JP2010079781A - Resistive film type touch panel - Google Patents

Resistive film type touch panel Download PDF

Info

Publication number
JP2010079781A
JP2010079781A JP2008249623A JP2008249623A JP2010079781A JP 2010079781 A JP2010079781 A JP 2010079781A JP 2008249623 A JP2008249623 A JP 2008249623A JP 2008249623 A JP2008249623 A JP 2008249623A JP 2010079781 A JP2010079781 A JP 2010079781A
Authority
JP
Japan
Prior art keywords
touch panel
electrode
adhesive layer
insulating adhesive
movable electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008249623A
Other languages
Japanese (ja)
Other versions
JP5204602B2 (en
Inventor
Koji Nishiyama
孝司 西山
Masanori Shimizu
正憲 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunze Ltd
Original Assignee
Gunze Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Ltd filed Critical Gunze Ltd
Priority to JP2008249623A priority Critical patent/JP5204602B2/en
Publication of JP2010079781A publication Critical patent/JP2010079781A/en
Application granted granted Critical
Publication of JP5204602B2 publication Critical patent/JP5204602B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Input By Displaying (AREA)
  • Push-Button Switches (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resistive film type touch panel which prevents deterioration of a movable electrode and maintains linearity even if an input-disabled area is touched. <P>SOLUTION: The resistive film type touch panel 10 is configured by bonding a surface film 13 having a movable electrode 14 and a fixed electrode substrate 17 having a fixed electrode 18 with an insulating adhesive layer 16. The movable electrode 14 is separated from the insulating adhesive layer 16 across a wiring electrode 15, and a light shielding section 21 is used to protect the input-disabled part, thereby improving durability. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はタッチパネル、特に抵抗膜式タッチパネルに関する。   The present invention relates to a touch panel, particularly a resistive touch panel.

抵抗膜式タッチパネルは、従来から、ATM端末、切符自動販売機、FA制御装置などに広く用いられている。図7に、従来の抵抗膜式タッチパネル40の、周辺部の断面を模式的に示す。従来の抵抗膜式タッチパネル40は、表面フィルム41の内面に、透明電極材料からなる可動電極42が形成され、可動電極42の端には配線電極43が形成される。入力は表面フィルム41の外面から行なわれる。可動電極42として、通常、透明なITO(Indium Tin Oxide)薄膜が用いられる。配線電極43としては、通常、銀インクやカーボンインクから形成された薄膜が用いられる。配線電極43は不透明である。額縁状の絶縁粘着層44を介して、表面フィルム41と固定電極基板45が結合固定される。固定電極基板45の表面には、固定電極46が形成される。固定電極46として、通常、ITO薄膜が用いられる。固定電極46および固定電極基板45は透明である。表面フィルム41は、入力表面側(外側)から、指やペンにより押される(タッチされる)ことにより変形し、可動電極42が凹んで固定電極46と接触し、タッチ位置の座標の信号が検出される。絶縁粘着層44は、表面フィルム41がタッチされていないとき、可動電極42が固定電極46と接触しないための、スペーサーも兼ねている。後述の理由により、入力領域の端の方は、ベゼル47(プラスチック製や金属製の窓枠状筐体)により、覆われている。   Conventionally, the resistive touch panel has been widely used in ATM terminals, ticket vending machines, FA control devices, and the like. In FIG. 7, the cross section of the periphery part of the conventional resistive film type touch panel 40 is shown typically. In the conventional resistive film type touch panel 40, a movable electrode 42 made of a transparent electrode material is formed on the inner surface of a surface film 41, and a wiring electrode 43 is formed at the end of the movable electrode 42. Input is performed from the outer surface of the surface film 41. As the movable electrode 42, a transparent ITO (Indium Tin Oxide) thin film is usually used. As the wiring electrode 43, a thin film formed from silver ink or carbon ink is usually used. The wiring electrode 43 is opaque. The surface film 41 and the fixed electrode substrate 45 are coupled and fixed via the frame-shaped insulating adhesive layer 44. A fixed electrode 46 is formed on the surface of the fixed electrode substrate 45. As the fixed electrode 46, an ITO thin film is usually used. The fixed electrode 46 and the fixed electrode substrate 45 are transparent. The surface film 41 is deformed by being pressed (touched) with a finger or a pen from the input surface side (outside), and the movable electrode 42 is recessed to come into contact with the fixed electrode 46 to detect a coordinate signal of the touch position. Is done. The insulating adhesive layer 44 also serves as a spacer for preventing the movable electrode 42 from contacting the fixed electrode 46 when the surface film 41 is not touched. For the reason described later, the end of the input area is covered with a bezel 47 (a plastic or metal window frame-shaped housing).

図8に、従来の抵抗膜式タッチパネル40の模式的な平面図を示す。長方形の可動電極42の相対する二辺に、配線電極43が配置される。額縁状の絶縁粘着層44の内側の端44aは、配線電極43よりも内側(図の中央側)にある。入力領域48は二点鎖線で囲んだ長方形の部分である。入力不可領域は、入力領域48の外側で、かつ、絶縁粘着層44の内側の端44aの内側の部分である。   In FIG. 8, the typical top view of the conventional resistive film type touch panel 40 is shown. Wiring electrodes 43 are arranged on two opposite sides of the rectangular movable electrode 42. An inner end 44 a of the frame-like insulating adhesive layer 44 is on the inner side (center side in the drawing) than the wiring electrode 43. The input area 48 is a rectangular part surrounded by a two-dot chain line. The input impossibility region is a portion outside the input region 48 and inside the end 44 a inside the insulating adhesive layer 44.

