JP2010085080A - Sunlight thermal converting device - Google Patents

Sunlight thermal converting device Download PDF

Info

Publication number
JP2010085080A
JP2010085080A JP2009202719A JP2009202719A JP2010085080A JP 2010085080 A JP2010085080 A JP 2010085080A JP 2009202719 A JP2009202719 A JP 2009202719A JP 2009202719 A JP2009202719 A JP 2009202719A JP 2010085080 A JP2010085080 A JP 2010085080A
Authority
JP
Japan
Prior art keywords
heat
tin
solar
sunlight
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009202719A
Other languages
Japanese (ja)
Other versions
JP5417091B2 (en
Inventor
Katsushige Nakamura
勝重 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitaka Kohki Co Ltd
Original Assignee
Mitaka Kohki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitaka Kohki Co Ltd filed Critical Mitaka Kohki Co Ltd
Priority to JP2009202719A priority Critical patent/JP5417091B2/en
Publication of JP2010085080A publication Critical patent/JP2010085080A/en
Application granted granted Critical
Publication of JP5417091B2 publication Critical patent/JP5417091B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/79Arrangements for concentrating solar-rays for solar heat collectors with reflectors with spaced and opposed interacting reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • F24S60/30Arrangements for storing heat collected by solar heat collectors storing heat in liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sunlight thermal converting device capable of efficiently converting sunlight into heat. <P>SOLUTION: A light absorption plate 10 is floated on a surface of tin 7. Since the light absorption plate 10 receives the sunlight L, an absorption rate of the sunlight L is high. Since the sunlight L can be efficiently converted into heat by the light absorption plate 10, and the tin 7 is melted by the heat, a prescribed amount of a heat source can be formed there. Since the tin 7 is melted to be a liquid heat source, and any form can be taken according to the shape of the heat-resistant container 6, the tin can be easily utilized as heat. Since the light absorption plate 10 is square, the plurality of light absorption plates 10 can be closely floated on a surface of the tin 7. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は太陽光線熱変換装置に関するものである。   The present invention relates to a solar heat conversion apparatus.

太陽光線をヘリオスタットと称される複数の反射ミラーで、高いタワーの頂部に支持されたセンターミラーへ向けて反射し、センターミラーから下向きに反射された太陽光線を一点に集めて熱を得るビームダウン式の太陽集光装置が知られている(例えば、特許文献1参照)。     A beam that reflects sunlight toward a center mirror supported by the top of a high tower with a plurality of reflecting mirrors called heliostats, and collects the sun rays reflected downward from the center mirror at one point to obtain heat. A down-type solar condensing device is known (for example, see Patent Document 1).

この種のビームダウン構造の場合、下向きに反射された太陽光線で金属製のコイル等を直接加熱し、内部に循環した水を水蒸気に変換したりするのが一般的である。   In the case of this type of beam-down structure, it is common to directly heat a metal coil or the like with sunlight reflected downward to convert water circulated inside into water vapor.

特開平11−119105号公報JP-A-11-119105

しかしながら、従来のように、太陽光線で金属コイルを直接加熱する構造では、金属コイルの表面の金属色により太陽光線が反射され、効率の良い熱変換を行うことができない。金属コイルの表面は太陽光線により高温になるため、表面に黒色塗装を施しても剥がれやすい。   However, in the conventional structure in which the metal coil is directly heated by sunlight, the sunlight is reflected by the metal color on the surface of the metal coil, and efficient heat conversion cannot be performed. Since the surface of the metal coil is heated by sunlight, it is easily peeled off even if the surface is painted black.

本発明は、このような従来の技術に着目してなされたものであり、太陽光線を効率良く熱に変換することができる太陽光線熱変換装置を提供するものである。   This invention is made paying attention to such a prior art, and provides the solar ray heat conversion apparatus which can convert a solar ray efficiently into heat.

