JP2010044050A - Method of recognizing posture of laser radar and laser radar - Google Patents

Method of recognizing posture of laser radar and laser radar Download PDF

Info

Publication number
JP2010044050A
JP2010044050A JP2009096032A JP2009096032A JP2010044050A JP 2010044050 A JP2010044050 A JP 2010044050A JP 2009096032 A JP2009096032 A JP 2009096032A JP 2009096032 A JP2009096032 A JP 2009096032A JP 2010044050 A JP2010044050 A JP 2010044050A
Authority
JP
Japan
Prior art keywords
laser
laser radar
light
coordinate system
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009096032A
Other languages
Japanese (ja)
Inventor
Yutaka Hisamitsu
豊 久光
Koichiro Nagata
宏一郎 永田
Akira Igarashi
亮 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2009096032A priority Critical patent/JP2010044050A/en
Publication of JP2010044050A publication Critical patent/JP2010044050A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of recognizing a posture of a laser radar for largely shortening construction time in setting a monitor region on a ground coordinate of a crossing, setting the monitor region with high accuracy irrespective of a skill of a construction worker, and setting the monitor region in the daytime, and the laser radar. <P>SOLUTION: The laser radar includes a light projection part 2 for emitting laser light LT, a scanning part 3 for scanning the laser light LT, a light reception part 4 for receiving reflected laser light LR reflected back by a target T of measurement, a control part 5 for controlling projection timing of the laser light LT and the scanning of the scanning part 3, a calculation part 6 for obtaining three-dimensional information of the target from the projection timing of the laser light LT and reception timing of the reflected laser light LR, and laser light reflectors 7 provided at four corners of the monitor region E. The calculation part 6 calculates a distance measurement origin position by the ground coordinate and an installed posture from polar coordinate system position data obtained by measuring respective positions of the laser light reflectors 7 set at four positions. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば、踏切内や交差点内における人の存否を監視するレーザレーダの自己の距離測定原点位置及び設置姿勢を求めるのに利用されるレーザレーダの姿勢認識方法及びレーザレーダに関するものである。   The present invention relates to a laser radar attitude recognition method and a laser radar used to determine the distance measurement origin position and installation attitude of a laser radar that monitors the presence or absence of a person in a railroad crossing or an intersection, for example. .

従来、上記したレーザレーダとしては、例えば、レーザ光を発する投光部と、この投光部から発したレーザ光を二次元的に走査する走査部と、計測対象で反射して戻ったレーザ光を受ける受光部と、投光部にレーザ光の投光指令を発すると共に走査部による走査を制御する制御部備えたものがあり、このレーザレーダでは、制御部から与えられるレーザ光の投光タイミング及び受光部から与えられる反射レーザ光の受光タイミングに基づいて計測対象の極座標系三次元データを取得するようになっている。   Conventionally, as the above-described laser radar, for example, a light projecting unit that emits laser light, a scanning unit that two-dimensionally scans the laser light emitted from the light projecting unit, and laser light that has been reflected and returned from the measurement target And a control unit that issues a laser beam projection command to the light projecting unit and controls scanning by the scanning unit. In this laser radar, the light projection timing of the laser beam given from the control unit And the polar coordinate system three-dimensional data to be measured is acquired based on the light receiving timing of the reflected laser beam given from the light receiving unit.

このような極座標系のデータを計測するレーザレーダにおいて、例えば、踏切に設置する場合、地上座標系での計測領域である監視領域(面領域及び高さ領域)を設定するためには、地上座標系に対するレーザレーダの距離測定原点位置及び姿勢を求めて、これらの距離測定原点位置及び姿勢に基づいて、極座標系三次元データの座標変換処理を行う必要がある。   In a laser radar that measures data in such a polar coordinate system, for example, when installed at a railroad crossing, in order to set a monitoring area (surface area and height area) that is a measurement area in the ground coordinate system, It is necessary to obtain the distance measurement origin position and orientation of the laser radar with respect to the system, and to perform coordinate conversion processing of polar coordinate system three-dimensional data based on these distance measurement origin position and orientation.

具体的には、まず、監視領域の面領域をX−Y平面とし且つこのX−Y平面の法線方向をZ軸とする地上座標系において、原点と定義した監視領域の中央やレーザレーダの鉛直下などのポイントに対するレーザレーダの距離測定原点位置を設計図又は計量器による実測値から求め、次いで、姿勢のうちのピッチング量及びローリング量については、レーザレーダを設置した際の傾きを角度計によって測定し、姿勢のうちのヨーイング量については、設計図又は計量器による実測値から求める。   Specifically, first, in the ground coordinate system in which the surface area of the monitoring area is the XY plane and the normal direction of the XY plane is the Z axis, the center of the monitoring area defined as the origin or the laser radar The laser radar distance measurement origin position for a point below the vertical is obtained from a design drawing or an actual measurement value by a measuring instrument. Next, for the pitching amount and rolling amount of the posture, the inclination when the laser radar is installed is an angle meter. The yawing amount in the posture is obtained from a design drawing or an actually measured value by a measuring instrument.

そして、上記のようにして求めたレーザレーダの距離測定原点位置及び姿勢に基づいて、レーザレーダの計測データである極座標系三次元データを地上座標系に座標変換し、この地上座標系における監視領域の位置を測量による実測値から設定するようにしている(例えば、特許文献1,2参照)。   Then, based on the distance measurement origin position and orientation of the laser radar obtained as described above, the polar coordinate system three-dimensional data, which is the measurement data of the laser radar, is transformed into the ground coordinate system, and the monitoring area in this ground coordinate system Is set from actually measured values by surveying (see, for example, Patent Documents 1 and 2).

特開2006-194617号JP 2006-194617 特許第3472815号Patent No. 3472815

しかしながら、従来において、設計図に基づいてレーザレーダを設置する場合には、施工時に設置計画位置に構造物や埋設物のあることが判明して、計画変更を余儀なくされることがあり、一方、測量による実測値に基づいてレーザレーダを設置する場合には、レーザレーダの設置位置測定,姿勢測定及び監視領域位置測定の各測定誤差が蓄積してしまい、最終的には、計測結果を見ながらの現場合わせが必要となって、その分だけ、施工時間が長くなると共に、現場合わせをする作業員の熟練度によって設定精度が変化してしまうという問題があった。   However, in the past, when installing a laser radar based on the design drawing, it was found that there was a structure or buried object at the installation planned position at the time of construction, and the plan may be forced to change, When a laser radar is installed based on an actual measurement value obtained by surveying, measurement errors of the laser radar installation position measurement, attitude measurement, and monitoring area position measurement are accumulated. Therefore, there is a problem that the installation time becomes longer and the construction time becomes longer, and the setting accuracy changes depending on the skill level of the worker who matches the site.