図9に、従来の抵抗膜式タッチパネル40において、ベゼル47が無い場合の、周辺部の断面を模式的に示す。図9は、入力不可領域がタッチされた状態を示す。絶縁粘着層44近傍にある可動電極42は、破線で囲んだ部分49の近傍が絶縁粘着層44に固定されているため、タッチされた際の曲がり方が急であり、伸び率が中央部よりも大きい。その結果、可動電極42の破線で囲んだ部分49に、クラック(図示しない)が発生することがある。可動電極42にクラックが発生すると、可動電極42の抵抗値が変化する。抵抗膜式タッチパネルは、抵抗値によりタッチ位置を検出しているため、抵抗値が変化すると、タッチ位置の座標が正確に検知できなくなる。これを直線性が低下したともいう。タッチ位置の座標の精度、もしくは、直線性が低下すると、抵抗膜式タッチパネルは使用できなくなる。   FIG. 9 schematically shows a cross section of the peripheral portion of the conventional resistive film type touch panel 40 when the bezel 47 is not provided. FIG. 9 shows a state where the input impossible area is touched. Since the movable electrode 42 in the vicinity of the insulating adhesive layer 44 is fixed to the insulating adhesive layer 44 in the vicinity of a portion 49 surrounded by a broken line, the bending direction when touched is abrupt, and the elongation rate is higher than the central portion. Is also big. As a result, a crack (not shown) may occur in the portion 49 surrounded by the broken line of the movable electrode 42. When a crack occurs in the movable electrode 42, the resistance value of the movable electrode 42 changes. Since the resistive touch panel detects the touch position based on the resistance value, if the resistance value changes, the coordinates of the touch position cannot be accurately detected. This is also said to have reduced linearity. When the accuracy or linearity of the coordinates of the touch position is lowered, the resistive touch panel cannot be used.

抵抗膜式タッチパネルにタッチしたとき、上述のように、可動電極の伸び率が大きく、可動電極の抵抗値が変化しやすい部分が、前記の入力不可領域である。図8に示したように、通常、入力不可領域は、入力領域48の両端の二辺の外側で、絶縁粘着層44の内側の端44aの内側にある。入力不可領域の幅は、主に絶縁粘着層44の厚さにより決まり、通常、絶縁粘着層44の厚さの20倍〜50倍程度である。従来は、図7に示すように、入力不可領域をベゼル47によりカバーして、物理的にタッチができないようにし、抵抗膜式タッチパネルの検出精度低下を防止していた(例えば特許文献1)。   As described above, when the resistance film type touch panel is touched, a portion where the elongation rate of the movable electrode is large and the resistance value of the movable electrode is likely to change is the non-inputable region. As shown in FIG. 8, the input impossible area is usually outside the two sides at both ends of the input area 48 and inside the end 44 a inside the insulating adhesive layer 44. The width of the non-inputable region is mainly determined by the thickness of the insulating adhesive layer 44, and is usually about 20 to 50 times the thickness of the insulating adhesive layer 44. Conventionally, as shown in FIG. 7, the non-inputable area is covered with a bezel 47 so that the touch cannot be physically performed, thereby preventing the detection accuracy of the resistive touch panel from being lowered (for example, Patent Document 1).

最近、携帯電話、ノートパソコン、デジタルカメラ、デジタルビデオ、PDAなどの液晶表示画面に、入力装置として、抵抗膜式タッチパネルが搭載されるようになった。このような携帯型の電子機器の場合、抵抗膜式タッチパネルの入力領域と機器筐体のつなぎ部分に高さの差がない、フラットな構造が好まれる。例えば、抵抗膜式タッチパネルが搭載された画像表示部と、キースイッチなどの搭載された本体部とを二つ折りにする構造の場合、画像表示部全体がフラットであると、二つ折りしたとき、機器の厚さが薄くなるので都合がよい。また、本体部のほぼ全面を抵抗膜式タッチパネルとした携帯電話があるが、この場合も、機器筐体とのつなぎ部分に高さの差がない、表面がフラットな構造が好まれる。   Recently, a resistive touch panel has been mounted as an input device on liquid crystal display screens of mobile phones, notebook computers, digital cameras, digital videos, PDAs and the like. In the case of such a portable electronic device, a flat structure in which there is no difference in height between the input region of the resistive touch panel and the connecting portion of the device housing is preferred. For example, in the case of a structure in which an image display unit on which a resistive touch panel is mounted and a main unit on which a key switch or the like is mounted is folded in two, if the entire image display unit is flat, Since the thickness of is reduced, it is convenient. In addition, there is a mobile phone in which the entire surface of the main body is a resistive touch panel. In this case, a structure having a flat surface with no difference in height is preferred.