請求項1記載の発明は、上部開放型の耐熱容器内に低融点熱媒体を保持し、該低融点熱媒体の表面に金属板に光吸収膜をコーティングした光吸収板を浮かべた構造であって、下向きに反射された太陽光線を光吸収板で受光することを特徴とする。   The invention according to claim 1 is a structure in which a low melting point heat medium is held in an open top heat resistant container, and a light absorption plate in which a light absorption film is coated on a metal plate is floated on the surface of the low melting point heat medium. Then, the solar light beam reflected downward is received by the light absorbing plate.

請求項2記載の発明は、低融点熱媒体が、錫、鉛、半田の何れかの低融点金属であることを特徴とする。   The invention described in claim 2 is characterized in that the low melting point heat medium is a low melting point metal of any one of tin, lead and solder.

請求項3記載の発明は、低融点熱媒体が、溶融塩であることを特徴とする。   The invention described in claim 3 is characterized in that the low melting point heat medium is a molten salt.

請求項4記載の発明は、耐熱容器の上部を耐熱透明ガラスでカバーすると共に、耐熱透明ガラスと低融点熱媒体との間の空間を希ガス雰囲気又は真空雰囲気にしたことを特徴とする。   The invention according to claim 4 is characterized in that the upper part of the heat-resistant container is covered with heat-resistant transparent glass, and the space between the heat-resistant transparent glass and the low melting point heat medium is made a rare gas atmosphere or a vacuum atmosphere.

請求項5記載の発明は、光吸収板が四角形状で中央に四角形の凹部を形成した形状であることを特徴とする。   The invention according to claim 5 is characterized in that the light absorbing plate has a quadrangular shape and a quadrangular recess formed in the center.

請求項6記載の発明は、低融点熱媒体内に熱交換用のパイプが設けられていることを特徴とする。   The invention described in claim 6 is characterized in that a pipe for heat exchange is provided in the low melting point heat medium.

請求項1記載の発明によれば、低融点熱媒体の表面に光吸収板を浮かべ、その光吸収板が太陽光線を受けるため、太陽光線の吸収率が高い。従って、光吸収板により太陽光線は効率良く熱に変換され、その熱により低融点熱媒体が溶解するため、所定の量の熱源をそこに形成することができる。低融点熱媒体は、溶解して液状の熱源となるため、耐熱容器の形状に応じていかなる形態をとることも可能で、熱交換も容易であり、熱として利用し易い。   According to the first aspect of the present invention, the light absorption plate is floated on the surface of the low melting point heat medium, and the light absorption plate receives sunlight, so that the absorption rate of sunlight is high. Accordingly, sunlight is efficiently converted into heat by the light absorbing plate, and the low melting point heat medium is dissolved by the heat, so that a predetermined amount of heat source can be formed therein. Since the low-melting-point heat medium dissolves to become a liquid heat source, it can take any form depending on the shape of the heat-resistant container, heat exchange is easy, and it is easy to use as heat.

請求項2記載の発明によれば、低融点熱媒体が、錫、鉛、半田の何れかの低融点金属であるため、高い温度の液状熱源が得られる。   According to the invention described in claim 2, since the low melting point heat medium is a low melting point metal of tin, lead, or solder, a high temperature liquid heat source can be obtained.

請求項3記載の発明によれば、低融点熱媒体が溶融塩であるため、コストの面で有利であり、装置の大型化が容易である。   According to the invention described in claim 3, since the low melting point heat medium is a molten salt, it is advantageous in terms of cost, and the apparatus can be easily enlarged.

請求項4記載の発明によれば、希ガス雰囲気又は真空雰囲気のため、光吸収板の耐熱温度が向上し、より高い熱を発生させることができる。   According to the fourth aspect of the present invention, because of the rare gas atmosphere or the vacuum atmosphere, the heat resistant temperature of the light absorbing plate is improved, and higher heat can be generated.

請求項5記載の発明によれば、光吸収板が四角形のため、複数の光吸収板を低融点熱媒体の表面に隙間なく浮かべることができる。   According to the fifth aspect of the present invention, since the light absorbing plate is square, a plurality of light absorbing plates can be floated on the surface of the low melting point heat medium without any gap.

請求項6記載の発明によれば、低融点熱媒体内に熱交換用のパイプが設けられているため、パイプは溶解した低融点熱媒体と隙間なく接し、低融点熱媒体とパイプとの間の熱交換効率が高い。   According to the sixth aspect of the invention, since the heat exchange pipe is provided in the low melting point heat medium, the pipe is in contact with the melted low melting point heat medium without any gap, and between the low melting point heat medium and the pipe. High heat exchange efficiency.

本発明の実施形態に係る太陽光線熱変換装置を適用した太陽集光装置を示す概略図。Schematic which shows the solar condensing device to which the solar-beam heat conversion apparatus which concerns on embodiment of this invention is applied. 熱変換装置を示す断面図。Sectional drawing which shows a heat converter. 光吸収板を錫の表面に浮かべた状態を示す斜視図。The perspective view which shows the state which floated the light absorption board on the surface of tin.

以下、図1〜図3に基づいて、本発明の好適な実施形態を説明する。符号1は楕円鏡で、支持タワー2により所定の高さ位置に下向き状態で設置されている。楕円鏡1はその鏡面形状が楕円体の一部で、下方には、第1焦点Aと第2焦点Bが存在する。この楕円鏡1の下方には、太陽光線Lを熱エネルギーに変換するための熱変換装置3が設置されており、該熱変換装置3の上部には、テーパ筒状の集光鏡4が設置されている。そして、熱変換装置3の周囲の地上には、楕円鏡1を取り囲んだ状態で、多数のヘリオスタット5が設けられている。   Hereinafter, a preferred embodiment of the present invention will be described with reference to FIGS. Reference numeral 1 denotes an elliptical mirror, which is installed in a downward state at a predetermined height by a support tower 2. The elliptical mirror 1 has a mirror surface part of an ellipsoid, and has a first focal point A and a second focal point B below. Below the elliptical mirror 1, a heat conversion device 3 for converting the sunlight L into heat energy is installed, and above the heat conversion device 3, a tapered cylindrical condensing mirror 4 is installed. Has been. A large number of heliostats 5 are provided on the ground around the heat conversion device 3 so as to surround the elliptical mirror 1.

各ヘリオスタット5は、反射された太陽光線Lが第1焦点Aを通過するように図示せぬセンサーにより制御される。ヘリオスタット5で反射された太陽光線Lが第1焦点Aを通過しさえすれば、楕円鏡1で下向きに反射されて、必ず第2焦点Bに集光され、集光鏡4を経由して熱変換装置3に到達する。   Each heliostat 5 is controlled by a sensor (not shown) so that the reflected sunlight L passes through the first focal point A. As long as the sunlight L reflected by the heliostat 5 passes through the first focal point A, it is reflected downward by the elliptical mirror 1, and is always collected at the second focal point B, via the condenser mirror 4. The heat conversion device 3 is reached.

次に、熱変換装置3の説明をする。   Next, the heat conversion apparatus 3 will be described.

鉄製の耐熱容器6は上部開放型で、内部には低融点熱媒体としての錫7が保持されている。耐熱容器6の周囲は耐火レンガ8により囲まれており、耐熱容器6の熱が外部へ逃げないようにされている。耐火レンガ8の周囲を更にALC(軽量気泡コンクリート)で囲んでも良いし、耐火レンガ8に代えてALCを利用しても良い。   The heat-resistant container 6 made of iron is an open top type, and tin 7 as a low melting point heat medium is held inside. The periphery of the heat-resistant container 6 is surrounded by refractory bricks 8 so that the heat of the heat-resistant container 6 does not escape to the outside. The refractory brick 8 may be further surrounded by ALC (lightweight cellular concrete), or ALC may be used instead of the refractory brick 8.

耐熱容器6の上部は耐熱透明ガラス9によりカバーされ、錫7と耐熱透明ガラス9との空間Sには窒素ガスが充満されている。窒素ガスは空間Sの一方の図示せぬ入口から少量ずつ供給され且つ他方の図示せぬ出口から少量ずつ排出され、常に窒素ガスが充満した状態になっている。空間Sは窒素ガス以外の希ガス(例えばアルゴン)を充満させても良い。また、空間Sを真空にしても良い。   The upper part of the heat-resistant container 6 is covered with a heat-resistant transparent glass 9, and the space S between the tin 7 and the heat-resistant transparent glass 9 is filled with nitrogen gas. Nitrogen gas is supplied little by little from one inlet (not shown) of the space S and discharged little by little from the other outlet (not shown), so that the nitrogen gas is always filled. The space S may be filled with a rare gas other than nitrogen gas (for example, argon). Further, the space S may be evacuated.

錫7の表面には、四角形の光吸収板10が複数浮かべた状態で設けられている。錫7が固体の状態では、錫7の表面と一体化した状態で載っている。光吸収板10は中央に四角形の凹部10aが形成されており、舟のような形状になっている。従って、錫7が液状になっても、浮力により浮いた状態となり、錫7の中に沈まない。太陽熱を高効率で吸収する光吸収板10と液体となった錫7が全接触する構造であり、熱媒体の容量(液面レベル)の増減の影響を受けないため、集光された太陽熱が高い効率で安定して熱媒体に伝達される。また、光吸収板10が四角形のため、複数の光吸収板10を隙間なく錫7の上に設けることができる。   A plurality of rectangular light absorbing plates 10 are provided on the surface of the tin 7 in a floating state. When the tin 7 is in a solid state, the tin 7 is mounted in an integrated state with the surface of the tin 7. The light absorbing plate 10 has a quadrangular recess 10a formed at the center, and is shaped like a boat. Therefore, even if the tin 7 becomes liquid, it floats by buoyancy and does not sink into the tin 7. The light absorbing plate 10 that absorbs solar heat with high efficiency and the liquid tin 7 are in full contact with each other and are not affected by the increase or decrease of the capacity (liquid level) of the heat medium. High efficiency and stable transmission to the heat medium. Moreover, since the light absorption plate 10 is a quadrangle, the plurality of light absorption plates 10 can be provided on the tin 7 without any gap.

光吸収板10は金属(銅)の表面に特殊な光吸収膜をコーティングしたもので、太陽光線Lの吸収率が95%であり、太陽熱によって融解しない。光吸収膜は、セラミックとメタルの複合体を基本にしたコーティングで、セルメット(CERMET)と呼ばれるセラミック地にメタル粒子が埋め込まれた複数の層によって形成されている。例えば、ドイツのブルーテック社のエタ・プラス(商品名)などがある。このような光吸収板は通常寒冷地の建造物の壁面パネルなどとして固体物に設置されるが、熱媒体の液面に浮揚させることによって高い熱変換効率を実現することができる。   The light-absorbing plate 10 is a metal (copper) surface coated with a special light-absorbing film, has an absorptance of solar rays L of 95%, and does not melt by solar heat. The light absorption film is a coating based on a composite of ceramic and metal, and is formed by a plurality of layers in which metal particles are embedded in a ceramic ground called CERMET. For example, there is Eta Plus (trade name) of German Blue Tech. Such a light absorbing plate is usually installed on a solid object as a wall panel or the like of a building in a cold region, but high heat conversion efficiency can be realized by floating on the liquid surface of the heat medium.

耐熱容器6の内部には、錫7を蛇行しながら通過する熱交換用のパイプ11が設けられている。パイプ11内には、一方側から水Wが供給されるようになっている。   Inside the heat-resistant container 6, a heat exchange pipe 11 that passes through the tin 7 while meandering is provided. Water W is supplied into the pipe 11 from one side.

以上のような熱変換装置3に対して、下向きに反射された太陽光線Lが照射されると、太陽光線Lは耐熱透明ガラス9を透過して光吸収板10に受光される。光吸収板10の光吸収率が高い(約95%)ため、光吸収板10で吸収され熱に変換される。光吸収板10で変換された熱は錫7に伝達される。温度が融点(232°C)に達すると、錫7は溶解して液状になる。この実施形態では、光吸収板10が希ガス(窒素ガス)雰囲気中にあるため、耐熱性が向上しており、より高い熱を発生させることができる。尚、真空雰囲気にした場合も、光吸収板10の耐熱性は同様に向上する。   When the sunlight rays L reflected downward are irradiated to the heat conversion device 3 as described above, the sunlight rays L pass through the heat-resistant transparent glass 9 and are received by the light absorbing plate 10. Since the light absorption rate of the light absorption plate 10 is high (about 95%), it is absorbed by the light absorption plate 10 and converted into heat. The heat converted by the light absorbing plate 10 is transmitted to the tin 7. When the temperature reaches the melting point (232 ° C.), the tin 7 dissolves and becomes liquid. In this embodiment, since the light absorption plate 10 is in a rare gas (nitrogen gas) atmosphere, the heat resistance is improved and higher heat can be generated. Even in a vacuum atmosphere, the heat resistance of the light absorbing plate 10 is similarly improved.

錫7が溶解することにより、錫7は所定の量の熱源となり、錫7の中に設けられたパイプ11を通過する水Wを水蒸気Vに変換して、他方側より排出する。排出された水蒸気Vによりタービンを回して発電することができる。特に、溶解した錫7は濡れ性にすぐれパイプ11に対して隙間なく接するため、錫7とパイプ11との間の熱交換効率が良く、錫7の熱により効率良く水蒸気Vを発生させることができる。   As the tin 7 is dissolved, the tin 7 becomes a heat source of a predetermined amount, and the water W passing through the pipe 11 provided in the tin 7 is converted into the water vapor V and discharged from the other side. Power can be generated by rotating the turbine with the discharged steam V. In particular, since the dissolved tin 7 is excellent in wettability and comes into contact with the pipe 11 without a gap, the heat exchange efficiency between the tin 7 and the pipe 11 is good, and the steam V can be efficiently generated by the heat of the tin 7. it can.

錫7は、溶解して液状の熱源となるため、耐熱容器の形状に応じていかなる形態をとることも可能で、溶解した錫7を熱移動流体として、他の装置に循環することもできる。   Since the tin 7 dissolves to become a liquid heat source, it can take any form depending on the shape of the heat-resistant container, and the dissolved tin 7 can be circulated as a heat transfer fluid to other devices.

また、パイプ11内に熱移動流体として空気を通過させても良い。パイプ11を通過した空気は高温となり、他の装置に循環することにより、その装置に錫7の熱を移動させることができる。   Further, air may be passed through the pipe 11 as a heat transfer fluid. The air that has passed through the pipe 11 becomes hot and circulates to another device, whereby the heat of the tin 7 can be transferred to that device.

更に、低融点熱媒体として、錫7の代わりに、鉛、半田等の低融点金属を使用することも可能である。また、低融点金属に代えて、溶融塩を利用しても良い。溶融塩としては、硝酸カリウムと硝酸ナトリウムの混合物が好適で、融点である約140°C程度で液状になる。溶融塩13は、それだけを使用しても良いし、加熱しても溶解しない固体蓄熱材を混ぜて使用しても良い。   Further, a low melting point metal such as lead or solder can be used as the low melting point heat medium instead of tin 7. Further, a molten salt may be used in place of the low melting point metal. As the molten salt, a mixture of potassium nitrate and sodium nitrate is suitable, and it becomes liquid at a melting point of about 140 ° C. The molten salt 13 may be used alone or in combination with a solid heat storage material that does not dissolve even when heated.

この実施形態では、光吸収板10の形状を四角形にする例を示したが、これに限定されず、丸形、六角形、三角形などでも良い。   In this embodiment, an example in which the shape of the light absorbing plate 10 is a quadrangle is shown, but the present invention is not limited to this, and may be a round shape, a hexagonal shape, a triangular shape, or the like.

1 楕円鏡
2 支持タワー
3 熱変換装置
4 集光鏡
5 ヘリオスタット
6 耐熱容器
7 錫(低融点熱媒体)
8 耐火レンガ
9 耐熱透明ガラス
10 光吸収板
10a 凹部
11 パイプ
12 黒色炭素材料
A 第1焦点
B 第2焦点
L 太陽光線
S 空間
W 水
V 水蒸気
DESCRIPTION OF SYMBOLS 1 Elliptical mirror 2 Support tower 3 Heat conversion apparatus 4 Condensing mirror 5 Heliostat 6 Heat-resistant container 7 Tin (low melting-point heat medium)
8 Fire-resistant brick 9 Heat-resistant transparent glass 10 Light absorbing plate 10a Recess 11 Pipe 12 Black carbon material A 1st focus B 2nd focus L Sun ray S Space W Water V Water vapor

Claims (6)

上部開放型の耐熱容器内に低融点熱媒体を保持し、
該低融点熱媒体の表面に金属板に光吸収膜をコーティングした光吸収板を浮かべた構造であって、
下向きに反射された太陽光線を光吸収板で受光することを特徴とする太陽光線熱変換装置。
Hold the low-melting-point heat medium in an open top heat-resistant container,
A structure in which a light absorption plate in which a light absorption film is coated on a metal plate is floated on the surface of the low melting point heat medium,
A solar ray heat conversion device, wherein a sunlight absorbing light reflected downward is received by a light absorbing plate.
低融点熱媒体が、錫、鉛、半田の何れかの低融点金属であることを特徴とする請求項1記載の太陽光線熱変換装置。   The solar light heat conversion device according to claim 1, wherein the low melting point heat medium is a low melting point metal of tin, lead, or solder. 低融点熱媒体が、溶融塩であることを特徴とする請求項1記載の太陽光線熱変換装置。   The solar heat converter according to claim 1, wherein the low-melting-point heat medium is a molten salt. 耐熱容器の上部を耐熱透明ガラスでカバーすると共に、耐熱透明ガラスと低融点熱媒体との間の空間を希ガス雰囲気又は真空雰囲気にしたことを特徴とする請求項1〜3のいずれか1項に記載の太陽光線熱変換装置。   The upper part of the heat-resistant container is covered with heat-resistant transparent glass, and the space between the heat-resistant transparent glass and the low-melting-point heat medium is a rare gas atmosphere or a vacuum atmosphere. The solar ray heat conversion apparatus described in 1. 光吸収板が四角形状で中央に四角形の凹部を形成した形状であることを特徴とする請求項1〜4のいずれか1項に記載の太陽光線熱変換装置。   The solar light heat conversion apparatus according to any one of claims 1 to 4, wherein the light absorbing plate has a quadrangular shape and a quadrangular concave portion formed in the center. 低融点熱媒体内に熱交換用のパイプが設けられていることを特徴とする請求項1〜5のいずれか1項に記載の太陽光線熱変換装置。   The solar-beam heat conversion device according to any one of claims 1 to 5, wherein a pipe for heat exchange is provided in the low-melting-point heat medium.
JP2009202719A 2008-09-03 2009-09-02 Solar heat converter Expired - Fee Related JP5417091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009202719A JP5417091B2 (en) 2008-09-03 2009-09-02 Solar heat converter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008225860 2008-09-03
JP2008225860 2008-09-03
JP2009202719A JP5417091B2 (en) 2008-09-03 2009-09-02 Solar heat converter

Publications (2)

Publication Number Publication Date
JP2010085080A true JP2010085080A (en) 2010-04-15
JP5417091B2 JP5417091B2 (en) 2014-02-12

Family

ID=42249210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009202719A Expired - Fee Related JP5417091B2 (en) 2008-09-03 2009-09-02 Solar heat converter

Country Status (1)

Country Link
JP (1) JP5417091B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012002494A (en) * 2010-05-18 2012-01-05 Mitaka Koki Co Ltd Solar heat type air heating device
AU2011200311B2 (en) * 2011-01-25 2012-08-16 Mitaka Kohki Co., Ltd. Heat exchanging structure of solar heat exchanger
DE112011101147T5 (en) 2010-04-01 2013-01-10 Yazaki Corporation Structure for connecting a pinch clamp to an electrical lead
JP2020514116A (en) * 2016-12-29 2020-05-21 ザ・ボーイング・カンパニーThe Boeing Company System and method for regenerating carbon fiber using solar energy
NL2034421B1 (en) * 2023-03-24 2024-09-30 Chen Zhuo A collecting system for solar energy such as heat or light

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4116223A (en) * 1977-01-18 1978-09-26 Michael Vasilantone Solar energy unit
JPS53138529A (en) * 1977-05-09 1978-12-04 Pedone Angelo Solar energy converter
US4402306A (en) * 1980-03-27 1983-09-06 Mcelroy Jr Robert C Thermal energy storage methods and processes
US4619244A (en) * 1983-03-25 1986-10-28 Marks Alvin M Solar heater with cavity and phase-change material
JPH09145166A (en) * 1995-11-24 1997-06-06 Kokusai Gijutsu Kaihatsu Kk Solar heat collecting device
US20080066736A1 (en) * 2006-07-25 2008-03-20 Yanong Zhu Method and apparatus for solar energy storage system using gas and rock

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4116223A (en) * 1977-01-18 1978-09-26 Michael Vasilantone Solar energy unit
JPS53138529A (en) * 1977-05-09 1978-12-04 Pedone Angelo Solar energy converter
US4402306A (en) * 1980-03-27 1983-09-06 Mcelroy Jr Robert C Thermal energy storage methods and processes
US4619244A (en) * 1983-03-25 1986-10-28 Marks Alvin M Solar heater with cavity and phase-change material
JPH09145166A (en) * 1995-11-24 1997-06-06 Kokusai Gijutsu Kaihatsu Kk Solar heat collecting device
US20080066736A1 (en) * 2006-07-25 2008-03-20 Yanong Zhu Method and apparatus for solar energy storage system using gas and rock

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112011101147T5 (en) 2010-04-01 2013-01-10 Yazaki Corporation Structure for connecting a pinch clamp to an electrical lead
JP2012002494A (en) * 2010-05-18 2012-01-05 Mitaka Koki Co Ltd Solar heat type air heating device
AU2011200311B2 (en) * 2011-01-25 2012-08-16 Mitaka Kohki Co., Ltd. Heat exchanging structure of solar heat exchanger
JP2020514116A (en) * 2016-12-29 2020-05-21 ザ・ボーイング・カンパニーThe Boeing Company System and method for regenerating carbon fiber using solar energy
JP7241686B2 (en) 2016-12-29 2023-03-17 ザ・ボーイング・カンパニー Systems and methods for regenerating carbon fibers using solar energy
NL2034421B1 (en) * 2023-03-24 2024-09-30 Chen Zhuo A collecting system for solar energy such as heat or light

Also Published As

Publication number Publication date
JP5417091B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
JP5156842B2 (en) Solar heat converter
Feliński et al. Effect of a low cost parabolic reflector on the charging efficiency of an evacuated tube collector/storage system with a PCM
US9273883B2 (en) Concentrated solar power system
JP5417091B2 (en) Solar heat converter
JP2010203624A (en) Trough type light collecting unit
JP5337612B2 (en) Heat exchange structure for solar heat converter
JP5417090B2 (en) Solar heat converter
RU2618633C2 (en) Metal device for thermal energy accumulation
JP6929972B2 (en) Condensing multifunctional solar energy system
JP2020522220A5 (en)
WO2011027421A1 (en) Photothermal conversion device
CN112484324B (en) Solar energy collection system and method thereof
KR20100067519A (en) Evacuated tubular solar collector
CN208901652U (en) A kind of fixed dual three-dimensional concentrating collector
Mukesh et al. Design and development of a concentrated solar water heating system
TWI834069B (en) Solar energy storage system
Lakshmipathy et al. Performance analysis on working parameters of a flat-plate solar cavity collector
RU2001118972A (en) SUNNY MODULE WITH HUB
JP2015227767A (en) Solar heat collection device and manufacturing method therefor
JP2008232524A (en) Solar energy collector
JP2003322419A (en) Sunlight composite focusing machine of electric power generation system for house
TWI831716B (en) Solar energy storage system
EP4407253A1 (en) Solar energy storage and power generation system
JP2024003880A (en) heat storage device
JP2006329491A (en) Solar heat collecting system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees