JP2010092635A - Storage battery - Google Patents

Storage battery Download PDF

Info

Publication number
JP2010092635A
JP2010092635A JP2008259252A JP2008259252A JP2010092635A JP 2010092635 A JP2010092635 A JP 2010092635A JP 2008259252 A JP2008259252 A JP 2008259252A JP 2008259252 A JP2008259252 A JP 2008259252A JP 2010092635 A JP2010092635 A JP 2010092635A
Authority
JP
Japan
Prior art keywords
cell
storage battery
negative electrode
positive electrode
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008259252A
Other languages
Japanese (ja)
Inventor
Akihiro Umeda
章広 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008259252A priority Critical patent/JP2010092635A/en
Publication of JP2010092635A publication Critical patent/JP2010092635A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a storage battery of low cost and safe, by using iron alone as metal participating in battery reaction. <P>SOLUTION: The storage battery includes a cathode 5, a cathode cell 3 retaining electrolyte solution in contact with the cathode 5, an anode 6, an anode cell 4 retaining electrolyte solution in contact with the anode 6, and a separating film 2 separating the cathode cell 3 and the anode cell 4. Charging and discharging of loads are carried out by reaction of bivalent and trivalent iron ions at the cathode cell 3, and by reaction of bivalent iron ions and iron in the anode cell 4. Since oxidation-reduction reaction is carried with metal iron and its ions, a storage battery with raw material cost remarkably reduced is realized. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、充電及び放電が繰り返し可能な2次電池に関するものであり、特に、電解液の鉄イオンの価数変化のみを電池反応として利用した蓄電池に関するものである。   The present invention relates to a secondary battery that can be repeatedly charged and discharged, and more particularly to a storage battery that uses only the valence change of iron ions in an electrolyte solution as a battery reaction.

従来、この種の電解液中の金属イオンの価数変化のみを電池反応としたものとしてレドックスフロー型の電池があり、単一金属を用いたものにバナジウム系のレドックスフロー電池がある(例えば特許文献1)。   Conventionally, there is a redox flow type battery in which only a valence change of a metal ion in an electrolyte of this type is used as a battery reaction, and there is a vanadium type redox flow battery using a single metal (for example, a patent) Reference 1).

図2は、特許文献1に記載されたレドックスフロー電池の断面図である。当該電池は、電池反応セル21を分離膜22によって分離された正極セル23と負極セル24にそれぞれ正極25と負極26が挿入されており、電解液は正極液タンク27、負極液タンク28をポンプ29によって循環させることができるよう構成されている。正極セル23、正極液タンク27には4価、5価のバナジウムイオンが蓄えられており、また負極セル24、負極液タンク28には2価、3価のバナジウムイオンが蓄えられている。   FIG. 2 is a cross-sectional view of the redox flow battery described in Patent Document 1. In the battery, a positive electrode 25 and a negative electrode 26 are inserted into a positive electrode cell 23 and a negative electrode cell 24, respectively, from which a battery reaction cell 21 is separated by a separation membrane 22, and an electrolyte pumps a positive electrode liquid tank 27 and a negative electrode liquid tank 28. 29 is configured to be circulated. The positive electrode cell 23 and the positive electrode liquid tank 27 store tetravalent and pentavalent vanadium ions, and the negative electrode cell 24 and the negative electrode liquid tank 28 store divalent and trivalent vanadium ions.

バナジウムのレドックスフロー電池では、充電時に正極液タンク27に蓄えられた5価と4価のバナジウムイオンがポンプ29によって正極セル23に送られて外部回路30から電子を受取り還元される。また、負極液タンク28に蓄えられた2価と3価のバナジウムイオンがポンプ29によって負極セル24に送られ、外部回路30に電子を放出して3価に酸化される。そして放電時には、正極液タンク27、負極液タンク28においてそれぞれ充電時と逆の反応によって電子を取り出すものである。
特許第2724817号公報
In the vanadium redox flow battery, pentavalent and tetravalent vanadium ions stored in the positive electrode liquid tank 27 at the time of charging are sent to the positive electrode cell 23 by the pump 29 to receive and reduce electrons from the external circuit 30. In addition, divalent and trivalent vanadium ions stored in the negative electrode liquid tank 28 are sent to the negative electrode cell 24 by the pump 29, discharge electrons to the external circuit 30, and are oxidized to trivalent. At the time of discharging, electrons are extracted from the positive electrode liquid tank 27 and the negative electrode liquid tank 28 by a reaction opposite to that at the time of charging.
Japanese Patent No. 2724817

しかしながら、バナジウム系のレドックスフロー電池は使用金属が1種類であるものの、バナジウムは資源として偏在性が強く、供給が不安定となりやすく、高価なものである。   However, although a vanadium-based redox flow battery uses only one type of metal, vanadium is highly ubiquitous as a resource, its supply tends to be unstable, and is expensive.