図10に、従来の、抵抗膜式タッチパネル50の入力領域と機器筐体51のつなぎ部分51aに高さの差がない、フラットな構造の抵抗膜式タッチパネル50の周辺部の断面を、模式的に示す。表面フィルム52の片面に、透明電極材料からなる可動電極53が形成され、可動電極53の端には配線電極54が形成される。額縁状の絶縁粘着層55を介して、表面フィルム52と固定電極基板56が結合固定される。固定電極基板56の表面には固定電極57が形成される。可動電極53および固定電極57は、通常、ITO薄膜からなる。配線電極54は、通常、銀インクやカーボンインクから形成される。表面フィルム52は、カバーフィルム58の表面側から、指やペンにより押される(タッチされる)ことにより変形し、可動電極53が凹んで固定電極57に接触し、タッチ位置の座標の信号が検出される。絶縁粘着層55は、表面フィルム52がタッチされていないとき、可動電極53が固定電極57と接触しないようにするための、スペーサーも兼ねる。透明な固定電極基板56の下側には、例えば、液晶表示素子59が備えられる。   FIG. 10 is a schematic cross-sectional view of a peripheral portion of a conventional resistive touch panel 50 having a flat structure in which there is no difference in height between the input area of the resistive touch panel 50 and the connecting portion 51a of the device casing 51. Shown in A movable electrode 53 made of a transparent electrode material is formed on one surface of the surface film 52, and a wiring electrode 54 is formed at the end of the movable electrode 53. The surface film 52 and the fixed electrode substrate 56 are bonded and fixed via the frame-shaped insulating adhesive layer 55. A fixed electrode 57 is formed on the surface of the fixed electrode substrate 56. The movable electrode 53 and the fixed electrode 57 are usually made of an ITO thin film. The wiring electrode 54 is usually formed from silver ink or carbon ink. The surface film 52 is deformed by being pressed (touched) with a finger or a pen from the surface side of the cover film 58, the movable electrode 53 is recessed and comes into contact with the fixed electrode 57, and a coordinate signal of the touch position is detected Is done. The insulating adhesive layer 55 also serves as a spacer for preventing the movable electrode 53 from contacting the fixed electrode 57 when the surface film 52 is not touched. For example, a liquid crystal display element 59 is provided below the transparent fixed electrode substrate 56.

このような機器筐体51とのつなぎ部分51aがフラットな構造の抵抗膜式タッチパネル50では、入力不可領域を、プラスチック製や金属製のベゼルにより物理的にカバーすることができない。そのため、知らない間に入力不可領域をタッチするおそれがある。   In such a resistive touch panel 50 having a flat connection portion 51a with the device casing 51, the non-inputable area cannot be physically covered with a plastic or metal bezel. For this reason, there is a risk of touching the non-inputable area without knowing it.

図11は、従来の、機器筐体51とのつなぎ部分51aがフラットな抵抗膜式タッチパネル50において、入力不可領域をタッチしたときの模式的な断面図である。破線60で囲んだ、絶縁粘着層55近傍にある可動電極53は、端部が絶縁粘着層55に固定されているため、タッチされた際の曲がり方が急で、伸び率が中央部よりも大きい。そのため、可動電極53の破線60で囲んだ部分にクラック(図示しない)が発生するおそれがある。クラックが発生すると、抵抗値が変動して、タッチ位置の座標が正確に検知できなくなるおそれがある。前述のように、機器筐体51とのつなぎ部分51aがフラットな抵抗膜式タッチパネル50は、入力不可領域をベゼルによりカバーすることができない。そのため、抵抗膜式タッチパネル50の精度を劣化させるおそれが高いまま、使用せざるを得なかった。
特開2005−317409号公報
FIG. 11 is a schematic cross-sectional view of a conventional resistive touch panel 50 having a flat connection part 51a with the device casing 51 when an input impossible area is touched. Since the end portion of the movable electrode 53 in the vicinity of the insulating adhesive layer 55 surrounded by the broken line 60 is fixed to the insulating adhesive layer 55, the bending direction when touched is abrupt and the elongation rate is higher than that of the central portion. large. Therefore, a crack (not shown) may occur in the portion surrounded by the broken line 60 of the movable electrode 53. If a crack occurs, the resistance value may fluctuate, and the coordinates of the touch position may not be detected accurately. As described above, the resistive touch panel 50 in which the connecting portion 51a to the device housing 51 is flat cannot cover the non-inputable area with the bezel. Therefore, there is a high possibility that the accuracy of the resistive touch panel 50 is deteriorated, and it has been forced to use.
JP 2005-317409 A

最近、携帯用電子機器で広く使われるようになった、機器筐体とのつなぎ部分がフラットな構造の抵抗膜式タッチパネルは、入力不可領域をプラスチック製や金属製のベゼルによりカバーすることができない。そのため、入力不可領域を知らない間にタッチしてしまい、可動電極を劣化させるおそれがあった。   Recently, the resistive touch panel with a flat connection to the device casing, which is widely used in portable electronic devices, cannot cover the non-inputable area with a plastic or metal bezel. . For this reason, there is a risk of touching without knowing the non-inputable area and degrading the movable electrode.

本発明者らは、上記の課題を解決するため鋭意検討した結果、可動電極と絶縁粘着層とを配線電極により隔てることにより、万一、入力不可領域をタッチしても、可動電極の劣化がなく、直線性が変化しない抵抗膜式タッチパネルが実現できることを見出した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have separated the movable electrode and the insulating adhesive layer by the wiring electrode. It was found that a resistive touch panel that does not change linearity can be realized.

