JP2010065989A - Tube for heat exchanger and heat exchanger - Google Patents

Tube for heat exchanger and heat exchanger Download PDF

Info

Publication number
JP2010065989A
JP2010065989A JP2008235776A JP2008235776A JP2010065989A JP 2010065989 A JP2010065989 A JP 2010065989A JP 2008235776 A JP2008235776 A JP 2008235776A JP 2008235776 A JP2008235776 A JP 2008235776A JP 2010065989 A JP2010065989 A JP 2010065989A
Authority
JP
Japan
Prior art keywords
tube
heat exchanger
width direction
thickness
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008235776A
Other languages
Japanese (ja)
Other versions
JP5324169B2 (en
Inventor
Seiko Sogabe
誠広 曽我部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2008235776A priority Critical patent/JP5324169B2/en
Publication of JP2010065989A publication Critical patent/JP2010065989A/en
Application granted granted Critical
Publication of JP5324169B2 publication Critical patent/JP5324169B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tube for a heat exchanger and a heat exchanger capable of improving fracture strength with respect to flying stones or the like without causing enlargement of the tube. <P>SOLUTION: In the tube 10 for a heat exchanger, an interior of the flat tube shaped tube 10 is divided by a partition wall part 10c laid between a pair of flat wall parts 10a, 10b disposed facing a circumferential wall of the tube 10, and it has a plurality of communication passages 10d in parallel with each other. An outermost side communication passage 10e positioned in a width direction end of the tube 10 is formed in a substantially triangular shape having a vertex portion 10f with a cross section protruding toward the width direction end of the tube 10, and thickness of a wall (a thick portion 10g) in a height direction of the tube 10 in the outermost communication passage 10e is provided gradually larger toward a width direction end side of the tube 10. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、熱交換器用チューブ及び熱交換器に関する。   The present invention relates to a heat exchanger tube and a heat exchanger.

従来、熱交換器用チューブ及び熱交換器として特許文献1の記載の技術が知られている(特許文献1参照)。
この発明によれば、チューブの幅方向両端に位置する最外側流通通路を角のない真円形や楕円形等の形状に形成している。
特開平11−44498号公報
Conventionally, the technique of patent document 1 is known as a tube for heat exchangers and a heat exchanger (refer patent document 1).
According to the present invention, the outermost flow passages positioned at both ends in the width direction of the tube are formed in a shape such as a perfect circle without a corner or an ellipse.
Japanese Patent Laid-Open No. 11-44498

しかしながら、従来の発明にあっては、最外側流通通路が角のない真円形や楕円形等の形状に形成されているため、チューブの大型化を招くという問題点があった。
加えて、飛び石等による衝撃力は必ずしもチューブの幅方向から水平に入力されるとは限らず、斜め下方や斜め上方から入力される場合があるため、飛び石等に対する破壊強度が不足する虞があった。
However, in the conventional invention, since the outermost flow passage is formed in a shape such as a perfect circle without a corner or an ellipse, there is a problem that the size of the tube is increased.
In addition, the impact force due to stepping stones is not necessarily input horizontally from the width direction of the tube, and may be input from diagonally downward or diagonally upward, so there is a possibility that the breaking strength against stepping stones may be insufficient. It was.

本発明は上記課題を解決するためになされたものであって、その目的とするところは、チューブの大型化を招くことなく、飛び石等に対する破壊強度を向上できる熱交換器用チューブ及び熱交換器を提供することである。   The present invention has been made to solve the above-mentioned problems, and the object of the present invention is to provide a heat exchanger tube and a heat exchanger that can improve the breaking strength against a stepping stone without causing an increase in the size of the tube. Is to provide.

請求項1記載の発明では、偏平管状のチューブの内部が該チューブの周壁に対向配置された一対の平坦壁部間に跨る仕切り壁部によって区画され、複数の流通通路を横並びに有する熱交換器用チューブにおいて、上記チューブの幅方向両端に位置する最外側流通通路を、横断面がチューブの幅方向端部へ向けて突出した頂点部分を有する略三角形状に形成し、上記最外側流通通路におけるチューブの高さ方向の壁の厚みをチューブの幅方向端部側に行くに連れて大きくしたことを特徴とする。   In the first aspect of the present invention, the inside of the flat tubular tube is partitioned by a partition wall portion straddling between a pair of flat wall portions opposed to the peripheral wall of the tube, and for a heat exchanger having a plurality of flow passages side by side In the tube, the outermost flow passages positioned at both ends in the width direction of the tube are formed in a substantially triangular shape having a cross section projecting toward the end in the width direction of the tube, and the tube in the outermost flow passage The wall thickness in the height direction of the tube is increased as it goes toward the end in the width direction of the tube.

請求項1記載の発明では、チューブの幅方向両端に位置する最外側流通通路を、横断面がチューブの幅方向端部へ向けて突出した頂点部分を有する略三角形状に形成し、最外側流通通路におけるチューブの高さ方向の壁の厚みをチューブの幅方向端部側に行くに連れて大きくしている。
これにより、チューブ及び熱交換器の大型化を招くことなく、飛び石等に対する破壊強度を向上できる。
In the first aspect of the present invention, the outermost flow passages positioned at both ends in the width direction of the tube are formed in a substantially triangular shape having a vertex portion whose cross section protrudes toward the end portion in the width direction of the tube, The thickness of the wall in the height direction of the tube in the passage is increased toward the end in the width direction of the tube.
Thereby, the breaking strength with respect to a stepping stone etc. can be improved, without causing the enlargement of a tube and a heat exchanger.