本発明は、上記従来の課題を解決するもので、安価で安全な蓄電池を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object thereof is to provide an inexpensive and safe storage battery.

上記目的を達成するために、本発明の蓄電池は、正極と、前記正極に接する電解液を保持する正極セルと、負極と、前記負極に接する電解液を保持する負極セルと、前記正極セルと負極セルを分離する分離膜とを有し、前記正極セルでは2価及び3価の鉄イオンの反応、前記負極セルでは2価の鉄イオン及び鉄の反応により電荷の充放電を行うことを特徴とするものである。   In order to achieve the above object, the storage battery of the present invention comprises a positive electrode, a positive electrode cell holding an electrolyte solution in contact with the positive electrode, a negative electrode, a negative electrode cell holding an electrolyte solution in contact with the negative electrode, and the positive electrode cell. A separation membrane for separating the negative electrode cell, wherein the positive electrode cell charges and discharges charges by a reaction of divalent and trivalent iron ions, and the negative electrode cell performs a reaction of divalent iron ions and iron. It is what.

これにより、電池の酸化還元反応を金属鉄及びそのイオンによって行うため、原料コストを著しく低下させた蓄電池を実現することができる。   Thereby, since the oxidation-reduction reaction of the battery is performed with metallic iron and ions thereof, a storage battery with a significantly reduced raw material cost can be realized.

本発明の蓄電池は、分離膜を隔てて、正極セルでは2価及び3価の鉄イオンの反応、負極セルでは2価の鉄イオン及び鉄の反応により電荷の充放電を行うことにより、全て安価な鉄を使用して蓄電池を実現することができる。   The storage battery according to the present invention is inexpensive by charging and discharging the charge by the reaction of divalent and trivalent iron ions in the positive electrode cell and the reaction of divalent iron ions and iron in the negative electrode cell across the separation membrane. A storage battery can be realized using simple iron.

第1の発明は、正極と、前記正極に接する電解液を保持する正極セルと、負極と、前記負極に接する電解液を保持する負極セルと、前記正極セルと負極セルを分離する分離膜とを有し、前記正極セルでは2価及び3価の鉄イオンの反応、前記負極セルでは2価の鉄イオン及び鉄の反応により電荷の充放電を行うものである。   The first invention includes a positive electrode, a positive electrode cell holding an electrolyte solution in contact with the positive electrode, a negative electrode, a negative electrode cell holding an electrolyte solution in contact with the negative electrode, and a separation membrane separating the positive electrode cell and the negative electrode cell. In the positive electrode cell, charge and discharge are performed by reaction of divalent and trivalent iron ions, and in the negative electrode cell, reaction of divalent iron ions and iron is performed.

鉄は、埋蔵量も多くてリサイクルも容易であり、低コストな材料である。本発明は、電池反応に鉄及び鉄イオンのみを使用するので、構成材料を安価に製造することができる。   Iron is a low-cost material that has a large reserve and is easy to recycle. In the present invention, only iron and iron ions are used for the battery reaction, so that the constituent materials can be manufactured at low cost.

第2の発明は、特に、第1の発明の電解液がカーボンの微粉末によって混合させたことを特徴とするものである。電解液に導電性のカーボンを添加することにより、内部抵抗を低下させることができ、したがって、充電電荷量に対する放電電荷量の割合の低下を抑えることができる。   The second invention is particularly characterized in that the electrolytic solution of the first invention is mixed with fine carbon powder. By adding conductive carbon to the electrolytic solution, the internal resistance can be reduced, and therefore the reduction in the ratio of the discharge charge amount to the charge amount can be suppressed.

第3の発明は、第1と第2の発明の電解液のpHが2未満であるものである。金属イオンは高いpH領域では酸化鉄として析出してしまう。酸化鉄の生成は充電、放電の性能に悪影響を及ぼす。ここで本構成の鉄の酸化還元電位は、1.21V程度であるため電解液のpHを2未満とすることによって酸化鉄の析出を抑えることができる。   In the third invention, the pH of the electrolytic solutions of the first and second inventions is less than 2. Metal ions are deposited as iron oxide in a high pH region. The generation of iron oxide adversely affects the charging and discharging performance. Here, since the oxidation-reduction potential of iron of this configuration is about 1.21 V, precipitation of iron oxide can be suppressed by setting the pH of the electrolytic solution to less than 2.