本発明の要旨は以下のとおりである。
(1)本発明の抵抗膜式タッチパネルは、可動電極を有する表面フィルムと、固定電極を有する固定電極基板とを、絶縁粘着層で結合固定した抵抗膜式タッチパネルであって、可動電極と絶縁粘着層とが配線電極により隔てられていることを特徴とする。
(2)本発明の抵抗膜式タッチパネルは、抵抗膜式タッチパネルの入力面に垂直な方向から見たとき、可動電極と絶縁粘着層との重複部分がないことを特徴とする。
(3)本発明の抵抗膜式タッチパネルは、配線電極が、絶縁粘着層の内側端よりも、入力面の中央方向に延在しており、その延在部分の長さ(カバー長さ)が、絶縁粘着層の厚さの30倍〜40倍であることを特徴とする。
(4)本発明の抵抗膜式タッチパネルは、配線電極が、銀粒子、カーボン粒子、または、それらの混合品に、可撓性樹脂を添加した導電性材料からなることを特徴とする。
(5)本発明の抵抗膜式タッチパネルは、抵抗膜式タッチパネルの入力面に垂直な方向から見たとき、配線電極を隠す遮光部を有することを特徴とする。
The gist of the present invention is as follows.
(1) The resistive touch panel of the present invention is a resistive touch panel in which a surface film having a movable electrode and a fixed electrode substrate having a fixed electrode are bonded and fixed with an insulating adhesive layer. The layer is separated by a wiring electrode.
(2) The resistive touch panel of the present invention is characterized in that there is no overlapping portion between the movable electrode and the insulating adhesive layer when viewed from a direction perpendicular to the input surface of the resistive touch panel.
(3) In the resistive film type touch panel of the present invention, the wiring electrode extends in the center direction of the input surface from the inner end of the insulating adhesive layer, and the length (cover length) of the extending portion is The thickness of the insulating adhesive layer is 30 to 40 times.
(4) The resistive touch panel of the present invention is characterized in that the wiring electrode is made of a conductive material obtained by adding a flexible resin to silver particles, carbon particles, or a mixture thereof.
(5) The resistive touch panel of the present invention is characterized by having a light-shielding portion that hides the wiring electrode when viewed from a direction perpendicular to the input surface of the resistive touch panel.

本発明によれば、入力不可領域をプラスチック製や金属製のベゼルによりカバーすることができない、機器筐体とのつなぎ部分がフラットな構造の抵抗膜式タッチパネルにおいて、入力不可領域をタッチしても、可動電極を劣化させ、直線性を変化させるおそれがない。   According to the present invention, even when the non-inputable area is touched on the resistive touch panel having a flat structure connected to the device housing, the non-inputable area cannot be covered with a plastic or metal bezel. There is no possibility of deteriorating the movable electrode and changing the linearity.

図1に、本発明の抵抗膜式タッチパネル10の第一の実施例を機器筐体11に実装した場合の、周辺部の断面を模式的に示す。本発明の抵抗膜式タッチパネル10は、抵抗膜式タッチパネル10と機器筐体11とのつなぎ部分12に高さの差がない、フラットな構造を実現するのに適している。本発明の抵抗膜式タッチパネル10では、表面フィルム13の内面に、透明電極材料からなる可動電極14が形成され、可動電極14の端には配線電極15が形成される。額縁状の絶縁粘着層16を介して、表面フィルム13周囲と固定電極基板17周囲とが結合固定される。固定電極基板17の表面には固定電極18が形成される。可動電極14および固定電極18は、通常、ITO薄膜からなる。配線電極15は、通常、銀粒子やカーボン粒子を含んだ導電材料からなる。表面フィルム13は、カバーフィルム19の上から、指やペンにより押される(タッチされる)ことにより変形し、可動電極14が凹んで固定電極18に接触し、タッチ位置の座標の信号が検出される。絶縁粘着層16は、表面フィルム13がタッチされていないとき、可動電極14が固定電極18と接触しないようにするための、スペーサーも兼ねる。透明な固定電極基板17の下側には、例えば、液晶表示素子20が備えられる。従来品と異なり、配線電極15は、絶縁粘着層16より入力領域の内側(図の右側)まで設けられている。これにより、可動電極14と絶縁粘着層16とが、配線電極15により隔てられ、可動電極14と絶縁粘着層16とが直接に接するところは無い。また配線電極15とほぼ同じ位置まで、カバーフィルム19の内面に遮光部21が設けられている。遮光部21は、配線電極15が入力領域の表面側(図の上側)から見えるのを防止する。   FIG. 1 schematically shows a cross-section of the peripheral portion when the first embodiment of the resistive touch panel 10 of the present invention is mounted on the equipment casing 11. The resistive touch panel 10 of the present invention is suitable for realizing a flat structure in which there is no difference in height in the connecting portion 12 between the resistive touch panel 10 and the device housing 11. In the resistive touch panel 10 of the present invention, the movable electrode 14 made of a transparent electrode material is formed on the inner surface of the surface film 13, and the wiring electrode 15 is formed at the end of the movable electrode 14. The periphery of the surface film 13 and the periphery of the fixed electrode substrate 17 are coupled and fixed via the frame-shaped insulating adhesive layer 16. A fixed electrode 18 is formed on the surface of the fixed electrode substrate 17. The movable electrode 14 and the fixed electrode 18 are usually made of an ITO thin film. The wiring electrode 15 is usually made of a conductive material containing silver particles or carbon particles. The surface film 13 is deformed by being pressed (touched) with a finger or a pen from the top of the cover film 19, the movable electrode 14 is recessed and comes into contact with the fixed electrode 18, and a coordinate signal of the touch position is detected. The The insulating adhesive layer 16 also serves as a spacer for preventing the movable electrode 14 from coming into contact with the fixed electrode 18 when the surface film 13 is not touched. For example, a liquid crystal display element 20 is provided below the transparent fixed electrode substrate 17. Unlike the conventional product, the wiring electrode 15 is provided from the insulating adhesive layer 16 to the inside of the input region (right side in the figure). Thereby, the movable electrode 14 and the insulating adhesive layer 16 are separated by the wiring electrode 15, and there is no place where the movable electrode 14 and the insulating adhesive layer 16 are in direct contact. Further, the light shielding portion 21 is provided on the inner surface of the cover film 19 up to substantially the same position as the wiring electrode 15. The light shielding portion 21 prevents the wiring electrode 15 from being seen from the surface side (upper side in the figure) of the input region.