以下、この発明の実施例を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下、実施例1を説明する。
図1は実施例1の熱交換器用チューブが採用されたコンデンサを示す正面図、図2は実施例1の熱交換器用チューブの横断面図、図3は実施例1の熱交換器用チューブの要部拡大断面図、図4は実施例1の作用を説明する図、図5は設定値Xと破壊強度との関係を説明する図、図6は設定値Xと重量との関係を説明する図、図7は設定値Xと流通抵抗との関係を説明する図である。
Example 1 will be described below.
FIG. 1 is a front view showing a condenser in which the heat exchanger tube of Example 1 is adopted, FIG. 2 is a cross-sectional view of the heat exchanger tube of Example 1, and FIG. 3 is a schematic diagram of the heat exchanger tube of Example 1. FIG. 4 is a diagram for explaining the operation of the first embodiment, FIG. 5 is a diagram for explaining the relationship between the set value X and the breaking strength, and FIG. 6 is a diagram for explaining the relationship between the set value X and the weight. FIG. 7 is a diagram for explaining the relationship between the set value X and the flow resistance.

先ず、全体構成を説明する。
図1に示すように、実施例1の熱交換器用チューブ10(以下チューブ10と称す)が採用されたコンデンサ1(請求項の熱交換器に相当)は、左右に所定間隔を置いて配置された一対のタンク2,3と、両タンク2,3の間に配置されたコア部4等が備えられている。
タンク2は、4枚の板状のディバイドプレートD1で3つの室R1,R3,R6に区分けされる他、室R1に連通した入力ポート5aを備える入力コネクタ5が設けられる一方、室R6に連通した出力ポート6aを備える出力コネクタ6が設けられている。
タンク3は、4枚のディバイドプレートD1で3つの室R2,R4,R5に区分けされる他、接続管7,8を介して室R4,R5に連通したレシーバタンク9が設けられている。
First, the overall configuration will be described.
As shown in FIG. 1, a condenser 1 (corresponding to the heat exchanger in the claims) in which the heat exchanger tube 10 of the first embodiment (hereinafter referred to as tube 10) is employed is arranged at a predetermined interval on the left and right. A pair of tanks 2 and 3 and a core portion 4 arranged between the tanks 2 and 3 are provided.
The tank 2 is divided into three chambers R1, R3, R6 by four plate-shaped divider plates D1, and an input connector 5 having an input port 5a communicating with the chamber R1 is provided, while communicating with the chamber R6. The output connector 6 including the output port 6a is provided.
The tank 3 is divided into three chambers R2, R4, and R5 by four divide plates D1, and a receiver tank 9 that communicates with the chambers R4 and R5 through connecting pipes 7 and 8 is provided.

コア部4は、両端部がそれぞれ対応するタンク2,3に挿通し固定された複数の偏平管状のチューブ10と、隣接するチューブ10に波状の頂部が接合された波板状のフィン11とから構成されている。
また、コア部4の積層方向両側は、両端部がそれぞれ対応するタンク2,3に挿通し固定された一対のレインフォース12,13で連結補強されている。
The core portion 4 includes a plurality of flat tubular tubes 10 whose both end portions are respectively inserted and fixed in the corresponding tanks 2 and 3, and corrugated plate-like fins 11 in which corrugated top portions are joined to the adjacent tubes 10. It is configured.
Further, both sides of the core portion 4 in the stacking direction are connected and reinforced by a pair of reinforcements 12 and 13 whose both ends are inserted and fixed to the corresponding tanks 2 and 3 respectively.

その他、実施例1のコンデンサ1の各構成部材は全てアルミ製であり、各構成部材の接合部のうちの少なくとも一方には、ろう材(ブレージングシート)が設けられ、これらは予め仮組みした状態で熱処理されることにより、一体的にろう付け接合されている。
なお、レシーバタンク9の内部構造によっては、コンデンサ1の熱処理後に装着する場合もあり得る。
In addition, all the constituent members of the capacitor 1 of Example 1 are all made of aluminum, and at least one of the joint portions of the constituent members is provided with a brazing material (brazing sheet), and these are temporarily assembled. By being heat-treated with, it is integrally brazed and joined.
Depending on the internal structure of the receiver tank 9, the capacitor 1 may be mounted after heat treatment.

次に、チューブ10について詳述する。
図2に示すように、チューブ10の外形は偏平管状に形成されている。
チューブ10の内部は、上下に対向配置された一対の平坦壁部10a,10aと、該平坦壁部10a,10aの幅方向両端同士を結合する結合壁部10b,10bと、平坦壁部10a,10a間に跨る複数の直線状の仕切り壁部10cによって区画されている。
これにより、チューブ10の内部には、複数の流通通路10dが、横並びに形成されている。
Next, the tube 10 will be described in detail.
As shown in FIG. 2, the outer shape of the tube 10 is formed in a flat tubular shape.
The inside of the tube 10 includes a pair of flat wall portions 10a and 10a arranged to face each other in the vertical direction, coupling wall portions 10b and 10b for connecting both ends in the width direction of the flat wall portions 10a and 10a, and flat wall portions 10a, It is partitioned by a plurality of linear partition walls 10c extending between 10a.
As a result, a plurality of flow passages 10 d are formed side by side inside the tube 10.

図3に示すように、チューブ10の幅方向両端に配置された最外側流通通路10eは、その横断面がチューブ10の幅方向部側へ向けて突出した頂点部分10fを有する略三角形状に形成されている。
これにより、最外側流通通路10eにおけるチューブ10の高さ方向の壁の厚みはチューブ10の幅方向端部側に行くに連れて大きくなっており、ここに、肉厚部分10gが形成されている。
従って、チューブ10の幅方向端部は外方からの衝撃力に対する破壊強度が高くなっている。
As shown in FIG. 3, the outermost flow passages 10 e arranged at both ends in the width direction of the tube 10 are formed in a substantially triangular shape having a vertex portion 10 f whose cross section protrudes toward the width direction portion of the tube 10. Has been.
Thereby, the thickness of the wall in the height direction of the tube 10 in the outermost flow passage 10e increases as it goes to the end portion in the width direction of the tube 10, and a thick portion 10g is formed here. .
Accordingly, the end portion in the width direction of the tube 10 has a high breaking strength against an impact force from the outside.

さらに、頂点部分10fは、円弧状の第1円弧部10hと、第1円弧部10hよりも小さな曲率を有して第1円弧部10hの両端に接続された円弧状の第2円弧部10iで構成されている。
また、頂点部分10f以外の頂点部分10k,10mは第2円弧部10iよりも小さな曲率で円弧状に形成されている。
なお、実施例1では、頂点部分10k,10mの曲率(曲率R=0.1mm)<第2円弧部10iの曲率(曲率R=0.2mm)<第1円弧部10hの曲率(曲率R=0.7mm)となるように設定されているが、この限りではない。
このように、最外側流通通路10eには鋭角な角部が形成されないので、外方からの衝撃力を分散させて特定部位への応力集中を回避できるようになっている。
一方、チューブ10の最外側流通通路10e以外の流通通路10dは仕切り壁部10cによって略矩形状に形成されている。
Further, the apex portion 10f includes an arc-shaped first arc portion 10h and an arc-shaped second arc portion 10i having a smaller curvature than the first arc portion 10h and connected to both ends of the first arc portion 10h. It is configured.
Further, the vertex portions 10k, 10m other than the vertex portion 10f are formed in an arc shape with a smaller curvature than the second arc portion 10i.
In Example 1, the curvature of the vertex portions 10k and 10m (curvature R = 0.1 mm) <the curvature of the second arc portion 10i (curvature R = 0.2 mm) <the curvature of the first arc portion 10h (curvature R = 0.7 mm), but is not limited to this.
As described above, since no sharp corner is formed in the outermost flow passage 10e, the impact force from the outside can be dispersed to avoid stress concentration on a specific part.
On the other hand, the flow passage 10d other than the outermost flow passage 10e of the tube 10 is formed in a substantially rectangular shape by the partition wall portion 10c.

次に、作用を説明する。
[コンデンサの作動について]
このように構成されたコンデンサ1では、入力コネクタ5の入力ポート5aを介してエンジン側からタンク2の室R1に流入した60℃前後の高温な流通媒体が、先ず、コア部4のそれぞれ対応するチューブ10を介してタンク3の室R2、タンク2の室R3、タンク3の室R4の順番にターンしながら流通する間にコア部4を通過する車両走行風または図示しないファンの強制風と熱交換されて冷却される。
Next, the operation will be described.
[Capacitor operation]
In the capacitor 1 configured as described above, the high-temperature circulation medium of about 60 ° C. flowing into the chamber R1 of the tank 2 from the engine side via the input port 5a of the input connector 5 first corresponds to each of the core portions 4. The vehicle running wind passing through the core section 4 or the forced wind and heat of a fan (not shown) while passing through the tube 10 while turning in the order of the chamber R2 of the tank 3, the chamber R3 of the tank 2, and the chamber R4 of the tank 3 through the tube 10 Replaced and cooled.

次に、タンク3の室R4の流通媒体は、接続管7を介してレシーバタンク9に流入して気液分離した後、接続管8を介してタンク3の室R5に流入する。   Next, the flow medium in the chamber R4 of the tank 3 flows into the receiver tank 9 through the connection pipe 7 and is separated into gas and liquid, and then flows into the chamber R5 of the tank 3 through the connection pipe 8.

最後に、タンク3の室R5に流入した流通媒体は、コア部4の対応するチューブ10を介してタンク2の室R6に流入する間にコア部4を通過する車両走行風または図示しないファンの強制風と熱交換されて45℃前後まで過冷却された後、出力コネクタ6の出力ポート6aを介してエバポレータ側へ送出され、熱交換器として機能する。   Finally, the flow medium that has flowed into the chamber R5 of the tank 3 passes through the core portion 4 while flowing into the chamber R6 of the tank 2 via the corresponding tube 10 of the core portion 4 or a fan (not shown). After being heat-exchanged with forced air and subcooled to around 45 ° C., it is sent to the evaporator side via the output port 6a of the output connector 6 and functions as a heat exchanger.

[飛び石について]
前述したように、コンデンサ1のコア部4は、車両走行風やファンの強制風を通過させるために車外に連通させておく必要があるため、通常、コンデンサ1は、エンジンルーム内の前部に搭載されている。
そのため、車両走行中に飛び石等がコア部4のチューブ10の幅方向端部に衝突する虞がある。
[About stepping stones]
As described above, since the core portion 4 of the capacitor 1 needs to be communicated with the outside of the vehicle in order to allow the vehicle running wind and the forced wind of the fan to pass therethrough, the capacitor 1 is usually connected to the front portion in the engine room. It is installed.
Therefore, a stepping stone or the like may collide with the end portion in the width direction of the tube 10 of the core portion 4 while the vehicle is traveling.

この際、前述したように、チューブ10の最外側流通通路10eは幅方向端部側へ突出した頂点10hを有して略三角形状に形成され、さらに、肉厚部分10gが形成されているため、チューブ10の幅方向端部における外方からの入力に対する破壊強度を向上でき、飛び石等の衝突によるチューブ10の亀裂・変形等を防止できる。
加えて、最外側流通通路10eには鋭角な角部がないため、外方からの入力を分散して特定部位への応力集中を回避できる。
At this time, as described above, the outermost flow passage 10e of the tube 10 is formed in a substantially triangular shape having an apex 10h protruding toward the end in the width direction, and further, a thick portion 10g is formed. Moreover, the breaking strength with respect to the input from the outside at the end portion in the width direction of the tube 10 can be improved, and cracking and deformation of the tube 10 due to the collision of a stepping stone or the like can be prevented.
In addition, since the outermost flow passage 10e does not have an acute corner, it is possible to disperse input from the outside and avoid stress concentration on a specific part.

次に、図4に基づいて、実施例1のチューブ10(二点鎖線で図示)の横断面と円形状の最外側流通通路14aを有するチューブ14の横断面とを重ねた状態で比較検討する。なお、両チューブ10,14のハッチングの図示は省略する。   Next, based on FIG. 4, the cross section of the tube 10 of Example 1 (illustrated by a two-dot chain line) and the cross section of the tube 14 having the circular outermost flow passage 14a are compared and examined. . In addition, illustration of hatching of both the tubes 10 and 14 is omitted.

[チューブのコンパクト化について]
チューブ14では、最外側流通通路14aが円形状となっているため、チューブ10の最外側流通通路10eにおける幅方向の肉厚D1と同じ厚みの肉厚C1を確保するには幅方向への突出長さが大きくなる。
これにより、チューブの幅方向への大型化と重量増加、ひいてはコンデンサ1全体の幅方向への大型化と重量増加を招いてしまう。
加えて、最外側流通通路14aと隣接する仕切り壁部14bに余分な肉厚部分14cが形成されるため、重量増加に繋がる。
[Compact tube size]
In the tube 14, the outermost flow passage 14a has a circular shape. Therefore, in order to ensure the thickness C1 having the same thickness D1 as the width D1 in the outermost flow passage 10e of the tube 10, the tube 14 protrudes in the width direction. Length increases.
This leads to an increase in size and weight in the width direction of the tube, and an increase in size and weight in the width direction of the entire capacitor 1.
In addition, an extra thick portion 14c is formed in the partition wall portion 14b adjacent to the outermost flow passage 14a, leading to an increase in weight.

これに対して、実施例1のチューブ10は、耐衝撃性に必要な肉厚D1を頂点部分10fに確保しつつ、幅方向端部の突出長さ、即ち、チューブ10の幅を小さくしてコンパクト化と重量軽減を実現できる。
これにより、コンデンサ1全体のコンパクト化と重量軽減を図ることができる。
On the other hand, the tube 10 of Example 1 reduces the protruding length of the end in the width direction, that is, the width of the tube 10 while securing the thickness D1 necessary for impact resistance at the apex portion 10f. Compact and weight reduction can be realized.
Thereby, the capacitor 1 as a whole can be made compact and weight reduced.

また、最外側流通通路10eと隣接する仕切り壁部10n(図3参照)を直線状に形成しているため、頂点部分10k,10mを流通通路の一部として有効利用できると同時に、軽量化を図ることができる。   In addition, since the partition wall 10n (see FIG. 3) adjacent to the outermost flow passage 10e is formed in a straight line, the apex portions 10k and 10m can be effectively used as a part of the flow passage, and at the same time, the weight can be reduced. Can be planned.

[チューブの破壊強度について]
チューブ14において、チューブ10の最外側流通通路10aにおける幅方向の肉厚D1と同じ厚みの肉厚C1を確保すると、飛び石等の衝撃力が幅方向から水平(図4の矢印N1で図示)に入力された場合には、チューブ14の変形・破損をある程度防止できると想定される。
しかしながら、実際上の飛び石等の衝撃力は斜め方向(図4の矢印N2で図示)から入力される場合がある。
この際、チューブ14のように幅方向の肉厚C1が高さ方向の肉厚C2となるまでに急激に収束して肉薄になっている場合には、強度不足になる虞がある。
[Tube breaking strength]
In the tube 14, when the thickness C1 having the same thickness as the thickness D1 in the width direction in the outermost flow passage 10a of the tube 10 is ensured, the impact force such as a stepping stone is horizontal from the width direction (illustrated by an arrow N1 in FIG. 4). When input, it is assumed that the deformation and breakage of the tube 14 can be prevented to some extent.
However, an actual impact force such as a stepping stone may be input from an oblique direction (illustrated by an arrow N2 in FIG. 4).
At this time, when the wall thickness C1 in the width direction suddenly converges to become the wall thickness C2 in the height direction like the tube 14 and is thinned, the strength may be insufficient.

これに対して、実施例1のチューブ10は、外側流通通路10aが略三角形状に形成されて肉厚部分10gを有するため、幅方向の肉厚D1が高さ方向の肉厚D2となるまでに緩やかに収束する形状となる。
これにより、飛び石等の衝撃力が斜め方向から入力された場合においても強度不足になることなく、チューブ10を良好に保護できる。
On the other hand, in the tube 10 of the first embodiment, the outer flow passage 10a is formed in a substantially triangular shape and has a thick portion 10g, so that the thickness D1 in the width direction becomes the thickness D2 in the height direction. The shape converges slowly.
Thereby, even when an impact force such as a stepping stone is input from an oblique direction, the tube 10 can be well protected without insufficient strength.

[チューブの寸法関係について]
ここで、チューブ10の最適形状を設計するのに当たって、図2、3に示す各寸法において以下に記載する(a)〜(c)の条件を満たし、且つ、所望のチッチング強度を確保するための次式(1)の設定値Xを求めた。
(a)仕切り壁部10cの板厚をT、突出した頂点部分10fのチューブ10の幅方向端部側の板厚をA1とした場合に、2.2<A1/T<6.0
(b)チューブ10の高さをH、平坦壁部10a,10aの板厚をSとした場合に、4.6<H/S<6.6
(c)突出した頂点部分10fの第1円弧部10hと第2円弧部10iを介して接続される斜辺10pとが仮想交差する位置におけるチューブ10の高さ方向端部側の板厚をKとした場合に、1.4<K/S<2.4
[Tube dimensions]
Here, in designing the optimum shape of the tube 10, in order to satisfy the conditions (a) to (c) described below in each dimension shown in FIGS. A set value X of the following formula (1) was obtained.
(A) 2.2 <A1 / T <6.0, where T is the thickness of the partition wall 10c and A1 is the thickness of the protruding apex portion 10f on the side of the tube 10 in the width direction.
(B) When the height of the tube 10 is H and the plate thickness of the flat wall portions 10a, 10a is S, 4.6 <H / S <6.6.
(C) The plate thickness at the end in the height direction of the tube 10 at a position where the oblique side 10p of the projecting apex 10f and the hypotenuse 10p connected via the second arc 10i virtually intersect is represented by K. 1.4 <K / S <2.4

X=(1000×A1×B×S)/W・・・(1)   X = (1000 × A1 × B × S) / W (1)

ただし、突出した頂点部分10fを除く頂点部分10k,10mを形成する斜辺10pと底辺10qとの仮想交差位置におけるチューブ10の高さ方向端部側の板厚をB、チューブ10の幅をWとする。   However, the plate thickness at the end in the height direction of the tube 10 at the virtual intersection position of the hypotenuse 10p and the base 10q forming the apex portions 10k and 10m excluding the protruding apex portion 10f is B, and the width of the tube 10 is W. To do.

この結果、図5に示すように、設定値X=2.4の場合において、所望のチッピング強度(km/h)=180が得られた。
この際、A1=0.45〜0.55を想定している。この値は、鋭利な飛び石等が衝突した場合にチューブ10の幅方向端部を突き破って貫通しないために必要な板厚である。
また、B=0.22〜0.29を想定している。この値は、丸みを帯びた飛び石等が衝突した場合にチューブ10の幅方向端部に掛かる応力を逃がすために必要な板厚である。
また、S=0.22〜0.3を想定している。この値は、チューブ10の耐食性を確保するために必要な板厚である。
As a result, as shown in FIG. 5, when the setting value X = 2.4, a desired chipping strength (km / h) = 180 was obtained.
At this time, A1 = 0.45 to 0.55 is assumed. This value is a plate thickness necessary to prevent the tube 10 from penetrating through the end in the width direction when a sharp stepping stone or the like collides.
Further, B = 0.22 to 0.29 is assumed. This value is a plate thickness necessary for releasing stress applied to the end portion in the width direction of the tube 10 when a round stepping stone collides.
Further, S = 0.22 to 0.3 is assumed. This value is a plate thickness necessary to ensure the corrosion resistance of the tube 10.

ここで、設定値X<2.4に設定した場合には、チッピング強度(km/h)<150となり、チューブ10が強度不足になる虞があるため、実際上は1.8≦設定値Xに設定するのが最適である。   Here, when the set value X <2.4 is set, the chipping strength (km / h) <150, and the tube 10 may have insufficient strength. It is best to set to.

なお、図6、7に示すように、設定値X=2.4としたときの重量及び流通抵抗を100%として、設定値X=1.8に設定した場合には、約3%の重量低減と約6%の流通抵抗の低減を図ることができる。
一方、チューブ10の製造寸法誤差や、重量及び流通抵抗の増大を考慮すると、設定値X≦4.0に設定するのが最適である。
As shown in FIGS. 6 and 7, when the set value X = 2.4, the weight and the flow resistance are set to 100%, and when the set value X = 1.8, the weight is about 3%. It is possible to reduce the flow resistance by about 6%.
On the other hand, considering the manufacturing dimensional error of the tube 10 and the increase in weight and flow resistance, it is optimal to set the set value X ≦ 4.0.

これにより、1.8≦設定値X≦4.0を満たすようにチューブ10の各寸法を設定することにより、簡便に最適なチューブ10を設計でき、設計コストを大幅に削減できる。   Thus, by setting each dimension of the tube 10 so as to satisfy 1.8 ≦ set value X ≦ 4.0, the optimum tube 10 can be designed easily, and the design cost can be greatly reduced.

次に、効果を説明する。
以上説明したように、実施例1の発明では、偏平管状のチューブ10の内部が該チューブ10の周壁に対向配置された一対の平坦壁部間10a,10bに跨る仕切り壁部10cによって区画され、複数の流通通路10dを横並びに有する熱交換器用チューブ10において、チューブ10の幅方向両端に位置する最外側流通通路10eを、横断面がチューブ10の幅方向端部へ向けて突出した頂点部分10fを有する略三角形状に形成し、最外側流通通路10eにおけるチューブ10の高さ方向の壁(肉厚部分10g)の厚みをチューブ10の幅方向端部側に行くに連れて大きくした。
これにより、チューブ10及びコンデンサ1の大型化を招くことなく、飛び石等に対する破壊強度を向上できる。
Next, the effect will be described.
As described above, in the invention of Example 1, the inside of the flat tubular tube 10 is partitioned by the partition wall portion 10c straddling the pair of flat wall portions 10a, 10b disposed to face the peripheral wall of the tube 10, In the heat exchanger tube 10 having a plurality of flow passages 10d side by side, the outermost flow passage 10e located at both ends in the width direction of the tube 10 has an apex portion 10f whose cross section protrudes toward the end in the width direction of the tube 10 The wall of the outermost flow passage 10e in the height direction of the tube 10 (thick portion 10g) is increased in thickness toward the end of the tube 10 in the width direction.
Thereby, the breaking strength with respect to a stepping stone or the like can be improved without causing an increase in size of the tube 10 and the capacitor 1.

また、少なくとも最外側流通通路10eと隣接する流通通路10dとの間に形成される仕切り壁部10nをチューブ10の高さ方向に沿って直線状に形成した。
これにより、流通通路の拡大化を図ることができ、チューブ10が大型化するのを防止できる。
Further, a partition wall portion 10n formed at least between the outermost flow passage 10e and the adjacent flow passage 10d was formed linearly along the height direction of the tube 10.
Thereby, expansion of a distribution channel can be aimed at and it can prevent that tube 10 enlarges.

また、最外側流通通路10eの略三角形状の各頂点部分10f,10m,10nを円弧状に形成し、突出した頂点部分10fを円弧状の第1円弧部10hと、該第1円弧部10hよりも小さな曲率を有して第1円弧部10hの両端に接続された第2円弧部10iで構成し、仕切り壁部10cの板厚をT、突出した頂点部分10fのチューブ10の幅方向端部側の板厚をA1とした場合に、2.2<A1/T<6.0、チューブ10の高さをH、平坦壁部10a,10aの板厚をSとした場合に、4.6<H/S<6.6、突出した頂点部分10fの第1円弧部10hと第2円弧部10iを介して接続される斜辺10pとが仮想交差する位置におけるチューブ10の高さ方向端部側の板厚をKとした場合に、1.4<K/S<2.4を満たし、突出した頂点部分10fを除く頂点を形成する頂点部分10k,10mの斜辺10pと底辺10qの仮想交差位置におけるチューブ10の高さ方向端部側の板厚をB、チューブ10の幅をWとした場合に、次式(1)において1.8≦X≦4.0とした。
X=(1000×A1×B×S)/W・・・(1)
これにより、チューブ10の最適形状を容易に設計可能となる。
Further, the substantially triangular apex portions 10f, 10m, 10n of the outermost flow passage 10e are formed in an arc shape, and the protruding apex portion 10f is formed by an arc-shaped first arc portion 10h and the first arc portion 10h. The second arc portion 10i having a small curvature and connected to both ends of the first arc portion 10h, the thickness of the partition wall portion 10c is T, and the end portion in the width direction of the tube 10 of the protruding apex portion 10f When the side plate thickness is A1, 2.2 <A1 / T <6.0, the height of the tube 10 is H, and the flat wall portions 10a and 10a are S. The thickness is 4.6. <H / S <6.6, the end in the height direction of the tube 10 at a position where the oblique side 10p connected via the first arc portion 10h and the second arc portion 10i of the protruding apex portion 10f virtually intersects. When the plate thickness is K, 1.4 <K / S <2.4 is satisfied, and the top portion excluding the protruding vertex portion 10f is excluded. Where the thickness of the tube 10 at the end in the height direction of the tube 10 at the virtual crossing position of the hypotenuse 10p and the base 10q of the apex portions 10k, 10m forming the shape is B and the width of the tube 10 is W, the following equation (1) In this case, 1.8 ≦ X ≦ 4.0.
X = (1000 × A1 × B × S) / W (1)
Thereby, the optimal shape of the tube 10 can be easily designed.

以上、実施例を説明してきたが、本発明は上述の実施例に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等があっても、本発明に含まれる。
例えば、この発明の熱交換器用チューブが採用される熱交換器はコンデンサに限らず、ラジエータ、オイルクーラ、インタークーラ等の熱交換器に適用することもできる。
また、仕切り壁部10n以外の仕切り壁の壁部の形状、及び流通通路10cの形状は適宜設定できる。
Although the embodiments have been described above, the present invention is not limited to the above-described embodiments, and design changes and the like within the scope not departing from the gist of the present invention are included in the present invention.
For example, the heat exchanger in which the heat exchanger tube of the present invention is adopted is not limited to a condenser, and can be applied to a heat exchanger such as a radiator, an oil cooler, and an intercooler.
Moreover, the shape of the wall part of partition walls other than the partition wall part 10n, and the shape of the distribution | circulation channel | path 10c can be set suitably.

実施例1の熱交換器用チューブが採用されたコンデンサを示す正面図である。It is a front view which shows the capacitor | condenser by which the tube for heat exchangers of Example 1 was employ | adopted. 実施例1の熱交換器用チューブの横断面図である。It is a cross-sectional view of the tube for heat exchangers of Example 1. 実施例1の熱交換器用チューブの要部拡大断面図である。2 is an enlarged cross-sectional view of a main part of a heat exchanger tube of Example 1. FIG. 実施例1の作用を説明する図である。It is a figure explaining the effect | action of Example 1. FIG. 設定値Xと破壊強度との関係を説明する図である。It is a figure explaining the relationship between the setting value X and fracture strength. 設定値Xと重量との関係を説明する図である。It is a figure explaining the relationship between the setting value X and weight. 設定値Xと流通抵抗との関係を説明する図である。It is a figure explaining the relationship between the setting value X and distribution resistance.

符号の説明Explanation of symbols

1 コンデンサ
2、3 タンク
4 コア部
5 入力コネクタ
5a 入力ポート
6 出力コネクタ
6a 出力ポート
7、8 接続管
9 レシーバタンク
10 熱交換器用チューブ
10a 平坦壁部
10b 結合部
10c 仕切り壁部
10d 流通通路
10e 最外側流通通路
10f、10k、10m 頂点部分
10g 肉厚部分
10h 第1円弧部
10i 第2円弧部
10n 仕切り壁部
10p 斜辺
10q 底辺
11 フィン
12、13 レインフォース
14 チューブ
14a 最外側流通通路
14b 仕切り壁部
14c 肉厚部分
DESCRIPTION OF SYMBOLS 1 Capacitor 2, 3 Tank 4 Core part 5 Input connector 5a Input port 6 Output connector 6a Output port 7, 8 Connection pipe 9 Receiver tank 10 Heat exchanger tube 10a Flat wall part 10b Connection part 10c Partition wall part 10d Distribution channel 10e Outer flow passages 10f, 10k, 10m, apex portion 10g, thick portion 10h, first arc portion 10i, second arc portion 10n, partition wall portion 10p, hypotenuse 10q, bottom 11 fin 12, 13 reinforcement 14 tube 14a, outermost flow passage 14b, partition wall portion 14c Thick part

Claims (4)

偏平管状のチューブの内部が該チューブの周壁に対向配置された一対の平坦壁部間に跨る仕切り壁部によって区画され、複数の流通通路を横並びに有する熱交換器用チューブにおいて、
前記チューブの幅方向両端に位置する最外側流通通路を、横断面がチューブの幅方向端部へ向けて突出した頂点部分を有する略三角形状に形成し、
前記最外側流通通路におけるチューブの高さ方向の壁の厚みをチューブの幅方向端部側に行くに連れて大きくしたことを特徴とする熱交換器用チューブ。
In the tube for a heat exchanger, the inside of the flat tubular tube is partitioned by a partition wall portion straddling between a pair of flat wall portions arranged to face the peripheral wall of the tube, and has a plurality of flow passages side by side.
The outermost flow passages located at both ends in the width direction of the tube are formed in a substantially triangular shape having a vertex part whose cross section protrudes toward the end in the width direction of the tube,
The heat exchanger tube according to claim 1, wherein the thickness of the wall in the height direction of the tube in the outermost flow passage is increased toward the end in the width direction of the tube.
請求項1記載の熱交換器用チューブにおいて、
少なくとも前記最外側流通通路と隣接する流通通路との間に形成される仕切り壁部をチューブの高さ方向に沿って直線状に形成したことを特徴とする熱交換器用チューブ。
The heat exchanger tube according to claim 1,
A tube for a heat exchanger, characterized in that at least a partition wall portion formed between the outermost flow passage and an adjacent flow passage is formed linearly along the height direction of the tube.
請求項1または2記載の熱交換器用チューブにおいて、
前記最外側流通通路の略三角形状の各頂点部分を円弧状に形成し、
前記突出した頂点部分を円弧状の第1円弧部と、該第1円弧部よりも小さな曲率を有して第1円弧部の両端に接続された第2円弧部で構成し、
仕切り壁部の板厚をT、突出した頂点部分のチューブの幅方向端部側の板厚をA1とした場合に、2.2<A1/T<6.0、チューブの高さをH、平坦壁部の板厚をSとした場合に、4.6<H/S<6.6、突出した頂点部分の第1円弧部と第2円弧部を介して接続される斜辺とが仮想交差する位置におけるチューブの高さ方向端部側の板厚をKとした場合に、1.4<K/S<2.4を満たし、
前記突出した頂点部分を除く頂点を形成する頂点部分の斜辺と底辺の仮想交差位置におけるチューブの高さ方向端部側の板厚をB、チューブの幅をWとした場合に、次式(1)において1.8≦X≦4.0としたことを特徴とする熱交換器用チューブ。
X=(1000×A1×B×S)/W・・・(1)
The heat exchanger tube according to claim 1 or 2,
Each apex portion of the substantially triangular shape of the outermost distribution passage is formed in an arc shape,
The projecting apex portion is constituted by an arc-shaped first arc portion and a second arc portion having a smaller curvature than the first arc portion and connected to both ends of the first arc portion,
When the thickness of the partition wall portion is T, and the thickness of the protruding apex portion on the side in the width direction of the tube is A1, 2.2 <A1 / T <6.0, the height of the tube is H, When the plate thickness of the flat wall portion is S, 4.6 <H / S <6.6, and the first arc portion of the protruding apex portion and the hypotenuse connected via the second arc portion are virtually intersected When the plate thickness on the side in the height direction of the tube at the position where K is taken to be K, 1.4 <K / S <2.4 is satisfied,
When the plate thickness on the side in the height direction of the tube at the hypothetical intersection of the apex portion forming the apex excluding the protruding apex portion is B and the tube width is W, the following formula (1 The heat exchanger tube is characterized in that 1.8 ≦ X ≦ 4.0.
X = (1000 × A1 × B × S) / W (1)
請求項1〜3のうちのいずれかに記載の熱交換器用チューブが該チューブの厚み方向に複数積層されたコア部と、
前記各チューブの長手方向両端部が挿通し固定された一対のタンクを備えることを特徴とする熱交換器。
A core portion in which a plurality of heat exchanger tubes according to any one of claims 1 to 3 are laminated in a thickness direction of the tubes;
A heat exchanger comprising a pair of tanks in which both longitudinal ends of each tube are inserted and fixed.
JP2008235776A 2008-09-13 2008-09-13 Heat exchanger tubes and heat exchangers Active JP5324169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008235776A JP5324169B2 (en) 2008-09-13 2008-09-13 Heat exchanger tubes and heat exchangers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008235776A JP5324169B2 (en) 2008-09-13 2008-09-13 Heat exchanger tubes and heat exchangers

Publications (2)

Publication Number Publication Date
JP2010065989A true JP2010065989A (en) 2010-03-25
JP5324169B2 JP5324169B2 (en) 2013-10-23

Family

ID=42191714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008235776A Active JP5324169B2 (en) 2008-09-13 2008-09-13 Heat exchanger tubes and heat exchangers

Country Status (1)

Country Link
JP (1) JP5324169B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014213088A1 (en) 2014-07-04 2016-01-07 Mahle International Gmbh flat tube
US20170211892A1 (en) * 2016-01-25 2017-07-27 Hanon Systems Tube for heat exchanger
KR20170088746A (en) * 2016-01-25 2017-08-02 한온시스템 주식회사 A tube of heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111290A (en) * 1998-10-01 2000-04-18 Behr Gmbh & Co Multi-pass flat pipe
JP2005066630A (en) * 2003-08-22 2005-03-17 Denso Corp Method for applying flux on flat tube for heat exchangers, and method for producing aluminum heat exchanger
JP2006336873A (en) * 2002-10-02 2006-12-14 Showa Denko Kk Heat exchanging tube and heat exchanger
JP2007093144A (en) * 2005-09-29 2007-04-12 Denso Corp Heat exchanging tube and heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111290A (en) * 1998-10-01 2000-04-18 Behr Gmbh & Co Multi-pass flat pipe
JP2006336873A (en) * 2002-10-02 2006-12-14 Showa Denko Kk Heat exchanging tube and heat exchanger
JP2005066630A (en) * 2003-08-22 2005-03-17 Denso Corp Method for applying flux on flat tube for heat exchangers, and method for producing aluminum heat exchanger
JP2007093144A (en) * 2005-09-29 2007-04-12 Denso Corp Heat exchanging tube and heat exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014213088A1 (en) 2014-07-04 2016-01-07 Mahle International Gmbh flat tube
US20170211892A1 (en) * 2016-01-25 2017-07-27 Hanon Systems Tube for heat exchanger
KR20170088746A (en) * 2016-01-25 2017-08-02 한온시스템 주식회사 A tube of heat exchanger
KR101982748B1 (en) * 2016-01-25 2019-05-28 한온시스템 주식회사 A tube of heat exchanger

Also Published As

Publication number Publication date
JP5324169B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
JP4674602B2 (en) Heat exchanger
US6213196B1 (en) Double heat exchanger for vehicle air conditioner
US10202880B2 (en) Exhaust heat exchanger
CN103644685A (en) Heat exchanger and air conditioner with multiple refrigeration systems provided with heat exchanger
JP6011481B2 (en) Heat exchanger fins
JP5803768B2 (en) Heat exchanger fins and heat exchangers
JP2010139088A (en) Heat exchanger
EP3370019B1 (en) Heat exchanger
WO2014041771A1 (en) Heat exchanger
KR101748242B1 (en) Refrigerant evaporator
JP5324169B2 (en) Heat exchanger tubes and heat exchangers
JP6050958B2 (en) Flat heat exchanger tube
CN109642778B (en) Air conditioning unit
JP2013122367A (en) Heat exchanger for vehicle
JP2009103404A (en) Heat exchanger
JP2011075165A (en) Heat exchanger
WO2017094366A1 (en) Fin for heat exchanger
WO2020170651A1 (en) Compound heat exchanger
JP2007093023A (en) Heat exchanger
CN102032722B (en) Vortex parallel flow countercurrent evaporator for automotive air conditioner
JP5574737B2 (en) Heat exchanger
JP2008089188A (en) Heat exchanger
JP2009074739A (en) Heat exchanging device for vehicle
JP2007093024A (en) Heat exchanger
JP2007127347A (en) Tank structure for heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120907

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120914

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20121012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130718

R150 Certificate of patent or registration of utility model

Ref document number: 5324169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S343 Written request for registration of root pledge or change of root pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316354

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

SZ02 Written request for trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R316Z02

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

SZ02 Written request for trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R316Z02

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R316Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350