第4の発明は、特に、第3の発明の電解液がアスコルビン酸を含有しているものである。アスコルビン酸は、ヒドロキシ基とカルボニル基のはたらきにより高い酸性を示し、また、食品添加物として安全性も確認されたものである。したがって、アスコルビン酸を適量加えることによってpHを2未満とすることができる。   In the fourth invention, in particular, the electrolytic solution of the third invention contains ascorbic acid. Ascorbic acid is highly acidic due to the action of the hydroxy group and the carbonyl group, and has been confirmed to be safe as a food additive. Therefore, the pH can be reduced to less than 2 by adding an appropriate amount of ascorbic acid.

第5の発明は、特に、正極セルと負極セルの体積比が2対1であるものである。負極セルでは2価の鉄イオン1個が電子2個を受け取り金属鉄となって析出する一方、正極セルでは2価の鉄イオン1個が電子を1個放出して3価の鉄イオンとなる。すなわち、充電反応に関わる2価の鉄イオンのモル比は、正極セルと負極セルで2対1となり、それ以外のモル比であればどちらかのセル中のイオンが未反応となって残ってしまう。したがって、本発明によれば、未反応の2価の鉄イオンを最小限に抑えることができ、体積及び重量当たりのエネルギー密度を大きくすることができる。   In the fifth invention, in particular, the volume ratio of the positive electrode cell to the negative electrode cell is 2: 1. In the negative electrode cell, one divalent iron ion receives two electrons and precipitates as metallic iron, whereas in the positive electrode cell, one divalent iron ion emits one electron to become a trivalent iron ion. . That is, the molar ratio of the divalent iron ions involved in the charging reaction is 2 to 1 in the positive electrode cell and the negative electrode cell, and in other molar ratios, ions in either cell remain unreacted. End up. Therefore, according to the present invention, unreacted divalent iron ions can be minimized, and the energy density per volume and weight can be increased.

以下、本発明の蓄電池の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が眼底されるものではない。
(実施の形態1)
図1は、本発明の第1の実施の形態による蓄電池の断面図である。
Hereinafter, embodiments of the storage battery of the present invention will be described with reference to the drawings. It should be noted that the present invention is not limited to the fundus by this embodiment.
(Embodiment 1)
FIG. 1 is a cross-sectional view of a storage battery according to the first embodiment of the present invention.

蓄電池は、電池反応セル1を分離膜2によって分離された正極セル3と負極セル4によって構成されており、それぞれのセルの壁面に正極5と負極6が配置され、外枠7によって固定されている。そして、それぞれの極と電源8及び負荷9とが導通されている。   The storage battery is composed of a positive electrode cell 3 and a negative electrode cell 4 in which a battery reaction cell 1 is separated by a separation membrane 2, and a positive electrode 5 and a negative electrode 6 are arranged on the wall of each cell and fixed by an outer frame 7. Yes. Each pole is electrically connected to the power supply 8 and the load 9.

分離膜2は孔径0.1μm、厚み5μmの微細孔樹脂膜であり、正極5及び負極6は厚さ2mmの樹脂含浸黒鉛材、外枠7は厚さ2mmのチタン板を使用した。そして電源8と負荷9とはリード線によってチタン板の外枠7を介して電極と電気的に接続している。ここで、正極5と分離膜3との距離は3mmであり、負極6と分離膜3との距離は1.5mmである。   The separation membrane 2 is a microporous resin membrane having a pore diameter of 0.1 μm and a thickness of 5 μm, the positive electrode 5 and the negative electrode 6 are 2 mm thick resin-impregnated graphite materials, and the outer frame 7 is a 2 mm thick titanium plate. The power source 8 and the load 9 are electrically connected to the electrodes via lead frames 7 by means of lead wires. Here, the distance between the positive electrode 5 and the separation membrane 3 is 3 mm, and the distance between the negative electrode 6 and the separation membrane 3 is 1.5 mm.

電解液は、モル分率0.17の塩化第一鉄、モル分率0.17の塩化アンモニウム、モル分率0.002のアスコルビン酸を水に溶かし、さらに1次粒子径が数十nmのカーボンブラックを全重量の10分の1添加して混合させたものである。この状態でリトマス試験紙によってpHがほぼ1の強酸であることが確認できた。   The electrolytic solution was prepared by dissolving ferrous chloride having a molar fraction of 0.17, ammonium chloride having a molar fraction of 0.17, and ascorbic acid having a molar fraction of 0.002 in water, and further having a primary particle diameter of several tens of nm. Carbon black is added to 1/10 of the total weight and mixed. In this state, it was confirmed that the acid was a strong acid having a pH of about 1 by litmus paper.

以上のような構成の蓄電池において、充電、放電の効率の評価法を述べる。   A method for evaluating the efficiency of charging and discharging in the storage battery configured as described above will be described.

まず、電源8によって電流が50mAの一定値となるように電圧を10分間印加する。そして電源8を短絡して2分間保持する。その後50Ωの抵抗を有した負荷9につなぎ変えて放電させる。このとき流れた電流を測定しておく。充電、放電によって移動した電荷は電流値より見積もることができる。ここで、充電した電荷量に対する放電した電荷量の割合を充放電効率とする。   First, a voltage is applied for 10 minutes by the power source 8 so that the current becomes a constant value of 50 mA. The power supply 8 is short-circuited and held for 2 minutes. Thereafter, it is connected to a load 9 having a resistance of 50Ω and discharged. The current flowing at this time is measured. The charge transferred by charging and discharging can be estimated from the current value. Here, the ratio of the discharged charge amount to the charged charge amount is defined as charge / discharge efficiency.

本評価法では、電解液にカーボンを混合させた場合とさせない場合、電解液のpHを2未満とした場合と2以上とした場合、正極セルと負極セルの体積比を1対1とした場合と2対1とした場合について、充放電効率の値の大きさ、充放電の繰り返しの安定性を比較した。その結果、いずれの場合も本実施の形態の構成の蓄電池の方が、充電効率が高く、繰り返しの充放電においても安定した効率を得ることができた。   In this evaluation method, the case where carbon is mixed with the electrolytic solution, the case where the pH of the electrolytic solution is less than 2, and the case where the pH is 2 or more, and the volume ratio of the positive electrode cell to the negative electrode cell is 1: 1. And 2 to 1, the magnitude of the charge / discharge efficiency value and the stability of repeated charge / discharge were compared. As a result, in any case, the storage battery having the configuration of the present embodiment has higher charging efficiency, and stable efficiency can be obtained even in repeated charging and discharging.

本発明による蓄電池は、低コストの蓄電池である。この蓄電池は、変電所や工場に設置するための大容量の電池として利用できるだけでなく、安全性も高いため家庭用の電池、例えば夜間電力を蓄え、昼間使うための蓄電池に適用できる。   The storage battery according to the present invention is a low-cost storage battery. This storage battery can be used not only as a large-capacity battery for installation in a substation or factory, but also because of its high safety, it can be applied to a battery for home use, for example, a storage battery for storing nighttime power and using it in the daytime.

本発明の実施の形態1における蓄電池の断面図Sectional drawing of the storage battery in Embodiment 1 of this invention 従来の蓄電池の断面図Cross-sectional view of a conventional storage battery

符号の説明Explanation of symbols

2 分離膜
3 正極セル
4 負極セル
5 正極
6 負極
2 Separation membrane 3 Positive electrode cell 4 Negative electrode cell 5 Positive electrode 6 Negative electrode

Claims (5)

正極と、前記正極に接する電解液を保持する正極セルと、負極と、前記負極に接する電解液を保持する負極セルと、前記正極セルと負極セルを分離する分離膜とを有し、前記正極セルでは2価及び3価の鉄イオンの反応、前記負極セルでは2価の鉄イオン及び鉄の反応により電荷の充放電を行うことを特徴とする蓄電池。 A positive electrode, a positive electrode cell that holds an electrolyte solution in contact with the positive electrode, a negative electrode, a negative electrode cell that holds an electrolyte solution in contact with the negative electrode, and a separation membrane that separates the positive electrode cell and the negative electrode cell; The battery is charged and discharged by a reaction of divalent and trivalent iron ions in the cell, and by a reaction of divalent iron ions and iron in the negative electrode cell. 電解液はカーボンの微粉末が混合されて成る請求項1に記載の蓄電池。 The storage battery according to claim 1, wherein the electrolytic solution is a mixture of fine carbon powder. 電解液のpHが2未満である請求項1または2に記載の蓄電池。 The storage battery according to claim 1 or 2, wherein the pH of the electrolytic solution is less than 2. 電解液はアスコルビン酸を含有して成る請求項3に記載の蓄電池。 The storage battery according to claim 3, wherein the electrolytic solution contains ascorbic acid. 正極セルと負極セルの体積比が2対1であることを特徴とする請求項1または2に記載の蓄電池。 The storage battery according to claim 1 or 2, wherein the volume ratio of the positive electrode cell to the negative electrode cell is 2 to 1.
JP2008259252A 2008-10-06 2008-10-06 Storage battery Pending JP2010092635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008259252A JP2010092635A (en) 2008-10-06 2008-10-06 Storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008259252A JP2010092635A (en) 2008-10-06 2008-10-06 Storage battery

Publications (1)

Publication Number Publication Date
JP2010092635A true JP2010092635A (en) 2010-04-22

Family

ID=42255175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008259252A Pending JP2010092635A (en) 2008-10-06 2008-10-06 Storage battery

Country Status (1)

Country Link
JP (1) JP2010092635A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012162393A1 (en) * 2011-05-23 2012-11-29 University Of Kentucky Research Foundation HYBRID FLOW BATTERY AND Mn/Mn ELECTROLYTE SYSTEM
WO2013077347A1 (en) * 2011-11-22 2013-05-30 住友電気工業株式会社 Diaphragm for redox flow batteries
JP2014519168A (en) * 2011-06-01 2014-08-07 ケース ウエスタン リザーブ ユニバーシティ Iron-based fluid battery
WO2021086795A1 (en) * 2019-11-01 2021-05-06 Ess Tech, Inc. Method for iron preformation in redox flow batteries

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012162393A1 (en) * 2011-05-23 2012-11-29 University Of Kentucky Research Foundation HYBRID FLOW BATTERY AND Mn/Mn ELECTROLYTE SYSTEM
US9413025B2 (en) 2011-05-23 2016-08-09 The University Of Kentucky Research Foundation Hybrid flow battery and Mn/Mn electrolyte system
JP2014519168A (en) * 2011-06-01 2014-08-07 ケース ウエスタン リザーブ ユニバーシティ Iron-based fluid battery
EP2715841A4 (en) * 2011-06-01 2015-05-13 Univ Case Western Reserve Iron based flow batteries
US9559375B2 (en) 2011-06-01 2017-01-31 Case Western Reserve University Iron flow batteries
WO2013077347A1 (en) * 2011-11-22 2013-05-30 住友電気工業株式会社 Diaphragm for redox flow batteries
JPWO2013077347A1 (en) * 2011-11-22 2015-04-27 住友電気工業株式会社 Membrane for redox flow battery
US10096855B2 (en) 2011-11-22 2018-10-09 Sumitomo Electric Industries, Ltd. Redox flow cell membrane
WO2021086795A1 (en) * 2019-11-01 2021-05-06 Ess Tech, Inc. Method for iron preformation in redox flow batteries
US11749827B2 (en) 2019-11-01 2023-09-05 Ess Tech, Inc. Method for iron preformation in redox flow batteries

Similar Documents

Publication Publication Date Title
KR101178327B1 (en) Redox flow battery
JP5192613B2 (en) Magnesium metal air battery
US9748595B2 (en) High-energy-density, aqueous, metal-polyiodide redox flow batteries
JP5712688B2 (en) Redox flow battery
Dai et al. The emerging of aqueous zinc‐based dual electrolytic batteries
JP6168138B2 (en) Liquid lead-acid battery
KR101905711B1 (en) Electrolyte for vanadium redox flow battery and redox flow battery comprising thereof
US20150357653A1 (en) Vanadium Solid-Salt Battery and Method for Producing Same
KR20210086983A (en) Manufacturing method of Zn-ion battery and Zn-ion battery using the same
JP2010140736A (en) Storage battery
JP6211800B2 (en) Electrolyte flow type secondary battery
CN106463752A (en) Method for manufacturing positive electrode electrolyte for redox flow battery and redox flow battery
JP2010092635A (en) Storage battery
JP2010092636A (en) Storage battery
US20150295281A1 (en) Vanadium Redox Battery
US20210143437A1 (en) Redox flow battery
JP2014170715A (en) Cell
CN114665165A (en) High-voltage aqueous battery with three-function metal diaphragm
JP2017520891A (en) battery
JP5105401B2 (en) Electrode active material and electrochemical device using the same
JP6241737B2 (en) Alkaline battery and manufacturing method thereof
US20170005343A1 (en) Electrochemical Cell Aluminum-Manganese
JP5061460B2 (en) Control valve type lead acid battery manufacturing method and control valve type lead acid battery
US20130136991A1 (en) High energy/power density nickel oxide/hydroxide materials and nickel cobalt oxide/hydroxide materials and production thereof
JP2016192255A (en) Vanadium redox battery