また、レーザレーダの設置位置や設置姿勢を実測する場合には、地上座標系において原点であると定義した点から、レーザレーダの距離測定原点位置までの距離を巻尺や非接触距離計で計測する必要があるため、歩行者や車両が通過する日中の作業が困難であるという問題を有しており、これらの問題を解決することが従来の課題となっていた。
本発明は、上述した従来の課題に着目してなされたもので、例えば、踏切において地上座標系での監視領域を設定するに際して、施工時間の大幅な短縮を実現できると共に、施工作業員の熟練度に問わず高い精度で監視領域を設定することが可能であり、加えて、歩行者や車両が通過する日中においても、監視領域の設定作業を行うことができるレーザレーダの姿勢認識方法及びレーザレーダを提供することを目的としている。
When measuring the installation position and orientation of the laser radar, measure the distance from the point defined as the origin in the ground coordinate system to the distance measurement origin position of the laser radar with a tape measure or non-contact distance meter. Since it is necessary, it has a problem that it is difficult to work during the day when pedestrians and vehicles pass through, and it has been a conventional problem to solve these problems.
The present invention has been made paying attention to the above-described conventional problems. For example, when setting a monitoring area in the ground coordinate system at a railroad crossing, the construction time can be significantly reduced, and the construction worker's skill can be achieved. It is possible to set the monitoring area with high accuracy regardless of the degree, and in addition, the posture recognition method of the laser radar capable of performing the monitoring area setting operation even during the day when pedestrians and vehicles pass It aims to provide a laser radar.

本発明の請求項1に係る発明は、投光したレーザ光を二次元的に走査し、このレーザ光の投光タイミング及び計測対象で反射して戻った反射レーザ光の受光タイミングに基づいて前記計測対象の三次元情報を取得するレーザレーダの姿勢認識方法であって、任意部位に設置した前記レーザレーダの走査範囲内における少なくとも三箇所をレーザ光反射点として設定した後、前記レーザレーダからレーザ光を投光させつつ走査させて、前記レーザ光反射点で反射して戻った反射レーザ光に基づいて、該レーザレーダの極座標系により前記レーザ光反射点の各位置を測定し、続いて、前記レーザ光反射点の各極座標系位置データを前記レーザレーダの直交座標系に座標変換すると共に、これで得た前記レーザ光反射点の各直交座標系位置データに基づいて、最小二乗法により前記少なくとも三箇所のレーザ光反射点を含む平面の平面データを算出し、次いで、この平面データから原点位置を地上座標系により定義して、この原点位置に対する前記レーザレーダの距離測定原点位置を求めると共に、互いに直交する3軸に対する回転角を設置姿勢として求める構成としたことを特徴としており、このレーザレーダの姿勢認識方法の構成を前述の従来の課題を解決するための手段としている。   According to the first aspect of the present invention, the projected laser beam is two-dimensionally scanned, and the laser beam is projected based on the projection timing of the laser beam and the reception timing of the reflected laser beam reflected back from the measurement target. A laser radar attitude recognition method for acquiring three-dimensional information of a measurement object, wherein at least three points in a scanning range of the laser radar installed at an arbitrary part are set as laser light reflection points, and then laser is emitted from the laser radar. Based on the reflected laser light reflected by the laser light reflection point and returned by scanning while projecting light, each position of the laser light reflection point is measured by the polar coordinate system of the laser radar, Each of the polar coordinate system position data of the laser light reflection point is coordinate-converted to the orthogonal coordinate system of the laser radar, and the orthogonal coordinate system position data of the laser light reflection point obtained thereby is converted to Then, plane data of the plane including the at least three laser beam reflection points is calculated by the least square method, and then the origin position is defined by the ground coordinate system from the plane data, and the laser radar for the origin position is defined. In order to solve the above-described conventional problems, the configuration of the posture recognition method of this laser radar is characterized in that the distance measurement origin position is obtained and the rotation angle with respect to the three axes orthogonal to each other is obtained as the installation posture. As a means of.

また、本発明の請求項2に係るレーザレーダの姿勢認識方法において、任意部位に設置した前記レーザレーダの走査範囲内における少なくとも三箇所に配置したレーザ光反射体をレーザ光反射点とする構成としている。
一方、本発明の請求項3に係るレーザレーダは、レーザ光を発する投光部と、この投光部から発したレーザ光を二次元的に走査する走査部と、計測対象で反射して戻った反射レーザ光を前記走査部を介して受ける受光部と、前記投光部にレーザ光の投光指令を発すると共に前記走査部による走査を制御する制御部と、この制御部から与えられるレーザ光の投光タイミング及び前記受光部から与えられる反射レーザ光の受光タイミングに基づいて前記計測対象の三次元情報を取得する演算部を備え、前記演算部では、走査範囲内における少なくとも三箇所に設定したレーザ光反射点の各位置を測定して得た極座標系位置データから、地上座標系による距離測定原点位置及び設置姿勢を求める構成としたことを特徴としており、このレーザレーダの構成を前述の従来の課題を解決するための手段としている。
Further, in the laser radar posture recognition method according to claim 2 of the present invention, the laser light reflectors disposed at at least three locations within the scanning range of the laser radar installed at an arbitrary site are used as laser light reflection points. Yes.
On the other hand, a laser radar according to a third aspect of the present invention is a light projection unit that emits laser light, a scanning unit that scans the laser light emitted from the light projection unit two-dimensionally, and is reflected by a measurement object and returned. A light receiving unit that receives the reflected laser beam through the scanning unit, a control unit that issues a laser beam projection command to the light projecting unit and controls scanning by the scanning unit, and a laser beam that is supplied from the control unit And a calculation unit that obtains the three-dimensional information of the measurement target based on the light projection timing and the light reception timing of the reflected laser beam given from the light receiving unit, and the calculation unit sets at least three places in the scanning range. This laser radar is characterized in that it is configured to obtain the distance measurement origin position and installation posture by the ground coordinate system from the polar coordinate system position data obtained by measuring each position of the laser light reflection point. The structure has a means for solving the conventional problems described above.