図2に、本発明の抵抗膜式タッチパネル10の一実施例の模式的な平面図を示す。長方形の可動電極14の相対する二辺に、配線電極15が配置される。従来品と異なり、配線電極15の内側の端15aは、額縁状の絶縁粘着層16の内側の端16aの更に内側(図の中央より)にある。入力領域22は二点鎖線で囲んだ長方形の部分である。配線電極15の、絶縁粘着層16の内側の端16aから内側へ延在した部分の長さを、カバー長さLという。   In FIG. 2, the typical top view of one Example of the resistive film type touch panel 10 of this invention is shown. Wiring electrodes 15 are arranged on two opposite sides of the rectangular movable electrode 14. Unlike the conventional product, the inner end 15a of the wiring electrode 15 is further on the inner side (from the center of the drawing) of the inner end 16a of the frame-like insulating adhesive layer 16. The input area 22 is a rectangular portion surrounded by a two-dot chain line. The length of the portion of the wiring electrode 15 extending inward from the inner end 16a of the insulating adhesive layer 16 is referred to as a cover length L.

入力領域22は一点鎖線で囲んだ長方形の内部であり、入力領域22の二辺は、配線電極15の内側の端15aとほぼ一致する。入力不可領域は、配線電極15の内側の端15aと絶縁粘着層16の内側の端16aとの間であり、カバー長さLとほぼ一致する。入力不可領域の幅、および、カバー長さLは、主に絶縁粘着層16の厚さにより決まり、通常、絶縁粘着層16の厚さの20倍〜50倍程度である。   The input region 22 is inside a rectangle surrounded by a one-dot chain line, and two sides of the input region 22 substantially coincide with the inner end 15 a of the wiring electrode 15. The non-inputable area is between the inner end 15a of the wiring electrode 15 and the inner end 16a of the insulating adhesive layer 16, and substantially coincides with the cover length L. The width of the non-inputable area and the cover length L are mainly determined by the thickness of the insulating adhesive layer 16 and are usually about 20 to 50 times the thickness of the insulating adhesive layer 16.

図3に、本発明の第一の実施例の抵抗膜式タッチパネル10において、入力不可領域がタッチされた状態の断面を模式的に示す。絶縁粘着層16近傍にある可動電極14は、従来のものと異なり、端部が絶縁粘着層16に直接は固定されておらず、絶縁粘着層16と可動電極14の間に配線電極15がある。このため、入力不可領域がタッチされても、可撓性に富む配線電極15が緩衝材となるため、可動電極14の曲がり方が従来ほど急ではなく、伸び率も小さい。したがって、可動電極14にクラックが発生するおそれが従来品より少ない。配線電極15は厚さが可動電極14よりも厚く、また可撓性に富むため、可動電極14よりはるかにクラックが発生しにくい。また、配線電極15の抵抗値は、可動電極14よりも桁違いに低いため、たとえ可動電極14にクラックが発生して、抵抗値が変化しても、(配線電極15+可動電極14)の抵抗値は、実質的には変化しない。この結果、本発明の抵抗膜式タッチパネル10では、万一、入力不可領域がタッチされても、タッチ位置の座標の精度、および、直線性が低下するおそれが非常に少ない。   FIG. 3 schematically shows a cross section of the resistive touch panel 10 according to the first embodiment of the present invention in a state where the input impossible area is touched. Unlike the conventional one, the movable electrode 14 in the vicinity of the insulating adhesive layer 16 is not directly fixed to the insulating adhesive layer 16, and there is a wiring electrode 15 between the insulating adhesive layer 16 and the movable electrode 14. . For this reason, even if the non-inputable area is touched, the flexible wiring electrode 15 serves as a cushioning material, so the bending of the movable electrode 14 is not as steep as in the prior art and the elongation rate is small. Accordingly, there is less risk of cracks occurring in the movable electrode 14 than in the conventional product. Since the wiring electrode 15 is thicker than the movable electrode 14 and rich in flexibility, cracks are much less likely to occur than the movable electrode 14. Further, since the resistance value of the wiring electrode 15 is orders of magnitude lower than that of the movable electrode 14, even if a crack occurs in the movable electrode 14 and the resistance value changes, the resistance of the (wiring electrode 15 + movable electrode 14) The value does not change substantially. As a result, in the resistive touch panel 10 of the present invention, even if an input impossible area is touched, there is very little possibility that the accuracy of the coordinates of the touch position and the linearity will deteriorate.

