内配線材として使用される信号伝送ケーブルも長くなる。現在、数十cm程度の長さで配線されているのを、例えば、2m以上の長さで配線しようとする。この場合、伝送損失の問題が生じ、現行のケーブルを単に長くすればよいということでは対応することが難しくなる。例えば、信号伝送ケーブルが高周波領域で使用される場合、信号線を被覆している誘電体層の誘電損失も、周波数が高くなるにつれて大きくなる。特に、HDMIの使用周波数は825MHz以上であり、この場合の伝送損失は、無視することができない値となる。
信号伝送ケーブルの伝送損失の増加を回避するには、中心導体等の太さを大きくする必要があるが、取り扱い性、配線スペースの問題から、ケーブル径を増加させることなく低損失化された差動伝送押出フラットケーブルの要請がある。
As a plasma display or a liquid crystal display becomes larger, a signal transmission cable used as an in-device wiring material becomes longer. At present, wiring with a length of about several tens of centimeters is attempted, for example, with a length of 2 m or more. In this case, a problem of transmission loss occurs, and it is difficult to cope with the problem by simply lengthening the current cable. For example, when the signal transmission cable is used in a high frequency region, the dielectric loss of the dielectric layer covering the signal line also increases as the frequency increases. In particular, the use frequency of HDMI is 825 MHz or more, and the transmission loss in this case is a value that cannot be ignored.
To avoid an increase in the transmission loss of signal transmission cables, it is necessary to increase the thickness of the center conductor, etc., but due to problems in handling and wiring space, the difference in which the loss is reduced without increasing the cable diameter. There is a demand for dynamic transmission extruded flat cables.

また、HDMI規格では、DDC(Display Data Channel)ラインの静電容量の上限が決まっており、ケーブルアッセンブリにおけるSDA−GND間、およびSCL−GND間の静電容量を700pF/mにする必要がある。このため、電線に対しては一般的に100pF/m以下が要求され、65pF/m程度が求められる場合もある。
本発明は上記状況に鑑みてなされたもので、伝送特性を要求される差動伝送ラインと、低静電容量であるDDCラインを併せ持つフラットケーブルを提供する。
Further, in the HDMI standard, the upper limit of the capacitance of the DDC (Display Data Channel) line is determined, and the capacitance between SDA and GND and between SCL and GND in the cable assembly needs to be 700 pF / m. . For this reason, generally 100 pF / m or less is requested | required with respect to an electric wire, and about 65 pF / m may be calculated | required.
The present invention has been made in view of the above situation, and provides a flat cable having both a differential transmission line that requires transmission characteristics and a DDC line having a low capacitance.

本発明に係る上記目的は、下記構成により達成される。
(1) 2本を一組として差動伝送する信号線を構成する差動伝送用導体と低容量線とが一列に配列されて絶縁樹脂で押出被覆され、共通シールドが前記絶縁樹脂の外側に設けられ、
前記絶縁樹脂の短径が幅方向で均一であり、前記低容量線を構成する低容量線用導体と前記共通シールドとの間の静電容量が前記差動伝送用導体と前記共通シールドとの間の静電容量よりも小さく、前記低容量線用導体が隣合う差動伝送用導体対が一対のみであることを特徴とする差動伝送押出フラットケーブル。
The above object of the present invention is achieved by the following configuration.
(1) A differential transmission conductor and a low-capacity line constituting a signal line for differential transmission as a set of two wires are arranged in a row and are extrusion-coated with an insulating resin, and a common shield is placed outside the insulating resin. Provided,
The short diameter of the insulating resin is uniform in the width direction, and the capacitance between the low-capacity line conductor constituting the low-capacity line and the common shield is the difference between the differential transmission conductor and the common shield. A differential transmission extruded flat cable characterized in that there is only one pair of differential transmission conductor pairs adjacent to each other and having a low capacitance line conductor.

この差動伝送押出フラットケーブルによれば、低容量線用導体と共通シールドとの間の静電容量を小さくすることができる。そして、一つのケーブルに伝送特性の要求される差動伝送ラインと低静電容量に特化したDDCラインとを含めることが可能となる。   According to this differential transmission extruded flat cable, the capacitance between the low-capacity line conductor and the common shield can be reduced. In addition, it is possible to include a differential transmission line requiring transmission characteristics and a DDC line specialized for low capacitance in one cable.

(2) (1)の差動伝送押出フラットケーブルであって、
前記低容量線用導体が、前記差動伝送用導体よりも細いことを特徴とする差動伝送押出フラットケーブル。
(2) The differential transmission extruded flat cable of (1),
The differential transmission extruded flat cable, wherein the low-capacity line conductor is thinner than the differential transmission conductor.

この差動伝送押出フラットケーブルによれば、低容量線用導体とGND間の静電容量を下げることができる。   According to this differential transmission extruded flat cable, the capacitance between the low-capacity line conductor and GND can be reduced.

(3) (2)の差動伝送用導体であって、
前記低容量線用導体が個別に絶縁体で被覆され、前記差動伝送用導体を被覆する絶縁樹脂の誘電率よりも前記低容量線用導体を個別に被覆する絶縁体の誘電率が小さいことを特徴とする差動伝送押出フラットケーブル。
(3) The differential transmission conductor of (2),
The low-capacity line conductor is individually coated with an insulator, and the dielectric constant of the insulator that individually covers the low-capacity line conductor is smaller than the dielectric constant of the insulating resin that covers the differential transmission conductor. Features differential transmission extruded flat cable.

(4) (1)〜(3)のいずれか1つの差動伝送押出フラットケーブルであって、
前記低容量線用導体から前記共通シールドまでの間に気層が設けられたことを特徴とする差動伝送押出フラットケーブル。
(4) The differential transmission extruded flat cable according to any one of (1) to (3),
A differential transmission extruded flat cable, wherein an air layer is provided between the low-capacity line conductor and the common shield.

この差動伝送押出フラットケーブルによれば、気層が介在することで静電容量を下げることができる。   According to this differential transmission extruded flat cable, the electrostatic capacity can be lowered by interposing an air layer.

(5) (4)の差動伝送押出フラットケーブルであって、
前記低容量線用導体と前記共通シールドの間に発泡樹脂層が設けられたことを特徴とする差動伝送押出フラットケーブル。
(5) The differential transmission extruded flat cable of (4),
A differential transmission extruded flat cable, wherein a foamed resin layer is provided between the low-capacity line conductor and the common shield.

この差動伝送押出フラットケーブルによれば、発泡樹脂層が設けられたことで静電容量を下げることができる。   According to this differential transmission extruded flat cable, the capacitance can be lowered by providing the foamed resin layer.

(6) (4)の差動伝送押出フラットケーブルであって、
前記絶縁樹脂と前記共通シールドとの間にスペーサが配置されてスペーサ周りが気層とされたことを特徴とする差動伝送押出フラットケーブル。
(6) The differential transmission extruded flat cable of (4),
A differential transmission extruded flat cable, wherein a spacer is disposed between the insulating resin and the common shield, and a space around the spacer is formed as a gas layer.

(7) (1)〜(6)のいずれか1つの差動伝送押出フラットケーブルであって、
前記差動伝送用導体の周囲の前記絶縁樹脂と前記共通シールドの間に中間シールドが設けられたことを特徴とする差動伝送押出フラットケーブル。
(7) The differential transmission extruded flat cable according to any one of (1) to (6),
A differential transmission extruded flat cable, wherein an intermediate shield is provided between the insulating resin around the differential transmission conductor and the common shield.

(8) (5)の差動伝送押出フラットケーブルであって、
前記差動伝送用導体の周囲の前記絶縁樹脂と前記共通シールドの間に中間シールドが設けられ、
前記発泡樹脂層と前記中間シールドとが一つの基材上に配置され、
該基材が前記絶縁樹脂に縦添えされたたことを特徴とする差動伝送押出フラットケーブル。
(8) The differential transmission extruded flat cable of (5),
An intermediate shield is provided between the insulating resin and the common shield around the differential transmission conductor,
The foamed resin layer and the intermediate shield are disposed on a single substrate,
A differential transmission extruded flat cable, wherein the base material is vertically attached to the insulating resin.

(9) (6)の差動伝送押出フラットケーブルであって、
前記差動伝送用導体の周囲の前記絶縁樹脂と前記共通シールドの間に中間シールドが設けられ、
前記スペーサと前記中間シールドとが一つの基材上に配置され、
前記基材が前記絶縁樹脂に縦添えされたことを特徴とする差動伝送押出フラットケーブル。
(9) The differential transmission extruded flat cable according to (6),
An intermediate shield is provided between the insulating resin and the common shield around the differential transmission conductor,
The spacer and the intermediate shield are disposed on a single substrate;
A differential transmission extruded flat cable, wherein the base material is vertically attached to the insulating resin.

(10) (1)〜(9)のいずれか1つの差動伝送押出フラットケーブルであって、
前記絶縁樹脂がポリオレフィン樹脂からなり、前記共通シールドが前記絶縁樹脂を1.5重以上巻いていることを特徴とする差動伝送押出フラットケーブル。
(10) The differential transmission extruded flat cable according to any one of (1) to (9),
The differential transmission extrusion flat cable, wherein the insulating resin is made of a polyolefin resin, and the common shield is wound with 1.5 or more layers of the insulating resin.

この差動伝送押出フラットケーブルによれば、垂直難燃試験に合格することができる。   This differential transmission extruded flat cable can pass the vertical flame retardant test.

(11) (1)〜(9)のいずれか1つの差動伝送押出フラットケーブルであって、
前記絶縁樹脂がポリオレフィン樹脂からなり、
前記共通シールドが外被にて覆われ、
該外被が、難燃性樹脂、又はポリウレタンとEVAとの混合樹脂であることを特徴とする差動伝送押出フラットケーブル。
(11) The differential transmission extruded flat cable according to any one of (1) to (9),
The insulating resin is a polyolefin resin;
The common shield is covered with a jacket;
The differential transmission extruded flat cable, wherein the jacket is a flame retardant resin or a mixed resin of polyurethane and EVA.

この差動伝送押出フラットケーブルによれば、外被を難燃性のものにしたので共通シールドを1.5重に巻かなくても垂直難燃試験に合格する。ハロゲンフリーの素材に拘らなければPVCでもよい。外被は難燃性を持たすという機能だけではなく、機械的強度向上が主たる作用となる。難燃でなくても機械強度が向上すればよいという用途であれば、ポリオレフィン(ポリエチレンやポリプロピレン)であってもよい。   According to this differential transmission extruded flat cable, since the jacket is made of flame retardant, it passes the vertical flame retardant test without winding the common shield 1.5 times. PVC may be used as long as it is not related to a halogen-free material. The outer cover has not only a function of imparting flame retardancy but also a main effect of improving mechanical strength. A polyolefin (polyethylene or polypropylene) may be used as long as the mechanical strength is improved even if it is not flame retardant.

(12) (1)〜(11)のいずれか1つの差動伝送押出フラットケーブルであって、
前記絶縁樹脂に、カーボンブラックが0.1重量%〜0.5重量%添加されていることを特徴とする差動伝送押出フラットケーブル。
(12) The differential transmission extruded flat cable according to any one of (1) to (11),
A differential transmission extruded flat cable, wherein 0.1 wt% to 0.5 wt% of carbon black is added to the insulating resin.

この差動伝送押出フラットケーブルによれば、YAGレーザで共通シールドを切断するときに内部の導体に影響を与えることがない。また、絶縁体をCOレーザで切断できる。 According to this differential transmission extruded flat cable, the internal conductor is not affected when the common shield is cut by the YAG laser. Further, the insulator can be cut with a CO 2 laser.

(13) (1)〜(12)のいずれか1つの差動伝送押出フラットケーブルであって、
少なくとも1箇所で折り曲げられ、折り曲げられる箇所には前記共通シールドが切断しない最小曲げ半径よりも大きな曲げ半径の曲げ規制部材が取り付けられていることを特徴とする差動伝送押出フラットケーブル。
(13) The differential transmission extruded flat cable according to any one of (1) to (12),
A differential transmission extruded flat cable, wherein a bending restricting member having a bending radius larger than a minimum bending radius that is not cut by the common shield is attached to the bent portion at at least one portion.

この差動伝送押出フラットケーブルによれば、最小曲げ径以下で曲げられることによる、共通シールドを形成している金属箔テープ(フォーミングテープ)の亀裂や、切断が防止される。   According to this differential transmission extruded flat cable, cracking and cutting of the metal foil tape (forming tape) forming the common shield by being bent at the minimum bending diameter or less are prevented.

(14) (1)〜(13)のいずれか1つの差動伝送押出フラットケーブルと、
少なくともその一端に接続された電気コネクタと、
からなることを特徴とするコネクタ付差動伝送押出フラットケーブル。
(14) The differential transmission extruded flat cable according to any one of (1) to (13);
An electrical connector connected to at least one end thereof;
A differential transmission extruded flat cable with a connector, characterized by comprising:

この差動伝送押出フラットケーブルによれば、端部に電気コネクタが接続されることで、種々のシステムへの接続が容易に行えるようになる。   According to this differential transmission push-out flat cable, the connection to various systems can be easily performed by connecting the electrical connector to the end.

本発明によれば、低減衰、インピーダンス等の伝送特性を要求される差動伝送ラインと低静電容量であるDDCラインとを含むフラットケーブルを実現できる。   According to the present invention, a flat cable including a differential transmission line that requires transmission characteristics such as low attenuation and impedance and a DDC line having a low capacitance can be realized.

以下、本発明に係る差動伝送押出フラットケーブルの好適な実施の形態を図面を参照して説明する。
図1は本発明に係る差動伝送押出フラットケーブルの断面図、図2は共通シールド接着部の拡大図である。
本実施の形態による差動伝送押出フラットケーブル1は、2本を一組として差動伝送する複数の信号線を構成する差動伝送用導体を含む。差動伝送用導体は二本で一対となって信号を伝送する。差動伝送押出フラットケーブルには低容量線が含まれる。低容量線の低容量とは、低容量線に含まれる低容量線用導体と共通シールドとの間の静電容量が、差動伝送用導体3と共通シールドとの間の静電容量よりも小さいという意味である。図1においては、低容量線は低容量線用導体4に絶縁体16が被覆されてなる。しかし、絶縁体16がない場合もあり、その場合は低容量線用導体4が低容量線となる。図1においては、低容量線が複数本あって低容量線用導体群5を構成するものが示されているが、低容量線が一本の場合もある。差動伝送用導体3は少なくとも一対存在する。低容量線用導体が隣合う差動伝送用導体対が一対のみである。これは、図1に示すように、差動伝送用導体3が一つの群をなし、低容量線はその群には含まれないということもできる。低容量線用導体は差動伝送用導体群の外にあるので、低容量線用導体からみれば差動伝送用導体はいずれか一方のみにある。つまり、低容量線用導体が隣合う差動伝送用導体は低容量線用導体のいずれか一方側にのみある。差動伝送用導体3と低容量線とは一列に配列されるので、低容量線が差動伝送用導体3で挟まれることがないと言うこともできる。なお、差動伝送用導体群2は信号線対間に配置されるグランド線用導体Gを含んでもよい。差動伝送用導体群2と低容量線とが絶縁樹脂12で押出被覆され、差動伝送用導体群2と低容量線(低容量線が複数ある場合は低容量線群5)を覆う共通シールドである金属箔テープ13が絶縁樹脂12の外側に設けられる。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of a differential transmission extruded flat cable according to the invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view of a differential transmission extruded flat cable according to the present invention, and FIG. 2 is an enlarged view of a common shield bonding portion.
The differential transmission extruded flat cable 1 according to the present embodiment includes differential transmission conductors that constitute a plurality of signal lines that perform differential transmission as a set of two cables. Two differential transmission conductors are paired to transmit signals. The differential transmission extruded flat cable includes a low capacity wire. The low capacitance of the low capacitance line means that the capacitance between the low capacitance line conductor and the common shield included in the low capacitance line is larger than the capacitance between the differential transmission conductor 3 and the common shield. It means small. In FIG. 1, the low-capacity line is formed by covering a low-capacitance line conductor 4 with an insulator 16. However, the insulator 16 may not be provided, and in this case, the low-capacitance line conductor 4 becomes a low-capacity line. In FIG. 1, there are shown a plurality of low-capacitance lines that constitute the low-capacitance-line conductor group 5, but there may be one low-capacitance line. There are at least a pair of differential transmission conductors 3. There is only one pair of differential transmission conductor pairs adjacent to low-capacity line conductors. As shown in FIG. 1, it can also be said that the differential transmission conductors 3 form one group and the low capacitance line is not included in the group. Since the low-capacity line conductor is outside the differential transmission conductor group, the differential transmission conductor is only in one of the low-capacity line conductors. That is, the differential transmission conductor adjacent to the low-capacity line conductor is only on one side of the low-capacity line conductor. Since the differential transmission conductor 3 and the low capacitance line are arranged in a line, it can be said that the low capacitance line is not sandwiched between the differential transmission conductors 3. The differential transmission conductor group 2 may include a ground line conductor G disposed between the signal line pairs. The differential transmission conductor group 2 and the low-capacity line are extrusion-coated with an insulating resin 12 to cover the differential transmission conductor group 2 and the low-capacity line (the low-capacity line group 5 when there are a plurality of low-capacity lines). A metal foil tape 13 as a shield is provided outside the insulating resin 12.

低容量線群5には、DDC(ディスプレイデータチャンネル)、SCL(シリアルクロック入力線)、SDA(シリアルデータ入出力線)、などがある。図1で白丸9は未定義の捨て芯を示す。   The low capacity line group 5 includes DDC (display data channel), SCL (serial clock input line), SDA (serial data input / output line), and the like. In FIG. 1, white circles 9 indicate undefined discarded cores.

本発明の差動伝送押出フラットケーブル1は、複数本の差動伝送用導体3、低容量線用導体4を所定の間隔で平行一列に並べて形成される。これらの複数本の差動伝送用導体3、低容量線用導体4は、絶縁樹脂12で一体的に被覆され、その外側に金属箔テープ13がケーブル長手方向に縦添えして巻き付けられる。また、必要に応じて、ドレイン線(不図示)が金属箔テープ13に電気的に接触するように、前記導体と並列に配設される。なお、このドレイン線は、ケーブルの側縁の片側または両側に配設されるのが好ましい。   The differential transmission extruded flat cable 1 of the present invention is formed by arranging a plurality of differential transmission conductors 3 and low-capacity line conductors 4 in a parallel row at a predetermined interval. The plurality of differential transmission conductors 3 and the low-capacity line conductors 4 are integrally covered with an insulating resin 12, and a metal foil tape 13 is vertically wound around the outside in the longitudinal direction of the cable. Further, if necessary, the drain wire (not shown) is arranged in parallel with the conductor so as to be in electrical contact with the metal foil tape 13. The drain wire is preferably disposed on one side or both sides of the side edge of the cable.

差動伝送用導体3は、銅やアルミ等の電気良導体またはこれらに錫や銀メッキを施した単心線あるいは撚り線を用いることができる。差動伝送用導体3は、丸線形状で径が0.1〜0.254mmのものが望ましい。フラットケーブルには、平形導体を用いるものもあるが、丸線形状の導体を使用することにより、差動伝送される信号間のカップリングを強くすることができる。また、信号間のカップリングを強くすることで、シールド導体(金属箔テープ13)に誘起される渦電流、および、それによるジュール損失を小さくし、低減衰とすることができる。   The differential transmission conductor 3 may be a good electrical conductor such as copper or aluminum, or a single core wire or a stranded wire in which tin or silver is plated. The differential transmission conductor 3 is preferably a round wire having a diameter of 0.1 to 0.254 mm. Some flat cables use a flat conductor, but by using a round wire conductor, the coupling between signals that are differentially transmitted can be increased. Further, by strengthening the coupling between the signals, the eddy current induced in the shield conductor (metal foil tape 13) and the resulting Joule loss can be reduced and the attenuation can be reduced.

また、差動伝送用導体3は、可撓性の点からは単心線より撚り線の方が好ましく、例えば、外径0.06mmの導線を7本撚り(AWG34番に相当、外径0.18mm)したものを用いることができる。この電気導体は、所定のピッチPで同一平面上に、平行一列に並べて、押出し成形による絶縁樹脂12で一体に被覆して、フラット状の多心絶縁ケーブル形状とされる。   Further, the differential transmission conductor 3 is preferably a stranded wire rather than a single core wire from the viewpoint of flexibility. For example, seven conductor wires having an outer diameter of 0.06 mm are twisted (corresponding to AWG No. 34, outer diameter 0). .18 mm) can be used. The electrical conductors are arranged in parallel on the same plane at a predetermined pitch P, and are covered with the insulating resin 12 by extrusion molding to form a flat multi-core insulated cable.

絶縁樹脂12は、差動伝送用導体3間を電気的に絶縁するとともに、高周波領域での使用に対しては、差動伝送用導体3間および金属箔テープ13との間に介在して、静電結合を形成するコンデンサとして機能する。このため、絶縁樹脂12は誘電体とも言われ、その誘電正接(tanδ)および比誘電率(ε)は、伝送ケーブルの特性を左右するパラメータともなる。絶縁樹脂12の誘電正接は、誘電損失を少なくするという点から小さい方が望ましく、また、比誘電率は低容量とするためには小さい方が望ましい。   The insulating resin 12 electrically insulates between the differential transmission conductors 3 and is interposed between the differential transmission conductors 3 and the metal foil tape 13 for use in a high frequency region, It functions as a capacitor that forms electrostatic coupling. For this reason, the insulating resin 12 is also referred to as a dielectric, and its dielectric loss tangent (tan δ) and relative dielectric constant (ε) are also parameters that affect the characteristics of the transmission cable. The dielectric loss tangent of the insulating resin 12 is desirably small in terms of reducing dielectric loss, and the relative dielectric constant is desirably small in order to reduce the capacitance.

絶縁樹脂12の誘電正接および比誘電率のいずれも、低い方が伝送損失も小さく、高周波の信号を効率よく伝送することができると言える。しかし、機器との接続で所定の特性インピーダンスを確保することも必要で、誘電体材料と形状的な組み合わせで考慮する必要がある。   It can be said that the lower one of the dielectric loss tangent and the relative dielectric constant of the insulating resin 12 is, the smaller the transmission loss is, and the high frequency signal can be efficiently transmitted. However, it is also necessary to ensure a predetermined characteristic impedance in connection with the device, and it is necessary to consider the combination of the dielectric material and the shape.

本発明においては、例えば、この絶縁樹脂12には、ポリオレフィン系の樹脂が用いられ、例えば、ポリエチレン樹脂等を用いることができる。ポリエチレン樹脂は、誘電正接が4×10−4程度であり、比誘電率が2.3〜2.4で、ポリエステル樹脂(例えば、PETで誘電正接が2×10−3程度、比誘電率が2.9〜3.0)より小さい。したがって、絶縁樹脂12が、押出機を用いてポリエチレンを押出し成形したものであると高周波信号の誘電損失が小さく、好ましい。 In the present invention, for example, a polyolefin-based resin is used for the insulating resin 12, and for example, a polyethylene resin or the like can be used. The polyethylene resin has a dielectric loss tangent of about 4 × 10 −4 , a relative dielectric constant of 2.3 to 2.4, and a polyester resin (for example, a dielectric loss tangent of about 2 × 10 −3 and a relative dielectric constant of PET). Smaller than 2.9 to 3.0). Therefore, it is preferable that the insulating resin 12 is obtained by extrusion-molding polyethylene using an extruder because the dielectric loss of the high-frequency signal is small.

絶縁樹脂12を押出し成形する場合、絶縁樹脂12の上下の平面は、差動伝送用導体3および低容量線用導体4間で凹みが生じないようなフラットな面で形成されていることが望ましい。これにより、絶縁樹脂の短径(図1にD1で示す)は絶縁樹脂の幅方向(図1の左右の方向)に均一となる。したがって、各差動伝送用導体3および低容量線用導体4と絶縁樹脂12の外周に巻き付けられる金属箔テープ13との間隔が一定になり、均一なインピーダンスとすることができる。   When the insulating resin 12 is extruded, it is desirable that the upper and lower planes of the insulating resin 12 are formed as flat surfaces that do not cause a dent between the differential transmission conductor 3 and the low-capacity line conductor 4. . Thereby, the short axis (indicated by D1 in FIG. 1) of the insulating resin is uniform in the width direction of the insulating resin (left and right direction in FIG. 1). Therefore, the distances between the differential transmission conductors 3 and the low-capacitance line conductors 4 and the metal foil tape 13 wound around the outer periphery of the insulating resin 12 are constant, and uniform impedance can be obtained.

金属箔テープ13は、上記のように差動伝送用導体3のうちの信号線との間で、所定の静電容量分布を形成して、所定のインピーダンスが得られるようにしている。この他、金属箔テープ13は、絶縁樹脂12の外周を覆って、外部からの雑音信号(ノイズ信号)の侵入あるいは外部への信号の漏出を防止するシールド導体としての機能を備えている。   As described above, the metal foil tape 13 forms a predetermined capacitance distribution with the signal line of the differential transmission conductor 3 so as to obtain a predetermined impedance. In addition, the metal foil tape 13 has a function as a shield conductor that covers the outer periphery of the insulating resin 12 and prevents intrusion of noise signals (noise signals) from the outside or leakage of signals to the outside.

この金属箔テープ13は、図2に示すアルミまたは銅などの金属箔13aをポリエチレンテレフタレート(PET)等のプラスチック基材13bに貼り合わせて或いは蒸着して形成される。金属箔13aおよびプラスチック基材13bには、厚さが数μm〜数十μmのものが使用可能で、金属箔テープ13の全体としての厚さは、0.01mm〜0.05mmのものが使用される。例えば、金属箔13aとして厚さ9μmの銅箔を用い、テープ基材13bとして厚さ6μmのPETを用いて、全体厚さが15μmのCuPETテープとしたものを使用することができる。   The metal foil tape 13 is formed by attaching or vapor-depositing a metal foil 13a such as aluminum or copper shown in FIG. 2 to a plastic substrate 13b such as polyethylene terephthalate (PET). The metal foil 13a and the plastic substrate 13b can be used with a thickness of several μm to several tens of μm, and the overall thickness of the metal foil tape 13 is 0.01 mm to 0.05 mm. Is done. For example, a 9 μm thick copper foil can be used as the metal foil 13 a, a 6 μm thick PET can be used as the tape base material 13 b, and a 15 μm thick CuPET tape can be used.

この金属箔テープ13は、その金属箔面を内側にして、絶縁樹脂12に縦添えされ絶縁樹脂12の幅で折り曲げられて、少なくともその重ね合わせ部分は接着剤13cにより接着固定される。金属箔テープ13の金属箔面を内側とすることにより、ケーブル外面に金属箔が露出しないため、外被15がなくてもケーブルとしての一定範囲の耐久性を持たせることができる。また、金属箔テープ13は、差動伝送用導体3との間でインピーダンス整合をとる必要があるため、差動伝送用導体3との離間距離が一定である必要がある。離間距離は導体と金属箔テープとのフラットケーブルの厚さ方向の距離である(図に示すこと)。このためには、金属箔テープ13の外周を外被15で覆わない場合は、金属箔テープ13は、絶縁樹脂12にしっかりと貼り付いていることが好ましい。両者を貼り付けるための接着剤は、例えばポリエステル系の接着剤を使用することができる。   The metal foil tape 13 is vertically attached to the insulating resin 12 with the metal foil surface inside, and is bent at the width of the insulating resin 12, and at least the overlapping portion is bonded and fixed by the adhesive 13c. By setting the metal foil surface of the metal foil tape 13 to the inner side, the metal foil is not exposed on the outer surface of the cable, so that a certain range of durability as a cable can be provided even without the jacket 15. Further, since the metal foil tape 13 needs to be impedance matched with the differential transmission conductor 3, the separation distance from the differential transmission conductor 3 needs to be constant. The separation distance is the distance in the thickness direction of the flat cable between the conductor and the metal foil tape (shown in the figure). For this purpose, when the outer periphery of the metal foil tape 13 is not covered with the jacket 15, it is preferable that the metal foil tape 13 is firmly attached to the insulating resin 12. For example, a polyester-based adhesive can be used as an adhesive for attaching the two.

金属箔テープ13の外周が外被15で被覆される場合、金属箔テープ13は、その金属箔面が外側になるように巻き付けてもよい。この場合、外被15で覆うことにより保護され耐久性を持たせることができる。また、金属箔テープ13が、金属箔面が外側になるように巻き付けられた場合、ドレイン線は、金属箔テープ13の外側に配設する。そして、外被15で金属箔面に接するように押し付ける形態とされる。外被15で金属箔テープ13を覆う場合は、金属箔テープ13は絶縁樹脂12に必ずしも接着しなくてよい。   When the outer periphery of the metal foil tape 13 is covered with the jacket 15, the metal foil tape 13 may be wound so that the metal foil surface is on the outside. In this case, it can be protected and covered by covering with the outer jacket 15. Further, when the metal foil tape 13 is wound so that the metal foil surface is on the outside, the drain wire is disposed outside the metal foil tape 13. And it is set as the form pressed with the outer sheath 15 so that a metal foil surface may be touched. When covering the metal foil tape 13 with the jacket 15, the metal foil tape 13 does not necessarily have to adhere to the insulating resin 12.

本発明による差動伝送押出フラットケーブル1は、隣り合う差動伝送用導体3の2本を一組とする信号線対を含む。複数の信号線対(例えば、4対のS1〜S4)を含むことができる。そして、これらの信号線対を形成する一方の信号線(Sp1〜Sp4)を正電位の信号用,他方の信号線(Sn1〜Sn4)を反対の負電位の信号用とされる。また、差動伝送用導体3の本数に余裕がある場合は、各信号線対Sの間の電気導体をグランド線Gとして、隣り合う信号線対S間の信号の結合を低減し、クロストークが生じないようにしてもよい。   A differential transmission push-out flat cable 1 according to the present invention includes a signal line pair including two adjacent differential transmission conductors 3 as a set. A plurality of signal line pairs (for example, four pairs of S1 to S4) can be included. One signal line (Sp1 to Sp4) forming these signal line pairs is used for a positive potential signal, and the other signal line (Sn1 to Sn4) is used for an opposite negative potential signal. Further, when there is a margin in the number of the differential transmission conductors 3, the electric conductor between each signal line pair S is used as a ground line G, and signal coupling between adjacent signal line pairs S is reduced, and crosstalk is achieved. May not occur.

上述の差動伝送押出フラットケーブル1を用いた伝送路において、送信側では、例えば、上記の信号線対S1では、信号線Sp1で極性が正レベルの(+V1)信号を伝送し、信号線Sn1で極性が負レベルの(−V1)信号を伝送する。そして、受信側では、両者の信号レベルの差「(+V1)−(−V1)」をとることにより、2V1のレベル信号を受信することができる。また、伝送経路中で侵入する外部雑音信号は、信号線Sp1とSn1に同相で加わるが、受信側で差信号をとることによりキャンセルされる。信号線対Sは、複数を平行一列に並べる形態で設けられ、それぞれの信号線対(S1〜S4)は、互いに異なる信号を個別に伝送することができる。   In the transmission line using the differential transmission push-out flat cable 1 described above, on the transmission side, for example, in the signal line pair S1, the signal line Sp1 transmits a (+ V1) signal having a positive polarity, and the signal line Sn1 The (−V1) signal having a negative polarity is transmitted. On the receiving side, a level signal of 2V1 can be received by taking the difference between both signal levels “(+ V1) − (− V1)”. An external noise signal that enters the transmission path is added to the signal lines Sp1 and Sn1 in phase, but is canceled by taking a difference signal on the receiving side. The signal line pairs S are provided in a form in which a plurality of signal line pairs are arranged in a parallel row, and each signal line pair (S1 to S4) can individually transmit different signals.

各信号線対S間に配されたグランド線Gは、グランド電位とされる。グランド線Gは、各信号線対(S1〜S4)の両側を挟むように配され、信号線SpとSnの両者に対して電気的、物理的にバランスする配置状態とするのが好ましい。しかし、ケーブル両端に位置する信号線対S1とS4の外側は、信号線対Sが存在しないことから省略することもできる。また、この他に、信号線対Sに影響を与えない形態で、例えば、信号線群の配列ピッチの数倍の距離をおいたところに電源線等を備えていてもよい。   The ground line G arranged between each signal line pair S is set to the ground potential. The ground line G is preferably disposed so as to sandwich both sides of each signal line pair (S1 to S4), and is in an arrangement state in which both the signal lines Sp and Sn are electrically and physically balanced. However, the outside of the signal line pair S1 and S4 located at both ends of the cable can be omitted because the signal line pair S does not exist. In addition to this, in a form that does not affect the signal line pair S, for example, a power line or the like may be provided at a distance several times the arrangement pitch of the signal line group.

信号線Sp,Sn、およびグランド線Gを形成する差動伝送用導体3の配列ピッチPは、電気的な絶縁が確保できる距離で、また、信号線SpとSnとの間の結合度を考慮すると、差動伝送用導体3の外径が0.18mm(AWG34番相当)の場合、0.5mm程度とすることができる。また、絶縁樹脂12の短径D1は、インピーダンスが所定値(例えば、100Ω)となるように、絶縁樹脂12の誘電率を考慮して選択される。また、外被15を有する場合、外被15の被覆厚さは0.2mm程度で、内部の差動伝送用導体3の太さ、絶縁樹脂12の被覆厚さによるが、外被の短径D2は1.0mm〜3.0mm程度とされる。   The arrangement pitch P of the differential transmission conductors 3 that form the signal lines Sp and Sn and the ground line G is a distance that can ensure electrical insulation, and also considers the degree of coupling between the signal lines Sp and Sn. Then, when the outer diameter of the differential transmission conductor 3 is 0.18 mm (equivalent to AWG 34), it can be set to about 0.5 mm. The short diameter D1 of the insulating resin 12 is selected in consideration of the dielectric constant of the insulating resin 12 so that the impedance becomes a predetermined value (for example, 100Ω). When the outer cover 15 is provided, the outer cover 15 has a coating thickness of about 0.2 mm. Depending on the thickness of the internal differential transmission conductor 3 and the insulating resin 12, the outer diameter of the outer cover 15 may be increased. D2 is about 1.0 mm to 3.0 mm.

上記の構成において、インピーダンスを大きくするには、差動伝送用導体3の径を細くするか、または絶縁樹脂12の厚さを大きくするが、伝送損失の点からは絶縁樹脂12の厚さを増加させるのが好ましい。反対に特性インピーダンスを小さくするには、差動伝送用導体3の径を太くするか、または絶縁樹脂12の厚さを小さくするが、伝送損失の点からは差動伝送用導体3の太さを増加させるのが好ましい。   In the above configuration, in order to increase the impedance, the diameter of the differential transmission conductor 3 is reduced, or the thickness of the insulating resin 12 is increased. From the viewpoint of transmission loss, the thickness of the insulating resin 12 is increased. It is preferable to increase. On the other hand, in order to reduce the characteristic impedance, the diameter of the differential transmission conductor 3 is increased or the thickness of the insulating resin 12 is decreased. From the viewpoint of transmission loss, the thickness of the differential transmission conductor 3 is reduced. Is preferably increased.

また、ケーブルの伝送損失としては、通常、5.0dB/使用長まで許容される。2mの使用長では、2.5dB/mが許容される。また、伝送損失は、使用周波数によっても異なるが、例えば、HDMIの使用周波数825MHzにおいて、差動伝送用導体3を7本撚り線で外径が0.18mm(AWG34番相当、)を用い、導体ピッチPを0.5mm、絶縁樹脂12の厚さD1を導体ピッチPと同じ0.5mmとする。そして、絶縁樹脂12にポリエチレンを用いた場合、伝送損失は1.5dB〜2.0dB/mと推定される。   Further, the transmission loss of the cable is normally allowed up to 5.0 dB / use length. With a working length of 2 m, 2.5 dB / m is allowed. The transmission loss also varies depending on the frequency used. For example, at the HDMI usage frequency of 825 MHz, the conductor 3 for differential transmission 3 has seven strands and an outer diameter of 0.18 mm (equivalent to AWG 34). The pitch P is 0.5 mm, and the thickness D1 of the insulating resin 12 is 0.5 mm, which is the same as the conductor pitch P. When polyethylene is used for the insulating resin 12, the transmission loss is estimated to be 1.5 dB to 2.0 dB / m.

他方、図7に示すような極細の同軸構造を用いたスダレケーブルで、上記と同じ導体ピッチを0.5mmで形成し、100Ωのインピーダンスを得るには、中央導体の太さを外径0.03mmの7本撚り(AWG40番に相当、外径0.09mm)の細径にする必要がある。この結果、上記と同じ使用周波数825MHzにおける伝送損失は、4dB〜5dB/mとなり、本発明の場合と比べて2倍の損失となる。他方、従来構造で、本願発明と同等の伝送損失となるようにするには、スダレケーブルの幅、厚さが増大し、配線スペースが増大し、取り扱い性も低下する。   On the other hand, in order to obtain an impedance of 100 Ω by forming the same conductor pitch as described above at 0.5 mm with a suede cable using an extremely fine coaxial structure as shown in FIG. It is necessary to make a small diameter of 03 mm 7-strand (corresponding to AWG No. 40, outer diameter 0.09 mm). As a result, the transmission loss at the same use frequency 825 MHz as described above is 4 dB to 5 dB / m, which is twice that of the case of the present invention. On the other hand, in the conventional structure, in order to achieve the same transmission loss as that of the present invention, the width and thickness of the cable are increased, the wiring space is increased, and the handleability is also lowered.

また、近年は、難燃性を備えたケーブルの要求が高く、UL規格の垂直燃焼試験VW−1に合格する硬度の難燃性ケーブルが求められている。金属箔テープ13の巻き付けの重なり量が少ないと、燃焼試験中に重なり部分の接着剤が融解する。そして、この重なり部分からテープ内側のポリエチレン樹脂が気化して洩れ出し、これが燃焼してケーブルの延焼を助長することになる。   In recent years, there is a high demand for a cable having flame retardancy, and a flame retardant cable having a hardness that passes the UL vertical combustion test VW-1 is required. If the overlapping amount of winding of the metal foil tape 13 is small, the adhesive at the overlapping portion melts during the combustion test. Then, the polyethylene resin inside the tape is vaporized and leaks from this overlapping portion, and this burns and promotes the spread of the cable.

これに対して、図3に示すように、金属箔テープ13の巻き付けの重なり部分を大きくした差動伝送押出フラットケーブル1Aは垂直難燃試験を合格することができる。試験の結果、金属箔テープ13を1.5重に巻き付け、巻き付けの重なり部分を0.5巻きとすることで、燃焼ガスの漏れを抑制することができた。したがって、金属箔テープ13は、絶縁体の外周に1.5重以上に巻き付け、巻き付けの重なり部分を0.5巻き分以上とするのが好ましい。   On the other hand, as shown in FIG. 3, the differential transmission extruded flat cable 1 </ b> A in which the overlapping portion of the winding of the metal foil tape 13 is enlarged can pass the vertical flame retardant test. As a result of the test, it was possible to suppress the leakage of the combustion gas by winding the metal foil tape 13 1.5 times and setting the overlapping portion of the winding to 0.5. Therefore, it is preferable that the metal foil tape 13 is wound 1.5 or more times around the outer periphery of the insulator, and the overlapping portion of the winding is 0.5 turns or more.

また、金属箔テープ13の金属箔は6〜20μmの厚さとする。アルミ箔の場合、7μmでは穴があき難燃性試験に不合格となり、10μm以上の厚さが必要であった。銅箔の場合は、7μmの厚さで難燃性試験に合格した。したがって、難燃性を高めるには、銅箔テープを用いるのが好ましい。金属箔テープの樹脂にはPET等を使用することができ、その厚さは7〜20μmとする。   The metal foil of the metal foil tape 13 has a thickness of 6 to 20 μm. In the case of aluminum foil, a hole was perforated at 7 μm and the flame retardant test was rejected, and a thickness of 10 μm or more was required. In the case of copper foil, the flame retardant test was passed with a thickness of 7 μm. Therefore, it is preferable to use a copper foil tape to increase the flame retardancy. PET etc. can be used for resin of a metal foil tape, and the thickness shall be 7-20 micrometers.

外被15は、ジャケットとも言われ、金属箔テープ13を含めてケーブル全体の保護のために設けられる。この外被15は、ポリ塩化ビニル、ポリエチレン或いは後述のポリウレタン樹脂とエチレン酢酸ビニル共重合樹脂との混合樹脂等を、押出機を用いて押出し成形するか、樹脂テープを巻き付けて形成することができる。外被15は、金属箔テープ13を電気的に絶縁して保護するとともに、その機械的強度を補強し、屈曲等に耐える強度をさらに強める。   The jacket 15 is also called a jacket and is provided for protecting the entire cable including the metal foil tape 13. The outer cover 15 can be formed by extruding polyvinyl chloride, polyethylene or a mixed resin of a polyurethane resin and an ethylene vinyl acetate copolymer resin, which will be described later, using an extruder, or by winding a resin tape. . The outer jacket 15 electrically insulates and protects the metal foil tape 13, reinforces its mechanical strength, and further strengthens the strength to withstand bending.

外被15を有するケーブルでは、外被材料に難燃性のものを用いることにより、難燃性を高めることができる。難燃性の外被15としては、従来、ハロゲン系難燃剤を添加した難燃ポリエチレンやポリ塩化ビニル樹脂が用いられているが、環境問題からハロゲンを含まないハロゲンフリーの難燃性ケーブルの要求が高くなっている。本発明においては、ケーブルの外被15として、ポリウレタン樹脂とエチレン−酢酸ビニル共重合体(EVA)樹脂との混合樹脂(例えば、特開2008−117609号公報参照)を用いて、ケーブルの難燃化を実現している。難燃性の外被15で金属箔テープ13を覆う場合は金属箔テープ13は一部重なってさえいればよい。   In the cable having the jacket 15, flame retardance can be improved by using a flame retardant material for the jacket. Conventionally, flame retardant outer sheath 15 is made of flame retardant polyethylene or polyvinyl chloride resin to which halogenated flame retardants are added. However, halogen-free flame retardant cables that do not contain halogen are required due to environmental problems. Is high. In the present invention, as the cable jacket 15, a mixed resin of polyurethane resin and ethylene-vinyl acetate copolymer (EVA) resin (see, for example, Japanese Patent Application Laid-Open No. 2008-117609) is used. Has been realized. When the metal foil tape 13 is covered with the flame retardant outer cover 15, the metal foil tape 13 only needs to partially overlap.

外被15ありの場合、外被15を難燃性のものにすると共通シールドを1.5重に巻かなくてもよい。ハロゲンフリーの素材に拘らなければPVCでもよい。外被15は難燃性を持たすという機能だけではなく、機械的強度向上が主たる作用となる。難燃でなくても機械強度が向上すればよいという用途であれば、ポリオレフィン(ポリエチレンやポリプロピレン)であってもよい。   In the case where the outer cover 15 is provided, if the outer cover 15 is made of a flame-retardant material, the common shield may not be wound 1.5 times. PVC may be used as long as it is not related to a halogen-free material. The outer cover 15 has not only a function of imparting flame retardancy but also a main effect of improving mechanical strength. A polyolefin (polyethylene or polypropylene) may be used as long as the mechanical strength is improved even if it is not flame retardant.

金属箔テープ13が絶縁樹脂12から浮くと、インピーダンスが違ってしまうので、外被がない場合は、金属箔テープ13は絶縁樹脂12に貼り付ける。   When the metal foil tape 13 floats from the insulating resin 12, the impedance is different, so that the metal foil tape 13 is attached to the insulating resin 12 when there is no jacket.

差動伝送用導体群2の周囲の絶縁樹脂12と金属箔テープ13の間には、中間シールド7が設けられてもよい。中間シールドは金属箔または金属箔テープからなる。金属箔は数μm〜数十μmの厚さの銅箔やアルミ箔が使用できる。金属箔テープは共通シールドと同様のものが使用できる。金属箔テープを使用する場合は、PETなどの基材に銅、銅合金、アルミニウムなどの金属箔を貼り付けたものを使用できる。PETなどの基材層を絶縁樹脂12側(内側)に、金属箔層を外側にする。これにより、差動伝送用導体3が二重シールドされシールド効果が増大する。また、フラットケーブルの端部で共通シールドを除去した場合でも中間シールドを残すことで差動伝送線の端部においてもインピーダンスを所定の値に近づけることが可能となる。この場合、金属箔テープ13はグランド層としては機能しない。中間シールド7からグランドに落とす。金属箔が外側あるので、中間シールドを露出させてその上にグランドバーを接続し、グランドバーに繋ぐ回路をグランドに落とす。この場合はドレイン線は不要となる。   An intermediate shield 7 may be provided between the insulating resin 12 and the metal foil tape 13 around the differential transmission conductor group 2. The intermediate shield is made of metal foil or metal foil tape. As the metal foil, a copper foil or an aluminum foil having a thickness of several μm to several tens of μm can be used. A metal foil tape similar to the common shield can be used. In the case of using a metal foil tape, it is possible to use a metal foil such as copper, copper alloy, or aluminum attached to a base material such as PET. A base material layer such as PET is on the insulating resin 12 side (inner side), and the metal foil layer is on the outer side. As a result, the differential transmission conductor 3 is double-shielded to increase the shielding effect. Further, even when the common shield is removed at the end portion of the flat cable, the impedance can be brought close to a predetermined value at the end portion of the differential transmission line by leaving the intermediate shield. In this case, the metal foil tape 13 does not function as a ground layer. Drop from the middle shield 7 to ground. Since the metal foil is on the outside, the intermediate shield is exposed and a ground bar is connected to it, and the circuit connected to the ground bar is dropped to the ground. In this case, the drain line is unnecessary.

図4は低容量線用導体群の要部断面図である。
低容量線用導体4は、差動伝送用導体3よりも細い径にて形成されるのが好ましい。低容量線用導体4の導体径を小さくすると、該当芯と共通シールド間の静電容量を下げることができる。低容量線用導体4の径は0.02〜0.254mmとすることができる。単線、撚り線のいずれでもよい低容量線の径を差動伝送用導体の径よりも小さくするのが好ましい。この場合、低容量線用導体の径を0.063mm(0.021mmの径の素線7本を撚った径)以下とするのが好ましい。低容量線用導体4が個別に絶縁体16で被覆されてもよい。絶縁体16の径が差動伝送用導体3と同程度の外径に形成されているのが好ましい。絶縁体16は低誘電率のものが好ましく、その点ではフッ素樹脂が好ましい。ポリエチレン、EVA、EEAそれらの混合物であってもよく、絶縁樹脂12と同じ材質であってもよい。
FIG. 4 is a cross-sectional view of the main part of the conductor group for low capacitance lines.
The low-capacity line conductor 4 is preferably formed with a smaller diameter than the differential transmission conductor 3. When the conductor diameter of the low-capacity line conductor 4 is reduced, the capacitance between the corresponding core and the common shield can be reduced. The diameter of the low-capacitance line conductor 4 can be 0.02 to 0.254 mm. It is preferable to make the diameter of the low-capacity wire, which may be either a single wire or a stranded wire, smaller than the diameter of the differential transmission conductor. In this case, the diameter of the low-capacity wire conductor is preferably 0.063 mm (diameter obtained by twisting seven strands having a diameter of 0.021 mm) or less. The low capacity line conductor 4 may be individually covered with the insulator 16. It is preferable that the diameter of the insulator 16 is formed to be the same as that of the differential transmission conductor 3. The insulator 16 preferably has a low dielectric constant, and in that respect, a fluororesin is preferable. Polyethylene, EVA, EEA, a mixture thereof, or the same material as the insulating resin 12 may be used.

差動伝送用導体3と低容量線用導体4を同一径とすることで、押出機における押出ポイントの導体ガイドの穴径を同一径に統一でき、導体ガイドの汎用性が確保される。低容量線用導体4から金属箔テープ13までの距離は、差動伝送用導体3から金属箔テープ13までの距離よりも長い。これにより、低容量線用導体4と共通シールドの間の静電容量が低くなるようになされている。   By making the differential transmission conductor 3 and the low-capacity wire conductor 4 have the same diameter, the hole diameter of the conductor guide at the extrusion point in the extruder can be unified, and the versatility of the conductor guide is ensured. The distance from the low capacity line conductor 4 to the metal foil tape 13 is longer than the distance from the differential transmission conductor 3 to the metal foil tape 13. As a result, the capacitance between the low-capacity line conductor 4 and the common shield is reduced.

差動伝送用導体群2と絶縁樹脂12にポリエチレンを使用し、かつ低容量線の絶縁体16にポリエチレンよりも誘電率の低いフッ素樹脂を使用した場合、低容量線は低容量線用導体を極力細くかつフッ素樹脂の被覆を極力厚くするとより低容量となる。この場合、低容量線の径(フッ素樹脂絶縁体)の径が差動伝送用導体の径より大きくなることがある。   When polyethylene is used for the differential transmission conductor group 2 and the insulating resin 12, and a fluororesin having a dielectric constant lower than that of polyethylene is used for the low-capacity line insulator 16, the low-capacity line is a low-capacity line conductor. The capacity becomes lower when it is as thin as possible and the coating of the fluororesin is as thick as possible. In this case, the diameter of the low-capacity line (fluororesin insulator) may be larger than the diameter of the differential transmission conductor.

低容量線用導体4と共通シールド間の静電容量を低くするには、低容量線用導体から共通シールドまでの間に気層を含ませてその間の誘電率を下げる手段もある。気層を含ませるには絶縁樹脂12を発泡させること、絶縁樹脂12とは別に絶縁樹脂12と共通シールドとの間に発泡層を設けること、絶縁樹脂12と共通シールドとの間にスペーサを置いて共通シールドがスペーサに持ち上げられてスペーサの周囲(横)に気層を設けることができる。発泡層や気層に含まれる気体は空気や窒素や二酸化炭素などがある。   In order to reduce the electrostatic capacitance between the low-capacitance line conductor 4 and the common shield, there is a means for lowering the dielectric constant between the low-capacity line conductor and the common shield by including an air layer. In order to include an air layer, the insulating resin 12 is foamed, a foam layer is provided between the insulating resin 12 and the common shield separately from the insulating resin 12, and a spacer is placed between the insulating resin 12 and the common shield. Thus, the common shield is lifted by the spacer, and a gas layer can be provided around (side) the spacer. Examples of the gas contained in the foam layer and the air layer include air, nitrogen, and carbon dioxide.

図5は空気層が形成された差動伝送押出フラットケーブルの要部断面図である。低容量線用導体4と金属箔テープ13の間に空気層17が設けられる。金属箔テープ13と絶縁樹脂12の間に空気層17が介在することで、低容量線用導体4と共通シールドの間を低静電容量にできる。空気層17を設けるために金属箔テープと絶縁樹脂の間でかつ導体間の上下の箇所にスペーサ18を置く。スペーサ18のない導体の上下の部分に空気層17ができる。スペーサ18が設けられることで、空気層17が一定距離で確保され、低容量線用導体4と共通シールド間の静電容量が低い値で安定する。スペーサ18を一つの共通基材6上に配置し、この共通基材6を絶縁樹脂12に縦添えすることができる。その上に金属箔テープ13を巻くことで容易に空気層17を作ることができる。スペーサおよび共通基材には低誘電率の樹脂フィルムが使用できる。フッ素樹脂、ポリエチレン、EVA、EEAなど、また、それらの混合物が使用できる。図5では全ての低容量線用導体4の間にスペーサ18を配置したが、空気層が確保されるのであれば必ずしも全ての低容量線用導体4の間にスペーサ18を配置しなくてもよい。
溝を切った樹脂フィルムを絶縁樹脂12と共通シールドとの間に入れても、前述したスペーサおよび共通基材と同様に空気層を作ることができる。
FIG. 5 is a cross-sectional view of a main part of a differential transmission extruded flat cable in which an air layer is formed. An air layer 17 is provided between the low-capacity line conductor 4 and the metal foil tape 13. By interposing the air layer 17 between the metal foil tape 13 and the insulating resin 12, the space between the low-capacitance line conductor 4 and the common shield can be reduced to a low capacitance. In order to provide the air layer 17, spacers 18 are placed between the metal foil tape and the insulating resin and at the upper and lower portions between the conductors. Air layers 17 are formed on the upper and lower portions of the conductor without the spacer 18. By providing the spacer 18, the air layer 17 is secured at a constant distance, and the capacitance between the low-capacitance line conductor 4 and the common shield is stabilized at a low value. The spacer 18 can be disposed on one common base 6 and the common base 6 can be vertically attached to the insulating resin 12. The air layer 17 can be easily formed by winding the metal foil tape 13 thereon. A low dielectric constant resin film can be used for the spacer and the common substrate. Fluororesin, polyethylene, EVA, EEA, etc., and mixtures thereof can be used. In FIG. 5, the spacers 18 are arranged between all the low-capacity line conductors 4. However, as long as an air layer is secured, the spacers 18 are not necessarily arranged between all the low-capacity line conductors 4. Good.
Even if a resin film with a groove cut is inserted between the insulating resin 12 and the common shield, an air layer can be formed in the same manner as the spacer and the common substrate.

低容量線用導体4と共通シールドとの間に気体を含む発泡層を設けても両者の間の静電容量を低くすることができる。例えば、絶縁樹脂12と共通シールドとの間に発泡樹脂フィルムを介在させることができる。フッ素樹脂、ポリエチレン、ポリプロピレン、EVA、EEAなど、また、それらの混合物を発泡させた樹脂フィルムが使用できる。前述のスペーサを発泡樹脂フィルムとしてもよい。   Even if a foamed layer containing a gas is provided between the low-capacity line conductor 4 and the common shield, the capacitance between them can be lowered. For example, a foamed resin film can be interposed between the insulating resin 12 and the common shield. A resin film obtained by foaming a fluororesin, polyethylene, polypropylene, EVA, EEA, or a mixture thereof can be used. The aforementioned spacer may be a foamed resin film.

前述のように差動伝送用導体群2の周囲の絶縁樹脂12と共通シールドの間に中間シールドを設けることがある。これにより差動伝送用導体に対するグランド電位が取りやすく、差動伝送用導体と中間シールド(グランド層)との間のインピーダンスを安定させることができる。一方、低容量線用導体群5は差動伝送用導体群2に比べてインピーダンスを合わせる必要性やシールド効果を増大させる必要性が小さく、それよりも低容量線用導体4と共通シールドとの間を低容量とする必要性が高い。そこで、差動伝送用導体群の周囲の部分において絶縁樹脂12と共通シールドとの間に中間シールドを設けると同時に低容量線用導体の周囲の部分において絶縁樹脂12と共通シールドとの間に空気層または発泡樹脂層を設けるとそれぞれの導体群で必要とされる効果が奏される。これらを共通基材の上に配置すれば、押出フラットケーブルの製造においてその共通基材を絶縁樹脂12と共通シールドである金属箔テープ13との間に介在させるだけで両方を作ることができ製造容易である。具体的には、共通基材6の上に、下記の組み合わせのものをそれぞれ接着して配置する。
(差動伝送用導体群の周囲に置く物) (低容量線用導体(群)の周囲に置く物)
中間シールド 発泡樹脂層
中間シールド 気層をつくるためのスペーサ
中間シールド 気層をつくるための溝が切られた樹脂
フィルム
その共通基材を絶縁樹脂12に縦添えし、さらにその周囲に金属箔テープ13を巻く。中間シールドが浮かないようにするには共通基材6と絶縁樹脂12とを接着するの望ましい。
中間シールドの厚さと発泡樹脂層またはスペーサの高さとは一致させる必要がない。発泡層または気層の厚さは0.03〜0.1mmとすることができる。一方、中間シールドの厚さは0.013〜0.04mmとすることができる。
As described above, an intermediate shield may be provided between the insulating resin 12 around the differential transmission conductor group 2 and the common shield. Thereby, the ground potential for the differential transmission conductor can be easily obtained, and the impedance between the differential transmission conductor and the intermediate shield (ground layer) can be stabilized. On the other hand, the low-capacity line conductor group 5 is less required to match the impedance and increase the shielding effect than the differential transmission conductor group 2, and the low-capacity line conductor 4 and the common shield are less than that. There is a high need for a low capacity. Therefore, an intermediate shield is provided between the insulating resin 12 and the common shield in the portion around the differential transmission conductor group, and at the same time, air is provided between the insulating resin 12 and the common shield in the portion around the low-capacity line conductor. When a layer or a foamed resin layer is provided, an effect required for each conductor group is exhibited. If these are arranged on a common base material, both can be made by simply interposing the common base material between the insulating resin 12 and the metal foil tape 13 which is a common shield in the manufacture of the extruded flat cable. Easy. Specifically, the following combinations are bonded and arranged on the common substrate 6.
(Things placed around the conductor group for differential transmission) (Things placed around the conductor (group) for low capacity wires)
Intermediate shield Foamed resin layer Intermediate shield Spacer for creating an air layer Intermediate shield Resin with grooves cut to create an air layer
Film The common base material is vertically attached to the insulating resin 12, and a metal foil tape 13 is wound around the same. In order to prevent the intermediate shield from floating, it is desirable to bond the common base 6 and the insulating resin 12 together.
The thickness of the intermediate shield and the height of the foamed resin layer or the spacer need not match. The thickness of the foam layer or the gas layer can be 0.03 to 0.1 mm. On the other hand, the thickness of the intermediate shield can be 0.013 to 0.04 mm.

差動伝送押出フラットケーブル1は、コネクタ接続等のための端末形成に際し、金属箔テープ13をYAGレーザにて切断することが望ましい。しかし、絶縁樹脂12が透明ないし自然色であると、YAGレーザで金属箔テープ13を切断するときに絶縁樹脂12の内部の導体を劣化させることがある。そこで、絶縁樹脂12を着色してYAGレーザが透過しにくくすると、今度はCOレーザによって絶縁樹脂12を切断しにくくなる。 In the differential transmission extruded flat cable 1, it is desirable to cut the metal foil tape 13 with a YAG laser when forming a terminal for connector connection or the like. However, if the insulating resin 12 is transparent or natural, the conductor inside the insulating resin 12 may be deteriorated when the metal foil tape 13 is cut with a YAG laser. Therefore, if the insulating resin 12 is colored to make it difficult for the YAG laser to pass through, it becomes difficult to cut the insulating resin 12 by the CO 2 laser.

このため、絶縁樹脂12にはカーボンブラックを0.15wt%程度(0.1重量%〜0.5重量%)添加して、絶縁樹脂12の色を薄黒とするのが望ましい。この程度のカーボンブラックの添加量であれば、YAGレーザが内部の導体に影響を与えることなく、金属箔テープ13のみを切断することができる。また、絶縁樹脂12に対しては、COレーザによる切断が確保できる。 Therefore, it is desirable to add about 0.15 wt% (0.1 wt% to 0.5 wt%) of carbon black to the insulating resin 12 so that the color of the insulating resin 12 is light black. With this amount of carbon black added, only the metal foil tape 13 can be cut without the YAG laser affecting the internal conductor. Further, the insulating resin 12 can be cut by a CO 2 laser.

シールド導体を有するフラットケーブルでは、外被の有無に関係なく、極端に折り曲げ(最小曲げ径以下での曲げ)られると、シールド導体を形成している金属箔テープ13に亀裂が入ったり切断されたりすることがある。このため、ケーブルが所定の曲げ半径以下の半径で曲げられないように、折り曲げられる箇所には、金属箔テープ13が切断しない最小曲げ半径よりも大きな曲げ半径とする曲げ規制手段(不図示)を備えていることが望まれる。   In a flat cable having a shield conductor, the metal foil tape 13 forming the shield conductor is cracked or cut when it is extremely bent (bent at or below the minimum bend diameter) regardless of the presence or absence of the jacket. There are things to do. For this reason, a bending restricting means (not shown) having a bending radius larger than the minimum bending radius at which the metal foil tape 13 is not cut is provided at a bent portion so that the cable is not bent at a radius equal to or less than a predetermined bending radius. It is desirable to have it.

曲げ規制部材を備えることで、最小曲げ径以下で曲げられることによる共通シールドを形成している金属箔テープ13の亀裂や切断が防止される。外被15があってもなくても、極端に折り曲げれば(最小曲げ半径以上に折り曲げれば)、金属箔テープ13が切れる。金属箔テープ13が切れないように最小曲げ半径以上の半径を有する曲げ規制部材を曲げ部にあてがって固定する。例えば、曲げ規制部材である棒等を接着し、接着テープを折り曲げ部に巻いて(棒がくるまれるように)固定する。90°に折り曲げる場合は、1.5mm程度が金属箔テープ13(Cu−PETの銅)に亀裂が入らない下限の曲げ半径となる。また、180°に折り曲げる、つまり重ねてたたむ場合は、2.5mm程度がCu−PETの銅に亀裂が入らない下限の曲げ半径となる。   By providing the bending restricting member, cracking and cutting of the metal foil tape 13 forming the common shield by being bent at the minimum bending diameter or less are prevented. Whether or not the outer cover 15 is present, the metal foil tape 13 can be cut if it is bent extremely (if it is bent beyond the minimum bending radius). A bending restricting member having a radius equal to or larger than the minimum bending radius is applied to the bent portion and fixed so that the metal foil tape 13 is not cut. For example, a bar or the like that is a bending regulating member is bonded, and an adhesive tape is wound around the bent portion (fixed so that the bar is wrapped). In the case of bending at 90 °, about 1.5 mm is the lower limit bending radius at which the metal foil tape 13 (Cu-PET copper) does not crack. Moreover, when it is bent at 180 °, that is, when it is folded up, about 2.5 mm is the lower limit bending radius at which Cu-PET copper does not crack.

図1に示した差動伝送押出フラットケーブル1を製造するには、所定の間隔で配列された複数本の差動伝送用導体3、低容量線用導体4、その他グランド線用導体G等の導体に対して、押出機を用いて絶縁樹脂12を押出し成形し、フラットケーブル体を得る。フラットケーブル体の押出しの際、上記のように絶縁樹脂12の上下の平面は、差動伝送用導体3および低容量線用導体4間で凹みが生じないようなフラットな面で形成する。次いで、共通基材6の上に中間シールド7や発泡ポリエチレン8などを貼り付ける。中間シールド7の幅は差動伝送用導体群2の幅と同じかやや広めにする。発泡ポリエチレン8の幅は低容量線用導体群5の幅と同じがやや広めにする。共通基材6を絶縁樹脂12の上下に縦添えして差動伝送用導体群2の上下面を中間シールド7,7で挟み、低容量線用導体群5の上下面を発泡PP8にて挟む。これらの外周を、金属箔テープ13で覆った後、必要に応じ外被15を被覆して差動伝送押出フラットケーブル1を得る。   In order to manufacture the differential transmission extruded flat cable 1 shown in FIG. 1, a plurality of differential transmission conductors 3, low-capacity line conductors 4, other ground line conductors G, etc. arranged at predetermined intervals are used. The insulating resin 12 is extruded and formed on the conductor using an extruder to obtain a flat cable body. When the flat cable body is pushed out, the upper and lower planes of the insulating resin 12 are formed as flat surfaces so that no dent is generated between the differential transmission conductor 3 and the low-capacity line conductor 4 as described above. Next, an intermediate shield 7, foamed polyethylene 8, or the like is pasted on the common substrate 6. The width of the intermediate shield 7 is the same as or slightly wider than the width of the differential transmission conductor group 2. The width of the foamed polyethylene 8 is the same as the width of the conductor group 5 for low-capacity wires, but is slightly wider. The common base 6 is vertically attached to the top and bottom of the insulating resin 12, and the upper and lower surfaces of the differential transmission conductor group 2 are sandwiched between the intermediate shields 7 and 7, and the upper and lower surfaces of the low capacitance line conductor group 5 are sandwiched between the foamed PP8. . After covering these outer periphery with the metal foil tape 13, the jacket 15 is coat | covered as needed, and the differential transmission extrusion flat cable 1 is obtained.

図6はコネクタ付差動伝送押出フラットケーブルの平面図である。
差動伝送押出フラットケーブル1の両端に電気コネクタ20,21を接続してコネクタ付差動伝送押出フラットケーブル1Bを構成する。電気コネクタ20,21に接続するための差動伝送押出フラットケーブル1の端末処理は、外被15がある場合、それをCOレーザで切って除去する。金属箔テープ13はYAGレーザで切って除去する。YAGレーザで金属箔テープ13を切るときには内部の絶縁樹脂12を劣化させないようにする。介在層、発泡PP8、絶縁樹脂12はCOレーザで切って除去する。
FIG. 6 is a plan view of a differential transmission extruded flat cable with a connector.
Electrical connectors 20 and 21 are connected to both ends of the differential transmission extruded flat cable 1 to form a differential transmission extruded flat cable 1B with a connector. In the terminal processing of the differential transmission extruded flat cable 1 for connection to the electrical connectors 20 and 21, if there is a jacket 15, it is removed by cutting with a CO 2 laser. The metal foil tape 13 is removed by cutting with a YAG laser. When cutting the metal foil tape 13 with a YAG laser, the internal insulating resin 12 is not deteriorated. The intervening layer, the foamed PP8, and the insulating resin 12 are removed by cutting with a CO 2 laser.

端末処理のなされた差動伝送押出フラットケーブル1の各導体を電気コネクタ20,21の電気接触部に接続する。線のピッチを一定とし、コネクタのコンタクトも同ピッチとする。差動伝送用導体と低容量線を一定ピッチ以上離す場合は、一定ピッチの整数倍だけ離し、その間のコネクタのコンタクト(またはピン)は飛ばす。このようにして得たコネクタ付差動伝送押出フラットケーブル1Bは種々のシステムへの接続が容易に行えるようになる。   Each conductor of the differential transmission extruded flat cable 1 subjected to terminal processing is connected to the electrical contact portions of the electrical connectors 20 and 21. The line pitch is constant, and the connector contacts are also the same pitch. When the differential transmission conductor and the low-capacity line are separated by a certain pitch or more, they are separated by an integral multiple of the certain pitch, and the connector contacts (or pins) between them are skipped. The differential transmission extruded flat cable 1B with connector thus obtained can be easily connected to various systems.

本発明によれば、減衰、インピーダンス等の伝送特性を要求される差動伝送ラインと低静電容量に特化したDDCラインとを含む差動伝送フラットケーブルが実現できる。   According to the present invention, a differential transmission flat cable including a differential transmission line that requires transmission characteristics such as attenuation and impedance and a DDC line specialized for low capacitance can be realized.

本発明は、フラットなケーブルであり、丸ケーブルに比べて薄いので、機器内に配線する場合に狭いクリアランスの部分にも配線できる。また、一本のケーブルをコネクタ接続するだけで複数の差動伝送対とDDCラインなどの低容量線を一括して配線できるので配線の手間がかからない。差動伝送対と低容量線を別のケーブルとすると各端に二つのコネクタとなるが、本発明では各端にコネクタが一つであり、基板におけるコネクタの専有面積を小さくできる。   Since the present invention is a flat cable and is thinner than a round cable, it can be wired even in a narrow clearance portion when wiring in a device. In addition, since a plurality of differential transmission pairs and low-capacity lines such as DDC lines can be wired at once by simply connecting a single cable to the connector, it does not take time for wiring. If the differential transmission pair and the low-capacity line are separate cables, two connectors are provided at each end. However, in the present invention, one connector is provided at each end, and the exclusive area of the connector on the board can be reduced.

上述した実施の形態に対応する構成の差動伝送押出フラットケーブルを製作して得た結果を説明する。
差動伝送用導体は径が0.16mmの単線を使用した。
A result obtained by manufacturing a differential transmission extruded flat cable having a configuration corresponding to the above-described embodiment will be described.
A single conductor having a diameter of 0.16 mm was used as the differential transmission conductor.

HDMIで使用される配線材は差動伝送ライン、電源ライン、GNDライン等の他、DDCラインを有するものであり、低容量線であるDDCラインは減衰、インピーダンス等の伝送特性を要求されない。そこで、DDCライン用の導体は銀入り銅合金線の外径0.063mm(0.021mmの径の素線7本を撚った線)を選定した。この導体にPFAを短径φ0.16mmになるように絶縁した。   A wiring material used in HDMI has a DDC line in addition to a differential transmission line, a power supply line, a GND line, etc., and a DDC line which is a low capacity line does not require transmission characteristics such as attenuation and impedance. Therefore, the outer diameter of a silver-containing copper alloy wire of 0.063 mm (a wire obtained by twisting seven strands having a diameter of 0.021 mm) was selected as the conductor for the DDC line. PFA was insulated from this conductor so as to have a short diameter φ0.16 mm.

DDCラインの径を差動伝送用導体と同径とすることにより、各線を同一平面上に配列することが容易となる。PFAはその融点が300℃であり、被覆するポリエチレンの融点(100℃前後)より低いため、その上にポリエチレン被覆樹脂層を押し出す場合に外傷、削れ等の問題を防ぐことができる。
差動伝送用導体と低容量線用導体とをピッチ0.5mmで配列しポリエチレンで押出被覆して短径(厚さ)を0.475mmとした。
差動4対の絶縁樹脂(ポリエチレン)の上下面はインピーダンスマッチングのために中間シールド(金属テープ)で覆い、DDCラインの上下面は低静電容量を実現するために発泡ポリエチレンで覆った。中間シールドは銅PETテープを使用した。銅箔の厚さは9μm、PETの厚さは12μmとした。発泡ポリエチレンの厚さは0.03mmとした。銅PETテープと発泡ポリエチレンとを共通基材(PETテープ)の上に貼り付け、絶縁樹脂と接触するPET面には接着剤(ポリエステル系)を全面コートして共通基材を絶縁樹脂に貼り付けた。
その周囲に中間シールドと同じ材質と厚さの銅PETテープを巻き付けて共通シールドとした。
By making the diameter of the DDC line the same as that of the differential transmission conductor, it becomes easy to arrange the lines on the same plane. Since PFA has a melting point of 300 ° C. and is lower than the melting point of polyethylene to be coated (around 100 ° C.), problems such as external damage and abrasion can be prevented when a polyethylene-coated resin layer is extruded thereon.
The conductor for differential transmission and the conductor for low-capacity line were arranged at a pitch of 0.5 mm and extrusion-coated with polyethylene to make the short diameter (thickness) 0.475 mm.
The upper and lower surfaces of four differential pairs of insulating resin (polyethylene) were covered with an intermediate shield (metal tape) for impedance matching, and the upper and lower surfaces of the DDC line were covered with foamed polyethylene to achieve low capacitance. Copper PET tape was used for the intermediate shield. The thickness of the copper foil was 9 μm, and the thickness of PET was 12 μm. The thickness of the foamed polyethylene was 0.03 mm. Copper PET tape and polyethylene foam are affixed on a common substrate (PET tape), and the adhesive surface (polyester) is coated on the PET surface that comes in contact with the insulating resin, and the common substrate is affixed to the insulating resin. It was.
A copper PET tape of the same material and thickness as the intermediate shield was wrapped around it to make a common shield.

実施例により得た差動伝送押出フラットケーブルを測定した結果、φ0.16mmの導体と共通シールドとの間の静電容量が100pF/mに対し、DDCラインの導体と共通シールド間との静電容量を65pF/mまで下げることに成功した。
差動電線のインピーダンスは、100Ω(1本あたり50Ω)とすることができ、ケーブル1m当たりの伝送損失は2.2dB/1GHz、3.4dB/2GHz、4.5dB/3GHzとすることができた。
As a result of measuring the differential transmission extruded flat cable obtained in the example, the electrostatic capacitance between the conductor of the DDC line and the common shield is 100 pF / m with respect to the capacitance between the conductor of φ0.16 mm and the common shield. The capacity was successfully reduced to 65 pF / m.
The impedance of the differential wire could be 100Ω (50Ω per one), and the transmission loss per 1 m of cable could be 2.2 dB / 1 GHz, 3.4 dB / 2 GHz, 4.5 dB / 3 GHz. .

本発明に係る差動伝送押出フラットケーブルの断面図である。It is sectional drawing of the differential transmission extrusion flat cable which concerns on this invention. 共通シールド接着部の拡大図である。It is an enlarged view of a common shield adhesion part. 共通シールドが1.5重巻かれた変形例に係る差動伝送押出フラットケーブルの断面図である。It is sectional drawing of the differential transmission extrusion flat cable which concerns on the modification by which the common shield was wound 1.5 times. 低容量線用導体群の要部断面図である。It is principal part sectional drawing of the conductor group for low capacity lines. 空気層が形成された差動伝送押出フラットケーブルの要部断面図である。It is principal part sectional drawing of the differential transmission extrusion flat cable in which the air layer was formed. コネクタ付差動伝送押出フラットケーブルの平面図である。108Y0218と同様にIt is a top view of a differential transmission extrusion flat cable with a connector. Similar to 108Y0218 (a)は従来の差動伝送押出フラットケーブルの正面図、(b)はその斜視図である。(A) is a front view of the conventional differential transmission extrusion flat cable, (b) is the perspective view.

符号の説明Explanation of symbols

1 差動伝送押出フラットケーブル
1B コネクタ付差動伝送押出フラットケーブル
2 差動伝送用導体群
3 差動伝送用導体
4 低容量線用導体
5 低容量線用導体群
6 共通基材(基材)
7 中間シールド
12 絶縁樹脂
13 金属箔テープ(共通シールド)
15 外被
16 絶縁体
17 空気層
18 発泡樹脂層
20,21 電気コネクタ
S 信号線対
DESCRIPTION OF SYMBOLS 1 Differential transmission extrusion flat cable 1B Differential transmission extrusion flat cable with a connector 2 Conductor group for differential transmission 3 Conductor for differential transmission 4 Conductor for low capacity line 5 Conductor group for low capacity line 6 Common base material (base material)
7 Intermediate shield 12 Insulating resin 13 Metal foil tape (common shield)
DESCRIPTION OF SYMBOLS 15 Outer coating 16 Insulator 17 Air layer 18 Foamed resin layer 20, 21 Electrical connector S Signal line pair

Claims (14)

2本を一組として差動伝送する信号線を構成する差動伝送用導体と低容量線とが一列に配列されて絶縁樹脂で押出被覆され、共通シールドが前記絶縁樹脂の外側に設けられ、
前記絶縁樹脂の短径が幅方向で均一であり、前記低容量線を構成する低容量線用導体と前記共通シールドとの間の静電容量が前記差動伝送用導体と前記共通シールドとの間の静電容量よりも小さく、前記低容量線用導体が隣合う差動伝送用導体対が一対のみであることを特徴とする差動伝送押出フラットケーブル。
A differential transmission conductor and a low-capacitance line constituting a signal line for differential transmission as a set of two wires are arranged in a row and extruded with an insulating resin, and a common shield is provided outside the insulating resin,
The short diameter of the insulating resin is uniform in the width direction, and the capacitance between the low-capacity line conductor constituting the low-capacity line and the common shield is the difference between the differential transmission conductor and the common shield. A differential transmission extruded flat cable characterized in that there is only one pair of differential transmission conductor pairs adjacent to each other and having a low capacitance line conductor.
請求項1記載の差動伝送押出フラットケーブルであって、
前記低容量線用導体が、前記差動伝送用導体よりも細いことを特徴とする差動伝送押出フラットケーブル。
The differential transmission extruded flat cable according to claim 1,
The differential transmission extruded flat cable, wherein the low-capacity line conductor is thinner than the differential transmission conductor.
請求項2記載の差動伝送用導体であって、
前記低容量線用導体が個別に絶縁体で被覆され、前記差動伝送用導体を被覆する絶縁樹脂の誘電率よりも前記低容量線用導体を個別に被覆する絶縁体の誘電率が小さいことを特徴とする差動伝送押出フラットケーブル。
The differential transmission conductor according to claim 2,
The low-capacity line conductor is individually coated with an insulator, and the dielectric constant of the insulator that individually covers the low-capacity line conductor is smaller than the dielectric constant of the insulating resin that covers the differential transmission conductor. Features differential transmission extruded flat cable.
請求項1〜請求項3のいずれか1項記載の差動伝送押出フラットケーブルであって、
前記低容量線用導体から前記共通シールドまでの間に気層が設けられたことを特徴とする差動伝送押出フラットケーブル。
The differential transmission extruded flat cable according to any one of claims 1 to 3,
A differential transmission extruded flat cable, wherein an air layer is provided between the low-capacity line conductor and the common shield.
請求項4記載の差動伝送押出フラットケーブルであって、
前記低容量線用導体と前記共通シールドの間に発泡樹脂層が設けられたことを特徴とする差動伝送押出フラットケーブル。
The differential transmission extruded flat cable according to claim 4,
A differential transmission extruded flat cable, wherein a foamed resin layer is provided between the low-capacity line conductor and the common shield.
請求項4記載の差動伝送押出フラットケーブルであって、
前記絶縁樹脂と前記共通シールドとの間にスペーサが配置されてスペーサ周りが気層とされたことを特徴とする差動伝送押出フラットケーブル。
The differential transmission extruded flat cable according to claim 4,
A differential transmission extruded flat cable, wherein a spacer is disposed between the insulating resin and the common shield, and a space around the spacer is formed as a gas layer.
請求項1〜請求項6のいずれか1項記載の差動伝送押出フラットケーブルであって、
前記差動伝送用導体の周囲の前記絶縁樹脂と前記共通シールドの間に中間シールドが設けられたことを特徴とする差動伝送押出フラットケーブル。
The differential transmission extruded flat cable according to any one of claims 1 to 6,
A differential transmission extruded flat cable, wherein an intermediate shield is provided between the insulating resin around the differential transmission conductor and the common shield.
請求項5記載の差動伝送押出フラットケーブルであって、前記差動伝送用導体の周囲の前記絶縁樹脂と前記共通シールドの間に中間シールドが設けられ
前記発泡樹脂層と前記中間シールドとが一つの基材上に配置され、
該基材が前記絶縁樹脂に縦添えされたことを特徴とする差動伝送押出フラットケーブル。
The differential transmission extruded flat cable according to claim 5, wherein an intermediate shield is provided between the insulating resin around the differential transmission conductor and the common shield, and the foamed resin layer and the intermediate shield are integrated. Placed on one substrate,
A differential transmission extruded flat cable, wherein the base material is vertically attached to the insulating resin.
請求項6記載の差動伝送押出フラットケーブルであって、前記差動伝送用導体の周囲の前記絶縁樹脂と前記共通シールドの間に中間シールドが設けられ、
前記スペーサと前記中間シールドとが一つの基材上に配置され、
前記基材が前記絶縁樹脂に縦添えされたことを特徴とする差動伝送押出フラットケーブル。
The differential transmission extruded flat cable according to claim 6, wherein an intermediate shield is provided between the insulating resin and the common shield around the differential transmission conductor,
The spacer and the intermediate shield are disposed on a single substrate;
A differential transmission extruded flat cable, wherein the base material is vertically attached to the insulating resin.
請求項1〜請求項9のいずれか1項記載の差動伝送押出フラットケーブルであって、
前記絶縁樹脂がポリオレフィン樹脂からなり、前記共通シールドが前記絶縁樹脂を1.5重以上巻いていることを特徴とする差動伝送押出フラットケーブル。
The differential transmission extruded flat cable according to any one of claims 1 to 9,
The differential transmission extrusion flat cable, wherein the insulating resin is made of a polyolefin resin, and the common shield is wound with 1.5 or more layers of the insulating resin.
請求項1〜請求項9のいずれか1項記載の差動伝送押出フラットケーブルであって、
前記絶縁樹脂がポリオレフィン樹脂からなり、
前記共通シールドが外被にて覆われ、
該外被が、難燃性樹脂、又はポリウレタンとEVAとの混合樹脂であることを特徴とする差動伝送押出フラットケーブル。
The differential transmission extruded flat cable according to any one of claims 1 to 9,
The insulating resin is a polyolefin resin;
The common shield is covered with a jacket;
The differential transmission extruded flat cable, wherein the jacket is a flame retardant resin or a mixed resin of polyurethane and EVA.
請求項1〜請求項11のいずれか1項記載の差動伝送押出フラットケーブルであって、
前記絶縁樹脂に、カーボンブラックが0.1重量%〜0.5重量%添加されていることを特徴とする差動伝送押出フラットケーブル。
The differential transmission extruded flat cable according to any one of claims 1 to 11,
A differential transmission extruded flat cable, wherein 0.1 wt% to 0.5 wt% of carbon black is added to the insulating resin.
請求項1〜請求項12のいずれか1項記載の差動伝送押出フラットケーブルであって、
少なくとも1箇所で折り曲げられ、折り曲げられる箇所には前記共通シールドが切断しない最小曲げ半径よりも大きな曲げ半径の曲げ規制部材が取り付けられていることを特徴とする差動伝送押出フラットケーブル。
The differential transmission extruded flat cable according to any one of claims 1 to 12,
A differential transmission extruded flat cable, wherein a bending restricting member having a bending radius larger than a minimum bending radius that is not cut by the common shield is attached to the bent portion at at least one portion.
請求項1〜請求項13のいずれか1項記載の差動伝送押出フラットケーブルと、
少なくともその一端に接続された電気コネクタと、
からなることを特徴とするコネクタ付差動伝送押出フラットケーブル。
The differential transmission extruded flat cable according to any one of claims 1 to 13,
An electrical connector connected to at least one end thereof;
A differential transmission extruded flat cable with a connector, characterized by comprising:
JP2008269203A 2008-10-17 2008-10-17 Extruded flat cable for differential transmission Pending JP2010097882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008269203A JP2010097882A (en) 2008-10-17 2008-10-17 Extruded flat cable for differential transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008269203A JP2010097882A (en) 2008-10-17 2008-10-17 Extruded flat cable for differential transmission

Publications (1)

Publication Number Publication Date
JP2010097882A true JP2010097882A (en) 2010-04-30

Family

ID=42259415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008269203A Pending JP2010097882A (en) 2008-10-17 2008-10-17 Extruded flat cable for differential transmission

Country Status (1)

Country Link
JP (1) JP2010097882A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012030366A1 (en) * 2010-08-31 2012-03-08 3M Innovative Properties Company Shielded electrical cable
WO2012138729A1 (en) * 2011-04-07 2012-10-11 3M Innovative Properties Company High speed transmission cable
US8492655B2 (en) 2010-08-31 2013-07-23 3M Innovative Properties Company Shielded electrical ribbon cable with dielectric spacing
US8575491B2 (en) 2010-08-31 2013-11-05 3M Innovative Properties Company Electrical cable with shielding film with gradual reduced transition area
US8658899B2 (en) 2009-06-19 2014-02-25 3M Innovative Properties Company Shielded electrical cable
US8841554B2 (en) 2010-08-31 2014-09-23 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US8859901B2 (en) 2010-09-23 2014-10-14 3M Innovative Properties Company Shielded electrical cable
US9119292B2 (en) 2010-08-31 2015-08-25 3M Innovative Properties Company Shielded electrical cable in twinaxial configuration
US9685259B2 (en) 2009-06-19 2017-06-20 3M Innovative Properties Company Shielded electrical cable
WO2018159489A1 (en) * 2017-02-28 2018-09-07 住友電気工業株式会社 Shielded flat cable
JP2018157897A (en) * 2017-03-22 2018-10-11 Necエンベデッドプロダクツ株式会社 Blanching device, communication device, game machine and blanching method
US10147522B2 (en) 2010-08-31 2018-12-04 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US10839981B2 (en) 2011-04-07 2020-11-17 3M Innovative Properties Company High speed transmission cable
JP2020204432A (en) * 2019-06-18 2020-12-24 三菱電機株式会社 Refrigerant leakage detection device, refrigerant leakage detection system and refrigerant leakage detection method
JP2021170463A (en) * 2020-04-15 2021-10-28 古河電気工業株式会社 Shield flat cable

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9035186B2 (en) 2009-06-19 2015-05-19 3M Innovative Properties Company Shielded electrical cable
US10448547B2 (en) 2009-06-19 2019-10-15 3M Innovative Properties Company Shielded electrical cable
US10306819B2 (en) 2009-06-19 2019-05-28 3M Innovative Properties Company Shielded electrical cable
US10080319B2 (en) 2009-06-19 2018-09-18 3M Innovative Properties Company Shielded electrical cable
US9883620B2 (en) 2009-06-19 2018-01-30 3M Innovative Properties Company Shielded electrical cable
US9763369B2 (en) 2009-06-19 2017-09-12 3M Innovative Properties Company Shielded electrical cable
US8658899B2 (en) 2009-06-19 2014-02-25 3M Innovative Properties Company Shielded electrical cable
US9715951B2 (en) 2009-06-19 2017-07-25 3M Innovative Properties Company Shielded electrical cable
US9686893B2 (en) 2009-06-19 2017-06-20 3M Innovative Properties Company Shielded electrical cable
US9685259B2 (en) 2009-06-19 2017-06-20 3M Innovative Properties Company Shielded electrical cable
US9324477B2 (en) 2009-06-19 2016-04-26 3M Innovative Properties Company Shielded electrical cable
US8946558B2 (en) 2009-06-19 2015-02-03 3M Innovative Properties Company Shielded electrical cable
US9865378B2 (en) 2010-08-31 2018-01-09 3M Innovative Properties Company Shielded electrical cable
US8466365B2 (en) 2010-08-31 2013-06-18 3M Innovative Properties Company Shielded electrical cable
US9105376B2 (en) 2010-08-31 2015-08-11 3M Innovative Properties Company Connector arrangements for shielded electrical cables
US9119292B2 (en) 2010-08-31 2015-08-25 3M Innovative Properties Company Shielded electrical cable in twinaxial configuration
US11923112B2 (en) 2010-08-31 2024-03-05 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US9196397B2 (en) 2010-08-31 2015-11-24 3M Innovative Properties Company Shielded electrical cable
US9202609B2 (en) 2010-08-31 2015-12-01 3M Innovative Properties Company Connector arrangements for shielded electrical cables
US9202608B2 (en) 2010-08-31 2015-12-01 3M Innovative Properties Company Connector arrangements for shielded electrical cables
US9208927B2 (en) 2010-08-31 2015-12-08 3M Innovative Properties Company Shielded electrical cable
US9325121B2 (en) 2010-08-31 2016-04-26 3M Innovative Properties Company Connector arrangements for shielded electrical cables
US8933333B2 (en) 2010-08-31 2015-01-13 3M Innovative Properties Company Shielded electrical cable
US11854716B2 (en) 2010-08-31 2023-12-26 3M Innovative Properties Company Shielded electrical cable
US9443644B2 (en) 2010-08-31 2016-09-13 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US9449738B2 (en) 2010-08-31 2016-09-20 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US9502154B1 (en) 2010-08-31 2016-11-22 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US9595371B2 (en) 2010-08-31 2017-03-14 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US9601236B2 (en) 2010-08-31 2017-03-21 3M Innovative Properties Company Shielded electrical cable
US9607734B2 (en) 2010-08-31 2017-03-28 3M Innovative Properties Company Shielded electrical ribbon cable with dielectric spacing
US9607735B2 (en) 2010-08-31 2017-03-28 3M Innovative Properties Company Shielded electrical ribbon cable with dielectric spacing
US9627106B2 (en) 2010-08-31 2017-04-18 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US9646740B2 (en) 2010-08-31 2017-05-09 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US9653195B2 (en) 2010-08-31 2017-05-16 3M Innovative Properties Company Shielded electrical cable
US9666332B1 (en) 2010-08-31 2017-05-30 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US11699536B2 (en) 2010-08-31 2023-07-11 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US8841554B2 (en) 2010-08-31 2014-09-23 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US9704619B1 (en) 2010-08-31 2017-07-11 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US8841555B2 (en) 2010-08-31 2014-09-23 3M Innovative Properties Company Connector arrangements for shielded electrical cables
US9715952B2 (en) 2010-08-31 2017-07-25 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US8575491B2 (en) 2010-08-31 2013-11-05 3M Innovative Properties Company Electrical cable with shielding film with gradual reduced transition area
US9786411B2 (en) 2010-08-31 2017-10-10 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US11688530B2 (en) 2010-08-31 2023-06-27 3M Innovative Properties Company Shielded electric cable
WO2012030366A1 (en) * 2010-08-31 2012-03-08 3M Innovative Properties Company Shielded electrical cable
US8492655B2 (en) 2010-08-31 2013-07-23 3M Innovative Properties Company Shielded electrical ribbon cable with dielectric spacing
US9892823B2 (en) 2010-08-31 2018-02-13 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US10056170B2 (en) 2010-08-31 2018-08-21 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US11664137B2 (en) 2010-08-31 2023-05-30 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US9064612B2 (en) 2010-08-31 2015-06-23 3M Innovative Properties Company Shielded electrical ribbon cable with dielectric spacing
US10090082B2 (en) 2010-08-31 2018-10-02 3M Innovative Properties Company Shielded electrical cable
US11651871B2 (en) 2010-08-31 2023-05-16 3M Innovative Properties Company Shielded electric cable
US10109396B2 (en) 2010-08-31 2018-10-23 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US10109397B2 (en) 2010-08-31 2018-10-23 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US10134506B2 (en) 2010-08-31 2018-11-20 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US10147522B2 (en) 2010-08-31 2018-12-04 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
CN102870171A (en) * 2010-08-31 2013-01-09 3M创新有限公司 Shielded electrical cable
US10340059B2 (en) 2010-08-31 2019-07-02 3M Innovative Properties Company Shielded electrical cable
US10347398B2 (en) 2010-08-31 2019-07-09 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US10347393B2 (en) 2010-08-31 2019-07-09 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US11488745B2 (en) 2010-08-31 2022-11-01 3M Innovative Properties Company Shielded electrical cable
US10373734B2 (en) 2010-08-31 2019-08-06 3M Innovative Properties Company Shielded electrical ribbon cable with dielectric spacing
US10438725B2 (en) 2010-08-31 2019-10-08 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US11348706B2 (en) 2010-08-31 2022-05-31 3M Innovative Properties Company Shielded electrical cable
US10998111B2 (en) 2010-08-31 2021-05-04 3M Innovative Properties Company Shielded electrical cable
US10573432B2 (en) 2010-08-31 2020-02-25 3M Innovative Properties Company Shielded electrical cable
US10573427B2 (en) 2010-08-31 2020-02-25 3M Innovative Properties Company Shielded electrical ribbon cable with dielectric spacing
US10629329B2 (en) 2010-08-31 2020-04-21 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US10896772B2 (en) 2010-08-31 2021-01-19 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US10784021B2 (en) 2010-08-31 2020-09-22 3M Innovative Properties Company Shielded electrical cable
US9129724B2 (en) 2010-09-23 2015-09-08 3M Innovative Properties Company Shielded electrical cable
US8859901B2 (en) 2010-09-23 2014-10-14 3M Innovative Properties Company Shielded electrical cable
US9799425B2 (en) 2011-04-07 2017-10-24 3M Innovative Properties Company High speed transmission cable
US10726970B2 (en) 2011-04-07 2020-07-28 3M Innovative Properties Company High speed transmission cable
US10839981B2 (en) 2011-04-07 2020-11-17 3M Innovative Properties Company High speed transmission cable
US9355755B2 (en) 2011-04-07 2016-05-31 3M Innovative Properties Company High speed transmission cable
WO2012138729A1 (en) * 2011-04-07 2012-10-11 3M Innovative Properties Company High speed transmission cable
US10354778B2 (en) 2011-04-07 2019-07-16 3M Innovative Properties Company High speed transmission cable
JPWO2018159489A1 (en) * 2017-02-28 2019-12-26 住友電気工業株式会社 Shielded flat cable
WO2018159489A1 (en) * 2017-02-28 2018-09-07 住友電気工業株式会社 Shielded flat cable
JP2018157897A (en) * 2017-03-22 2018-10-11 Necエンベデッドプロダクツ株式会社 Blanching device, communication device, game machine and blanching method
JP7350528B2 (en) 2019-06-18 2023-09-26 三菱電機株式会社 Refrigerant leak detection device, refrigerant leak detection system, and refrigerant leak detection method
JP2020204432A (en) * 2019-06-18 2020-12-24 三菱電機株式会社 Refrigerant leakage detection device, refrigerant leakage detection system and refrigerant leakage detection method
JP7167082B2 (en) 2020-04-15 2022-11-08 古河電気工業株式会社 shielded flat cable
JP2021170463A (en) * 2020-04-15 2021-10-28 古河電気工業株式会社 Shield flat cable

Similar Documents

Publication Publication Date Title
JP2010097882A (en) Extruded flat cable for differential transmission
CN107833693B (en) Parallel pair cable
KR100979599B1 (en) High-speed differential transmission cable
US6812408B2 (en) Multi-pair data cable with configurable core filling and pair separation
JP5508614B2 (en) High-speed differential cable
JP2006286480A (en) Transmission cable for differential signal
JP5309766B2 (en) Shielded flat cable
JP5092213B2 (en) 2-core balanced cable
US9350571B2 (en) Differential signal transmission cable and cable with connector
JP2016027547A (en) Differential signal transmission cable and multicore differential signal transmission cable
US10665363B2 (en) Low dielectric content twin-axial cable constructions
US20150268276A1 (en) Probe cable and harness using the same
JP2021073657A (en) Two-core parallel cable
JP2010092805A (en) Extruded flat cable for differential transmission
US10079082B2 (en) Data transmission cable
US11087904B2 (en) Multicore cable
JP2017033837A (en) Flat cable and flat cable with connector
JP2010165559A (en) Shielded cable
CN110556204A (en) Flat data transmission cable
US20140060913A1 (en) S-shield twisted pair cable design for multi-ghz performance
JP4591094B2 (en) Coaxial cable and multi-core coaxial cable
CN212647947U (en) Data transmission cable
US20170133126A1 (en) Cable, method for manufacturing a cable, ribbon lead element, method for manufacturing a ribbon lead element and motor vehicle using the cable
US10049791B2 (en) Differential transmission cable and multipair differential transmission cable
JP2013045616A (en) Multicore cable assembly