また、本発明の請求項4に係るレーザレーダは、走査範囲内における少なくとも三箇所に設定したレーザ光反射点に配置するレーザ光反射体を備えている構成としている。
本発明のレーザレーダの姿勢認識方法及びレーザレーダにおいて、投光部から発するレーザ光としては、半導体レーザや固体レーザやガスレーザなどを用いることができ、信号波形がパルス状や位相変調した正弦波状を成すレーザ光が使用される。
Further, the laser radar according to claim 4 of the present invention is configured to include laser light reflectors arranged at laser light reflection points set in at least three places in the scanning range.
In the laser radar attitude recognition method and laser radar according to the present invention, a semiconductor laser, a solid-state laser, a gas laser, or the like can be used as the laser light emitted from the light projecting unit, and the signal waveform has a pulsed or phase-modulated sinusoidal shape. The formed laser beam is used.

本発明のレーザレーダの姿勢認識方法及びレーザレーダでは、レーザレーダの計測データからレーザレーダ自身の設置位置及び姿勢が得られることから、このレーザレーダの距離測定原点位置及び設置姿勢に基づいて、レーザ光反射点の各極座標系位置データを座標変換すれば、地上座標系におけるレーザレーダの計測領域の設定がなされることとなる。
つまり、例えば、踏切において地上座標系での計測領域(監視領域)を設定するに際して、施工時に計画の変更があったとしても、柔軟に対応し得ることとなり、測量計器を用いた実測が不要となる分だけ、作業時間の短縮が図られると共に、施工作業員の熟練度に関係なく高い精度で監視領域を設定し得ることとなり、日中も設定作業を行い得ることとなる。
In the laser radar attitude recognition method and laser radar according to the present invention, since the installation position and attitude of the laser radar itself can be obtained from the measurement data of the laser radar, the laser radar is measured based on the distance measurement origin position and the installation attitude of the laser radar. If the polar coordinate system position data of the light reflection point is coordinate-converted, the measurement area of the laser radar in the ground coordinate system is set.
In other words, for example, when setting a measurement area (monitoring area) in the ground coordinate system at a level crossing, even if there is a change in the plan at the time of construction, it is possible to respond flexibly, and actual measurement using a surveying instrument is unnecessary Accordingly, the work time can be shortened and the monitoring area can be set with high accuracy regardless of the skill level of the construction worker, and the setting work can be performed during the day.

また、レーザレーダの走査範囲内における少なくとも三箇所に設定するレーザ光反射点を、例えば、踏切の監視領域として定義することで、レーザレーダ自身の設置位置及び姿勢を算出するのと同時に地上座標系における監視領域の設定がなされることとなる。   In addition, by defining laser light reflection points set at at least three locations within the laser radar scanning range as, for example, a crossing monitoring area, the ground coordinate system is calculated simultaneously with calculating the installation position and orientation of the laser radar itself. In this case, the monitoring area is set.

本発明の請求項1に係るレーザレーダの姿勢認識方法及び請求項3に係るレーザレーダでは、上記した構成としたから、例えば、踏切において地上座標系での監視領域を設定するに際して、施工時間の大幅な短縮を実現できると共に、施工作業員の熟練度の多寡にかかわらず高い精度で監視領域を設定することが可能であり、加えて、歩行者や車両が通過する日中においても、監視領域の設定作業を行うことができるという非常に優れた効果がもたらされる。   The laser radar attitude recognition method according to claim 1 of the present invention and the laser radar according to claim 3 have the above-described configuration. For example, when setting a monitoring area in the ground coordinate system at a level crossing, The monitoring area can be set with high accuracy regardless of the level of proficiency of the construction worker, and in addition to the monitoring area even during the day when pedestrians and vehicles pass. It is possible to perform the setting work of the present invention.

また、本発明の請求項2に係るレーザレーダの姿勢認識方法及び請求項4に係るレーザレーダでは、上記した構成としているので、例えば、踏切において地上座標系での監視領域を設定するに際して、施工作業の容易化及び施工時間のより一層の短縮を実現できるという非常に優れた効果がもたらされる。   Further, the laser radar posture recognition method according to claim 2 of the present invention and the laser radar according to claim 4 have the above-described configuration. For example, when setting a monitoring area in the ground coordinate system at a railroad crossing, A very excellent effect of facilitating the work and further shortening the construction time is brought about.

本発明に係るレーザレーダの姿勢認識方法の一実施形態を示すブロック図である。It is a block diagram which shows one Embodiment of the attitude | position recognition method of the laser radar which concerns on this invention. 図1におけるレーザレーダの演算部において使用するレーザレーダの設置位置を原点とした極座標系及び直交座標系の説明図である。It is explanatory drawing of the polar coordinate system and orthogonal coordinate system which made the origin the installation position of the laser radar used in the calculating part of the laser radar in FIG. 図1におけるレーザレーダの演算部において使用する監視領域の中央を原点とした直交座標系の説明図である。It is explanatory drawing of the orthogonal coordinate system which made the origin the center of the monitoring area | region used in the calculating part of the laser radar in FIG. 図1におけるレーザレーダの姿勢認識方法を用いて踏切に監視領域を設定する要領を示す平面説明図である。FIG. 2 is an explanatory plan view showing a procedure for setting a monitoring region at a level crossing using the laser radar posture recognition method in FIG. 1.

以下、本発明に係るレーザレーダの姿勢認識方法及びレーザレーダを図面に基づいて説明する。
図1〜図4は、本発明に係るレーザレーダの姿勢認識方法の一実施形態を示しており、この実施形態では、本発明に係るレーザレーダの姿勢認識方法を踏切に監視用として設置するレーザレーダに適用した場合を例に挙げて説明する。
Hereinafter, a laser radar attitude recognition method and a laser radar according to the present invention will be described with reference to the drawings.
1 to 4 show an embodiment of a laser radar posture recognition method according to the present invention. In this embodiment, the laser radar posture recognition method according to the present invention is installed at a railroad crossing for monitoring purposes. A case where it is applied to a radar will be described as an example.

図1に示すように、このレーザレーダ1は、パルス状のレーザ光LTを発する投光部2と、この投光部2から発したレーザ光LTを二次元的に走査する走査部3と、この走査部3による走査範囲内の計測対象Tで反射して戻った反射レーザ光LRを走査部3を介して受ける受光部4と、投光部2から発するレーザ光LTの強度及び投光タイミングを制御すると共に走査部3による走査を制御する制御部5と、この制御部5から与えられるレーザ光LTの投光タイミング及び受光部4から与えられる反射レーザ光LRの受光タイミングに基づいて計測対象Tの三次元情報を取得する演算部6と、矩形状を成す監視領域Eの四隅に配置されるレーザ光反射体(レーザ光反射点)7を備えている。   As shown in FIG. 1, the laser radar 1 includes a light projecting unit 2 that emits a pulsed laser light LT, a scanning unit 3 that scans the laser light LT emitted from the light projecting unit 2 two-dimensionally, The light receiving unit 4 that receives the reflected laser light LR reflected and returned from the measurement target T within the scanning range by the scanning unit 3 through the scanning unit 3, the intensity of the laser light LT emitted from the light projecting unit 2, and the light projecting timing. And a control target 5 for controlling scanning by the scanning unit 3, and a measurement target based on the light projection timing of the laser beam LT given from the control unit 5 and the light reception timing of the reflected laser beam LR given from the light receiving unit 4 A calculation unit 6 that acquires three-dimensional information of T and a laser beam reflector (laser beam reflection point) 7 disposed at four corners of a rectangular monitoring region E are provided.

この演算部6では、図2に示すように、レーザレーダ1の設置位置である距離測定原点を座標原点とした極座標系(計測座標系;計測距離λ、垂直方向走査角度φ、水平方向走査角度θ)と、レーザレーダ1の距離測定原点を座標原点とした直交座標系(センサ座標系;水平方向x、垂直方向y、奥行き方向z)と、図3に示すように、四箇所のレーザ光反射体7で設定された監視領域Eの対角線交点Pを原点とした地上座標系(踏切座標系;線路方向X、横断方向Y、高さ方向Z)を使用するものとなっている。   As shown in FIG. 2, the calculation unit 6 has a polar coordinate system (measurement coordinate system; measurement distance λ, vertical scanning angle φ, horizontal scanning angle) with the origin of distance measurement, which is the installation position of the laser radar 1, as the coordinate origin. θ), an orthogonal coordinate system (sensor coordinate system: horizontal direction x, vertical direction y, depth direction z) with the distance measurement origin of laser radar 1 as the coordinate origin, and four laser beams as shown in FIG. A ground coordinate system (crossing coordinate system; track direction X, crossing direction Y, height direction Z) using the diagonal intersection P of the monitoring area E set by the reflector 7 as the origin is used.

この場合、計測座標系からセンサ座標系への座標変換は、以下の式(1)〜(3)により行うことができる。
x=λ・sinθ 式(1)
y=λ・cosθ・sinφ 式(2)
z=λ・cosθ・cosφ 式(3)
また、センサ座標系から踏切座標系への座標変換は、踏切座標系におけるレーザレーダ1の距離測定原点の座標位置(Xs,Ys,Zs)及び3軸の傾き角度(スイング傾き角α,スキャン傾き角σ,座標傾き角γ)をパラメータとして、以下の式(4)〜(7)により行うことができる。
In this case, coordinate conversion from the measurement coordinate system to the sensor coordinate system can be performed by the following equations (1) to (3).
x = λ · sin θ Formula (1)
y = λ · cos θ · sin φ Equation (2)
z = λ · cos θ · cos φ Formula (3)
In addition, the coordinate conversion from the sensor coordinate system to the level crossing coordinate system involves coordinate position (Xs, Ys, Zs) of the distance measurement origin of the laser radar 1 in the level crossing coordinate system and a triaxial tilt angle (swing tilt angle α, scan tilt). The following equations (4) to (7) can be performed using the angle σ and the coordinate inclination angle γ) as parameters.

但し、スイング傾き角αは、センサ座標系z軸と踏切座標系Z軸との傾き角度であり、センサ座標系x軸の回転角度として定義され、スキャン傾き角σは、センサ座標系x軸と踏切座標系X軸との傾き角度であり、センサ座標系y軸の回転角度として定義され、座標傾き角γは、センサ座標系y軸と踏切座標系Y軸との傾き角度であり、センサ座標系z軸の回転角度として定義される。   However, the swing inclination angle α is the inclination angle between the sensor coordinate system z-axis and the crossing coordinate system Z-axis, and is defined as the rotation angle of the sensor coordinate system x-axis. The scan inclination angle σ is the sensor coordinate system x-axis The angle of inclination with respect to the crossing coordinate system X-axis, defined as the rotation angle of the sensor coordinate system y-axis. The coordinate inclination angle γ is the angle of inclination between the sensor coordinate system y-axis and the level crossing coordinate system Y-axis, and the sensor coordinates It is defined as the rotation angle of the system z-axis.

Figure 2010044050
式(4)
ここで、
Figure 2010044050
Formula (4)
here,

Figure 2010044050
:座標傾き角γによる回転行列 式(5)
Figure 2010044050
: Rotation matrix by coordinate inclination angle γ (5)

Figure 2010044050
:スキャン傾き角σによる回転行列 式(6)
Figure 2010044050
: Rotation matrix by scan tilt angle σ (6)

Figure 2010044050
:スイング傾き角αによる回転行列 式(7)
Figure 2010044050
: Rotation matrix by swing angle α (7)

そこで、このレーザレーダ1を踏切に設置する際の姿勢認識要領及び踏切座標系での監視領域の設定要領を説明する。
まず、図4に示すように、踏切内における監視領域Eとして設定するエリアの四隅に、レーザ光反射体7を設置する。この際、レーザ光反射体7の大きさや形状や材質はとくに限定されるものではなく、投光部2から発せられて走査されるレーザ光LTを漏れなく反射し得るものであればよい。また、監視領域Eとして設定するエリアの四隅に、既設物でレーザ光LTを反射し得るものがあれば、それをレーザ光反射点として採用してもよい。
Therefore, a posture recognition procedure when the laser radar 1 is installed at a level crossing and a monitoring region setting procedure in the level crossing coordinate system will be described.
First, as shown in FIG. 4, the laser light reflectors 7 are installed at the four corners of the area set as the monitoring area E in the railroad crossing. At this time, the size, shape, and material of the laser light reflector 7 are not particularly limited as long as the laser light LT emitted from the light projecting unit 2 and scanned can be reflected without omission. Further, if there are existing objects that can reflect the laser beam LT at the four corners of the area set as the monitoring region E, they may be adopted as the laser beam reflection points.

次いで、投光部2からレーザ光LTを投光させつつ走査部3により走査させて、四箇所のレーザ光反射体7で反射して戻った反射レーザ光LRに基づいて、演算部6の計測座標系によりレーザ光反射体71,72,73,74(7)の各位置座標(λ,θ,φ),(λ,θ,φ),(λ,θ,φ),(λ,θ,φ)を測定し、続いて、これらの各極座標系位置データを演算部6のセンサ座標系の各位置座標(x,y,z),(x,y,z),(x,y,z),(x,y,z)に座標変換すると共に、これで得た四箇所のレーザ光反射体7の各センサ座標系位置データから、最小二乗法により、(式8)に示す四箇所のレーザ光反射体7を含む監視領域Eの平面の方程式(平面データ)を算出する。
ax+by+cz+d=0 (式8)
Next, the scanning unit 3 scans while projecting the laser light LT from the light projecting unit 2, and the measurement by the arithmetic unit 6 is performed based on the reflected laser light LR reflected by the four laser light reflectors 7. Depending on the coordinate system, the position coordinates (λ 1 , θ 1 , φ 1 ), (λ 2 , θ 2 , φ 2 ), (λ 3 , θ 3 , φ 3), (λ 4, θ 4, to measure phi 4), followed by the position coordinates of the sensor coordinate system of the operation unit 6 each of these polar coordinate system position data (x 1, y 1, z 1) , (X 2 , y 2 , z 2 ), (x 3 , y 3 , z 3 ), (x 4 , y 4 , z 4 ), and the four laser light reflectors obtained thereby. 7 of the sensor coordinate system position data of the plane of the monitoring region E including the four laser light reflectors 7 shown in (Expression 8) by the least square method. Degree calculating equation (plane data).
ax + by + cz + d = 0 (Formula 8)

次に、この平面の方程式に基づいて、(式9)〜(式11)により計算して、レーザレーダ1の高さ方向の設置位置Zs,スイング傾き角α及びスキャン傾き角σを得る。
Zs=|d|/{(a+b+c)}1/2+Z(但し、Z=反射板高さ)(式9)
α=arctan(−b/c) (式10)
σ=arctan{a/(b・sinα−c・cosα)} (式11)
Next, based on the equation of the plane, calculation is made by (Equation 9) to (Equation 11) to obtain the installation position Zs, the swing inclination angle α, and the scan inclination angle σ of the laser radar 1 in the height direction.
Zs = | d | / {(a 2 + b 2 + c 2 )} 1/2 + Z 0 (where Z 0 = reflector height) (Formula 9)
α = arctan (−b / c) (Formula 10)
σ = arctan {a / (b · sin α−c · cos α)} (Formula 11)

そして、このようにして得たレーザレーダ1の設置位置のうちの高さ方向の設置位置Zs及び姿勢のうちのスイング傾き角α,スキャン傾き角σを用いて、(式12)により監視領域Eを仮の踏切座標系(X’,Y’,Z)に変換する。なお、仮の踏切座標系とは、レーザレーダ1の設置位置(Xs,Ys)=(0,0)、座標傾き角γ=0とした踏切座標系を指す。   Then, by using the installation position Zs in the height direction among the installation positions of the laser radar 1 obtained in this way and the swing inclination angle α and the scan inclination angle σ of the posture, the monitoring region E is expressed by (Equation 12). Is converted into a temporary crossing coordinate system (X ′, Y ′, Z). The provisional crossing coordinate system refers to a crossing coordinate system in which the installation position (Xs, Ys) = (0, 0) of the laser radar 1 and the coordinate inclination angle γ = 0.

Figure 2010044050
(式12)
Figure 2010044050
(Formula 12)

続いて、監視領域Eの対角線交点Pの座標(X’center,Y’center)を原点として定義し、(式13)及び(式14)により仮のレーザレーダ1の設置位置(X’s,Y’s)を計算する。
X’s=−X’center (式13)
Y’s=−Y’center (式14)
Subsequently, the coordinates (X′center, Y′center) of the diagonal intersection point P of the monitoring area E are defined as the origin, and the temporary laser radar 1 installation position (X ′s, Y's) is calculated.
X ′s = −X′center (Formula 13)
Y's = -Y'center (Formula 14)

さらに、ここまでに得られたパラメータに基づいて、計測された監視領域Eの表面画像において、踏切の横断方向を図示しないマンマシンインターフェイスを介して直線によって入力し、これで入力された直線の端点座標(X’a,Y’a),(X’b,Y’b)から、(式15)により計算して、レーザレーダ1の姿勢のうちの座標傾き角γを得る。
γ=−arctan((X’b−X’a)/(Y’b−Y’a)) (式15)
Further, based on the parameters obtained so far, in the measured surface image of the monitoring region E, the crossing direction of the crossing is input by a straight line via a man-machine interface (not shown), and the end point of the input straight line From the coordinates (X′a, Y′a) and (X′b, Y′b), the coordinate inclination angle γ in the attitude of the laser radar 1 is obtained by calculation according to (Expression 15).
γ = −arctan ((X′b−X′a) / (Y′b−Y′a)) (Formula 15)

さらにまた、これで得た座標傾き角γをもとにして、仮の踏切座標系におけるレーザレーダ1の設置位置(X’s,Y’s)から、(式16)及び(式17)により計算して、踏切座標系におけるレーザレーダ1の設置位置である距離測定原点位置(Xs,Ys)を得る。
Xs=X’s・cosγ−Y’s・sinγ (式16)
Ys=X’s・sinγ+Y’s・cosγ (式17)
Furthermore, based on the coordinate inclination angle γ obtained in this way, from the installation position (X ′s, Y ′s) of the laser radar 1 in the temporary crossing coordinate system, (Equation 16) and (Equation 17). The distance measurement origin position (Xs, Ys) that is the installation position of the laser radar 1 in the crossing coordinate system is obtained by calculation.
Xs = X ′s · cos γ−Y ′s · sin γ (Formula 16)
Ys = X ′s · sinγ + Y ′s · cosγ (Formula 17)

つまり、(式8)に示す平面データから、監視領域Eの対角線交点Pの座標(X’center,Y’center)を踏切座標系により原点として定義して、この原点位置に対するレーザレーダ1の設置位置である距離測定原点位置(Xs,Ys,Zs)を求めると共に、互いに直交する3軸に対する回転角(スイング傾き角α,スキャン傾き角σ,座標傾き角γ)を設置姿勢として求める。   That is, from the plane data shown in (Equation 8), the coordinates (X'center, Y'center) of the diagonal intersection P of the monitoring area E are defined as the origin by the crossing coordinate system, and the laser radar 1 is installed at this origin position. The distance measurement origin position (Xs, Ys, Zs), which is the position, is obtained, and the rotation angles (swing inclination angle α, scan inclination angle σ, coordinate inclination angle γ) with respect to the three axes orthogonal to each other are obtained as the installation posture.

この後、上述したようにして演算部6の計測座標系により測定した監視領域Eの四隅の各位置、すなわち、レーザ光反射体7の各位置を(λ,θ,φ),(λ,θ,φ),(λ,θ,φ),(λ,θ,φ)、上記したレーザレーダ1の設置位置である距離測定原点位置(Xs,Ys,Zs)及び設置姿勢(スイング傾き角α,スキャン傾き角σ,座標傾き角γ)に基づいて座標変換して、踏切座標系における監視領域Eを設定する。 Thereafter, the positions of the four corners of the monitoring region E measured by the measurement coordinate system of the calculation unit 6 as described above, that is, the positions of the laser light reflector 7 are represented by (λ 1 , θ 1 , φ 1 ), ( λ 2 , θ 2 , φ 2 ), (λ 3 , θ 3 , φ 3 ), (λ 4 , θ 4 , φ 4 ), the distance measurement origin position (Xs, Ys) that is the installation position of the laser radar 1 described above , Zs) and the installation posture (swing inclination angle α, scan inclination angle σ, coordinate inclination angle γ), the monitoring area E in the crossing coordinate system is set.

このように、上記した実施形態によるレーザレーダの姿勢認識方法では、レーザレーダ1の計測データからレーザレーダ1自身の設置位置及び姿勢が得られることから、踏切において踏切座標系での監視領域Eを設定するに際して、施工時に計画の変更があったとしても、柔軟に対応し得ることとなる。
また、測量計器を用いた実測が不要となるので、その分だけ、作業時間の短縮が図られると共に、施工作業員の熟練度に関係なく高い精度で監視領域Eを設定し得ることとなり、加えて、踏切座標系において原点であると定義した点から、レーザレーダ1の設置位置である距離測定原点位置までの距離を巻尺や非接触距離計で計測する必要がないので、歩行者や車両が通過する時間帯においても、監視領域Eの設定作業を行い得ることとなる。
As described above, in the laser radar posture recognition method according to the above-described embodiment, the installation position and posture of the laser radar 1 itself can be obtained from the measurement data of the laser radar 1, and therefore, the monitoring region E in the railroad crossing coordinate system is defined at the railroad crossing. When setting, even if there is a change in the plan at the time of construction, it will be possible to respond flexibly.
In addition, since actual measurement using a surveying instrument becomes unnecessary, the work time can be shortened by that amount, and the monitoring area E can be set with high accuracy regardless of the skill level of the construction worker. Thus, there is no need to measure the distance from the point defined as the origin in the railroad crossing coordinate system to the distance measurement origin position, which is the installation position of the laser radar 1, with a tape measure or a non-contact distance meter. Even in the passing time zone, the setting operation of the monitoring area E can be performed.

さらに、この実施形態によるレーザレーダの姿勢認識方法のように、レーザレーダ1の走査範囲内における四箇所に配置したレーザ光反射体7を踏切の監視領域Eとして定義すれば、レーザレーダ1自身の設置位置及び姿勢を算出するのと同時に踏切座標系における監視領域Eの設定がなされることとなる。
なお、上記した実施形態では、本発明に係るレーザレーダの姿勢認識方法を踏切に監視用として設置するレーザレーダに適用した場合を例に挙げて説明したが、これに限定されるものではなく、他の適用例として、例えば、交差点に監視用として設置するレーザレーダに適用してもよい。
Further, as in the laser radar attitude recognition method according to this embodiment, if the laser light reflectors 7 arranged at four locations within the scanning range of the laser radar 1 are defined as the monitoring area E of the level crossing, the laser radar 1 itself At the same time when the installation position and orientation are calculated, the monitoring area E in the crossing coordinate system is set.
In the above-described embodiment, the case where the laser radar attitude recognition method according to the present invention is applied to a laser radar installed for monitoring at a crossing is described as an example, but the present invention is not limited to this. As another application example, for example, the present invention may be applied to a laser radar installed for monitoring at an intersection.

また、上記した実施形態では、レーザレーダ1の走査範囲内における四箇所にレーザ光反射点であるレーザ光反射体7を配置した構成としているが、これに限定されるものではなく、レーザ光反射点であるレーザ光反射体7(あるいはレーザ光反射点)は、レーザレーダ1の走査範囲内における少なくとも3箇所に配置すれば(あるいは設定すれば)事足りる。   In the above-described embodiment, the laser light reflectors 7 that are laser light reflection points are arranged at four locations in the scanning range of the laser radar 1, but the present invention is not limited to this, and the laser light reflection is not limited thereto. It is sufficient if the laser light reflectors 7 (or laser light reflection points), which are dots, are arranged (or set) at least at three locations within the scanning range of the laser radar 1.

1 レーザレーダ
2 投光部
3 走査部
4 受光部
5 制御部
6 演算部
71,72,73,74(7) レーザ光反射体(レーザ光反射点)
E 監視領域(計測領域)
LR 反射レーザ光
LT 投光レーザ光
DESCRIPTION OF SYMBOLS 1 Laser radar 2 Light projection part 3 Scanning part 4 Light receiving part 5 Control part 6 Calculation part 71,72,73,74 (7) Laser light reflector (laser light reflection point)
E Monitoring area (measurement area)
LR Reflected laser beam LT Projected laser beam

Claims (4)

投光したレーザ光を二次元的に走査し、このレーザ光の投光タイミング及び計測対象で反射して戻った反射レーザ光の受光タイミングに基づいて前記計測対象の三次元情報を取得するレーザレーダの姿勢認識方法であって、
任意部位に設置した前記レーザレーダの走査範囲内における少なくとも三箇所をレーザ光反射点として設定した後、
前記レーザレーダからレーザ光を投光させつつ走査させて、前記レーザ光反射点で反射して戻った反射レーザ光に基づいて、該レーザレーダの極座標系により前記レーザ光反射点の各位置を測定し、
続いて、前記レーザ光反射点の各極座標系位置データを前記レーザレーダの直交座標系に座標変換すると共に、これで得た前記レーザ光反射点の各直交座標系位置データに基づいて、最小二乗法により前記少なくとも三箇所のレーザ光反射点を含む平面の平面データを算出し、
次いで、この平面データから原点位置を地上座標系により定義して、この原点位置に対する前記レーザレーダの距離測定原点位置を求めると共に、互いに直交する3軸に対する回転角を設置姿勢として求める
ことを特徴とするレーザレーダの姿勢認識方法。
Laser radar that scans the projected laser beam two-dimensionally and acquires the three-dimensional information of the measurement target based on the projection timing of the laser beam and the reception timing of the reflected laser beam reflected and returned from the measurement target The posture recognition method of
After setting at least three places in the scanning range of the laser radar installed in an arbitrary part as a laser beam reflection point,
Each position of the laser beam reflection point is measured by the polar coordinate system of the laser radar based on the reflected laser beam which is scanned while projecting the laser beam from the laser radar and reflected by the laser beam reflection point. And
Subsequently, each polar coordinate system position data of the laser beam reflection point is coordinate-converted into an orthogonal coordinate system of the laser radar, and at least two based on the orthogonal coordinate system position data of the laser beam reflection point thus obtained. Calculate plane data of the plane including the at least three laser light reflection points by multiplication,
Next, the origin position is defined from the plane data by the ground coordinate system, the distance measurement origin position of the laser radar with respect to the origin position is obtained, and the rotation angles with respect to the three axes orthogonal to each other are obtained as the installation posture. Laser radar attitude recognition method.
任意部位に設置した前記レーザレーダの走査範囲内における少なくとも三箇所に配置したレーザ光反射体をレーザ光反射点とする請求項1に記載のレーザレーダの姿勢認識方法。   The laser radar attitude recognition method according to claim 1, wherein laser light reflectors disposed at at least three locations within a scanning range of the laser radar disposed at an arbitrary portion are used as laser light reflection points. レーザ光を発する投光部と、
この投光部から発したレーザ光を二次元的に走査する走査部と、
計測対象で反射して戻った反射レーザ光を前記走査部を介して受ける受光部と、
前記投光部にレーザ光の投光指令を発すると共に前記走査部による走査を制御する制御部と、
この制御部から与えられるレーザ光の投光タイミング及び前記受光部から与えられる反射レーザ光の受光タイミングに基づいて前記計測対象の三次元情報を取得する演算部を備え、
前記演算部では、走査範囲内における少なくとも三箇所に設定したレーザ光反射点の各位置を測定して得た極座標系位置データから、地上座標系による距離測定原点位置及び設置姿勢を求める
ことを特徴とするレーザレーダ。
A light emitting unit that emits laser light;
A scanning unit that two-dimensionally scans laser light emitted from the light projecting unit;
A light-receiving unit that receives the reflected laser light reflected and returned from the measurement object via the scanning unit;
A control unit that issues a laser beam projection command to the light projecting unit and controls scanning by the scanning unit;
A calculation unit that obtains the three-dimensional information of the measurement object based on the light projection timing of the laser beam given from the control unit and the light reception timing of the reflected laser beam given from the light receiving unit,
The calculation unit obtains a distance measurement origin position and an installation posture by a ground coordinate system from polar coordinate system position data obtained by measuring each position of laser light reflection points set in at least three places in a scanning range. Laser radar.
走査範囲内における少なくとも三箇所に設定したレーザ光反射点に配置するレーザ光反射体を備えている請求項3に記載のレーザレーダ。   4. The laser radar according to claim 3, further comprising laser light reflectors arranged at laser light reflection points set at at least three points in the scanning range.
JP2009096032A 2008-07-14 2009-04-10 Method of recognizing posture of laser radar and laser radar Pending JP2010044050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009096032A JP2010044050A (en) 2008-07-14 2009-04-10 Method of recognizing posture of laser radar and laser radar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008182833 2008-07-14
JP2009096032A JP2010044050A (en) 2008-07-14 2009-04-10 Method of recognizing posture of laser radar and laser radar

Publications (1)

Publication Number Publication Date
JP2010044050A true JP2010044050A (en) 2010-02-25

Family

ID=42015534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009096032A Pending JP2010044050A (en) 2008-07-14 2009-04-10 Method of recognizing posture of laser radar and laser radar

Country Status (1)

Country Link
JP (1) JP2010044050A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117211A (en) * 2008-11-12 2010-05-27 East Japan Railway Co Laser radar installation position verification apparatus, laser radar installation position verification method, and program for laser radar installation position verification apparatus
JP2019045199A (en) * 2017-08-30 2019-03-22 コニカミノルタ株式会社 Object detection system and object detection program
JP2019049484A (en) * 2017-09-11 2019-03-28 コニカミノルタ株式会社 Object detection system and object detection program
JP2019100985A (en) * 2017-12-07 2019-06-24 コニカミノルタ株式会社 Three-dimensional information acquisition system
JP2021089246A (en) * 2019-12-06 2021-06-10 三菱電機株式会社 Alignment measuring system, information processing device, alignment measuring method, and program
CN113740355A (en) * 2020-05-29 2021-12-03 清华大学 Boundary protection method and system for ray detection robot
CN114488097A (en) * 2022-01-26 2022-05-13 广州小鹏自动驾驶科技有限公司 External parameter calibration method of laser radar, computer equipment and computer storage medium
WO2022191174A1 (en) * 2021-03-10 2022-09-15 パイオニア株式会社 Sensor device
JP2022183736A (en) * 2021-05-31 2022-12-13 セイコーエプソン株式会社 Detection method and detection system
WO2023004792A1 (en) * 2021-07-30 2023-02-02 深圳市速腾聚创科技有限公司 Laser radar attitude calibration method and related apparatus, and storage medium
CN117233779A (en) * 2023-08-10 2023-12-15 中国电建集团西北勘测设计研究院有限公司 Dynamic compaction monitoring method and system based on satellite positioning and laser radar ranging
CN117471427A (en) * 2023-11-15 2024-01-30 北京金航远景科技有限公司 Data processing system for acquiring laser radar position information of crane

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02157612A (en) * 1988-12-09 1990-06-18 Nissan Motor Co Ltd Sensor moving method for shape measuring instrument
JPH0626828A (en) * 1990-12-20 1994-02-04 Mitsutoyo Corp Apparatus and method for measuring shape
JPH1138142A (en) * 1997-07-23 1999-02-12 Denso Corp Obstacle-recognizing device for vehicle
JP2000094369A (en) * 1998-09-28 2000-04-04 Toyoda Mach Works Ltd Position coordinate teaching system
JP2000098032A (en) * 1998-09-18 2000-04-07 Communication Research Laboratory Mpt Method for measuring origin position of telescope and station delay time
JP2003011824A (en) * 2001-06-29 2003-01-15 East Japan Railway Co Crossing obstructing detector
JP2003021680A (en) * 2001-07-09 2003-01-24 Japan Radio Co Ltd Radar wave measuring method and device
JP2004210045A (en) * 2002-12-27 2004-07-29 Ishikawajima Harima Heavy Ind Co Ltd Monitoring device
JP2005157635A (en) * 2003-11-25 2005-06-16 Matsushita Electric Ind Co Ltd Congestion level measuring device, facility control system and congestion level measuring method
JP2006007940A (en) * 2004-06-24 2006-01-12 Fujitsu Ltd Calibration method of radar device, radar device, monitoring system, and program
JP2006007818A (en) * 2004-06-22 2006-01-12 Daido Signal Co Ltd Crossing obstruction detector
JP2006242960A (en) * 2006-03-10 2006-09-14 Fujitsu Ltd Intrusion/obstruction detector, and passive responsor
JP2007256091A (en) * 2006-03-23 2007-10-04 Space Vision:Kk Method and apparatus for calibrating range finder

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02157612A (en) * 1988-12-09 1990-06-18 Nissan Motor Co Ltd Sensor moving method for shape measuring instrument
JPH0626828A (en) * 1990-12-20 1994-02-04 Mitsutoyo Corp Apparatus and method for measuring shape
JPH1138142A (en) * 1997-07-23 1999-02-12 Denso Corp Obstacle-recognizing device for vehicle
JP2000098032A (en) * 1998-09-18 2000-04-07 Communication Research Laboratory Mpt Method for measuring origin position of telescope and station delay time
JP2000094369A (en) * 1998-09-28 2000-04-04 Toyoda Mach Works Ltd Position coordinate teaching system
JP2003011824A (en) * 2001-06-29 2003-01-15 East Japan Railway Co Crossing obstructing detector
JP2003021680A (en) * 2001-07-09 2003-01-24 Japan Radio Co Ltd Radar wave measuring method and device
JP2004210045A (en) * 2002-12-27 2004-07-29 Ishikawajima Harima Heavy Ind Co Ltd Monitoring device
JP2005157635A (en) * 2003-11-25 2005-06-16 Matsushita Electric Ind Co Ltd Congestion level measuring device, facility control system and congestion level measuring method
JP2006007818A (en) * 2004-06-22 2006-01-12 Daido Signal Co Ltd Crossing obstruction detector
JP2006007940A (en) * 2004-06-24 2006-01-12 Fujitsu Ltd Calibration method of radar device, radar device, monitoring system, and program
JP2006242960A (en) * 2006-03-10 2006-09-14 Fujitsu Ltd Intrusion/obstruction detector, and passive responsor
JP2007256091A (en) * 2006-03-23 2007-10-04 Space Vision:Kk Method and apparatus for calibrating range finder

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
久光 豊,関本 清英,永田 宏一郎,上原 実,大田 栄一: ""三次元レーザレーダ式踏切障害物検知装置の実用化 3-D Laser Radar Railroad Crossing Obstacle Detecti", IHI技報, vol. 48, no. 1, JPN6011051971, March 2008 (2008-03-01), pages 1 - 6, ISSN: 0002033634 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117211A (en) * 2008-11-12 2010-05-27 East Japan Railway Co Laser radar installation position verification apparatus, laser radar installation position verification method, and program for laser radar installation position verification apparatus
JP2019045199A (en) * 2017-08-30 2019-03-22 コニカミノルタ株式会社 Object detection system and object detection program
JP2019049484A (en) * 2017-09-11 2019-03-28 コニカミノルタ株式会社 Object detection system and object detection program
JP2019100985A (en) * 2017-12-07 2019-06-24 コニカミノルタ株式会社 Three-dimensional information acquisition system
JP7064163B2 (en) 2017-12-07 2022-05-10 コニカミノルタ株式会社 3D information acquisition system
JP2021089246A (en) * 2019-12-06 2021-06-10 三菱電機株式会社 Alignment measuring system, information processing device, alignment measuring method, and program
JP7345377B2 (en) 2019-12-06 2023-09-15 三菱電機株式会社 Alignment measurement system, information processing device, alignment measurement method and program
CN113740355A (en) * 2020-05-29 2021-12-03 清华大学 Boundary protection method and system for ray detection robot
WO2022191174A1 (en) * 2021-03-10 2022-09-15 パイオニア株式会社 Sensor device
JP2022183736A (en) * 2021-05-31 2022-12-13 セイコーエプソン株式会社 Detection method and detection system
JP7424348B2 (en) 2021-05-31 2024-01-30 セイコーエプソン株式会社 Detection method and detection system
WO2023004792A1 (en) * 2021-07-30 2023-02-02 深圳市速腾聚创科技有限公司 Laser radar attitude calibration method and related apparatus, and storage medium
CN114488097A (en) * 2022-01-26 2022-05-13 广州小鹏自动驾驶科技有限公司 External parameter calibration method of laser radar, computer equipment and computer storage medium
CN117233779A (en) * 2023-08-10 2023-12-15 中国电建集团西北勘测设计研究院有限公司 Dynamic compaction monitoring method and system based on satellite positioning and laser radar ranging
CN117233779B (en) * 2023-08-10 2024-04-09 中国电建集团西北勘测设计研究院有限公司 Dynamic compaction monitoring method and system based on satellite positioning and laser radar ranging
CN117471427A (en) * 2023-11-15 2024-01-30 北京金航远景科技有限公司 Data processing system for acquiring laser radar position information of crane

Similar Documents

Publication Publication Date Title
JP2010044050A (en) Method of recognizing posture of laser radar and laser radar
JP3731123B2 (en) Object position detection method and apparatus
JP5538929B2 (en) Three-dimensional position measurement and ink marking system and its usage
US9989353B2 (en) Registering of a scene disintegrating into clusters with position tracking
JP5204955B2 (en) Scanning method for 3D laser scanner
JP2006322937A (en) Determination method of 3d coordinates of object surface
JP2004317507A (en) Axis-adjusting method of supervisory device
JP2010243417A (en) Device for measurement of trolley wire
JP2013221799A (en) Shape measurement device and shape measurement method
JP6693616B1 (en) Surveying system and surveying method
JP4281056B2 (en) Displacement measuring method for long distance object and displacement measuring device for long distance object
JP2009270957A (en) Laser radar, and calibration method of laser radar
JP6306915B2 (en) Target used in a method for measuring a predetermined position of an object to be measured and distance measurement method using the target
JP4787435B2 (en) Tunnel excavator position measurement device
JP2013148375A (en) Calibration method, calibrator and program for use in three-dimensional shape measuring apparatus, and three-dimensional shape measuring apparatus
CN109444859A (en) Target clearance measurement system and method based on laser ranging
JP2008014814A (en) Method for detecting end of road
JP2012008114A (en) Measurement apparatus, position determination system, measurement method, calibration method and program
JP2009198329A (en) Position measurement system and position measurement method
JP2015169475A (en) displacement measuring device
JP6470658B2 (en) Laser measurement system and laser measurement method
JP2021124377A (en) Calibration determination result presentation device, calibration determination result presentation method, and program
WO2023140189A1 (en) Information processing device, control method, program, and storage medium
JP6601178B2 (en) Local map creation device and local map creation method
JP7411930B2 (en) inspection system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130403