図4に、本発明の抵抗膜式タッチパネル30の、第二の実施例の周辺部の断面を模式的に示す。図1に示した第一の実施例では、可動電極14が絶縁粘着層16とオーバーラップしていたが、図4に示す実施例では、可動電極31は絶縁粘着層32とオーバーラップしていない。言い換えると、抵抗膜式タッチパネル30の入力面に垂直な方向から見たとき、可動電極14と絶縁粘着層16との重複部分がない。   In FIG. 4, the cross section of the peripheral part of the 2nd Example of the resistive film type touch panel 30 of this invention is shown typically. In the first embodiment shown in FIG. 1, the movable electrode 14 overlaps the insulating adhesive layer 16, but in the embodiment shown in FIG. 4, the movable electrode 31 does not overlap the insulating adhesive layer 32. . In other words, there is no overlap between the movable electrode 14 and the insulating adhesive layer 16 when viewed from the direction perpendicular to the input surface of the resistive touch panel 30.

図5に、本発明の抵抗膜式タッチパネル30の第二の実施例において、入力不可領域がタッチされた状態の断面を模式的に示す。可動電極31の端部は、可撓性のある配線電極33と接しているため、可動電極31の曲がり方は、第一の実施例よりもさらに緩やかであり、可動電極31にクラックの発生するおそれは、さらに少ない。配線電極33にクラックの発生するおそれが極めて少ないこと、および、万一配線電極33にクラックが発生しても、(配線電極33+可動電極31)の抵抗値が実質的に変化しないことは、第一の実施例と同様である。   FIG. 5 schematically shows a cross section of the second embodiment of the resistive touch panel 30 according to the present invention in a state where the input impossible area is touched. Since the end of the movable electrode 31 is in contact with the flexible wiring electrode 33, the bending of the movable electrode 31 is more gradual than in the first embodiment, and a crack occurs in the movable electrode 31. There is less fear. The fact that there is very little risk of cracks occurring in the wiring electrode 33, and that the resistance value of (wiring electrode 33 + movable electrode 31) does not substantially change even if cracks occur in the wiring electrode 33. This is the same as in the first embodiment.

図2に示した第一の実施例の抵抗膜式タッチパネルを、絶縁粘着層16の厚さを0.075mmとし、配線電極15として、銀粒子に、可撓性の大きいポリエステル樹脂を添加した銀インクを用いて試作した。このとき、配線電極15のカバー長さLが、0mm、1.5mm、2.5mmの3種類の抵抗膜式タッチパネルを作製した。配線電極15のカバー長さL=1.5mmは、絶縁粘着層16の厚さの20倍に相当し、2.5mmは33倍に相当する。それぞれの抵抗膜式タッチパネルについて、絶縁粘着層16の内側の端16aから内側(中央より)へ2mmの位置を、繰り返しタッチする試験を実施し、直線性の変化を調べた。   The resistance film type touch panel of the first embodiment shown in FIG. 2 is a silver film in which the insulating adhesive layer 16 has a thickness of 0.075 mm, and the wiring electrode 15 has silver particles added with a highly flexible polyester resin. A prototype was made using ink. At this time, three types of resistive film type touch panels having cover lengths L of the wiring electrodes 15 of 0 mm, 1.5 mm, and 2.5 mm were produced. The cover length L = 1.5 mm of the wiring electrode 15 corresponds to 20 times the thickness of the insulating adhesive layer 16, and 2.5 mm corresponds to 33 times. With respect to each resistive film type touch panel, a test of repeatedly touching a position of 2 mm from the inner end 16a of the insulating adhesive layer 16 to the inner side (from the center) was performed, and a change in linearity was examined.

図6は、繰り返しタッチ試験における、直線性の変化を示すグラフである。配線電極15のカバー長さLが0mmのものは、タッチ回数が100回で、直線性が5%の変化を示した。配線電極15のカバー長さLが1.5mmのものは、タッチ回数が300回で、直線性が5%の変化を示した。これらは実用性が不十分である。それに対して、配線電極15のカバー長さLが2.5mmのものは、タッチ回数が500回でも直線性が変化しなかった。さらに、グラフには無いが、タッチ回数が100、000回まで試験を続けたが、直線性は変化しなかった。従って、配線電極15のカバー長さLが、絶縁粘着層16の厚さの30倍以上あれば、直線性が非常に変化しにくく、実用性は十分である。   FIG. 6 is a graph showing a change in linearity in the repeated touch test. When the cover length L of the wiring electrode 15 was 0 mm, the number of touches was 100 and the linearity changed by 5%. When the cover length L of the wiring electrode 15 was 1.5 mm, the number of touches was 300, and the linearity changed by 5%. These are not practical enough. In contrast, when the cover length L of the wiring electrode 15 was 2.5 mm, the linearity did not change even when the number of touches was 500. Further, although not shown in the graph, the test was continued up to 100,000 touches, but the linearity did not change. Therefore, if the cover length L of the wiring electrode 15 is 30 times or more the thickness of the insulating adhesive layer 16, the linearity is hardly changed, and the practicality is sufficient.

配線電極15のカバー長さLが長いほど、繰り返しタッチ試験での直線性変化は少なくなると予測される。すなわち、抵抗膜式タッチパネルの劣化が少なくなる。しかし、配線電極15のカバー長さLが長いほど、入力領域は狭くなる。そのため、配線電極15のカバー長さLが必要以上に長いのは好ましくない。このため、配線電極15のカバー長さLは絶縁粘着層の厚さの40倍以下が適当である。したがって、配線電極のカバー長さLは、絶縁粘着層の厚さの30倍〜40倍が適切である。   The longer the cover length L of the wiring electrode 15 is, the smaller the linearity change in the repeated touch test is expected. That is, the resistance film type touch panel is less deteriorated. However, the longer the cover length L of the wiring electrode 15, the narrower the input area. Therefore, it is not preferable that the cover length L of the wiring electrode 15 is longer than necessary. For this reason, the cover length L of the wiring electrode 15 is suitably 40 times or less the thickness of the insulating adhesive layer. Accordingly, the cover length L of the wiring electrode is suitably 30 to 40 times the thickness of the insulating adhesive layer.

上記の実施例においては、配線電極として銀粒子を用いたが、カーボン粒子、または銀粒子とカーボン粒子の混合品を用いてもよい。   In the above embodiment, silver particles are used as the wiring electrode. However, carbon particles or a mixture of silver particles and carbon particles may be used.

本発明の抵抗膜式タッチパネルの第一実施例の周辺部断面図Sectional view of the periphery of the first embodiment of the resistive touch panel of the present invention 本発明の抵抗膜式タッチパネルの第一実施例の平面図The top view of the 1st Example of the resistive film type touch panel of this invention 本発明の抵抗膜式タッチパネルの第一実施例にて入力不可領域がタッチされた状態の断面図Sectional drawing of the state where the input impossible area was touched in the first embodiment of the resistive touch panel of the present invention 本発明の抵抗膜式タッチパネルの第二実施例の周辺部断面図Sectional view of the periphery of the second embodiment of the resistive touch panel of the present invention 本発明の抵抗膜式タッチパネルの第二実施例にて入力不可領域がタッチされた状態の断面図Sectional drawing of the state in which the input impossible area was touched in 2nd Example of the resistive touch panel of this invention 繰り返しタッチ試験における、直線性の変化を示すグラフGraph showing change in linearity in repeated touch test 従来の抵抗膜式タッチパネルの周辺部断面図Cross-sectional view of the periphery of a conventional resistive touch panel 従来の抵抗膜式タッチパネルの平面図Plan view of a conventional resistive touch panel 従来の抵抗膜式タッチパネルにおいてベゼルが無い場合の周辺部断面図Cross-sectional view of the periphery of a conventional resistive touch panel without a bezel 従来のフラット構造の抵抗膜式タッチパネルの周辺部断面図Cross-sectional view of the periphery of a conventional resistive touch panel with a flat structure 従来のフラット構造の抵抗膜式タッチパネルにおいて、入力不可領域をタッチしたときの断面図Sectional view when a non-input area is touched on a conventional resistive touch panel with a flat structure

符号の説明Explanation of symbols

10 抵抗膜式タッチパネル
11 機器筐体
12 部分
13 表面フィルム
14 可動電極
15 配線電極
15a 配線電極の内側の端
16 絶縁粘着層
16a 絶縁粘着層の内側の端
17 固定電極基板
18 固定電極
19 カバーフィルム
20 液晶表示素子
21 遮光部
22 入力領域
30 抵抗膜式タッチパネル
31 可動電極
32 絶縁粘着層
33 配線電極
40 抵抗膜式タッチパネル
41 表面フィルム
42 可動電極
43 配線電極
44 絶縁粘着層
44a 絶縁粘着層の内側の端
45 固定電極基板
46 固定電極
47 ベゼル
48 入力領域
49 破線で囲んだ部分
50 抵抗膜式タッチパネル
51 機器筐体
51a つなぎ部分
52 表面フィルム
53 可動電極
54 配線電極
55 絶縁粘着層
56 固定電極基板
57 固定電極
58 カバーフィルム
59 液晶表示素子
60 破線で囲んだ部分
DESCRIPTION OF SYMBOLS 10 Resistance film type touch panel 11 Equipment housing | casing 12 Portion 13 Surface film 14 Movable electrode 15 Wiring electrode 15a End 16 inside a wiring electrode Insulating adhesive layer 16a End 17 inside an insulating adhesive layer Fixed electrode substrate 18 Fixed electrode 19 Cover film Liquid crystal display element 21 Light shielding part 22 Input region 30 Resistive touch panel 31 Movable electrode 32 Insulating adhesive layer 33 Wiring electrode 40 Resistive touch panel 41 Surface film 42 Movable electrode 43 Wiring electrode 44 Insulating adhesive layer 44a Inner end of insulating adhesive layer 45 Fixed electrode substrate 46 Fixed electrode 47 Bezel 48 Input region 49 Part 50 enclosed by broken line Resistance film type touch panel 51 Device casing 51a Connecting part 52 Surface film 53 Movable electrode 54 Wiring electrode 55 Insulating adhesive layer 56 Fixed electrode substrate 57 Fixed electrode 58 Cover film 59 Liquid crystal display element 6 The portion surrounded by a broken line

Claims (5)

可動電極を有する表面フィルムと、固定電極を有する固定電極基板とを、絶縁粘着層で結合固定した抵抗膜式タッチパネルであって、前記可動電極と前記絶縁粘着層とが配線電極により隔てられていることを特徴とする抵抗膜式タッチパネル。   A resistive touch panel in which a surface film having a movable electrode and a fixed electrode substrate having a fixed electrode are bonded and fixed with an insulating adhesive layer, wherein the movable electrode and the insulating adhesive layer are separated by a wiring electrode. A resistive touch panel characterized by that. 抵抗膜式タッチパネルの入力面に垂直な方向から見たとき、前記可動電極と前記絶縁粘着層との重複部分がないことを特徴とする請求項1に記載の抵抗膜式タッチパネル。   The resistive touch panel according to claim 1, wherein when viewed from a direction perpendicular to the input surface of the resistive touch panel, there is no overlapping portion between the movable electrode and the insulating adhesive layer. 前記配線電極が、前記絶縁粘着層の内側端よりも、入力面の中央方向に延在しており、その延在部分の長さが、前記絶縁粘着層の厚さの30倍〜40倍であることを特徴とする請求項1または2に記載の抵抗膜式タッチパネル。   The wiring electrode extends in the center direction of the input surface from the inner end of the insulating adhesive layer, and the length of the extending portion is 30 to 40 times the thickness of the insulating adhesive layer. The resistive touch panel according to claim 1, wherein the resistive touch panel is provided. 前記配線電極が、銀粒子、カーボン粒子、または、それらの混合品に、可撓性樹脂を添加した導電性材料からなることを特徴とする請求項1から3のいずれかに記載の抵抗膜式タッチパネル。   4. The resistive film type according to claim 1, wherein the wiring electrode is made of a conductive material obtained by adding a flexible resin to silver particles, carbon particles, or a mixture thereof. 5. Touch panel. 抵抗膜式タッチパネルの入力面に垂直な方向から見たとき、前記配線電極を隠す遮光部を有することを特徴とする請求項1から4のいずれかに記載の抵抗膜式タッチパネル。   5. The resistive film type touch panel according to claim 1, further comprising a light shielding portion that hides the wiring electrode when viewed from a direction perpendicular to an input surface of the resistive film type touch panel.
JP2008249623A 2008-09-29 2008-09-29 Resistive touch panel Expired - Fee Related JP5204602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008249623A JP5204602B2 (en) 2008-09-29 2008-09-29 Resistive touch panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008249623A JP5204602B2 (en) 2008-09-29 2008-09-29 Resistive touch panel

Publications (2)

Publication Number Publication Date
JP2010079781A true JP2010079781A (en) 2010-04-08
JP5204602B2 JP5204602B2 (en) 2013-06-05

Family

ID=42210119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008249623A Expired - Fee Related JP5204602B2 (en) 2008-09-29 2008-09-29 Resistive touch panel

Country Status (1)

Country Link
JP (1) JP5204602B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104093A (en) * 2010-11-08 2012-05-31 Samsung Mobile Display Co Ltd Touch screen panel and manufacturing method for the same
US20120169658A1 (en) * 2011-01-04 2012-07-05 Fujitsu Component Limited Touch panel
KR20150030011A (en) * 2013-09-11 2015-03-19 엘지이노텍 주식회사 Display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61115123A (en) * 1984-11-06 1986-06-02 アリー ジエイ.カーツジグ Contact screen
JP2003248554A (en) * 2002-02-26 2003-09-05 Kawaguchiko Seimitsu Co Ltd Touch panel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61115123A (en) * 1984-11-06 1986-06-02 アリー ジエイ.カーツジグ Contact screen
JP2003248554A (en) * 2002-02-26 2003-09-05 Kawaguchiko Seimitsu Co Ltd Touch panel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104093A (en) * 2010-11-08 2012-05-31 Samsung Mobile Display Co Ltd Touch screen panel and manufacturing method for the same
US8937605B2 (en) 2010-11-08 2015-01-20 Samsung Display Co., Ltd. Touch screen panel and method of fabricating the same
US20120169658A1 (en) * 2011-01-04 2012-07-05 Fujitsu Component Limited Touch panel
JP2012141844A (en) * 2011-01-04 2012-07-26 Fujitsu Component Ltd Touch panel
US9612701B2 (en) 2011-01-04 2017-04-04 Fujitsu Component Limited Touch panel
KR20150030011A (en) * 2013-09-11 2015-03-19 엘지이노텍 주식회사 Display device
KR102119810B1 (en) * 2013-09-11 2020-06-05 엘지이노텍 주식회사 Display device

Also Published As

Publication number Publication date
JP5204602B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
US9207819B2 (en) Touch sensing display panel and touch sensing liquid crystal display panel
US10234987B2 (en) Electrode sheet and touch input device
JP5337061B2 (en) Touch panel and display device including the same
EP2437146B1 (en) Display device equipped with touch panel
CN105353547B (en) Electro-optical device with input function
US9354752B2 (en) Sensor apparatus and information processing apparatus
JP5300684B2 (en) Capacitance input device, method of manufacturing capacitance input device, and electro-optical device with input function
KR101015635B1 (en) Touch panel, display device with input function, and electronic apparatus
JP4613979B2 (en) Touch panel, display device with input function, and electronic device
JP3145537U (en) Capacitive touch display panel
US20110134075A1 (en) Touch panel, display, and electronic device
US20130141369A1 (en) Systems for displaying images
US20100283762A1 (en) Display device, electronic equipment provided with the display device, and touch panel
JP2009098834A (en) Capacitance type input device, display device with input function and electronic equipment
JP2010086510A (en) Dual-side integrated touch panel structure
JP2009116849A (en) Input device, display device with input function, and electronic equipment
CN104375681A (en) Touch panel and touch display device
US20150362949A1 (en) Touch display device and touch substrate
JP5300961B2 (en) Input device, display device, and portable terminal
JP2010061384A (en) Input device and portable information processor using the same
JP4636128B2 (en) Input device and display device with input function
JP5204602B2 (en) Resistive touch panel
JP5836817B2 (en) Touch panel, display device and electronic device
JP5473456B2 (en) Capacitive touch panel and display device including the same
JP2010009095A (en) Input device and display with input function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees