JP2009285581A - Ammoxidation catalyst for fluidized-beds and manufacturing method of acrylonitrile or methacrylonitrile using it - Google Patents

Ammoxidation catalyst for fluidized-beds and manufacturing method of acrylonitrile or methacrylonitrile using it Download PDF

Info

Publication number
JP2009285581A
JP2009285581A JP2008141457A JP2008141457A JP2009285581A JP 2009285581 A JP2009285581 A JP 2009285581A JP 2008141457 A JP2008141457 A JP 2008141457A JP 2008141457 A JP2008141457 A JP 2008141457A JP 2009285581 A JP2009285581 A JP 2009285581A
Authority
JP
Japan
Prior art keywords
catalyst
nitrate
acrylonitrile
mass
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008141457A
Other languages
Japanese (ja)
Other versions
JP5361034B2 (en
Inventor
Akiyoshi Fukuzawa
章喜 福澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2008141457A priority Critical patent/JP5361034B2/en
Publication of JP2009285581A publication Critical patent/JP2009285581A/en
Application granted granted Critical
Publication of JP5361034B2 publication Critical patent/JP5361034B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • C07C253/26Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons containing carbon-to-carbon multiple bonds, e.g. unsaturated aldehydes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8872Alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8873Zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst which is capable of stably manufacturing acrylonitrile and the like with high yields for a long time under conditions with a reduced amount of ammonia that is excess to propylene and the like when acrylonitrile and the like are manufactured by the ammoxidation reaction using propylene and the like. <P>SOLUTION: The ammoxidation catalyst for the fluidized-bed is used for manufacturing acrylonitrile and the like by the reaction between propylene and the like, molecular oxygen and ammonia, has an element composition represented by general formula (1): Mo<SB>a</SB>Bi<SB>b</SB>Ce<SB>c</SB>Fe<SB>d</SB>E<SB>e</SB>J<SB>f</SB>G<SB>g</SB>L<SB>h</SB>O<SB>i</SB>, wherein E denotes Ni and the like, J denotes Mg and the like, G denotes Sb and the like, and L denotes K and the like and a-i each denotes the atomic ratio (specific numerical range) of each element, and is equipped with an oxide which satisfies the range of α and β: 0.02≤α≤0.08, 0.08≤β≤0.35 wherein α and β are computed by formula (2); α=1.5(b+c)/(1.5d+e+f) and formula (3); β=1.5d/(e+f) from the atomic ration of each element, and a carrier having the oxide supported. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、プロピレン、イソブテン又は3級ブタノールと、分子状酸素と、アンモニアとを反応させてアクリロニトリル又はメタクリロニトリルを製造する際に用いる流動床用アンモ酸化触媒、並びに、これを用いたアクリロニトリル又はメタクリロニトリルの製造方法に関する。   The present invention relates to a fluidized bed ammoxidation catalyst for use in producing acrylonitrile or methacrylonitrile by reacting propylene, isobutene or tertiary butanol, molecular oxygen and ammonia, and acrylonitrile or The present invention relates to a method for producing methacrylonitrile.

プロピレン、イソブテン又は3級ブタノールと、分子状酸素と、アンモニアとの反応である、いわゆるアンモ酸化反応によりアクリロニトリル又はメタクリロニトリルを製造する方法はよく知られている。このアンモ酸化反応に用いられる触媒も多数提案されている。   A method for producing acrylonitrile or methacrylonitrile by a so-called ammoxidation reaction, which is a reaction of propylene, isobutene or tertiary butanol, molecular oxygen and ammonia, is well known. Many catalysts used for this ammoxidation reaction have also been proposed.

アクリロニトリル又はメタクリロニトリルを製造する際に用いられる触媒には、様々な元素が適用され、その例示される成分の数も多く、多元素系の複合酸化物触媒として成分の組合せや組成の改良が進められていることが過去の文献から理解される。特許文献1には、モリブデン、ビスマス、セリウム、鉄、亜鉛の他、Ni、Co、Mg、Ca、Sr、Ba、Cdから選ばれた1種以上の元素、及びNa、K、Rb、Cs、Tlから選ばれた1種以上の元素を必須成分として含有するアンモ酸化用触媒組成物が記載されている。   Various elements are applied to the catalyst used in the production of acrylonitrile or methacrylonitrile, the number of exemplified components is large, and the combination of components and the improvement of the composition can be improved as a multi-element composite oxide catalyst. It is understood from the past literature that it is being advanced. Patent Document 1 includes molybdenum, bismuth, cerium, iron, zinc, one or more elements selected from Ni, Co, Mg, Ca, Sr, Ba, and Cd, and Na, K, Rb, Cs, An ammoxidation catalyst composition containing at least one element selected from Tl as an essential component is described.

元素の種類や成分濃度の範囲を規定する他、それらの元素と他の元素との関係式を導き出している例もある。モリブデン、ビスマス、鉄の他、セリウムを含み、そのビスマスとセリウムとの原子比率を、ある一定範囲に収めることを特徴とする触媒が特許文献2、特許文献3、特許文献4に開示されている。これらの開示された技術は、アクリロニトリル又はメタクリロニトリルの製造に際して、アクリロニトリル又はメタクリロニトリルの高い収率を得るための方法及びアクリロニトリル又はメタクリロニトリルの高い収率を得るために用いる触媒として開示されたものである。   In addition to defining the types of elements and the range of component concentrations, there are also examples in which relational expressions between these elements and other elements are derived. Catalysts containing cerium in addition to molybdenum, bismuth, and iron, and having the atomic ratio of bismuth and cerium within a certain range are disclosed in Patent Document 2, Patent Document 3, and Patent Document 4. . These disclosed techniques are disclosed as methods for obtaining high yields of acrylonitrile or methacrylonitrile and catalysts used to obtain high yields of acrylonitrile or methacrylonitrile in the production of acrylonitrile or methacrylonitrile. It is a thing.

特許文献1〜4には、近年開発されている触媒を用いた際に得られるアクリロニトリル、メタアクリロニトリルの収率として、高い値が示されている。ただし、開示例からも明らかなように、反応における副生成物は未だに存在し、目的生成物であるアクリロニトリルやメタアクリロニトリルを製造する際に副生成物の回収や処理が伴うのも事実である。従来の技術に満足することなく、アクリロニトリルやメタアクリロニトリルを製造する上で少しでも副生成物が少ない方法、つまりは高収率を達成できる方法及び触媒が求められている。   Patent Documents 1 to 4 show high values for the yields of acrylonitrile and methacrylonitrile obtained when using a recently developed catalyst. However, as is clear from the disclosed examples, by-products in the reaction still exist, and it is also true that the by-products are recovered and processed when the target products acrylonitrile and methacrylonitrile are produced. There is a need for a method and a catalyst that can achieve a high yield with little by-products when producing acrylonitrile and methacrylonitrile without satisfying the conventional techniques.

また、その一方で、アクリロニトリルやメタアクリロニトリルを高収率で得られる触媒が完成しても、その高収率が初期の反応性能に限られ、触媒劣化により短期に収率低下を起こすものや、形状や強度に問題があり、実用プロセスで用いることができない触媒は事実上利用できない。そのため、実用性、取扱性に優れる触媒であることも必要である。
特許第3497558号公報 特許第3214975号公報 特許第3214984号公報 特許第3838705号公報
On the other hand, even if a catalyst capable of obtaining acrylonitrile or methacrylonitrile in high yield is completed, the high yield is limited to the initial reaction performance, and the catalyst is deteriorated in a short time due to catalyst deterioration, Catalysts that have problems in shape and strength and cannot be used in practical processes are virtually unusable. Therefore, it is also necessary that the catalyst is excellent in practicality and handleability.
Japanese Patent No. 3497558 Japanese Patent No. 3214975 Japanese Patent No. 3214984 Japanese Patent No. 3838705

アクリロニトリル又はメタクリロニトリルを高収率で得るために、原料のプロピレン等に対するアンモニアのモル比を高めて、目的生成物の収率を向上させることが知られている。原料のアンモニアは、原料のプロピレン等のニトリル化に消費される他、酸化分解して窒素に変換されたり、反応で消費されずに未反応分として残存したりする。未反応のアンモニアが残存する条件、すなわちアンモニアを過剰に使用する条件を適用した場合、目的生成物の収率は高められるものの、未反応のアンモニアを処理するために多量の硫酸が必要になったり、硫酸処理により生じる硫酸アンモニウム塩の処理がさらに必要になったりする。そのため、過剰量のアンモニアが少ない条件においても、良好な収率を示す触媒が望ましいと本発明者は考察した。
すなわち、本発明は、プロピレン、イソブテン又は3級ブタノールのアンモ酸化反応によるアクリロニトリル又はメタクリロニトリルの製造に際して、過剰量のアンモニアが少ない条件下でアクリロニトリル又はメタクリロニトリルを高収率で長期安定的に生産することができる触媒を得ることを課題とする。
In order to obtain acrylonitrile or methacrylonitrile in a high yield, it is known that the molar ratio of ammonia to propylene or the like as a raw material is increased to improve the yield of the target product. In addition to being consumed for nitrification of the raw material propylene and the like, the raw material ammonia is oxidatively decomposed and converted to nitrogen, or remains unreacted without being consumed in the reaction. When the condition where unreacted ammonia remains, ie, the condition where ammonia is used in excess, is applied, the yield of the target product is increased, but a large amount of sulfuric acid is required to treat the unreacted ammonia. Further, it is necessary to further treat ammonium sulfate produced by the sulfuric acid treatment. For this reason, the present inventor has considered that a catalyst showing a good yield is desirable even under a condition where an excessive amount of ammonia is small.
That is, in the present invention, when acrylonitrile or methacrylonitrile is produced by the ammoxidation reaction of propylene, isobutene or tertiary butanol, acrylonitrile or methacrylonitrile can be stably produced in a high yield for a long period of time under a condition where there is little excess ammonia. An object is to obtain a catalyst that can be produced.

本発明者は上記の課題を解決するために鋭意研究を重ねた結果、プロピレン、イソブテン又は3級ブタノールを分子状酸素及びアンモニアと反応させてアクリロニトリル又はメタクリロニトリルを製造する際に用いる触媒として、以下に示す触媒が、高いアクリロニトリル又はメタクリロニトリルの反応収率を示し、ライフ安定性、取扱性の面でも高性能を示すことを見出した。本発明者は、この知見に基づいて本発明を完成するに至った。 すなわち、本発明は、以下のとおりである。
[1] プロピレン、イソブテン又は3級ブタノールと、分子状酸素と、アンモニアとを反応させてアクリロニトリル又はメタクリロニトリルを製造する際に用いる触媒であって、下記一般式(1)
MoaBibCecFedefghi・・・(1)
(式(1)中、Eはニッケル及びコバルトからなる群より選ばれる少なくとも1種の元素を表し、Jはマグネシウム、亜鉛及びマンガンからなる群より選ばれる少なくとも1種の元素を表し、Gはアンチモン及びリンからなる群より選ばれる少なくとも1種の元素を表し、Lはカリウム、ルビジウム及びセシウムからなる群より選ばれる少なくとも1種の元素を表し、a、b、c、d、e、f、g及びhは、それぞれ各元素の原子比を表し、10≦a≦14、0.03≦b≦1、0.03≦c≦1、0.5≦d≦4、2≦e≦10、0≦f≦8、0≦g≦2、0.02≦h≦1であり、iは酸素以外の構成元素の原子価を満足する酸素原子の原子比を表す。)
で表される元素組成を有し、各元素の前記原子比から下記式(2)及び(3)により算出されるα及びβが0.02≦α≦0.08、0.08≦β≦0.35を同時に満たす酸化物と、その酸化物を担持した担体と、を備える流動床用アンモ酸化触媒。
α=1.5(b+c)/(1.5d+e+f)・・・(2)
β=1.5d/(e+f)・・・(3)
[2] 各元素の前記原子比から下記式(4)により算出されるγが、−1≦γ≦1.5を満たす、[1]の流動床用アンモ酸化触媒。
γ=a−1.5(b+c+d)+e+f+g・・・(4)
[3] 前記担体がシリカを含有する、[1]又は[2]の流動床用アンモ酸化触媒。
[4] 前記酸化物を担持する担体を更に備え、該担体のシリカ量が30〜70質量%である、[1]〜[3]のいずれか一つの流動床用アンモ酸化触媒。
[5] 細孔分布測定において細孔直径1〜200nmの細孔の占める全細孔容積を基準として、細孔直径8nm以下の細孔の占める細孔容積が20%以下である、[1]〜[4]のいずれか一つの流動床用アンモ酸化触媒。
[6] [1]〜[5]のいずれか一つの流動床用アンモ酸化触媒を用い、プロピレン、イソブテン又は3級ブタノールと、分子状酸素と、アンモニアとを反応させてアクリロニトリル又はメタクリロニトリルを製造するアクリロニトリル又はメタクリロニトリルの製造方法。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have reacted propylene, isobutene or tertiary butanol with molecular oxygen and ammonia as a catalyst for use in producing acrylonitrile or methacrylonitrile. It has been found that the catalyst shown below exhibits a high reaction yield of acrylonitrile or methacrylonitrile, and exhibits high performance in terms of life stability and handleability. The present inventor has completed the present invention based on this finding. That is, the present invention is as follows.
[1] A catalyst used for producing acrylonitrile or methacrylonitrile by reacting propylene, isobutene or tertiary butanol, molecular oxygen, and ammonia, which is represented by the following general formula (1)
Mo a Bi b Ce c Fe d E e J f G g L h O i ··· (1)
(In the formula (1), E represents at least one element selected from the group consisting of nickel and cobalt, J represents at least one element selected from the group consisting of magnesium, zinc and manganese, and G represents antimony) And L represents at least one element selected from the group consisting of phosphorus, L represents at least one element selected from the group consisting of potassium, rubidium and cesium, and a, b, c, d, e, f, g And h each represent an atomic ratio of each element, 10 ≦ a ≦ 14, 0.03 ≦ b ≦ 1, 0.03 ≦ c ≦ 1, 0.5 ≦ d ≦ 4, 2 ≦ e ≦ 10, 0 ≦ f ≦ 8, 0 ≦ g ≦ 2, 0.02 ≦ h ≦ 1, and i represents an atomic ratio of oxygen atoms satisfying the valence of a constituent element other than oxygen.)
Α and β calculated by the following formulas (2) and (3) from the atomic ratio of each element are 0.02 ≦ α ≦ 0.08, 0.08 ≦ β ≦ A fluidized bed ammoxidation catalyst comprising: an oxide that simultaneously satisfies 0.35; and a carrier that supports the oxide.
α = 1.5 (b + c) / (1.5d + e + f) (2)
β = 1.5d / (e + f) (3)
[2] The fluidized bed ammoxidation catalyst according to [1], wherein γ calculated by the following formula (4) from the atomic ratio of each element satisfies −1 ≦ γ ≦ 1.5.
γ = a−1.5 (b + c + d) + e + f + g (4)
[3] The fluid bed ammoxidation catalyst according to [1] or [2], wherein the carrier contains silica.
[4] The fluidized bed ammoxidation catalyst according to any one of [1] to [3], further comprising a carrier supporting the oxide, wherein the amount of silica in the carrier is 30 to 70% by mass.
[5] Based on the total pore volume occupied by pores having a pore diameter of 1 to 200 nm in the pore distribution measurement, the pore volume occupied by pores having a pore diameter of 8 nm or less is 20% or less. [1] ~ Ammoxidation catalyst for fluidized bed according to any one of [4].
[6] Using the fluidized bed ammoxidation catalyst according to any one of [1] to [5], propylene, isobutene or tertiary butanol, molecular oxygen, and ammonia are reacted to produce acrylonitrile or methacrylonitrile. A method for producing acrylonitrile or methacrylonitrile to be produced.

本発明の流動床アンモ酸化触媒を用いれば、プロピレン、イソブテン又は3級ブタノールのアンモ酸化反応によるアクリロニトリル又はメタクリロニトリルの製造に際して、プロピレン、イソブテン又は3級ブタノールに対して過剰量のアンモニアが少ない条件下でアクリロニトリル又はメタクリロニトリルを高収率で長期安定的に生産することができる。   When the fluidized bed ammoxidation catalyst of the present invention is used, in the production of acrylonitrile or methacrylonitrile by the ammoxidation reaction of propylene, isobutene or tertiary butanol, a condition in which an excess amount of ammonia is small relative to propylene, isobutene or tertiary butanol Under these conditions, acrylonitrile or methacrylonitrile can be stably produced in a high yield for a long period of time.

以下、本発明を実施するための最良の形態(以下、単に「本実施形態」という。)について詳細に説明する。   Hereinafter, the best mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail.

本実施形態の流動床用アンモ酸化触媒は、下記一般式(1)で表される元素組成を有する酸化物を備える。その酸化物を構成する各元素の原子比から下記式(2)及び(3)により算出されるα及びβは、0.02≦α≦0.08、0.08≦β≦0.35を同時に満たす。
MoaBibCecFedefghi・・・(1)
α=1.5(b+c)/(1.5d+e+f)・・・(2)
β=1.5d/(e+f)・・・(3)
式中、Moはモリブデン、Biはビスマス、Ceはセリウム、Feは鉄、Oは酸素、Eはニッケル及びコバルトからなる群より選ばれる少なくとも1種の元素を表し、Jはマグネシウム、亜鉛及びマンガンからなる群より選ばれる少なくとも1種の元素を表し、Gはアンチモン及びリンからなる群より選ばれる少なくとも1種の元素を表し、Lはカリウム、ルビジウム及びセシウムからなる群より選ばれる少なくとも1種の元素を表す。a、b、c、d、e、f、g及びhは、それぞれ各元素の原子比を表し、10≦a≦14、0.03≦b≦1、0.03≦c≦1、0.5≦d≦4、2≦e≦10、0≦f≦8、0≦g≦2、0.02≦h≦1である。iは酸化物を構成する元素(構成元素)のうち、酸素以外の構成元素の原子価を満足する酸素原子の原子比を表す。
The fluidized bed ammoxidation catalyst of this embodiment includes an oxide having an elemental composition represented by the following general formula (1). Α and β calculated by the following formulas (2) and (3) from the atomic ratio of each element constituting the oxide satisfy 0.02 ≦ α ≦ 0.08 and 0.08 ≦ β ≦ 0.35. Meet at the same time.
Mo a Bi b Ce c Fe d E e J f G g L h O i ··· (1)
α = 1.5 (b + c) / (1.5d + e + f) (2)
β = 1.5d / (e + f) (3)
In the formula, Mo represents molybdenum, Bi represents bismuth, Ce represents cerium, Fe represents iron, O represents oxygen, E represents at least one element selected from the group consisting of nickel and cobalt, and J represents magnesium, zinc, and manganese. G represents at least one element selected from the group consisting of antimony and phosphorus, L represents at least one element selected from the group consisting of potassium, rubidium and cesium Represents. a, b, c, d, e, f, g and h represent the atomic ratio of each element, respectively, 10 ≦ a ≦ 14, 0.03 ≦ b ≦ 1, 0.03 ≦ c ≦ 1, 0. 5 ≦ d ≦ 4, 2 ≦ e ≦ 10, 0 ≦ f ≦ 8, 0 ≦ g ≦ 2, 0.02 ≦ h ≦ 1. i represents the atomic ratio of oxygen atoms satisfying the valence of the constituent elements other than oxygen among the elements (constituent elements) constituting the oxide.

本実施形態の流動床用アンモ酸化触媒は、MoaBibCecFedefghの金属組成を有する。すなわち、この触媒は、モリブデン、ビスマス、セリウム、鉄を必須元素とし、ニッケル及びコバルトからなる群より選ばれる少なくとも1種の元素、並びに、カリウム、ルビジウム及びセシウムからなる群より選ばれる少なくとも1種の元素をも必須元素として、少なくとも6種の金属元素を存在させることを特徴とする。各元素には、それぞれに役割が備わっており、その元素の持つ働きを代替できる元素、代替できない元素、働きの補助的作用をもたらす元素など、その触媒の元素構成や組成によって適宜選択的に加えた方がよい元素及び組成比率が変化する。 For fluidized bed ammoxidation catalyst of the present embodiment has a metal composition of Mo a Bi b Ce c Fe d E e J f G g L h. That is, this catalyst has molybdenum, bismuth, cerium, and iron as essential elements, at least one element selected from the group consisting of nickel and cobalt, and at least one type selected from the group consisting of potassium, rubidium, and cesium. An element is also an essential element, and at least six kinds of metal elements are present. Each element has its own role, and it is selectively added depending on the element composition and composition of the catalyst, such as an element that can substitute for the function of the element, an element that cannot be substituted, and an element that provides an auxiliary function of the function. It is better to change the element and composition ratio.

例えば、セリウムはビスマスモリブデートというプロピレン、イソブテン又は3級ブタノールを活性化させる酸化物の働きに作用し、その構造安定化に効果を示すと考えられており、反応安定化においても必要な元素となる。また、ニッケル、コバルトは鉄モリブデートの働き(例えば、分子状酸素を触媒の構造内に取り込み、反応で消費される格子酸素を補い、触媒が過還元されて劣化するのを抑制するという働き)を補助する役割や、モリブデン、ビスマス、鉄などの、反応に主に寄与する成分の希釈効果、分散効果、構造安定化効果があると考えられている。そして、カリウム、ルビジウム、セシウムは金属複合酸化物中に形成される酸点や反応基質の吸着点に作用して、分解活性を抑制する上で必要な成分となる。   For example, cerium acts on the action of bismuth molybdate, an oxide that activates propylene, isobutene or tertiary butanol, and is considered to be effective in stabilizing its structure. Become. Nickel and cobalt also function as iron molybdate (for example, to incorporate molecular oxygen into the structure of the catalyst, supplement the lattice oxygen consumed in the reaction, and prevent the catalyst from being overreduced and deteriorated). It is considered that there is a role of assisting, dilution effect, dispersion effect, and structure stabilization effect of components such as molybdenum, bismuth, and iron that mainly contribute to the reaction. And potassium, rubidium, and cesium act on the acid point formed in the metal composite oxide and the adsorption point of the reaction substrate, and become necessary components for suppressing the decomposition activity.

さらに上記必須元素に加え、下記の元素が、本発明者が提唱する組成領域において、必要に応じて使用されるべき元素として挙げられる。すなわち、マグネシウム、亜鉛、マンガンは、ニッケルやコバルトの上記役割をさらに強めたり弱めたり、安定化させたりする働きがある。アンチモンは鉄の状態変化に作用を及ぼし、リンはモリブデンのその他の金属との複合酸化物やシリカに影響を与え、組成効果の他、形状効果などの働きに作用する。   Further, in addition to the above essential elements, the following elements are listed as elements to be used as necessary in the composition region proposed by the present inventors. That is, magnesium, zinc, and manganese have functions of further strengthening, weakening, and stabilizing the above-described role of nickel and cobalt. Antimony affects the change in the state of iron, and phosphorus affects the composite oxide of molybdenum with other metals and silica, and acts not only on the composition effect but also on the shape effect.

本実施形態の触媒は、上記一般式(1)における各元素の原子比を上記式(2)及び(3)に代入した場合に、0.02≦α≦0.08、0.08≦β≦0.35を同時に満たす触媒である。前述のように、各元素には、それぞれに役割が備わっており、その元素の持つ働きを代替できる元素、代替できない元素、働きの補助的作用をもたらす元素などがあると考えられる。そして、それらの各元素の働きをバランス良く有する触媒が、目的生成物を高収率で安定的に得る上で重要となる。上記式(2)で表されるαは、反応基質を活性化させる力と酸化還元を促進する力とのバランス関係を示すものであり、上記式(3)で表されるβは、酸化還元作用の強い鉄とその強さを調整する元素とのバランス関係を示すものである。よって、これらα及びβの値が、触媒性能に関するバランスの指標として重要な数値となる。   In the catalyst of this embodiment, when the atomic ratio of each element in the general formula (1) is substituted into the above formulas (2) and (3), 0.02 ≦ α ≦ 0.08, 0.08 ≦ β It is a catalyst that satisfies ≦ 0.35 at the same time. As described above, each element has its own role, and it is considered that there are elements that can replace the function of the element, elements that cannot be replaced, and elements that provide an auxiliary function of the function. A catalyst having a balance between the functions of these elements is important for stably obtaining the target product in a high yield. Α represented by the above formula (2) represents a balance relationship between the force for activating the reaction substrate and the force for promoting redox, and β represented by the above formula (3) represents the redox This shows the balance between iron, which has strong action, and the element that adjusts its strength. Therefore, these values of α and β are important numerical values as a balance index regarding the catalyst performance.

αはプロピレン、イソブテン又は3級ブタノールを活性化させる役割を持つと考えられる酸化物と、その酸化物の還元が反応によって進み過ぎないようにする働きを持つ元素との量的関係を表している。よって、αは好ましくは0.02≦α≦0.08の条件を満足し、より好ましくは0.04≦α≦0.07の条件を満足する。αが0.02未満になると、触媒の反応活性が低下し、さらにニトリル化の反応も進まなくなるため、アクリロニトリルやメタアクリロニトリルの選択率が低下し、アクリロニトリルやメタクリロニトリルの収率が低い結果となる。また、αが0.08を超えると、αが低いときのような低活性にはならないものの、反応において副生成物の一酸化炭素や二酸化炭素が増える。このことから、プロピレン、イソブテン又は3級ブタノールの分解活性が高くなり、アクリロニトリルやメタアクリロニトリルの収率が低い結果となる。   α represents a quantitative relationship between an oxide considered to have a role of activating propylene, isobutene or tertiary butanol, and an element having a function of preventing the reduction of the oxide from proceeding excessively by the reaction. . Therefore, α preferably satisfies the condition of 0.02 ≦ α ≦ 0.08, and more preferably satisfies the condition of 0.04 ≦ α ≦ 0.07. When α is less than 0.02, the reaction activity of the catalyst decreases, and the nitrification reaction also does not proceed, so the selectivity of acrylonitrile and methacrylonitrile decreases, and the yield of acrylonitrile and methacrylonitrile is low. Become. On the other hand, when α exceeds 0.08, carbon monoxide and carbon dioxide by-products increase in the reaction, although the activity is not as low as when α is low. From this, the decomposition activity of propylene, isobutene or tertiary butanol increases, resulting in a low yield of acrylonitrile or methacrylonitrile.

一方、βは0.08≦β≦0.35の条件を満足することが好ましい。より好ましくはβが0.15≦β≦0.3の条件を満足することである。βは触媒組成における鉄元素の原子比に対する、ニッケル及びコバルトからなる群より選ばれる少なくとも1種の元素の原子比と、マグネシウム、亜鉛及びマンガンからなる群より選ばれる少なくとも1種の元素の原子比とを足し合せた総和の関係を表している。つまり、βは、鉄と鉄の働きをサポートする役割を担っている元素の比率が触媒性能に影響を及ぼす指標を示す。βが0.08未満であると活性が低くなりすぎる。一方、βが0.35を越えると目的生成物の収率が低下する。   On the other hand, β preferably satisfies the condition of 0.08 ≦ β ≦ 0.35. More preferably, β satisfies the condition of 0.15 ≦ β ≦ 0.3. β is an atomic ratio of at least one element selected from the group consisting of nickel and cobalt and an atomic ratio of at least one element selected from the group consisting of magnesium, zinc and manganese to the atomic ratio of iron element in the catalyst composition Represents the sum total. That is, β represents an index in which the ratio of elements that support the function of iron and iron affects the catalyst performance. If β is less than 0.08, the activity becomes too low. On the other hand, when β exceeds 0.35, the yield of the target product decreases.

上述から明らかなように、プロピレン、イソブテン又は3級ブタノールのアンモ酸化反応におけるアクリロニトリル又はメタクリロニトリルの製造に際して、アクリロニトリル又はメタクリロニトリルを高収率で得ることができ、さらに長期に反応性能の安定性を維持することを可能とするには、触媒成分の種類とその組成が重要である。すなわち、モリブデン、ビスマス、セリウム、鉄を必須元素とし、ニッケル及びコバルトからなる群より選ばれる少なくとも1種の元素、カリウム、ルビジウム及びセシウムからなる群より選ばれる少なくとも1種の元素をも必須元素として、マグネシウム、亜鉛、マンガン、アンチモン、リンなどを選択的に加えた元素組成において、各元素の原子比を上記式(2)及び(3)に代入した場合に、0.02≦α≦0.08、0.08≦β≦0.35を同時に満たすことが重要となる。   As is clear from the above, acrylonitrile or methacrylonitrile can be obtained in high yield in the production of acrylonitrile or methacrylonitrile in the ammoxidation reaction of propylene, isobutene or tertiary butanol, and the reaction performance can be stabilized over a long period of time. In order to be able to maintain the properties, the type and composition of the catalyst component are important. That is, molybdenum, bismuth, cerium, and iron are essential elements, and at least one element selected from the group consisting of nickel and cobalt, and at least one element selected from the group consisting of potassium, rubidium, and cesium are also essential elements. In the elemental composition in which magnesium, zinc, manganese, antimony, phosphorus, etc. are selectively added, when the atomic ratio of each element is substituted into the above formulas (2) and (3), 0.02 ≦ α ≦ 0. It is important to satisfy 08 and 0.08 ≦ β ≦ 0.35 at the same time.

本実施形態の流動床用アンモ酸化触媒は、触媒を構成する成分の各金属元素の原子比を下記式(4)に代入した場合に、γが−1≦γ≦1.5の関係を満足することが好ましい。
γ=a−1.5(b+c+d)+e+f+g・・・(4)
γは、酸化モリブデンとして、モリブデンの複合酸化物を形成しない分のモリブデンの原子比率を表すものとして、触媒性能をさらに高める上で重要である。γが−1よりも低いとモリブデン元素との複合酸化物を形成できない金属元素の量が増え、分解活性が増加し、目的生成物の反応選択性が低下しやすくなる。一方、γが1.5よりも高くなると酸化モリブデンの量が増加し、触媒形状が悪化したり、反応時に触媒粒子から酸化モリブデンが析出し、流動性が悪化したりし、取扱性上、問題が発生しやすくなる。そのため、反応性と取扱性の両面を向上させるために、上記式(4)で計算されるγは、−1≦γ≦1.5の関係を満足することが好ましく、より好ましくは−0.5≦γ≦1の関係を満足することである。これにより、さらに耐磨耗強度、粒子形状など取扱性も良好な工業的実用性に優れた触媒になり、さらに長期に反応性能の安定性を維持できることが可能となる。
The fluidized bed ammoxidation catalyst of this embodiment satisfies the relationship of γ ≦ −1 ≦ γ ≦ 1.5 when the atomic ratio of each metal element of the component constituting the catalyst is substituted into the following formula (4). It is preferable to do.
γ = a−1.5 (b + c + d) + e + f + g (4)
γ is important for further improving the catalyst performance, as it represents the atomic ratio of molybdenum that does not form a molybdenum composite oxide as molybdenum oxide. When γ is lower than −1, the amount of the metal element that cannot form a complex oxide with molybdenum element increases, the decomposition activity increases, and the reaction selectivity of the target product tends to decrease. On the other hand, when γ is higher than 1.5, the amount of molybdenum oxide increases, the catalyst shape deteriorates, and molybdenum oxide precipitates from the catalyst particles during the reaction, resulting in poor fluidity. Is likely to occur. Therefore, in order to improve both the reactivity and the handleability, γ calculated by the above formula (4) preferably satisfies the relationship of −1 ≦ γ ≦ 1.5, more preferably −0. The relationship 5 ≦ γ ≦ 1 is satisfied. As a result, it becomes a catalyst excellent in industrial practicality with good handling properties such as wear resistance and particle shape, and it becomes possible to maintain the stability of reaction performance for a long period of time.

本実施形態の触媒は上記酸化物を担持する担体を備える担持型触媒である。その担体としてはシリカを用いることが好ましい。シリカは、アルミナ、シリカ−アルミナ、ジルコニア、チタニアに比べそれ自体不活性であり、反応の目的生成物に対する活性触媒成分の選択性を減ずることなく、活性触媒成分である上記酸化物に対し良好なバインド作用を有する。ただし、担体は、その全部がシリカであると最も好ましいが、そのことに限定されるものではなく、触媒の形状や耐磨耗性、圧縮強度を向上させる上でジルコニア、チタニア等、通常一般的に触媒の担体に用いられる成分をシリカに対して数質量%用いることも可能である。担体におけるシリカの含有量は、担体の全質量に対して90〜100質量%であると好ましい。   The catalyst of the present embodiment is a supported catalyst including a carrier that supports the oxide. Silica is preferably used as the carrier. Silica is inert in itself compared to alumina, silica-alumina, zirconia, and titania, and is good for the oxides that are active catalyst components without reducing the selectivity of the active catalyst component for the desired product of the reaction. Has a binding action. However, the carrier is most preferably all of silica, but is not limited thereto, and is generally common in order to improve the shape, abrasion resistance, and compressive strength of the catalyst, such as zirconia and titania. In addition, it is also possible to use several mass% of the components used for the catalyst support with respect to the silica. The content of silica in the carrier is preferably 90 to 100% by mass with respect to the total mass of the carrier.

担体の全部がシリカである場合、触媒中の担体の含有量は、触媒の全質量に対して30〜70質量%であると好ましく、40〜60質量%であるとより好ましい。担体の含有量がこの範囲であると、担体をより有効に用いることができる。担体の役割として触媒の強度を上げ、実用条件下において、耐破砕性を向上させることや耐磨耗性を上げることが挙げられる。担体の含有量が30質量%よりも低くなると耐破砕性や耐磨耗性といった強度が弱くなり、実用的に使用し難くなる。一方、担体の含有量が70質量%よりも高くなると触媒の見掛比重が軽くなり、流動床触媒として実用的でなくなる傾向にある。   When the whole support | carrier is a silica, content of the support | carrier in a catalyst is preferable in it being 30-70 mass% with respect to the total mass of a catalyst, and it is more preferable in it being 40-60 mass%. When the content of the carrier is within this range, the carrier can be used more effectively. The role of the support is to increase the strength of the catalyst and to improve the crush resistance and the wear resistance under practical conditions. When the content of the carrier is lower than 30% by mass, strengths such as crush resistance and wear resistance are weakened, and it becomes difficult to use practically. On the other hand, when the content of the support is higher than 70% by mass, the apparent specific gravity of the catalyst becomes light and tends to be impractical as a fluidized bed catalyst.

触媒の見掛比重は0.85〜1.15g/ccの範囲にあることが好ましい。触媒の見掛比重が0.85g/ccを下回ると、反応器に投入する触媒がかさ高くなり、巨大な反応器の容積が必要となってくる他、反応器から外部に飛散する触媒量が増えて触媒ロスが発生しやすくなる。また、触媒の見掛比重が1.15g/ccを超えると触媒の流動状態が悪くなり、反応性能の低下に繋がる。   The apparent specific gravity of the catalyst is preferably in the range of 0.85 to 1.15 g / cc. If the apparent specific gravity of the catalyst is less than 0.85 g / cc, the catalyst to be charged into the reactor becomes bulky, and a huge reactor volume is required, and the amount of catalyst scattered from the reactor to the outside is large. The catalyst loss is likely to occur. On the other hand, when the apparent specific gravity of the catalyst exceeds 1.15 g / cc, the flow state of the catalyst is deteriorated, leading to a decrease in reaction performance.

本実施形態の流動床アンモ酸化触媒は、細孔分布測定において細孔直径1〜200nmの細孔の占める全細孔容積を基準として、細孔直径8nm以下の細孔の占める細孔容積、すなわち積算容積が20%以下になることが好ましい。細孔直径8nm以下の細孔の細孔容積が大きいということは、そのような小さな細孔が多いことを意味する。このような細孔分布では、反応場が増加して活性が向上するため反応に有利となり、さらに大きな細孔が多く存在する触媒に対して破砕強度も強くなるという利点もある。しかしながら、アクリロニトリル又はメタアクリロニトリルといった目的生成物の収率が低下するというマイナスの影響もある。これらのバランスを考慮して、上述のとおり、細孔直径8nm以下の細孔の占める細孔容積が20%以下であると好ましい。   The fluidized bed ammoxidation catalyst of the present embodiment has a pore volume occupied by pores having a pore diameter of 8 nm or less based on the total pore volume occupied by pores having a pore diameter of 1 to 200 nm in pore distribution measurement. The accumulated volume is preferably 20% or less. A large pore volume of pores having a pore diameter of 8 nm or less means that there are many such small pores. Such a pore distribution is advantageous for the reaction because the reaction field is increased and the activity is improved, and there is also an advantage that the crushing strength is increased with respect to a catalyst having many larger pores. However, there is also a negative effect that the yield of the desired product such as acrylonitrile or methacrylonitrile is reduced. Considering these balances, as described above, the pore volume occupied by pores having a pore diameter of 8 nm or less is preferably 20% or less.

本実施形態の流動床アンモ酸化触媒の平均粒径は、30〜70μmが好ましく、より好ましくは、40〜60μmである。なお、この触媒の粒径分布としては、粒子直径5〜200μmの触媒粒子の量が該触媒の全質量に対して90〜100質量%であることが好ましい。   The average particle diameter of the fluidized bed ammoxidation catalyst of the present embodiment is preferably 30 to 70 μm, more preferably 40 to 60 μm. As the particle size distribution of the catalyst, the amount of catalyst particles having a particle diameter of 5 to 200 μm is preferably 90 to 100% by mass with respect to the total mass of the catalyst.

本実施形態の触媒は、公知の方法、例えば原料スラリーを調製する第1の工程、該原料スラリーを噴霧乾燥する第2の工程、及び第2の工程で得られた乾燥品を焼成する第3の工程を包含する方法によって得ることができる。   The catalyst of this embodiment is a known method, for example, a first step of preparing a raw material slurry, a second step of spray drying the raw material slurry, and a third method of calcining the dried product obtained in the second step. It can be obtained by a method including the steps of

第1の工程では、触媒原料を調合して原料スラリーを得るが、モリブデン、ビスマス、セリウム、鉄、ニッケル、マグネシウム、亜鉛、マンガン、アンチモン、リン、カリウム、ルビジウム、セシウムの各元素の元素源としては、水又は硝酸に可溶なアンモニウム塩、硝酸塩、塩酸塩、硫酸塩、有機酸塩などが挙げられる。特にモリブデンの原料としてはアンモニウム塩が、ビスマス、セリウム、鉄、ニッケル、マグネシウム、亜鉛、マンガン、カリウム、ルビジウム、セシウムの各元素の元素源としては硝酸塩が、アンチモンの原料としては三酸化アンチモンが、リンの原料としては、そのアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩又はリン酸が挙げられる。リンの原料としてはリン酸が好ましい。   In the first step, a catalyst raw material is prepared to obtain a raw material slurry. As an element source of each element of molybdenum, bismuth, cerium, iron, nickel, magnesium, zinc, manganese, antimony, phosphorus, potassium, rubidium, and cesium. Include ammonium salts, nitrates, hydrochlorides, sulfates, and organic acid salts that are soluble in water or nitric acid. In particular, ammonium salt is used as a raw material for molybdenum, nitrate is used as an element source for each element of bismuth, cerium, iron, nickel, magnesium, zinc, manganese, potassium, rubidium, and cesium, and antimony trioxide is used as a raw material for antimony. As a raw material of phosphorus, the alkali metal salt, alkaline-earth metal salt, ammonium salt, or phosphoric acid is mentioned. As a raw material of phosphorus, phosphoric acid is preferable.

一方、担体の原料は通常用いられる担体の原料であれば特に限定されないが、担体がシリカである場合、シリカゾルを原料として用いることが好ましい。シリカゾルとしては、純度、不純物の違い、PH、粒径等、様々な種類を用いることができる。これらのうち、不純物としてアルミニウムを含むシリカゾルの場合、好ましくはケイ素100原子当たり0.04原子以下のアルミニウム、より好ましくはケイ素100原子当たり0.02原子以下のアルミニウムを含むシリカゾルを用いる。シリカのPHについては、原料スラリーの粘性に影響するため、用いる金属塩の量、PHによって適宜選択すればよい。また、シリカ粒径についても比表面積、細孔容積、細孔分布等に影響を与えるほか、触媒の破砕強度、圧縮強度、耐磨耗性などの実用性にも影響を与えるため、触媒成分、組成、調製法による違いによって適宜選択すればよい。   On the other hand, the carrier material is not particularly limited as long as it is a commonly used carrier material. However, when the carrier is silica, it is preferable to use silica sol as a raw material. As the silica sol, various types such as purity, difference in impurities, pH, particle size and the like can be used. Among these, in the case of a silica sol containing aluminum as an impurity, preferably a silica sol containing 0.04 atom or less of aluminum per 100 atoms of silicon, more preferably 0.02 atom or less of aluminum per 100 atoms of silicon is used. Since the pH of silica affects the viscosity of the raw material slurry, it may be appropriately selected depending on the amount of metal salt used and the pH. The silica particle size also affects the specific surface area, pore volume, pore distribution, etc., and also affects the practicality of the catalyst such as crushing strength, compressive strength, and abrasion resistance. What is necessary is just to select suitably by the difference by a composition and a preparation method.

例えば、本実施形態において、細孔直径1〜200nmを有する細孔の占める全細孔容積を基準として、細孔直径8nm以下の細孔容積が20%以下である触媒を得るために、シリカゾルにおけるシリカの一次粒子径の大きさを選定する方法が挙げられる。シリカの一次粒子径が比較的小さいと、細孔直径8nm以下を有する細孔の細孔容積は20%を越えやすく、また、シリカの一次粒子径が比較的大き過ぎると触媒の物理的強度が落ちる。そのため、シリカの一次粒子径が、シリカ一次粒子の平均粒子直径として20〜100nmであるシリカゾルと20nm以下であるシリカゾルとを混ぜ合わせて使用すると、上述のような細孔分布を有する触媒を得ることができる。   For example, in this embodiment, in order to obtain a catalyst in which the pore volume having a pore diameter of 8 nm or less is 20% or less based on the total pore volume occupied by pores having a pore diameter of 1 to 200 nm, A method for selecting the primary particle size of silica is exemplified. When the primary particle diameter of silica is relatively small, the pore volume of pores having a pore diameter of 8 nm or less tends to exceed 20%, and when the primary particle diameter of silica is relatively large, the physical strength of the catalyst is reduced. drop down. Therefore, when a silica sol having a silica primary particle diameter of 20 to 100 nm as an average particle diameter of silica primary particles and a silica sol having a particle diameter of 20 nm or less are mixed and used, a catalyst having the above pore distribution can be obtained. Can do.

原料スラリーの調合方法は例えば下記のとおりである。まず、水に溶解させたモリブデンのアンモニウム塩をシリカゾルに添加する。次に、ビスマス、セリウム、鉄、ニッケル、マグネシウム、亜鉛、マンガン、カリウム、ルビジウム、セシウムなど各元素の元素源の硝酸塩を水又は硝酸水溶液に溶解させた溶液をそこに加える。また、アンチモンはクエン酸、蓚酸、酒石酸及び過酸化水素などの水溶性キレート剤を使って溶解した液を用いて、リンはリン酸を用いて、適宜上記溶液を加える前又は加えた後にシリカゾルに投入することができる。このようにして原料スラリーが得られる。   The method for preparing the raw slurry is, for example, as follows. First, an ammonium salt of molybdenum dissolved in water is added to the silica sol. Next, a solution in which nitrate of an element source of each element such as bismuth, cerium, iron, nickel, magnesium, zinc, manganese, potassium, rubidium, and cesium is dissolved in water or an aqueous nitric acid solution is added thereto. Antimony is a solution dissolved using a water-soluble chelating agent such as citric acid, succinic acid, tartaric acid, and hydrogen peroxide. Phosphorus is phosphoric acid, and is added to the silica sol before or after adding the above solution as appropriate. Can be thrown in. In this way, a raw slurry is obtained.

なお、上述の原料スラリーの調合方法に対して、各元素源の添加の手順を変えたり、硝酸濃度の調整やアンモニア水をスラリー(シリカゾル)中に添加してスラリーのPHや粘度を改質させたりすることができる。また、ポリエチレングリコール、メチルセルロース、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミドなどの水溶性ポリマーやアミン類、アミノカルボン酸類、しゅう酸、マロン酸、コハク酸などの多価カルボン酸、グリコール酸、りんご酸、酒石酸、クエン酸などの有機酸を適宜添加することもできる。   Compared to the raw material slurry preparation method described above, the procedure for adding each element source is changed, and the pH and viscosity of the slurry are modified by adjusting the concentration of nitric acid and adding aqueous ammonia to the slurry (silica sol). Can be. In addition, water-soluble polymers such as polyethylene glycol, methylcellulose, polyvinyl alcohol, polyacrylic acid, polyacrylamide, amines, aminocarboxylic acids, carboxylic acids such as oxalic acid, malonic acid, succinic acid, glycolic acid, malic acid, Organic acids such as tartaric acid and citric acid can be added as appropriate.

次に第2の工程では、上記の第1の工程で得られた原料スラリーを噴霧乾燥して触媒前駆体である球状の粒子を得る。原料スラリーの噴霧化は、通常工業的に実施される遠心方式、二流体ノズル方式及び高圧ノズル方式等の方法によって行うことができるが、特に遠心方式で行うことが望ましい。噴霧乾燥の熱源としては、スチーム、電気ヒーター等が挙げられ、この熱源によって加熱された空気を用いた乾燥機入口の温度は好ましくは100〜400℃、より好ましくは150〜300℃である。   Next, in the second step, the raw material slurry obtained in the first step is spray-dried to obtain spherical particles as a catalyst precursor. The atomization of the raw material slurry can be performed by a method such as a centrifugal method, a two-fluid nozzle method, and a high-pressure nozzle method which are usually carried out industrially. Examples of the heat source for spray drying include steam, an electric heater, and the like. The temperature at the inlet of the dryer using air heated by this heat source is preferably 100 to 400 ° C, more preferably 150 to 300 ° C.

第3の工程では、第2の工程で得られた乾燥粒子を焼成することで所望の触媒組成物を得る。この第3の工程では、必要に応じて、例えば150〜500℃で乾燥粒子の前焼成を行い、その後好ましくは500〜730℃、より好ましくは550〜730℃の温度範囲で1〜20時間本焼成を行う。焼成は回転炉、トンネル炉、マッフル炉等の焼成炉を用いて行うことができる。   In the third step, the desired catalyst composition is obtained by calcining the dried particles obtained in the second step. In this third step, the dried particles are pre-baked, for example, at 150 to 500 ° C., if necessary, and then preferably 500 to 730 ° C., more preferably 550 to 730 ° C. for 1 to 20 hours. Firing is performed. Firing can be performed using a firing furnace such as a rotary furnace, a tunnel furnace, or a muffle furnace.

本実施形態の触媒を用いるプロピレン、イソブテン又は3級ブタノールと、分子状酸素と、アンモニアとの反応によるアクリロニトリル又はメタクリロニトリルの製造方法は、通常用いられる流動層反応器内で行われる。原料のプロピレン、イソブテン、3級ブタノール及びアンモニアは、必ずしも高純度である必要はなく、工業グレードのものを使用することができる。また、分子状酸素源としては、通常空気を用いるのが好ましいが、酸素を空気と混合するなどして酸素濃度を高めたガスを用いることもできる。   The method for producing acrylonitrile or methacrylonitrile by the reaction of propylene, isobutene or tertiary butanol, molecular oxygen and ammonia using the catalyst of the present embodiment is carried out in a fluidized bed reactor which is usually used. The raw materials propylene, isobutene, tertiary butanol and ammonia are not necessarily highly pure, and those of industrial grade can be used. As the molecular oxygen source, it is usually preferable to use air, but a gas whose oxygen concentration is increased by mixing oxygen with air can also be used.

分子状酸素源が空気である場合の原料ガスの組成について、プロピレン、イソブテン又は3級ブタノールに対するアンモニア及び空気のモル比は、(プロピレン、イソブテン又は3級ブタノール)/アンモニア/空気で、好ましくは1/(0.8〜1.4)/(7〜12)、より好ましくは1/0.9〜1.3/8〜11の範囲である。
また、反応温度は好ましくは350〜550℃、より好ましくは400〜500℃の範囲である。
反応圧力は、好ましくは微減圧〜0.3MPaの範囲である。
原料ガスと触媒との接触時間は好ましくは0.5〜20(sec・g/cc)、より好ましくは1〜10(sec・g/cc)である。
For the composition of the feed gas when the molecular oxygen source is air, the molar ratio of ammonia and air to propylene, isobutene or tertiary butanol is (propylene, isobutene or tertiary butanol) / ammonia / air, preferably 1 /(0.8 to 1.4) / (7 to 12), more preferably in the range of 1 / 0.9 to 1.3 / 8 to 11.
Moreover, reaction temperature becomes like this. Preferably it is 350-550 degreeC, More preferably, it is the range of 400-500 degreeC.
The reaction pressure is preferably in the range of slightly reduced pressure to 0.3 MPa.
The contact time between the raw material gas and the catalyst is preferably 0.5 to 20 (sec · g / cc), more preferably 1 to 10 (sec · g / cc).

以上、本発明を実施するための最良の形態について説明したが、本発明は上記実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。   As mentioned above, although the best form for implementing this invention was demonstrated, this invention is not limited to the said embodiment. The present invention can be variously modified without departing from the gist thereof.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。また、各種物性の評価方法は下記に示すとおりである。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. Moreover, the evaluation method of various physical properties is as showing below.

(触媒の反応性能評価)
反応装置は外径23mmのパイレックス(登録商標)ガラス製流動層反応管を用いた。反応温度Tは430℃、反応圧力Pは0.15MPa、充填触媒量Wは40〜60g、全供給ガス量Fは250〜450cc/sec(NTP換算)条件とした。また、供給した原料ガスの組成は、プロピレン/アンモニア/空気のモル比を1/(0.7〜1.4)/(8.0〜11.0)とし、反応ガス中の未反応アンモニア濃度が0.5%以下、未反応酸素濃度が0.2%以下になるよう供給ガス組成を上記範囲内で適宜変更して反応を実施した。原料ガスの組成は表2、4に示す。原料供給開始より24時間後の反応ガスをガスクロマトグラフィーで分析し触媒の反応性能を求めた。なお、実施例及び比較例において、接触時間及び反応成績を表すために用いた転化率、選択率、収率は、下記式で定義される。
接触時間(sec・g/cc)=(W/F)×273/(273+T)×P/0.10
プロピレンの転化率(%)=M/L×100
アクリロニトリルの選択率(%)=N/M×100
アクリロニトリルの収率(%)=N/L×100
ここで、Lは供給したプロピレンのモル数、Mは反応したプロピレンのモル数、Nは生成したアクリロニトリルのモル数を表す。なお、供給したプロピレンのモル数から反応ガス中のプロピレンのモル数を差し引いたモル数を、反応したプロピレンのモル数とした。
(Evaluation of catalyst reaction performance)
The reactor used was a Pyrex (registered trademark) glass fluidized bed reaction tube having an outer diameter of 23 mm. The reaction temperature T was 430 ° C., the reaction pressure P was 0.15 MPa, the packed catalyst amount W was 40-60 g, and the total supply gas amount F was 250-450 cc / sec (NTP conversion). The composition of the supplied raw material gas is such that the molar ratio of propylene / ammonia / air is 1 / (0.7 to 1.4) / (8.0 to 11.0), and the unreacted ammonia concentration in the reaction gas The reaction was carried out by appropriately changing the composition of the supplied gas within the above range so that the unreacted oxygen concentration was 0.2% or less. The composition of the source gas is shown in Tables 2 and 4. The reaction gas 24 hours after the start of raw material supply was analyzed by gas chromatography to determine the reaction performance of the catalyst. In Examples and Comparative Examples, the conversion rate, selectivity, and yield used to represent contact time and reaction results are defined by the following formulas.
Contact time (sec · g / cc) = (W / F) × 273 / (273 + T) × P / 0.10
Propylene conversion rate (%) = M / L × 100
Acrylonitrile selectivity (%) = N / M × 100
Acrylonitrile yield (%) = N / L × 100
Here, L represents the number of moles of propylene supplied, M represents the number of moles of reacted propylene, and N represents the number of moles of acrylonitrile produced. In addition, the number of moles obtained by subtracting the number of moles of propylene in the reaction gas from the number of moles of propylene supplied was defined as the number of moles of propylene reacted.

(触媒の細孔分布測定)
ユアサ・アイオニクス社製のオートソーブ3MP装置を用い、窒素ガス吸着により触媒の細孔分布を測定した。なお、細孔径及び細孔分布はBJH法による脱着データを用い、細孔容積はP/P0,Maxでの吸着量を採用した。
(Measurement of catalyst pore distribution)
The pore distribution of the catalyst was measured by nitrogen gas adsorption using an autosorb 3MP device manufactured by Yuasa Ionics. For the pore diameter and pore distribution, desorption data by the BJH method was used, and for the pore volume, the adsorption amount at P / P0, Max was adopted.

(触媒の粒子径測定)
堀場製作所製のレーザー回折/散乱式粒度分布測定装置LA−300を用いて触媒の粒子径を測定した。
(Measurement of catalyst particle size)
The particle diameter of the catalyst was measured using a laser diffraction / scattering particle size distribution measuring apparatus LA-300 manufactured by Horiba.

(形状観察)
日立製作所製X−650型走査型電子顕微鏡を用いて触媒の形状を観察した。
(Shape observation)
The shape of the catalyst was observed using a Hitachi X-650 scanning electron microscope.

(耐磨耗性強度測定)
“Test Method for Synthetic Fluid Cracking Catalyst”(American Cyanamid Co.Ltd.6/31−4m−1/57)に記載の方法(以下「ACC法」と称する。)に準じて、摩耗損失として触媒の耐摩耗性強度(アトリッション強度)の測定を行った。
アトリッション強度は摩擦損失で評価され、この摩耗損失は以下のように定義される。
摩耗損失(%)=R/(S−Q)×100
上記式において、Qは0〜5時間の間に外部に摩耗飛散した触媒の質量(g)、Rは通常5〜20時間の間に外部に摩耗飛散した触媒の質量(g)である。Sは試験に供した触媒の質量(g)である。この摩耗損失の値が3%以下であることをもって、工業使用に適用できると判断した。
(Abrasion resistance strength measurement)
In accordance with the method described in “Test Method for Synthetic Fluid Cracking Catalyst” (American Cyanamid Co. Ltd. 6 / 31-4m−1 / 57) (hereinafter referred to as “ACC method”), the resistance of the catalyst as resistance to wear Abrasion strength (attrition strength) was measured.
Attrition strength is evaluated by friction loss, and this wear loss is defined as follows.
Wear loss (%) = R / (SQ) × 100
In the above formula, Q is the mass (g) of the catalyst that is worn and scattered outside during 0 to 5 hours, and R is the mass (g) of the catalyst that is worn and scattered outside during usually 5 to 20 hours. S is the mass (g) of the catalyst used in the test. It was judged that the value of this wear loss was 3% or less and that it was applicable to industrial use.

(見掛比重測定)
ホソカワミクロンKK製パウダーテスターを用い、100ccの計量カップ容器に漏斗を通して篩った触媒を落下させ、容器が一杯になったところで、振動を与えないように表面をすり切り計量し、質量/容量(g/cc)の計算により求めた。
(Apparent specific gravity measurement)
Using a powder tester made by Hosokawa Micron KK, drop the catalyst sieved through a funnel into a 100 cc measuring cup container. cc).

(実施例1)
金属組成(仕込み比。以下同様。)がMo12.2Bi0.35Ce0.23Fe1.34Ni6.5Mg2.60.2(α=0.08、β=0.22、γ=0.22)で表される金属酸化物を40質量%のシリカ担体に担持した触媒を下記のようにして調製した。
(Example 1)
Metal oxidation wherein the metal composition (preparation ratio; the same applies hereinafter) is represented by Mo 12.2 Bi 0.35 Ce 0.23 Fe 1.34 Ni 6.5 Mg 2.6 K 0.2 (α = 0.08, β = 0.22, γ = 0.22) A catalyst in which the product was supported on a 40% by mass silica support was prepared as follows.

シリカ一次粒子の平均粒子直径が12nmのSiO2を30質量%含む水性シリカゾル666.7gと、シリカ一次粒子の平均粒子直径が41nmのSiO2を40.6質量%含む水性シリカゾル492.6gとを混合して第1の混合液を得た。次に、水1008.1gに504.0gのパラモリブデン酸アンモニウム〔(NH46Mo724・4H2O〕を溶解させた液を上記第1の混合液に加え第2の混合液を得た。次いで、16.6質量%濃度の硝酸416.2gに40.1gの硝酸ビスマス〔Bi(NO33・5H2O〕、23.2gの硝酸セリウム〔Ce(NO33・6H2O〕、128.0gの硝酸鉄〔Fe(NO33・9H2O〕、448.2gの硝酸ニッケル〔Ni(NO32・6H2O〕、158.0gの硝酸マグネシウム〔Mg(NO32・6H2O〕、4.72gの硝酸カリウム〔KNO3〕を溶解させて得られた液を、上記第2の混合液に加えて水性原料混合物(原料スラリー)を得た(第1の工程)。次に、乾燥器上部中央に設置された皿型回転子を備えた噴霧装置を用い、入口温度約250℃、出口温度約140℃の条件で上記水性原料混合物の噴霧乾燥を行った(第2の工程)。次いで、乾燥した触媒前駆体に電気炉を用いて、空気雰囲気下、320℃で2時間の前焼成を施した後、空気雰囲気下、580℃で2時間の本焼成を施して(第3の工程)、最終的に815gの触媒を得た。 666.7 g of an aqueous silica sol containing 30% by mass of SiO 2 having an average particle diameter of 12 nm of silica primary particles and 492.6 g of an aqueous silica sol containing 40.6% by mass of SiO 2 having an average particle diameter of 41 nm of silica primary particles. A first mixed solution was obtained by mixing. Next, a solution obtained by dissolving 504.0 g of ammonium paramolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] in 1008.1 g of water is added to the first mixed solution, and the second mixed solution is added. Got. Next, 416.2 g of nitric acid having a concentration of 16.6% by mass was added with 40.1 g of bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O] and 23.2 g of cerium nitrate [Ce (NO 3 ) 3 .6H 2 O 128.0 g of iron nitrate [Fe (NO 3 ) 3 .9H 2 O], 448.2 g of nickel nitrate [Ni (NO 3 ) 2 .6H 2 O], 158.0 g of magnesium nitrate [Mg (NO 3) 2 · 6H 2 O], potassium nitrate [KNO 3] solution obtained by dissolving the 4.72 g, was obtained aqueous raw material mixture (slurry) was added to the second mixture (first Process). Next, the aqueous raw material mixture was spray-dried under conditions of an inlet temperature of about 250 ° C. and an outlet temperature of about 140 ° C. using a spray device equipped with a dish-shaped rotor installed in the upper center of the dryer (second). Process). The dried catalyst precursor was then pre-baked at 320 ° C. for 2 hours in an air atmosphere using an electric furnace, and then subjected to main baking at 580 ° C. for 2 hours in an air atmosphere (third Step) and finally 815 g of catalyst were obtained.

得られた触媒の一部を取り出し細孔分布を測定したところ、細孔直径1〜200nmの細孔の占める細孔容積が0.226cc、細孔直径8nm以下の細孔の占める細孔容積が0.008cc/gとなり、全細孔容積に対する細孔直径80nm以下の細孔の積算容積(細孔率)は3.5%となった。また、触媒の形状は中実球であり、平均粒径は58μm、見掛比重は1.10g/ccという結果が得られた。次に、この触媒50gを用いて、接触時間Θ=4.4(sec・g/cc)でプロピレンのアンモ酸化反応を行った。反応開始から24時間後のプロピレンの転化率は99.3%となり、アクリロニトリル(表2、4中、「AN」と表記。)選択率は86.3%、アクリロニトリル収率は85.7%となった。
また、上記触媒50gについてACC法に準じて耐摩耗性強度を測定したところ、摩耗損失(%)は0.8%であった。
触媒組成(金属組成、シリカ(SiO2)担体量、α、β、γ。以下同様。)と焼成温度を表1に、反応結果及び物性測定結果を表2に示す。
When a part of the obtained catalyst was taken out and the pore distribution was measured, the pore volume occupied by pores having a pore diameter of 1 to 200 nm was 0.226 cc, and the pore volume occupied by pores having a pore diameter of 8 nm or less was The total volume (pore ratio) of pores having a pore diameter of 80 nm or less with respect to the total pore volume was 3.5%. Further, the shape of the catalyst was a solid sphere, the average particle size was 58 μm, and the apparent specific gravity was 1.10 g / cc. Next, 50 g of this catalyst was used to carry out ammoxidation of propylene with a contact time Θ = 4.4 (sec · g / cc). The conversion rate of propylene after 24 hours from the start of the reaction was 99.3%, the acrylonitrile (indicated as “AN” in Tables 2 and 4) selectivity was 86.3%, and the acrylonitrile yield was 85.7%. became.
Further, when the wear resistance strength of the catalyst 50 g was measured according to the ACC method, the wear loss (%) was 0.8%.
The catalyst composition (metal composition, silica (SiO 2 ) carrier amount, α, β, γ, the same applies hereinafter) and the firing temperature are shown in Table 1, and the reaction results and physical property measurement results are shown in Table 2.

(実施例2)
金属組成がMo12.4Bi0.15Ce0.10Fe1.51Ni6.69Mg2.670.2(α=0.03、β=0.24、γ=0.40)で表される金属酸化物を40質量%のシリカ担体に担持した触媒を下記のようにして調製した。
(Example 2)
Silica carrier having a metal oxide composition represented by Mo 12.4 Bi 0.15 Ce 0.10 Fe 1.51 Ni 6.69 Mg 2.67 K 0.2 (α = 0.03, β = 0.24, γ = 0.40) The catalyst supported on was prepared as follows.

シリカ一次粒子の平均粒子直径が12nmのSiO2を30質量%含む水性シリカゾル666.7gと、シリカ一次粒子の平均粒子直径が41nmのSiO2を40.6質量%含む水性シリカゾル492.6gとを混合して第1の混合液を得た。次に、水1028gに514gのパラモリブデン酸アンモニウム〔(NH46Mo724・4H2O〕を溶解させた液を上記第1の混合液に加え第2の混合液を得た。次いで、16.6質量%濃度の硝酸419.6gに17.2gの硝酸ビスマス〔Bi(NO33・5H2O〕、10.1gの硝酸セリウム〔Ce(NO33・6H2O〕、144.7gの硝酸鉄〔Fe(NO33・9H2O〕、462.9gの硝酸ニッケル〔Ni(NO32・6H2O〕、162.8gの硝酸マグネシウム〔Mg(NO32・6H2O〕、4.74gの硝酸カリウム〔KNO3〕を溶解させて得られた液を、上記第2の混合液に加えて水性原料混合物(原料スラリー)を得た(第1の工程)。次に、乾燥器上部中央に設置された皿型回転子を備えた噴霧装置を用い、入口温度約250℃、出口温度約140℃の条件で上記水性原料混合物の噴霧乾燥を行った(第2の工程)。次いで、乾燥した触媒前駆体に電気炉を用いて、空気雰囲気下、320℃で2時間の前焼成を施した後、空気雰囲気下、615℃で2時間の本焼成を施して(第3の工程)、最終的に803gの触媒を得た。 666.7 g of an aqueous silica sol containing 30% by mass of SiO 2 having an average particle diameter of 12 nm of silica primary particles and 492.6 g of an aqueous silica sol containing 40.6% by mass of SiO 2 having an average particle diameter of 41 nm of silica primary particles. A first mixed solution was obtained by mixing. Next, a solution prepared by dissolving 514 g of ammonium paramolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] in 1028 g of water was added to the first mixed solution to obtain a second mixed solution. Subsequently, 17.2 g of bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O] and 10.1 g of cerium nitrate [Ce (NO 3 ) 3 .6H 2 O are added to 419.6 g of nitric acid having a concentration of 16.6% by mass. 144.7 g of iron nitrate [Fe (NO 3 ) 3 .9H 2 O], 462.9 g of nickel nitrate [Ni (NO 3 ) 2 .6H 2 O], 162.8 g of magnesium nitrate [Mg (NO 3) 2 · 6H 2 O], potassium nitrate [KNO 3] solution obtained by dissolving the 4.74 g, was obtained aqueous raw material mixture (slurry) was added to the second mixture (first Process). Next, the aqueous raw material mixture was spray-dried under conditions of an inlet temperature of about 250 ° C. and an outlet temperature of about 140 ° C. using a spray device equipped with a dish-shaped rotor installed in the upper center of the dryer (second). Process). Next, the dried catalyst precursor was pre-baked at 320 ° C. for 2 hours in an air atmosphere using an electric furnace, and then subjected to main baking at 615 ° C. for 2 hours in an air atmosphere (third Step), finally 803 g of catalyst was obtained.

得られた触媒の一部を取り出し細孔分布を測定したところ、細孔直径1〜200nmの細孔の占める細孔容積が0.218cc、細孔直径8nm以下の細孔の占める細孔容積が0.004cc/gとなり、全細孔容積に対する細孔直径80nm以下の細孔の積算容積(細孔率)は1.8%となった。また、触媒の形状は中実球であり、平均粒径は61μm、見掛比重は0.94g/ccという結果が得られた。次に、この触媒50gを用いて、接触時間Θ=4.1(sec・g/cc)でプロピレンのアンモ酸化反応を行った。反応開始から24時間後のプロピレンの転化率は99.2%となり、アクリロニトリル選択率は86.2%、アクリロニトリル収率は85.5%となった。
また、上記触媒50gについてACC法に準じて耐摩耗性強度を測定したところ、摩耗損失(%)は0.9%であった。
触媒組成と焼成温度を表1に、反応結果及び物性測定結果を表2に示す。
When a part of the obtained catalyst was taken out and the pore distribution was measured, the pore volume occupied by pores having a pore diameter of 1 to 200 nm was 0.218 cc, and the pore volume occupied by pores having a pore diameter of 8 nm or less was The integrated volume (pore ratio) of pores having a pore diameter of 80 nm or less with respect to the total pore volume was 1.8%. Further, the catalyst was a solid sphere, the average particle size was 61 μm, and the apparent specific gravity was 0.94 g / cc. Next, 50 g of this catalyst was used to carry out ammoxidation of propylene with a contact time Θ = 4.1 (sec · g / cc). After 24 hours from the start of the reaction, the propylene conversion was 99.2%, the acrylonitrile selectivity was 86.2%, and the acrylonitrile yield was 85.5%.
Further, when the wear resistance strength of the catalyst 50 g was measured according to the ACC method, the wear loss (%) was 0.9%.
The catalyst composition and calcination temperature are shown in Table 1, and the reaction results and physical property measurement results are shown in Table 2.

(実施例3)
金属組成がMo12Bi0.28Ce0.19Fe1.8Ni6.2Mg2.5Cs0.08(α=0.06、β=0.31、γ=−0.11)で表される金属酸化物を40質量%のシリカ担体に担持した触媒を下記のようにして調製した。
(Example 3)
40% by mass of a metal oxide having a metal composition of Mo 12 Bi 0.28 Ce 0.19 Fe 1.8 Ni 6.2 Mg 2.5 Cs 0.08 (α = 0.06, β = 0.31, γ = −0.11) A catalyst supported on a carrier was prepared as follows.

シリカ一次粒子の平均粒子直径が12nmのSiO2を30質量%含む水性シリカゾル666.7gとシリカ一次粒子の平均粒子直径が41nmのSiO2を40.6質量%含む水性シリカゾル492.6gとを混合して第1の混合液を得た。次に、水1007gに503.5gのパラモリブデン酸アンモニウム〔(NH46Mo724・4H2O〕を溶解させた液を上記第1の混合液に加え第2の混合液を得た。次いで、16.6質量%濃度の硝酸417.9gに32.6gの硝酸ビスマス〔Bi(NO33・5H2O〕、19.5gの硝酸セリウム〔Ce(NO33・6H2O〕、174.6gの硝酸鉄〔Fe(NO33・9H2O〕、434.2gの硝酸ニッケル〔Ni(NO32・6H2O〕、154.3gの硝酸マグネシウム〔Mg(NO32・6H2O〕、3.72gの硝酸セシウム〔CsNO3〕を溶解させて得られた液を、上記第2の混合液に加えて水性原料混合物(原料スラリー)を得た(第1の工程)。次に、乾燥器上部中央に設置された皿型回転子を備えた噴霧装置を用い、入口温度約250℃、出口温度約140℃の条件で上記水性原料混合物の噴霧乾燥を行った(第2の工程)。次いで、乾燥した触媒前駆体に電気炉を用いて、空気雰囲気下、320℃で2時間の前焼成を施した後、空気雰囲気下、590℃で2時間の本焼成を施して(第3の工程)、最終的に814gの触媒を得た。 666.7 g of an aqueous silica sol containing 30% by mass of SiO 2 having an average particle diameter of 12 nm of silica primary particles and 492.6 g of an aqueous silica sol containing 40.6% by mass of SiO 2 having an average particle diameter of 41 nm of silica primary particles. Thus, a first mixed liquid was obtained. Next, a solution obtained by dissolving 503.5 g of ammonium paramolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] in 1007 g of water is added to the first mixed solution to obtain a second mixed solution. It was. Next, 412.6 g of nitric acid having a concentration of 16.6% by mass was added with 32.6 g of bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O] and 19.5 g of cerium nitrate [Ce (NO 3 ) 3 .6H 2 O. 174.6 g of iron nitrate [Fe (NO 3 ) 3 .9H 2 O], 434.2 g of nickel nitrate [Ni (NO 3 ) 2 .6H 2 O], 154.3 g of magnesium nitrate [Mg (NO 3) 2 · 6H 2 O], a solution obtained by dissolving cesium nitrate [CsNO 3] of 3.72 g, was obtained aqueous raw material mixture (slurry) was added to the second mixture of (a Step 1). Next, the aqueous raw material mixture was spray-dried under conditions of an inlet temperature of about 250 ° C. and an outlet temperature of about 140 ° C. using a spray device equipped with a dish-shaped rotor installed in the upper center of the dryer (second). Process). Next, the dried catalyst precursor was pre-baked at 320 ° C. for 2 hours in an air atmosphere using an electric furnace, and then subjected to main baking at 590 ° C. for 2 hours in an air atmosphere (third Step), finally 814 g of catalyst was obtained.

得られた触媒の一部を取り出し細孔分布を測定したところ、細孔直径1〜200nmの細孔の占める細孔容積が0.215cc、細孔直径8nm以下の細孔の占める細孔容積が0.009cc/gとなり、全細孔容積に対する細孔直径80nm以下の細孔の積算容積(細孔率)は4.2%となった。また、触媒の形状は中実球であり、平均粒径は66μm、見掛比重は1.01g/ccという結果が得られた。次に、この触媒50gを用いて、接触時間Θ=4.1(sec・g/cc)でプロピレンのアンモ酸化反応を行った。反応開始から24時間後のプロピレンの転化率は99.0%となり、アクリロニトリル選択率は85.4%、アクリロニトリル収率は84.5%となった。
また、上記触媒50gについてACC法に準じて耐摩耗性強度を測定したところ、摩耗損失(%)は1.5%であった。
触媒組成と焼成温度を表1に、反応結果及び物性測定結果を表2に示す。
When a part of the obtained catalyst was taken out and the pore distribution was measured, the pore volume occupied by pores having a pore diameter of 1 to 200 nm was 0.215 cc, and the pore volume occupied by pores having a pore diameter of 8 nm or less was It was 0.009 cc / g, and the cumulative volume (pore ratio) of pores having a pore diameter of 80 nm or less with respect to the total pore volume was 4.2%. The catalyst was a solid sphere, the average particle size was 66 μm, and the apparent specific gravity was 1.01 g / cc. Next, 50 g of this catalyst was used to carry out ammoxidation of propylene with a contact time Θ = 4.1 (sec · g / cc). After 24 hours from the start of the reaction, the propylene conversion was 99.0%, the acrylonitrile selectivity was 85.4%, and the acrylonitrile yield was 84.5%.
Further, when the wear resistance strength of the catalyst 50g was measured according to the ACC method, the wear loss (%) was 1.5%.
The catalyst composition and calcination temperature are shown in Table 1, and the reaction results and physical property measurement results are shown in Table 2.

(実施例4)
金属組成がMo12Bi0.22Ce0.15Fe1.1Ni7.0Mg2.8Rb0.15(α=0.05、β=0.17、γ=0)で表される金属酸化物を50質量%のシリカ担体に担持した触媒を下記のようにして調製した。
Example 4
A metal oxide having a metal composition of Mo 12 Bi 0.22 Ce 0.15 Fe 1.1 Ni 7.0 Mg 2.8 Rb 0.15 (α = 0.05, β = 0.17, γ = 0) is supported on a 50% by mass silica support. The prepared catalyst was prepared as follows.

シリカ一次粒子の平均粒子直径が12nmのSiO2を30質量%含む水性シリカゾル833.3gと、シリカ一次粒子の平均粒子直径が41nmのSiO2を40.6質量%含む水性シリカゾル615.8gとを混合して第1の混合液を得た。次に、水840gに419.9gのパラモリブデン酸アンモニウム〔(NH46Mo724・4H2O〕を溶解させた液を上記第1の混合液に加え第2の混合液を得た。次いで、16.6質量%濃度の硝酸411.5gに21.3gの硝酸ビスマス〔Bi(NO33・5H2O〕、12.8gの硝酸セリウム〔Ce(NO33・6H2O〕、89gの硝酸鉄〔Fe(NO33・9H2O〕、408.8gの硝酸ニッケル〔Ni(NO32・6H2O〕、144.1gの硝酸マグネシウム〔Mg(NO32・6H2O〕、4.36gの硝酸ルビジウム〔RbNO3〕を溶解させて得られた液を、上記第2の混合液に加えて水性原料混合物(原料スラリー)を得た(第1の工程)。次に、乾燥器上部中央に設置された皿型回転子を備えた噴霧装置を用い、入口温度約250℃、出口温度約140℃の条件で上記水性原料混合物の噴霧乾燥を行った(第2の工程)。次いで、乾燥した触媒前駆体に電気炉を用いて、空気雰囲気下、320℃で2時間の前焼成を施した後、空気雰囲気下、675℃で2時間の本焼成を施して(第3の工程)、最終的に802gの触媒を得た。 833.3 g of an aqueous silica sol containing 30% by mass of SiO 2 having an average particle diameter of 12 nm of silica primary particles, and 615.8 g of an aqueous silica sol containing 40.6% by mass of SiO 2 having an average particle diameter of 41 nm of silica primary particles. A first mixed solution was obtained by mixing. Next, a solution prepared by dissolving 419.9 g of ammonium paramolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] in 840 g of water is added to the first mixed solution to obtain a second mixed solution. It was. Subsequently, 21.5 g of bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O] and 12.8 g of cerium nitrate [Ce (NO 3 ) 3 .6H 2 O are added to 411.5 g of nitric acid having a concentration of 16.6% by mass. ] 89 g of iron nitrate [Fe (NO 3 ) 3 .9H 2 O], 408.8 g of nickel nitrate [Ni (NO 3 ) 2 .6H 2 O], 144.1 g of magnesium nitrate [Mg (NO 3 ) 2 · 6H 2 O], rubidium nitrate [RbNO 3] solution obtained by dissolving a 4.36 g, in addition to the second mixture to obtain an aqueous raw material mixture (raw slurry) (first Process). Next, the aqueous raw material mixture was spray-dried under conditions of an inlet temperature of about 250 ° C. and an outlet temperature of about 140 ° C. using a spray device equipped with a dish-shaped rotor installed in the upper center of the dryer (second). Process). Next, the dried catalyst precursor was pre-baked at 320 ° C. for 2 hours in an air atmosphere using an electric furnace, and then subjected to main baking at 675 ° C. for 2 hours in an air atmosphere (third Step) and finally 802 g of catalyst was obtained.

得られた触媒の一部を取り出し細孔分布を測定したところ、細孔直径1〜200nmの細孔の占める細孔容積が0.211cc、細孔直径8nm以下の細孔の占める細孔容積が0.002cc/gとなり、全細孔容積に対する細孔直径80nm以下の細孔の積算容積(細孔率)は0.9%となった。また、触媒の形状は中実球であり、平均粒径は65μm、見掛比重は0.99g/ccという結果が得られた。次に、この触媒50gを用いて、接触時間Θ=4.7(sec・g/cc)でプロピレンのアンモ酸化反応を行った。反応開始から24時間後のプロピレンの転化率は99.3%となり、アクリロニトリル選択率は86.6%、アクリロニトリル収率は86.0%となった。
また、上記触媒50gについてACC法に準じて耐摩耗性強度を測定したところ、摩耗損失(%)は0.8%であった。
触媒組成と焼成温度を表1に、反応結果及び物性測定結果を表2に示す。
When a part of the obtained catalyst was taken out and the pore distribution was measured, the pore volume occupied by pores having a pore diameter of 1 to 200 nm was 0.211 cc, and the pore volume occupied by pores having a pore diameter of 8 nm or less was It was 0.002 cc / g, and the cumulative volume (pore ratio) of pores having a pore diameter of 80 nm or less with respect to the total pore volume was 0.9%. The catalyst was a solid sphere, the average particle size was 65 μm, and the apparent specific gravity was 0.99 g / cc. Next, 50 g of this catalyst was used to carry out an ammoxidation reaction of propylene with a contact time Θ = 4.7 (sec · g / cc). After 24 hours from the start of the reaction, the propylene conversion was 99.3%, the acrylonitrile selectivity was 86.6%, and the acrylonitrile yield was 86.0%.
Further, when the wear resistance strength of the catalyst 50 g was measured according to the ACC method, the wear loss (%) was 0.8%.
The catalyst composition and calcination temperature are shown in Table 1, and the reaction results and physical property measurement results are shown in Table 2.

(実施例5)
金属組成がMo12Bi0.29Ce0.20Fe1.5Ni6.5Mg2.6Rb0.12(α=0.06、β=0.25、γ=−0.08)で表される金属酸化物を40質量%のシリカ担体に担持した触媒を下記のようにして調製した。
(Example 5)
40% by mass of a metal oxide having a metal composition represented by Mo 12 Bi 0.29 Ce 0.20 Fe 1.5 Ni 6.5 Mg 2.6 Rb 0.12 (α = 0.06, β = 0.25, γ = −0.08) A catalyst supported on a carrier was prepared as follows.

シリカ一次粒子の平均粒子直径が41nmのSiO2を40.6質量%含む水性シリカゾル985.2gを準備した。次に、水1004gに502.2gのパラモリブデン酸アンモニウム〔(NH46Mo724・4H2O〕を溶解させた液を上記水性シリカゾルに加え混合液を得た。次いで、16.6質量%濃度の硝酸417.3gに33.7gの硝酸ビスマス〔Bi(NO33・5H2O〕、20.5gの硝酸セリウム〔Ce(NO33・6H2O〕、145.1gの硝酸鉄〔Fe(NO33・9H2O〕、454.0gの硝酸ニッケル〔Ni(NO32・6H2O〕、160.1gの硝酸マグネシウム〔Mg(NO32・6H2O〕、4.17gの硝酸ルビジウム〔RbNO3〕を溶解させて得られた液を、上記混合液に加えて水性原料混合物(原料スラリー)を得た(第1の工程)。次に、乾燥器上部中央に設置された皿型回転子を備えた噴霧装置を用い、入口温度約250℃、出口温度約140℃の条件で上記水性原料混合物の噴霧乾燥を行った(第2の工程)。次いで、乾燥した触媒前駆体に電気炉を用いて、空気雰囲気下、320℃で2時間の前焼成を施した後、空気雰囲気下、630℃で2時間の本焼成を施して(第3の工程)、最終的に822gの触媒を得た。 985.2 g of aqueous silica sol containing 40.6% by mass of SiO 2 having an average particle diameter of silica primary particles of 41 nm was prepared. Next, a solution in which 502.2 g of ammonium paramolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] was dissolved in 1004 g of water was added to the aqueous silica sol to obtain a mixed solution. Next, 33.7 g of bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O] and 20.5 g of cerium nitrate [Ce (NO 3 ) 3 .6H 2 O are added to 417.3 g of nitric acid having a concentration of 16.6% by mass. 145.1 g of iron nitrate [Fe (NO 3 ) 3 .9H 2 O], 454.0 g of nickel nitrate [Ni (NO 3 ) 2 .6H 2 O], 160.1 g of magnesium nitrate [Mg (NO 3) 2 · 6H 2 O], rubidium nitrate [RbNO 3] dissolved in the resulting solution of 4.17 g, was obtained aqueous raw material mixture (slurry) was added to the mixed solution (first step ). Next, the aqueous raw material mixture was spray-dried under conditions of an inlet temperature of about 250 ° C. and an outlet temperature of about 140 ° C. using a spray device equipped with a dish-shaped rotor installed in the upper center of the dryer (second). Process). Next, the dried catalyst precursor was pre-baked at 320 ° C. for 2 hours in an air atmosphere using an electric furnace, and then subjected to main baking at 630 ° C. for 2 hours in an air atmosphere (third Step), and finally 822 g of catalyst was obtained.

得られた触媒の一部を取り出し細孔分布を測定したところ、細孔直径1〜200nmの細孔の占める細孔容積が0.248cc、細孔直径8nm以下の細孔の占める細孔容積が0.002cc/gとなり、全細孔容積に対する細孔直径80nm以下の細孔の積算容積(細孔率)は0.8%となった。また、触媒の形状は中実球であり、平均粒径は64μm、見掛比重は0.98g/ccという結果が得られた。次に、この触媒50gを用いて、接触時間Θ=4.4(sec・g/cc)でプロピレンのアンモ酸化反応を行った。反応開始から24時間後のプロピレンの転化率は99.2%となり、アクリロニトリル選択率は87.3%、アクリロニトリル収率は86.6%となった。
また、上記触媒50gについてACC法に準じて耐摩耗性強度を測定したところ、摩耗損失(%)は1.7%であった。
触媒組成と焼成温度を表1に、反応結果及び物性測定結果を表2に示す。
When a part of the obtained catalyst was taken out and the pore distribution was measured, the pore volume occupied by pores having a pore diameter of 1 to 200 nm was 0.248 cc, and the pore volume occupied by pores having a pore diameter of 8 nm or less was It was 0.002 cc / g, and the cumulative volume (pore ratio) of pores having a pore diameter of 80 nm or less with respect to the total pore volume was 0.8%. Further, the catalyst was a solid sphere, the average particle size was 64 μm, and the apparent specific gravity was 0.98 g / cc. Next, 50 g of this catalyst was used to carry out ammoxidation of propylene with a contact time Θ = 4.4 (sec · g / cc). After 24 hours from the start of the reaction, the propylene conversion was 99.2%, the acrylonitrile selectivity was 87.3%, and the acrylonitrile yield was 86.6%.
Further, when the wear resistance strength of the catalyst 50 g was measured according to the ACC method, the wear loss (%) was 1.7%.
The catalyst composition and calcination temperature are shown in Table 1, and the reaction results and physical property measurement results are shown in Table 2.

(実施例6)
金属組成がMo12.2Bi0.22Ce0.14Fe1.45Ni6.63Mg2.650.18(α=0.05、β=0.23、γ=0.21)で表される金属酸化物を40質量%のシリカ担体に担持した触媒を下記のようにして調製した。
(Example 6)
Silica support having a metal composition represented by Mo 12.2 Bi 0.22 Ce 0.14 Fe 1.45 Ni 6.63 Mg 2.65 K 0.18 (α = 0.05, β = 0.23, γ = 0.21) 40 mass% The catalyst supported on was prepared as follows.

シリカ一次粒子の平均粒子直径が12nmのSiO2を30質量%含む水性シリカゾル666.7gと、シリカ一次粒子の平均粒子直径が41nmのSiO2を40.6質量%含む水性シリカゾル492.6gとを混合して第1の混合液を得た。次に、水1018gに509.1gのパラモリブデン酸アンモニウム〔(NH46Mo724・4H2O〕を溶解させた液を上記第1の混合液に加え第2の混合液を得た。次いで、16.6質量%濃度の硝酸418.6gに25.5gの硝酸ビスマス〔Bi(NO33・5H2O〕、14.3gの硝酸セリウム〔Ce(NO33・6H2O〕、139.9gの硝酸鉄〔Fe(NO33・9H2O〕、461.7gの硝酸ニッケル〔Ni(NO32・6H2O〕、162.7gの硝酸マグネシウム〔Mg(NO32・6H2O〕、4.29gの硝酸カリウム〔KNO3〕を溶解させて得られた液を、上記第2の混合液に加えて水性原料混合物(原料スラリー)を得た(第1の工程)。次に、乾燥器上部中央に設置された皿型回転子を備えた噴霧装置を用い、入口温度約250℃、出口温度約140℃の条件で上記水性原料混合物の噴霧乾燥を行った(第2の工程)。次いで、乾燥した触媒前駆体に電気炉を用いて、空気雰囲気下、320℃で2時間の前焼成を施した後、空気雰囲気下、610℃で2時間の本焼成を施して(第3の工程)、最終的に819gの触媒を得た。 666.7 g of an aqueous silica sol containing 30% by mass of SiO 2 having an average particle diameter of 12 nm of silica primary particles and 492.6 g of an aqueous silica sol containing 40.6% by mass of SiO 2 having an average particle diameter of 41 nm of silica primary particles. A first mixed solution was obtained by mixing. Next, a solution prepared by dissolving 509.1 g of ammonium paramolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] in 1018 g of water is added to the first mixed solution to obtain a second mixed solution. It was. Next, 28.6 g of bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O] and 14.3 g of cerium nitrate [Ce (NO 3 ) 3 .6H 2 O are added to 418.6 g of nitric acid having a concentration of 16.6% by mass. 139.9 g of iron nitrate [Fe (NO 3 ) 3 .9H 2 O], 461.7 g of nickel nitrate [Ni (NO 3 ) 2 .6H 2 O], 162.7 g of magnesium nitrate [Mg (NO 3) 2 · 6H 2 O], potassium nitrate [KNO 3] solution obtained by dissolving the 4.29 g, was obtained aqueous raw material mixture (slurry) was added to the second mixture (first Process). Next, the aqueous raw material mixture was spray-dried under conditions of an inlet temperature of about 250 ° C. and an outlet temperature of about 140 ° C. using a spray device equipped with a dish-shaped rotor installed in the upper center of the dryer (second). Process). Next, the dried catalyst precursor was pre-baked at 320 ° C. for 2 hours in an air atmosphere using an electric furnace, and then subjected to main baking at 610 ° C. for 2 hours in an air atmosphere (third Step), finally 819 g of catalyst was obtained.

得られた触媒の一部を取り出し細孔分布を測定したところ、細孔直径1〜200nmの細孔の細孔容積が0.203cc、細孔直径8nm以下の細孔の占める細孔容積が0.005cc/gとなり、全細孔容積に対する細孔直径80nm以下の細孔の積算容積(細孔率)は2.5%となった。また、触媒の形状は中実球であり、平均粒径は57μm、見掛比重は1.04g/ccという結果が得られた。次にこの触媒50gを用いて、接触時間Θ=3.3(sec・g/cc)でプロピレンのアンモ酸化反応を行った。反応開始から24時間後のプロピレンの転化率は99.1%となり、アクリロニトリル選択率は86.7%、アクリロニトリル収率は85.9%となった。
また、上記触媒50gについてACC法に準じて耐摩耗性強度を測定したところ、摩耗損失(%)は0.8%であった。
触媒組成と焼成温度を表1に、反応結果及び物性測定結果を表2に示す。
When a part of the obtained catalyst was taken out and the pore distribution was measured, the pore volume of pores having a pore diameter of 1 to 200 nm was 0.203 cc, and the pore volume occupied by pores having a pore diameter of 8 nm or less was 0. It was 0.005 cc / g, and the cumulative volume (pore ratio) of pores having a pore diameter of 80 nm or less with respect to the total pore volume was 2.5%. Further, the shape of the catalyst was a solid sphere, the average particle size was 57 μm, and the apparent specific gravity was 1.04 g / cc. Next, 50 g of this catalyst was used to carry out an ammoxidation reaction of propylene with a contact time Θ = 3.3 (sec · g / cc). After 24 hours from the start of the reaction, the propylene conversion was 99.1%, the acrylonitrile selectivity was 86.7%, and the acrylonitrile yield was 85.9%.
Further, when the wear resistance strength of the catalyst 50 g was measured according to the ACC method, the wear loss (%) was 0.8%.
The catalyst composition and calcination temperature are shown in Table 1, and the reaction results and physical property measurement results are shown in Table 2.

(実施例7)
金属組成がMo12.4Bi0.24Ce0.16Fe1.52Ni6.5Mg2.6Rb0.15(α=0.05、β=0.25、γ=0.42)で表される金属酸化物を40質量%のシリカ担体に担持した触媒を下記のようにして調製した。
(Example 7)
Silica support having a metal composition represented by Mo 12.4 Bi 0.24 Ce 0.16 Fe 1.52 Ni 6.5 Mg 2.6 Rb 0.15 (α = 0.05, β = 0.25, γ = 0.42) 40 mass% The catalyst supported on was prepared as follows.

シリカ一次粒子の平均粒子直径が12nmのSiO2を30質量%含む水性シリカゾル666.7gと、シリカ一次粒子の平均粒子直径が41nmのSiO2を40.6質量%含む水性シリカゾル492.6gとを混合して第1の混合液を得た。次に、水1020gに510.2gのパラモリブデン酸アンモニウム〔(NH46Mo724・4H2O〕を溶解させた液を上記第1の混合液に加え第2の混合液を得た。次いで、16.6質量%濃度の硝酸417.7gに27.4gの硝酸ビスマス〔Bi(NO33・5H2O〕、16.1gの硝酸セリウム〔Ce(NO33・6H2O〕、144.6gの硝酸鉄〔Fe(NO33・9H2O〕、446.4gの硝酸ニッケル〔Ni(NO32・6H2O〕、157.4gの硝酸マグネシウム〔Mg(NO32・6H2O〕、5.13gの硝酸ルビジウム〔RbNO3〕を溶解させて得られた液を、上記第2の混合液に加えて水性原料混合物(原料スラリー)を得た(第1の工程)。次に、乾燥器上部中央に設置された皿型回転子を備えた噴霧装置を用い、入口温度約250℃、出口温度約140℃の条件で上記水性原料混合物の噴霧乾燥を行った(第2の工程)。次いで、乾燥した触媒前駆体に電気炉を用いて、空気雰囲気下、320℃で2時間の前焼成を施した後、空気雰囲気下、590℃で2時間の本焼成を施して(第3の工程)、最終的に821gの触媒を得た。 666.7 g of an aqueous silica sol containing 30% by mass of SiO 2 having an average particle diameter of 12 nm of silica primary particles and 492.6 g of an aqueous silica sol containing 40.6% by mass of SiO 2 having an average particle diameter of 41 nm of silica primary particles. A first mixed solution was obtained by mixing. Next, a solution obtained by dissolving 510.2 g of ammonium paramolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] in 1020 g of water is added to the first mixed solution to obtain a second mixed solution. It was. Then, 27.4 g of bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O] and 16.1 g of cerium nitrate [Ce (NO 3 ) 3 .6H 2 O are added to 417.7 g of nitric acid having a concentration of 16.6% by mass. 144.6 g of iron nitrate [Fe (NO 3 ) 3 .9H 2 O], 446.4 g of nickel nitrate [Ni (NO 3 ) 2 .6H 2 O], 157.4 g of magnesium nitrate [Mg (NO 3) 2 · 6H 2 O], rubidium nitrate [RbNO 3] dissolved in the resulting solution of 5.13 g, was obtained aqueous raw material mixture (slurry) was added to the second mixture of (a Step 1). Next, the aqueous raw material mixture was spray-dried under conditions of an inlet temperature of about 250 ° C. and an outlet temperature of about 140 ° C. using a spray device equipped with a dish-shaped rotor installed in the upper center of the dryer (second). Process). Subsequently, the dried catalyst precursor was pre-baked at 320 ° C. for 2 hours in an air atmosphere using an electric furnace, and then subjected to main baking at 590 ° C. for 2 hours in an air atmosphere (third Step), and finally 821 g of catalyst was obtained.

得られた触媒の一部を取り出し細孔分布を測定したところ、細孔直径1〜200nmの細孔の占める細孔容積が0.220cc、細孔直径8nm以下の細孔の占める細孔容積が0.006cc/gとなり、全細孔容積に対する細孔直径80nm以下の細孔の積算容積(細孔率)は2.7%となった。また、触媒の形状は中実球であり、平均粒径は60μm、見掛比重は1.00g/ccという結果が得られた。次に、この触媒50gを用いて、接触時間Θ=4.5(sec・g/cc)でプロピレンのアンモ酸化反応を行った。反応開始から24時間後のプロピレンの転化率は99.4%となり、アクリロニトリル選択率は86.5%、アクリロニトリル収率は86.0%となった。さらに、このままの条件で反応を継続し、反応開始から1200時間後の反応ガスの分析を実施したところ、プロピレンの転化率は99.6%となり、アクリロニトリル選択率は86.0%、アクリロニトリル収率は85.7%となり、24時間後の性能とほとんど変化がないことを確認できた。また、上記触媒50gについてACC法に準じて耐摩耗性強度を測定したところ、摩耗損失(%)は0.8%であった。
触媒組成と焼成温度を表1に、反応結果及び物性測定結果を表2に示す。
When a part of the obtained catalyst was taken out and the pore distribution was measured, the pore volume occupied by pores having a pore diameter of 1 to 200 nm was 0.220 cc, and the pore volume occupied by pores having a pore diameter of 8 nm or less was It was 0.006 cc / g, and the cumulative volume (pore ratio) of pores having a pore diameter of 80 nm or less with respect to the total pore volume was 2.7%. Further, the shape of the catalyst was a solid sphere, the average particle size was 60 μm, and the apparent specific gravity was 1.00 g / cc. Next, using 50 g of this catalyst, ammoxidation of propylene was carried out at a contact time Θ = 4.5 (sec · g / cc). After 24 hours from the start of the reaction, the propylene conversion was 99.4%, the acrylonitrile selectivity was 86.5%, and the acrylonitrile yield was 86.0%. Further, the reaction was continued under the same conditions, and the reaction gas was analyzed 1200 hours after the start of the reaction. As a result, the conversion of propylene was 99.6%, the acrylonitrile selectivity was 86.0%, and the acrylonitrile yield. Was 85.7%, and it was confirmed that there was almost no change from the performance after 24 hours. Further, when the wear resistance strength of the catalyst 50 g was measured according to the ACC method, the wear loss (%) was 0.8%.
The catalyst composition and calcination temperature are shown in Table 1, and the reaction results and physical property measurement results are shown in Table 2.

(実施例8)
金属組成がMo12.3Bi0.2Ce0.08Fe0.7Ni7.75Mg2.6Rb0.08(α=0.04、β=0.10、γ=0.48)で表される金属酸化物を40質量%のシリカ担体に担持した触媒を下記のようにして調製した。
(Example 8)
Silica support having a metal composition represented by Mo 12.3 Bi 0.2 Ce 0.08 Fe 0.7 Ni 7.75 Mg 2.6 Rb 0.08 (α = 0.04, β = 0.10, γ = 0.48) 40 mass% The catalyst supported on was prepared as follows.

シリカ一次粒子の平均粒子直径が12nmのSiO2を30質量%含む水性シリカゾル666.7gと、シリカ一次粒子の平均粒子直径が41nmのSiO2を40.6質量%含む水性シリカゾル492.6gとを混合して第1の混合液を得た。次に、水1018gに509.1gのパラモリブデン酸アンモニウム〔(NH46Mo724・4H2O〕を溶解させた液を上記第1の混合液に加え第2の混合液を得た。次いで、16.6質量%濃度の硝酸417gに23.0gの硝酸ビスマス〔Bi(NO33・5H2O〕、8.10gの硝酸セリウム〔Ce(NO33・6H2O〕、67gの硝酸鉄〔Fe(NO33・9H2O〕、535.4gの硝酸ニッケル〔Ni(NO32・6H2O〕、158.3gの硝酸マグネシウム〔Mg(NO32・6H2O〕、2.75gの硝酸ルビジウム〔RbNO3〕を溶解させて得られた液を、上記第2の混合液に加えて水性原料混合物(原料スラリー)を得た(第1の工程)。次に、乾燥器上部中央に設置された皿型回転子を備えた噴霧装置を用い、入口温度約250℃、出口温度約140℃の条件で上記水性原料混合物の噴霧乾燥を行った(第2の工程)。次いで、乾燥した触媒前駆体に電気炉を用いて、空気雰囲気下、320℃で2時間の前焼成を施した後、空気雰囲気下、580℃で2時間の本焼成を施して(第3の工程)、最終的に798gの触媒を得た。 666.7 g of an aqueous silica sol containing 30% by mass of SiO 2 having an average particle diameter of 12 nm of silica primary particles and 492.6 g of an aqueous silica sol containing 40.6% by mass of SiO 2 having an average particle diameter of 41 nm of silica primary particles. A first mixed solution was obtained by mixing. Next, a solution prepared by dissolving 509.1 g of ammonium paramolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] in 1018 g of water is added to the first mixed solution to obtain a second mixed solution. It was. Then, 23.0 g of bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O], 8.10 g of cerium nitrate [Ce (NO 3 ) 3 .6H 2 O] in 417 g of nitric acid having a concentration of 16.6% by mass, 67 g of iron nitrate [Fe (NO 3 ) 3 .9H 2 O], 535.4 g of nickel nitrate [Ni (NO 3 ) 2 .6H 2 O], 158.3 g of magnesium nitrate [Mg (NO 3 ) 2. 6H 2 O] and 2.75 g of rubidium nitrate [RbNO 3 ] dissolved therein were added to the second mixed liquid to obtain an aqueous raw material mixture (raw material slurry) (first step). . Next, the aqueous raw material mixture was spray-dried under conditions of an inlet temperature of about 250 ° C. and an outlet temperature of about 140 ° C. using a spray device equipped with a dish-shaped rotor installed in the upper center of the dryer (second). Process). The dried catalyst precursor was then pre-baked at 320 ° C. for 2 hours in an air atmosphere using an electric furnace, and then subjected to main baking at 580 ° C. for 2 hours in an air atmosphere (third Step) and finally 798 g of catalyst were obtained.

得られた触媒の一部を取り出し細孔分布を測定したところ、細孔直径1〜200nmの細孔の占める細孔容積が0.224cc、細孔直径8nm以下の細孔の占める細孔容積が0.005cc/gとなり、全細孔容積に対する細孔直径80nm以下の細孔の積算容積(細孔率)は2.2%となった。また、触媒の形状は中実球であり、平均粒径は55μm、見掛比重は0.96g/ccという結果が得られた。次に、この触媒50gを用いて、接触時間Θ=5(sec・g/cc)でプロピレンのアンモ酸化反応を行った。反応開始から24時間後のプロピレンの転化率は99.5%となり、アクリロニトリル選択率は85.3%、アクリロニトリル収率は84.9%となった。また、上記触媒50gについてACC法に準じて耐摩耗性強度を測定したところ、摩耗損失(%)は1.1%であった。
触媒組成と焼成温度を表1に、反応結果及び物性測定結果を表2に示す。
When a part of the obtained catalyst was taken out and the pore distribution was measured, the pore volume occupied by pores having a pore diameter of 1 to 200 nm was 0.224 cc, and the pore volume occupied by pores having a pore diameter of 8 nm or less was It was 0.005 cc / g, and the cumulative volume (pore ratio) of pores having a pore diameter of 80 nm or less with respect to the total pore volume was 2.2%. Further, the catalyst was a solid sphere, the average particle size was 55 μm, and the apparent specific gravity was 0.96 g / cc. Next, 50 g of this catalyst was used to carry out ammoxidation of propylene with a contact time Θ = 5 (sec · g / cc). After 24 hours from the start of the reaction, the propylene conversion was 99.5%, the acrylonitrile selectivity was 85.3%, and the acrylonitrile yield was 84.9%. Further, when the wear resistance strength of the catalyst 50g was measured according to the ACC method, the wear loss (%) was 1.1%.
The catalyst composition and calcination temperature are shown in Table 1, and the reaction results and physical property measurement results are shown in Table 2.

(比較例1)
金属組成がMo13.0Bi0.73Fe0.35Ni6.23Mg4.160.07(α=0.10、β=0.05、γ=0.99)で表される金属酸化物を50質量%のシリカ担体に担持した触媒を下記のようにして調製した。
(Comparative Example 1)
A metal oxide having a metal composition of Mo 13.0 Bi 0.73 Fe 0.35 Ni 6.23 Mg 4.16 K 0.07 (α = 0.10, β = 0.05, γ = 0.99) is supported on a 50% by mass silica support. The prepared catalyst was prepared as follows.

シリカ一次粒子の平均粒子直径が12nmのSiO2を30質量%含む水性シリカゾル1666.7gを準備した。次に、水854gに427.2gのパラモリブデン酸アンモニウム〔(NH46Mo724・4H2O〕を溶解させた液を上記シリカゾルに加え混合液を得た。次いで、16.6質量%濃度の硝酸409.1gに66.5gの硝酸ビスマス〔Bi(NO33・5H2O〕、26.6gの硝酸鉄〔Fe(NO33・9H2O〕、341.7gの硝酸ニッケル〔Ni(NO32・6H2O〕、201.1gの硝酸マグネシウム〔Mg(NO32・6H2O〕、1.32gの硝酸カリウム〔KNO3〕を溶解させて得られた液を、上記混合液に加えて水性原料混合物(原料スラリー)を得た。次に、乾燥器上部中央に設置された皿型回転子を備えた噴霧装置を用い、入口温度約250℃、出口温度約140℃の条件で上記水性原料混合物の噴霧乾燥を行った。次いで、乾燥した触媒前駆体に電気炉を用いて、空気雰囲気下、320℃で2時間の前焼成を施した後、空気雰囲気下、560℃で2時間の本焼成を施して、最終的に811gの触媒を得た。 1666.7 g of an aqueous silica sol containing 30% by mass of SiO 2 having an average particle diameter of silica primary particles of 12 nm was prepared. Next, a solution obtained by dissolving 427.2 g of ammonium paramolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] in 854 g of water was added to the silica sol to obtain a mixed solution. Next, 406.5 g of nitric acid having a concentration of 16.6% by mass was added to 66.5 g of bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O] and 26.6 g of iron nitrate [Fe (NO 3 ) 3 .9H 2 O. 341.7 g of nickel nitrate [Ni (NO 3 ) 2 .6H 2 O], 201.1 g of magnesium nitrate [Mg (NO 3 ) 2 .6H 2 O], 1.32 g of potassium nitrate [KNO 3 ]. The liquid obtained by dissolving was added to the above mixed liquid to obtain an aqueous raw material mixture (raw material slurry). Next, the above aqueous raw material mixture was spray-dried under conditions of an inlet temperature of about 250 ° C. and an outlet temperature of about 140 ° C. using a spray device equipped with a dish-shaped rotor installed in the upper center of the dryer. Next, the dried catalyst precursor was pre-fired at 320 ° C. for 2 hours in an air atmosphere using an electric furnace, and then finally fired at 560 ° C. for 2 hours in an air atmosphere. 811 g of catalyst was obtained.

得られた触媒の一部を取り出し細孔分布を測定したところ、細孔直径1〜200nmの細孔の占める細孔容積が0.192cc、細孔直径8nm以下の細孔の占める細孔容積が0.052cc/gとなり、全細孔容積に対する細孔直径80nm以下の細孔の積算容積(細孔率)は27.1%となった。また、触媒の形状は中実球であり、平均粒径は64μm、見掛比重は1.08g/ccという結果が得られた。次に、この触媒50gを用いて、接触時間Θ=6.0(sec・g/cc)でプロピレンのアンモ酸化反応を行った。反応開始から24時間後のプロピレンの転化率は99.3%となり、アクリロニトリル選択率は74.6%、アクリロニトリル収率は74.1%となった。
また、上記触媒50gについてACC法に準じて耐摩耗性強度を測定したところ、摩耗損失(%)は0.3%であった。
触媒組成と焼成温度を表1に、反応結果及び物性測定結果を表2に示す。
When a part of the obtained catalyst was taken out and the pore distribution was measured, the pore volume occupied by pores having a pore diameter of 1 to 200 nm was 0.192 cc, and the pore volume occupied by pores having a pore diameter of 8 nm or less was The integrated volume (pore ratio) of pores having a pore diameter of 80 nm or less with respect to the total pore volume was 27.1%. Further, the catalyst was a solid sphere, the average particle size was 64 μm, and the apparent specific gravity was 1.08 g / cc. Next, 50 g of this catalyst was used to carry out an ammoxidation reaction of propylene with a contact time Θ = 6.0 (sec · g / cc). After 24 hours from the start of the reaction, the propylene conversion was 99.3%, the acrylonitrile selectivity was 74.6%, and the acrylonitrile yield was 74.1%.
Further, when the wear resistance strength of the catalyst 50g was measured according to the ACC method, the wear loss (%) was 0.3%.
The catalyst composition and calcination temperature are shown in Table 1, and the reaction results and physical property measurement results are shown in Table 2.

(比較例2)
金属組成がMo12.5Bi0.3Fe2.6Ni6.2Mg2.5Cs0.070.3(α=0.04、β=0.45、γ=−0.62)で表される金属酸化物を50質量%のシリカ担体に担持した触媒を下記のようにして調製した。
(Comparative Example 2)
50% by mass of a metal oxide having a metal composition of Mo 12.5 Bi 0.3 Fe 2.6 Ni 6.2 Mg 2.5 Cs 0.07 K 0.3 (α = 0.04, β = 0.45, γ = −0.62) A catalyst supported on a carrier was prepared as follows.

シリカ一次粒子の平均粒子直径が12nmのSiO2を30質量%含む水性シリカゾル1666.7gを準備した。次に、水834gに417.0gのパラモリブデン酸アンモニウム〔(NH46Mo724・4H2O〕を溶解させた液を上記水性シリカゾルに加え混合液を得た。次いで、16.6質量%濃度の硝酸413.3gに27.8gの硝酸ビスマス〔Bi(NO33・5H2O〕、200.5gの硝酸鉄〔Fe(NO33・9H2O〕、345.2gの硝酸ニッケル〔Ni(NO3)2・6H2O〕、122.7gの硝酸マグネシウム〔Mg(NO32・6H2O〕、2.59gの硝酸セシウム〔CsNO3〕、5.72gの硝酸カリウム〔KNO3〕を溶解させて得られた液を、上記混合液に加えて水性原料混合物(原料スラリー)を得た。次に、乾燥器上部中央に設置された皿型回転子を備えた噴霧装置を用い、入口温度約250℃、出口温度約140℃の条件で上記水性原料混合物の噴霧乾燥を行った。次いで、乾燥した触媒前駆体に電気炉を用いて、空気雰囲気下、320℃で2時間の前焼成を施した後、空気雰囲気下、640℃で2時間の本焼成を施して、最終的に798gの触媒を得た。 1666.7 g of an aqueous silica sol containing 30% by mass of SiO 2 having an average particle diameter of silica primary particles of 12 nm was prepared. Next, a solution obtained by dissolving 417.0 g of ammonium paramolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] in 834 g of water was added to the aqueous silica sol to obtain a mixed solution. Next, 27.8 g of bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O] and 200.5 g of iron nitrate [Fe (NO 3 ) 3 .9H 2 O are added to 413.3 g of nitric acid having a concentration of 16.6% by mass. 345.2 g of nickel nitrate [Ni (NO 3 ) 2 .6H 2 O], 122.7 g of magnesium nitrate [Mg (NO 3 ) 2 .6H 2 O], 2.59 g of cesium nitrate [CsNO 3 ] A liquid obtained by dissolving 5.72 g of potassium nitrate [KNO 3 ] was added to the above mixed liquid to obtain an aqueous raw material mixture (raw material slurry). Next, the above aqueous raw material mixture was spray-dried under conditions of an inlet temperature of about 250 ° C. and an outlet temperature of about 140 ° C. using a spray device equipped with a dish-shaped rotor installed in the upper center of the dryer. Next, the dried catalyst precursor was pre-fired at 320 ° C. for 2 hours in an air atmosphere using an electric furnace, and then finally fired at 640 ° C. for 2 hours in an air atmosphere. 798 g of catalyst was obtained.

得られた触媒の一部を取り出し細孔分布を測定したところ、細孔直径1〜200nmの細孔の占める細孔容積が0.201cc、細孔直径8nm以下の細孔の占める細孔容積が0.049cc/gとなり、全細孔容積に対する細孔直径80nm以下の細孔の積算容積(細孔率)は24.4%となった。また、触媒の形状は中実球であり、平均粒径は62μm、見掛比重は1.02g/ccという結果が得られた。次に、この触媒50gを用いて、接触時間Θ=5.5(sec・g/cc)でプロピレンのアンモ酸化反応を行った。反応開始から24時間後のプロピレンの転化率は99.4%となり、アクリロニトリル選択率は82.2%、アクリロニトリル収率は81.7%となった。さらに、このままの条件で反応を継続し、反応開始から1000時間後の反応ガスの分析を実施したところ、プロピレンの転化率は98.3%となり、アクリロニトリル選択率は81.7%、アクリロニトリル収率は80.3%となり、24時間後の性能に対して低下していることがわかった。
また、上記触媒50gについてACC法に準じて耐摩耗性強度を測定したところ、摩耗損失(%)は0.3%であった。
触媒組成と焼成温度を表1に、反応結果及び物性測定結果を表2に示す。
When a part of the obtained catalyst was taken out and the pore distribution was measured, the pore volume occupied by pores having a pore diameter of 1 to 200 nm was 0.201 cc, and the pore volume occupied by pores having a pore diameter of 8 nm or less was It was 0.049 cc / g, and the cumulative volume (pore ratio) of pores having a pore diameter of 80 nm or less with respect to the total pore volume was 24.4%. Further, the catalyst was a solid sphere, the average particle size was 62 μm, and the apparent specific gravity was 1.02 g / cc. Next, 50 g of this catalyst was used to carry out an ammoxidation reaction of propylene with a contact time Θ = 5.5 (sec · g / cc). After 24 hours from the start of the reaction, the propylene conversion was 99.4%, the acrylonitrile selectivity was 82.2%, and the acrylonitrile yield was 81.7%. Further, the reaction was continued under the same conditions, and the reaction gas was analyzed 1000 hours after the start of the reaction. As a result, the propylene conversion was 98.3%, the acrylonitrile selectivity was 81.7%, and the acrylonitrile yield. It became 80.3%, and it turned out that it has fallen with respect to the performance after 24 hours.
Further, when the wear resistance strength of the catalyst 50g was measured according to the ACC method, the wear loss (%) was 0.3%.
The catalyst composition and calcination temperature are shown in Table 1, and the reaction results and physical property measurement results are shown in Table 2.

(比較例3)
金属組成がMo12Bi0.24Ce0.16Fe2.28Ni5.7Mg2.3Rb0.15(α=0.05、β=0.43、γ=0)で表される金属酸化物を40質量%のシリカ担体に担持した触媒を下記のようにして調製した。
(Comparative Example 3)
A metal oxide having a metal composition of Mo 12 Bi 0.24 Ce 0.16 Fe 2.28 Ni 5.7 Mg 2.3 Rb 0.15 (α = 0.05, β = 0.43, γ = 0) is supported on a 40% by mass silica support. The prepared catalyst was prepared as follows.

シリカ一次粒子の平均粒子直径が12nmのSiO2を30質量%含む水性シリカゾル666.7gと、シリカ一次粒子の平均粒子直径が41nmのSiO2を40.6質量%含む水性シリカゾル492.6gとを混合して第1の混合液を得た。次に、水1014gに507.2gのパラモリブデン酸アンモニウム〔(NH46Mo724・4H2O〕を溶解させた液を上記第1の混合液に加え第2の混合液を得た。次いで、16.6質量%濃度の硝酸419gに28.1gの硝酸ビスマス〔Bi(NO33・5H2O〕、16.5gの硝酸セリウム〔Ce(NO33・6H2O〕、222.8gの硝酸鉄〔Fe(NO33・9H2O〕、402.1gの硝酸ニッケル〔Ni(NO32・6H2O〕、143.0gの硝酸マグネシウム〔Mg(NO32・6H2O〕、5.27gの硝酸ルビジウム〔RbNO3〕を溶解させて得られた液を、上記第2の混合液に加えて水性原料混合物(原料スラリー)を得た。次に、乾燥器上部中央に設置された皿型回転子を備えた噴霧装置を用い、入口温度約250℃、出口温度約140℃の条件で上記水性原料混合物の噴霧乾燥を行った。次いで、乾燥した触媒前駆体に電気炉を用いて、空気雰囲気下、320℃で2時間の前焼成を施した後、空気雰囲気下、580℃で2時間の本焼成を施して、最終的に818gの触媒を得た。 666.7 g of an aqueous silica sol containing 30% by mass of SiO 2 having an average particle diameter of 12 nm of silica primary particles and 492.6 g of an aqueous silica sol containing 40.6% by mass of SiO 2 having an average particle diameter of 41 nm of silica primary particles. A first mixed solution was obtained by mixing. Next, a solution obtained by dissolving 507.2 g of ammonium paramolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] in 1014 g of water is added to the first mixed solution to obtain a second mixed solution. It was. Subsequently, 28.1 g of bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O] and 16.5 g of cerium nitrate [Ce (NO 3 ) 3 .6H 2 O] are added to 419 g of nitric acid having a concentration of 16.6% by mass. 222.8 g of iron nitrate [Fe (NO 3 ) 3 .9H 2 O], 402.1 g of nickel nitrate [Ni (NO 3 ) 2 .6H 2 O], 143.0 g of magnesium nitrate [Mg (NO 3 ) 2 · 6H 2 O], rubidium nitrate [RbNO 3] solution obtained by dissolving the 5.27 g, was obtained aqueous raw material mixture (slurry) was added to the second mixture. Next, the above aqueous raw material mixture was spray-dried under conditions of an inlet temperature of about 250 ° C. and an outlet temperature of about 140 ° C. using a spray device equipped with a dish-shaped rotor installed in the upper center of the dryer. Next, the dried catalyst precursor was pre-fired at 320 ° C. for 2 hours in an air atmosphere using an electric furnace, and then finally fired at 580 ° C. for 2 hours in an air atmosphere. 818 g of catalyst was obtained.

得られた触媒の一部を取り出し細孔分布を測定したところ、細孔直径1〜200nmの細孔の占める細孔容積が0.214cc、細孔直径8nm以下の細孔の占める細孔容積が0.01cc/gとなり、全細孔容積に対する細孔直径80nm以下の細孔の積算容積(細孔率)は4.7%となった。また、触媒の形状は中実球であり、平均粒径は61μm、見掛比重は1.00g/ccという結果が得られた。次に、この触媒50gを用いて、接触時間Θ=4.8(sec・g/cc)でプロピレンのアンモ酸化反応を行った。反応開始から24時間後のプロピレンの転化率は99.2%となり、アクリロニトリル選択率は82.9%、アクリロニトリル収率は82.2%となった。
また、上記触媒50gについてACC法に準じて耐摩耗性強度を測定したところ、摩耗損失(%)は1.0%であった。
触媒組成と焼成温度を表1に、反応結果及び物性測定結果を表2に示す。
When a part of the obtained catalyst was taken out and the pore distribution was measured, the pore volume occupied by pores having a pore diameter of 1 to 200 nm was 0.214 cc, and the pore volume occupied by pores having a pore diameter of 8 nm or less was The total volume (pore ratio) of pores having a pore diameter of 80 nm or less with respect to the total pore volume was 4.7%. Further, the shape of the catalyst was a solid sphere, the average particle size was 61 μm, and the apparent specific gravity was 1.00 g / cc. Next, 50 g of this catalyst was used to carry out ammoxidation of propylene with a contact time Θ = 4.8 (sec · g / cc). After 24 hours from the start of the reaction, the propylene conversion was 99.2%, the acrylonitrile selectivity was 82.9%, and the acrylonitrile yield was 82.2%.
Further, when the wear resistance strength of the catalyst 50g was measured according to the ACC method, the wear loss (%) was 1.0%.
The catalyst composition and calcination temperature are shown in Table 1, and the reaction results and physical property measurement results are shown in Table 2.

(比較例4)
金属組成がMo12Bi0.42Ce0.1Fe2.8Ni5.61Mg1.40.25(α=0.07、β=0.60、γ=0.01)で表される金属酸化物を46質量%のシリカ担体に担持した触媒を下記のようにして調製した。
(Comparative Example 4)
46 mass% silica support containing a metal oxide having a metal composition of Mo 12 Bi 0.42 Ce 0.1 Fe 2.8 Ni 5.61 Mg 1.4 K 0.25 (α = 0.07, β = 0.60, γ = 0.01) The catalyst supported on was prepared as follows.

シリカ一次粒子の平均粒子直径が12nmのSiO2を30質量%含む水性シリカゾル766.7gと、シリカ一次粒子の平均粒子直径が41nmのSiO2を40.6質量%含む水性シリカゾル566.5gとを混合して第1の混合液を得た。次に、水903gに451.4gのパラモリブデン酸アンモニウム〔(NH46Mo724・4H2O〕を溶解させた液を上記第1の混合液に加え第2の混合液を得た。次いで、16.6質量%濃度の硝酸413gに43.8gの硝酸ビスマス〔Bi(NO33・5H2O〕、9.20gの硝酸セリウム〔Ce(NO33・6H2O〕、243.5gの硝酸鉄〔Fe(NO33・9H2O〕、352.2gの硝酸ニッケル〔Ni(NO32・6H2O〕、77.5gの硝酸マグネシウム〔Mg(NO32・6H2O〕、5.38gの硝酸カリウム〔KNO3〕を溶解させて得られた液を、上記第2の混合液に加えて水性原料混合物(原料スラリー)を得た。次に、乾燥器上部中央に設置された皿型回転子を備えた噴霧装置を用い、入口温度約250℃、出口温度約140℃の条件で上記水性原料混合物の噴霧乾燥を行った。次いで、乾燥した触媒前駆体に電気炉を用いて、空気雰囲気下、320℃で2時間の前焼成を施した後、空気雰囲気下、590℃で2時間の本焼成を施して、最終的に820gの触媒を得た。 766.7 g of an aqueous silica sol containing 30% by mass of SiO 2 having an average particle diameter of 12 nm of silica primary particles, and 566.5 g of an aqueous silica sol containing 40.6% by mass of SiO 2 having an average particle diameter of 41 nm of silica primary particles. A first mixed solution was obtained by mixing. Next, a solution obtained by dissolving 451.4 g of ammonium paramolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] in 903 g of water is added to the first mixed solution to obtain a second mixed solution. It was. Next, 43.8 g of bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O] and 9.20 g of cerium nitrate [Ce (NO 3 ) 3 .6H 2 O] are added to 413 g of nitric acid having a concentration of 16.6% by mass. 243.5 g of iron nitrate [Fe (NO 3 ) 3 .9H 2 O], 352.2 g of nickel nitrate [Ni (NO 3 ) 2 .6H 2 O], 77.5 g of magnesium nitrate [Mg (NO 3 ) 2 · 6H 2 O], a solution obtained by dissolving 5.38 g of potassium nitrate [KNO 3 ] was added to the second mixed solution to obtain an aqueous raw material mixture (raw material slurry). Next, the above aqueous raw material mixture was spray-dried under conditions of an inlet temperature of about 250 ° C. and an outlet temperature of about 140 ° C. using a spray device equipped with a dish-shaped rotor installed in the upper center of the dryer. Next, the dried catalyst precursor was pre-fired at 320 ° C. for 2 hours in an air atmosphere using an electric furnace, and then finally fired at 590 ° C. for 2 hours in an air atmosphere. 820 g of catalyst was obtained.

得られた触媒の一部を取り出し細孔分布を測定したところ、細孔直径1〜200nmの細孔の占める細孔容積が0.206cc、細孔直径8nm以下の細孔の占める細孔容積が0.009cc/gとなり、全細孔容積に対する細孔直径80nm以下の細孔の積算容積(細孔率)は4.4%となった。また、触媒の形状は中実球であり、平均粒径は69μm、見掛比重は0.96g/ccという結果が得られた。次に、この触媒50gを用いて、接触時間Θ=3.9(sec・g/cc)でプロピレンのアンモ酸化反応を行った。反応開始から24時間後のプロピレンの転化率は99.4%となり、アクリロニトリル選択率は82.8%、アクリロニトリル収率は82.3%となった。
また、上記触媒50gについてACC法に準じて耐摩耗性強度を測定したところ、摩耗損失(%)は0.8%であった。
触媒組成と焼成温度を表1に、反応結果及び物性測定結果を表2に示す。
When a part of the obtained catalyst was taken out and the pore distribution was measured, the pore volume occupied by pores having a pore diameter of 1 to 200 nm was 0.206 cc, and the pore volume occupied by pores having a pore diameter of 8 nm or less was It was 0.009 cc / g, and the cumulative volume (pore ratio) of pores having a pore diameter of 80 nm or less with respect to the total pore volume was 4.4%. Further, the catalyst was a solid sphere, the average particle diameter was 69 μm, and the apparent specific gravity was 0.96 g / cc. Next, 50 g of this catalyst was used to carry out an ammoxidation reaction of propylene with a contact time Θ = 3.9 (sec · g / cc). After 24 hours from the start of the reaction, the propylene conversion was 99.4%, the acrylonitrile selectivity was 82.8%, and the acrylonitrile yield was 82.3%.
Further, when the wear resistance strength of the catalyst 50 g was measured according to the ACC method, the wear loss (%) was 0.8%.
The catalyst composition and calcination temperature are shown in Table 1, and the reaction results and physical property measurement results are shown in Table 2.

(比較例5)
金属組成がMo11.5Bi1.94Ce0.34Fe1.32Ni5.27Mg1.320.2(α=0.40、β=0.30、γ=−0.49)で表される金属酸化物を46質量%のシリカ担体に担持した触媒を下記のようにして調製した。
(Comparative Example 5)
46% by mass of a metal oxide having a metal composition of Mo 11.5 Bi 1.94 Ce 0.34 Fe 1.32 Ni 5.27 Mg 1.32 K 0.2 (α = 0.40, β = 0.30, γ = −0.49) A catalyst supported on a carrier was prepared as follows.

シリカ一次粒子の平均粒子直径が12nmのSiO2を30質量%含む水性シリカゾル766.7gと、シリカ一次粒子の平均粒子直径が41nmのSiO2を40.6質量%含む水性シリカゾル566.5gとを混合して第1の混合液を得た。次に、水810gに405.2gのパラモリブデン酸アンモニウム〔(NH46Mo724・4H2O〕を溶解させた液を上記第1の混合液に加え第2の混合液を得た。次いで、16.6質量%濃度の硝酸394.5gに189.5の硝酸ビスマス〔Bi(NO33・5H2O〕、29.3gの硝酸セリウム〔Ce(NO33・6H2O〕、107.5gの硝酸鉄〔Fe(NO33・9H2O〕、309.9gの硝酸ニッケル〔Ni(NO32・6H2O〕、68.4gの硝酸マグネシウム〔Mg(NO32・6H2O〕、4.03gの硝酸カリウム〔KNO3〕を溶解させて得られた液を、上記第2の混合液に加えて水性原料混合物(原料スラリー)を得た。次に、乾燥器上部中央に設置された皿型回転子を備えた噴霧装置を用い、入口温度約250℃、出口温度約140℃の条件で上記水性原料混合物の噴霧乾燥を行った。次いで、乾燥した触媒前駆体に電気炉を用いて、空気雰囲気下、320℃で2時間の前焼成を施した後、空気雰囲気下、600℃で2時間の本焼成を施して最終的に807gの触媒を得た。 766.7 g of an aqueous silica sol containing 30% by mass of SiO 2 having an average particle diameter of 12 nm of silica primary particles, and 566.5 g of an aqueous silica sol containing 40.6% by mass of SiO 2 having an average particle diameter of 41 nm of silica primary particles. A first mixed solution was obtained by mixing. Next, a solution in which 405.2 g of ammonium paramolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] is dissolved in 810 g of water is added to the first mixed solution to obtain a second mixed solution. It was. Next, 399.5 g of nitric acid with a concentration of 16.6% by mass was added to 189.5 bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O] and 29.3 g of cerium nitrate [Ce (NO 3 ) 3 .6H 2 O 107.5 g of iron nitrate [Fe (NO 3 ) 3 .9H 2 O], 309.9 g of nickel nitrate [Ni (NO 3 ) 2 .6H 2 O], 68.4 g of magnesium nitrate [Mg (NO 3) 2 · 6H 2 O], a solution obtained by dissolving potassium nitrate [KNO 3] of 4.03 g, was obtained aqueous raw material mixture (slurry) was added to the second mixture. Next, the above aqueous raw material mixture was spray-dried under conditions of an inlet temperature of about 250 ° C. and an outlet temperature of about 140 ° C. using a spray device equipped with a dish-shaped rotor installed in the upper center of the dryer. Next, the dried catalyst precursor was pre-baked at 320 ° C. for 2 hours in an air atmosphere using an electric furnace, and then subjected to main baking at 600 ° C. for 2 hours in an air atmosphere to finally obtain 807 g. The catalyst was obtained.

得られた触媒の一部を取り出し細孔分布を測定したところ、細孔直径1〜200nmの細孔の占める細孔容積が0.217cc、細孔直径8nm以下の細孔の占める細孔容積が0.012cc/gとなり、全細孔容積に対する細孔直径80nm以下の細孔の積算容積(細孔率)は5.5%となった。また、触媒の形状は中実球であり、平均粒径は64μm、見掛比重は0.97g/ccという結果が得られた。次に、この触媒50gを用いて、接触時間Θ=4.3(sec・g/cc)でプロピレンのアンモ酸化反応を行った。反応開始から24時間後のプロピレンの転化率は99.0%となり、アクリロニトリル選択率は83.3%、アクリロニトリル収率は82.5%となった。
また、上記触媒50gについてACC法に準じて耐摩耗性強度を測定したところ、摩耗損失(%)は0.7%であった。
触媒組成と焼成温度を表1に、反応結果及び物性測定結果を表2に示す。
When a part of the obtained catalyst was taken out and the pore distribution was measured, the pore volume occupied by pores having a pore diameter of 1 to 200 nm was 0.217 cc, and the pore volume occupied by pores having a pore diameter of 8 nm or less was The integrated volume (pore ratio) of pores having a pore diameter of 80 nm or less with respect to the total pore volume was 5.5%. The catalyst was a solid sphere, the average particle size was 64 μm, and the apparent specific gravity was 0.97 g / cc. Next, 50 g of this catalyst was used to carry out ammoxidation reaction of propylene with a contact time Θ = 4.3 (sec · g / cc). After 24 hours from the start of the reaction, the propylene conversion was 99.0%, the acrylonitrile selectivity was 83.3%, and the acrylonitrile yield was 82.5%.
Further, when the wear resistance strength of the catalyst 50g was measured according to the ACC method, the wear loss (%) was 0.7%.
The catalyst composition and calcination temperature are shown in Table 1, and the reaction results and physical property measurement results are shown in Table 2.

(比較例6)
金属組成がMo13.6Bi0.03Ce0.05Fe1.32Ni9.9Cs0.04(α=0.01、β=0.2、γ=1.6)で表される金属酸化物を50質量%のシリカ担体に担持した触媒を下記のようにして調製した。
(Comparative Example 6)
A metal oxide represented by Mo 13.6 Bi 0.03 Ce 0.05 Fe 1.32 Ni 9.9 Cs 0.04 (α = 0.01, β = 0.2, γ = 1.6) is supported on a 50% by mass silica support. The prepared catalyst was prepared as follows.

シリカ一次粒子の平均粒子直径が12nmのSiO2を30質量%含む水性シリカゾル1667gを準備した。次に、水856gに428.2gのパラモリブデン酸アンモニウム〔(NH46Mo724・4H2O〕を溶解させた液を上記水性シリカゾルに加え混合液を得た。次いで、16.6質量%濃度の硝酸408gに2.62gの硝酸ビスマス〔Bi(NO33・5H2O〕、3.85gの硝酸セリウム〔Ce(NO33・6H2O〕、96.08gの硝酸鉄〔Fe(NO33・9H2O〕、520.3gの硝酸ニッケル〔Ni(NO32・6H2O〕、1.395gの硝酸セシウム〔CsNO3〕を溶解させて得られた液を、上記混合液に加えて水性原料混合物(原料スラリー)を得た。次に、乾燥器上部中央に設置された皿型回転子を備えた噴霧装置を用い、入口温度約250℃、出口温度約140℃の条件で上記水性原料混合物の噴霧乾燥を行った。次いで、乾燥した触媒前駆体に電気炉を用いて、空気雰囲気下、320℃で2時間の前焼成を施した後、空気雰囲気下、600℃で2時間の本焼成を施して、最終的に788gの触媒を得た。 1667 g of an aqueous silica sol containing 30% by mass of SiO 2 having an average particle diameter of 12 nm of silica primary particles was prepared. Next, a solution obtained by dissolving 428.2 g of ammonium paramolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] in 856 g of water was added to the aqueous silica sol to obtain a mixed solution. Next, 2.62 g of bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O] and 3.85 g of cerium nitrate [Ce (NO 3 ) 3 .6H 2 O] are added to 408 g of nitric acid having a concentration of 16.6% by mass. Dissolves 96.08 g of iron nitrate [Fe (NO 3 ) 3 · 9H 2 O], 520.3 g of nickel nitrate [Ni (NO 3 ) 2 · 6H 2 O], 1.395 g of cesium nitrate [CsNO 3 ] The obtained liquid was added to the above mixed liquid to obtain an aqueous raw material mixture (raw material slurry). Next, the above aqueous raw material mixture was spray-dried under conditions of an inlet temperature of about 250 ° C. and an outlet temperature of about 140 ° C. using a spray device equipped with a dish-shaped rotor installed in the upper center of the dryer. Next, the dried catalyst precursor was pre-fired at 320 ° C. for 2 hours in an air atmosphere using an electric furnace, and then finally fired at 600 ° C. for 2 hours in an air atmosphere. 788 g of catalyst was obtained.

得られた触媒の一部を取り出し細孔分布を測定したところ、細孔直径1〜200nmの細孔の占める細孔容積が0.197cc、細孔直径8nm以下の細孔の占める細孔容積が0.061cc/gとなり、全細孔容積に対する細孔直径80nm以下の細孔の積算容積(細孔率)は31.0%となった。また、触媒の形状は中実球であり、平均粒径は63μm、見掛比重は1.01g/ccという結果が得られた。次に、この触媒50gを用いて、接触時間Θ=3.5(sec・g/cc)でプロピレンのアンモ酸化反応を行った。反応開始から24時間後のプロピレンの転化率は99.2%となり、アクリロニトリル選択率は45.4%、アクリロニトリル収率は45.0%となった。
また、上記触媒50gについてACC法に準じて耐摩耗性強度を測定したところ、摩耗損失(%)は0.2%であった。
触媒組成と焼成温度を表1に、反応結果及び物性測定結果を表2に示す。
When a part of the obtained catalyst was taken out and the pore distribution was measured, the pore volume occupied by pores having a pore diameter of 1 to 200 nm was 0.197 cc, and the pore volume occupied by pores having a pore diameter of 8 nm or less was The integrated volume (pore ratio) of pores having a pore diameter of 80 nm or less with respect to the total pore volume was 31.0%. Further, the catalyst was a solid sphere, the average particle size was 63 μm, and the apparent specific gravity was 1.01 g / cc. Next, 50 g of this catalyst was used to carry out ammoxidation of propylene with a contact time Θ = 3.5 (sec · g / cc). After 24 hours from the start of the reaction, the propylene conversion was 99.2%, the acrylonitrile selectivity was 45.4%, and the acrylonitrile yield was 45.0%.
Further, when the wear resistance strength of the catalyst 50g was measured according to the ACC method, the wear loss (%) was 0.2%.
The catalyst composition and calcination temperature are shown in Table 1, and the reaction results and physical property measurement results are shown in Table 2.

(実施例9)
金属組成がMo12Bi0.33Ce0.22Fe1.95Ni6.2Mg2.5Sb0.3Rb0.15(α=0.07、β=0.34、γ=−0.75)で表される金属酸化物を50質量%のシリカ担体に担持した触媒を下記のようにして調製した。
Example 9
50% by mass of a metal oxide having a metal composition represented by Mo 12 Bi 0.33 Ce 0.22 Fe 1.95 Ni 6.2 Mg 2.5 Sb 0.3 Rb 0.15 (α = 0.07, β = 0.34, γ = −0.75) A catalyst supported on a silica support was prepared as follows.

シリカ一次粒子の平均粒子直径が41nmのSiO2を40.6質量%含む水性シリカゾル1232gを準備した。次に、水815gに407.6gのパラモリブデン酸アンモニウム〔(NH46Mo724・4H2O〕を溶解させた液を上記水性シリカゾルに加え混合液を得た。次いで、16.6質量%濃度の硝酸427.6gに31.1gの硝酸ビスマス〔Bi(NO33・5H2O〕、18.3gの硝酸セリウム〔Ce(NO33・6H2O〕、153.1gの硝酸鉄〔Fe(NO33・9H2O〕、351.4gの硝酸ニッケル〔Ni(NO32・6H2O〕、124.9gの硝酸マグネシウム〔Mg(NO32・6H2O〕、4.23gの硝酸ルビジウム〔RbNO3〕を溶解させて得られた液を上記混合液に加え、さらにそこに、8.52gの三酸化アンチモン〔Sb23〕を175gの20質量%酒石酸水溶液に溶解した液を最後に加えて水性原料混合物(原料スラリー)を得た(第1の工程)。乾燥器上部中央に設置された皿型回転子を備えた噴霧装置を用い、入口温度約250℃、出口温度約140℃の条件で上記水性原料混合物の噴霧乾燥を行った(第2の工程)。次いで、乾燥した触媒前駆体に電気炉を用いて、空気雰囲気下、320℃で2時間の前焼成を施した後、空気雰囲気下、655℃で2時間の本焼成を施して(第3の工程)、最終的に801gの触媒を得た。 1232 g of an aqueous silica sol containing 40.6% by mass of SiO 2 having an average particle diameter of silica primary particles of 41 nm was prepared. Next, a solution obtained by dissolving 407.6 g of ammonium paramolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] in 815 g of water was added to the aqueous silica sol to obtain a mixed solution. Next, 42. 6 g of nitric acid having a concentration of 16.6% by mass was added to 31.1 g of bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O] and 18.3 g of cerium nitrate [Ce (NO 3 ) 3 .6H 2 O. 153.1 g of iron nitrate [Fe (NO 3 ) 3 .9H 2 O], 351.4 g of nickel nitrate [Ni (NO 3 ) 2 .6H 2 O], 124.9 g of magnesium nitrate [Mg (NO 3) 2 · 6H 2 O], a solution obtained by dissolving a nitrate rubidium 4.23g [RbNO 3] was added to the mixed solution, there further trioxide antimony 8.52g [Sb 2 O 3 ] Was finally added to obtain 175 g of a 20% by mass aqueous solution of tartaric acid to obtain an aqueous raw material mixture (raw material slurry) (first step). Using the spray device equipped with a dish-shaped rotor installed in the upper center of the dryer, the aqueous raw material mixture was spray-dried under conditions of an inlet temperature of about 250 ° C. and an outlet temperature of about 140 ° C. (second step) . The dried catalyst precursor was then pre-baked at 320 ° C. for 2 hours in an air atmosphere using an electric furnace, and then subjected to main baking at 655 ° C. for 2 hours in an air atmosphere (third Step) and finally 801 g of catalyst was obtained.

得られた触媒の一部を取り出し細孔分布を測定したところ、細孔直径1〜200nmの細孔の占める細孔容積が0.209cc、細孔直径8nm以下の細孔の占める細孔容積が0.006cc/gとなり、全細孔容積に対する細孔直径80nm以下の細孔の積算容積(細孔率)は2.9%となった。また、触媒の形状は中実球であり、平均粒径は62μm、見掛比重は0.90g/ccという結果が得られた。次に、この触媒50gを用いて、接触時間Θ=4.3(sec・g/cc)でプロピレンのアンモ酸化反応を行った。反応開始から24時間後のプロピレンの転化率は99.2%となり、アクリロニトリル選択率は85.3%、アクリロニトリル収率は84.6%となった。
また、上記触媒50gについてACC法に準じて耐摩耗性強度を測定したところ、摩耗損失(%)は1.6%であった。
触媒組成と焼成温度を表3に、反応結果及び物性測定結果を表4に示す。
When a part of the obtained catalyst was taken out and the pore distribution was measured, the pore volume occupied by pores having a pore diameter of 1 to 200 nm was 0.209 cc, and the pore volume occupied by pores having a pore diameter of 8 nm or less was The integrated volume (pore ratio) of pores having a pore diameter of 80 nm or less with respect to the total pore volume was 2.9%. The catalyst was a solid sphere, the average particle size was 62 μm, and the apparent specific gravity was 0.90 g / cc. Next, 50 g of this catalyst was used to carry out ammoxidation reaction of propylene with a contact time Θ = 4.3 (sec · g / cc). After 24 hours from the start of the reaction, the propylene conversion was 99.2%, the acrylonitrile selectivity was 85.3%, and the acrylonitrile yield was 84.6%.
Further, when the wear resistance strength of the catalyst 50g was measured according to the ACC method, the wear loss (%) was 1.6%.
The catalyst composition and calcination temperature are shown in Table 3, and the reaction results and physical property measurement results are shown in Table 4.

(実施例10)
金属組成がMo12Bi0.22Ce0.15Fe1.4Ni7Mg2.8Sb0.3Rb0.15(α=0.05、β=0.21、γ=−0.76)で表される金属酸化物を50質量%のシリカ担体に担持した触媒を下記のようにして調製した。
(Example 10)
50% by mass of a metal oxide whose metal composition is represented by Mo 12 Bi 0.22 Ce 0.15 Fe 1.4 Ni 7 Mg 2.8 Sb 0.3 Rb 0.15 (α = 0.05, β = 0.21, γ = −0.76) A catalyst supported on a silica support was prepared as follows.

シリカ一次粒子の平均粒子直径が41nmのSiO2を40.6質量%含む水性シリカゾル1232gを準備した。次に、水818gに409.0gのパラモリブデン酸アンモニウム〔(NH46Mo724・4H2O〕を溶解させた液を上記水性シリカゾルに加え混合液を得た。次いで、16.6質量%濃度の硝酸429gに20.8gの硝酸ビスマス〔Bi(NO33・5H2O〕、12.5gの硝酸セリウム〔Ce(NO33・6H2O〕、110.3gの硝酸鉄〔Fe(NO33・9H2O〕、398.2gの硝酸ニッケル〔Ni(NO32・6H2O〕、140.4gの硝酸マグネシウム〔Mg(NO32・6H2O〕、4.25gの硝酸ルビジウム〔RbNO3〕を溶解させて得られた液を上記混合液に加え、さらにそこに、8.55gの三酸化アンチモン〔Sb23〕を176gの20質量%酒石酸水溶液に溶解した液を最後に加えて水性原料混合物(原料スラリー)を得た(第1の工程)。乾燥器上部中央に設置された皿型回転子を備えた噴霧装置を用い、入口温度約250℃、出口温度約140℃の条件で上記水性原料混合物の噴霧乾燥を行った(第2の工程)。次いで、乾燥した触媒前駆体に電気炉を用いて、空気雰囲気下、320℃で2時間の前焼成を施した後、空気雰囲気下、670℃で2時間の本焼成を施して(第3の工程)、最終的に821gの触媒を得た。 1232 g of an aqueous silica sol containing 40.6% by mass of SiO 2 having an average particle diameter of silica primary particles of 41 nm was prepared. Next, a solution in which 409.0 g of ammonium paramolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] was dissolved in 818 g of water was added to the aqueous silica sol to obtain a mixed solution. Subsequently, 20.8 g of bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O] and 12.5 g of cerium nitrate [Ce (NO 3 ) 3 .6H 2 O] in 429 g of nitric acid having a concentration of 16.6% by mass, 110.3 g of iron nitrate [Fe (NO 3 ) 3 .9H 2 O], 398.2 g of nickel nitrate [Ni (NO 3 ) 2 .6H 2 O], 140.4 g of magnesium nitrate [Mg (NO 3 ) 2 · 6H 2 O], a solution obtained by dissolving a nitrate rubidium 4.25g [RbNO 3] was added to the mixed solution, there further trioxide antimony 8.55g [Sb 2 O 3] Finally, a solution dissolved in 176 g of a 20 mass% tartaric acid aqueous solution was added to obtain an aqueous raw material mixture (raw material slurry) (first step). Using the spray device equipped with a dish-shaped rotor installed in the upper center of the dryer, the aqueous raw material mixture was spray-dried under conditions of an inlet temperature of about 250 ° C. and an outlet temperature of about 140 ° C. (second step) . Next, the dried catalyst precursor was pre-baked at 320 ° C. for 2 hours in an air atmosphere using an electric furnace, and then subjected to main baking at 670 ° C. for 2 hours in an air atmosphere (third Step) and finally 821 g of catalyst was obtained.

得られた触媒の一部を取り出し細孔分布を測定したところ、細孔直径1〜200nmの細孔の占める細孔容積が0.222cc、細孔直径8nm以下の細孔の占める細孔容積が0.007cc/gとなり、全細孔容積に対する細孔直径80nm以下の細孔の積算容積(細孔率)は3.2%となった。また、触媒の形状は中実球であり、平均粒径は65μm、見掛比重は0.91g/ccという結果が得られた。次に、この触媒50gを用いて、接触時間Θ=4.2(sec・g/cc)でプロピレンのアンモ酸化反応を行った。反応開始から24時間後のプロピレンの転化率は99.2%となり、アクリロニトリル選択率は85.7%、アクリロニトリル収率は85.0%となった。
また、上記触媒50gについてACC法に準じて耐摩耗性強度を測定したところ、摩耗損失(%)は0.5%であった。
触媒組成と焼成温度を表3に、反応結果及び物性測定結果を表4に示す。
When a part of the obtained catalyst was taken out and the pore distribution was measured, the pore volume occupied by pores having a pore diameter of 1 to 200 nm was 0.222 cc, and the pore volume occupied by pores having a pore diameter of 8 nm or less was The integrated volume (pore ratio) of pores having a pore diameter of 80 nm or less with respect to the total pore volume was 3.2%. Further, the shape of the catalyst was a solid sphere, the average particle size was 65 μm, and the apparent specific gravity was 0.91 g / cc. Next, 50 g of this catalyst was used to carry out ammoxidation of propylene with a contact time Θ = 4.2 (sec · g / cc). After 24 hours from the start of the reaction, the propylene conversion was 99.2%, the acrylonitrile selectivity was 85.7%, and the acrylonitrile yield was 85.0%.
Further, when the wear resistance strength of the catalyst 50g was measured according to the ACC method, the wear loss (%) was 0.5%.
The catalyst composition and calcination temperature are shown in Table 3, and the reaction results and physical property measurement results are shown in Table 4.

(実施例11)
金属組成がMo12Bi0.3Ce0.27Fe1.7Ni6.5Mg2.60.3Rb0.1(α=0.07、β=0.28、γ=−0.81)で表される金属酸化物を40質量%のシリカ担体に担持した触媒を下記のようにして調製した。
Example 11
40% by mass of a metal oxide having a metal composition represented by Mo 12 Bi 0.3 Ce 0.27 Fe 1.7 Ni 6.5 Mg 2.6 P 0.3 Rb 0.1 (α = 0.07, β = 0.28, γ = −0.81) A catalyst supported on a silica support was prepared as follows.

シリカ一次粒子の平均粒子直径が41nmのSiO2を40.6質量%含む水性シリカゾル985.2gに7.99gのリン酸を滴下して第1の混合液を得た。次いで、水985gに492.7gのパラモリブデン酸アンモニウム〔(NH46Mo724・4H2O〕を溶解させた液を上記第1の混合液に加え第2の混合液を得た。さらに、16.6質量%濃度の硝酸416gに34.2gの硝酸ビスマス〔Bi(NO33・5H2O〕、27.1gの硝酸セリウム〔Ce(NO33・6H2O〕、161.3gの硝酸鉄〔Fe(NO33・9H2O〕、445.4gの硝酸ニッケル〔Ni(NO32・6H2O〕、157gの硝酸マグネシウム〔Mg(NO32・6H2O〕、3.41gの硝酸ルビジウム〔RbNO3〕を溶解させて得られた液を上記第2の混合液に加えて水性原料混合物(原料スラリー)を得た(第1の工程)。乾燥器上部中央に設置された皿型回転子を備えた噴霧装置を用い、入口温度約250℃、出口温度約140℃の条件で上記水性原料混合物の噴霧乾燥を行った(第2の工程)。次いで、乾燥した触媒前駆体に電気炉を用いて、空気雰囲気下、320℃で2時間の前焼成を施した後、空気雰囲気下、620℃で2時間の本焼成を施して(第3の工程)、最終的に797gの触媒を得た。 7.99 g of phosphoric acid was added dropwise to 985.2 g of an aqueous silica sol containing 40.6% by mass of SiO 2 having an average particle diameter of 41 nm of silica primary particles to obtain a first mixed solution. Next, a solution in which 492.7 g of ammonium paramolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] was dissolved in 985 g of water was added to the first mixture to obtain a second mixture. . Further, 416 g of nitric acid having a concentration of 16.6% by mass includes 34.2 g of bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O], 27.1 g of cerium nitrate [Ce (NO 3 ) 3 .6H 2 O], 161.3 g of iron nitrate [Fe (NO 3 ) 3 .9H 2 O], 445.4 g of nickel nitrate [Ni (NO 3 ) 2 .6H 2 O], 157 g of magnesium nitrate [Mg (NO 3 ) 2. 6H 2 O], a solution obtained by dissolving 3.41 g of rubidium nitrate [RbNO 3 ] was added to the second mixed solution to obtain an aqueous raw material mixture (raw material slurry) (first step). Using the spray device equipped with a dish-shaped rotor installed in the upper center of the dryer, the aqueous raw material mixture was spray-dried under conditions of an inlet temperature of about 250 ° C. and an outlet temperature of about 140 ° C. (second step) . Next, the dried catalyst precursor was pre-baked at 320 ° C. for 2 hours in an air atmosphere using an electric furnace, and then subjected to main baking at 620 ° C. for 2 hours in an air atmosphere (third Step) and finally 797 g of catalyst were obtained.

得られた触媒の一部を取り出し細孔分布を測定したところ、細孔直径1〜200nmの細孔の占める細孔容積が0.213cc、細孔直径8nm以下の細孔の占める細孔容積が0.005cc/gとなり、全細孔容積に対する細孔直径80nm以下の細孔の積算容積(細孔率)は2.3%となった。また、触媒の形状は中実球であり、平均粒径は60μm、見掛比重は1.01g/ccという結果が得られた。次に、この触媒50gを用いて、接触時間Θ=3.9(sec・g/cc)でプロピレンのアンモ酸化反応を行った。反応開始から24時間後のプロピレンの転化率は99.2%となり、アクリロニトリル選択率は85.5%、アクリロニトリル収率は84.8%となった。
また、上記触媒50gについてACC法に準じて耐摩耗性強度を測定したところ、摩耗損失(%)は1.8%であった。
触媒組成と焼成温度を表3に、反応結果及び物性測定結果を表4に示す。
When a part of the obtained catalyst was taken out and the pore distribution was measured, the pore volume occupied by pores having a pore diameter of 1 to 200 nm was 0.213 cc, and the pore volume occupied by pores having a pore diameter of 8 nm or less was It was 0.005 cc / g, and the cumulative volume (pore ratio) of pores having a pore diameter of 80 nm or less with respect to the total pore volume was 2.3%. Further, the catalyst was a solid sphere, the average particle size was 60 μm, and the apparent specific gravity was 1.01 g / cc. Next, 50 g of this catalyst was used to carry out an ammoxidation reaction of propylene with a contact time Θ = 3.9 (sec · g / cc). After 24 hours from the start of the reaction, propylene conversion was 99.2%, acrylonitrile selectivity was 85.5%, and acrylonitrile yield was 84.8%.
Further, when the wear resistance strength of the catalyst 50 g was measured according to the ACC method, the wear loss (%) was 1.8%.
The catalyst composition and calcination temperature are shown in Table 3, and the reaction results and physical property measurement results are shown in Table 4.

(実施例12)
金属組成がMo12.4Bi0.24Ce0.16Fe1.52Ni3.9Co2.6Mg2.65Rb0.15(α=0.05、β=0.25、γ=0.37)で表される金属酸化物を40質量%のシリカ担体に担持した触媒を下記のようにして調製した。
Example 12
40% by mass of a metal oxide having a metal composition represented by Mo 12.4 Bi 0.24 Ce 0.16 Fe 1.52 Ni 3.9 Co 2.6 Mg 2.65 Rb 0.15 (α = 0.05, β = 0.25, γ = 0.37) A catalyst supported on a silica support was prepared as follows.

シリカ一次粒子の平均粒子直径が12nmのSiO2を30質量%含む水性シリカゾル666.7gと、シリカ一次粒子の平均粒子直径が41nmのSiO2を40.6質量%含む水性シリカゾル492.6gとを混合して第1の混合液を得た。次に、水1019gに509.7gのパラモリブデン酸アンモニウム〔(NH46Mo724・4H2O〕を溶解させた液を上記第1の混合液に加え第2の混合液を得た。さらに、16.6質量%濃度の硝酸418gに27.4gの硝酸ビスマス〔Bi(NO33・5H2O〕、16.1gの硝酸セリウム〔Ce(NO33・6H2O〕、144.4gの硝酸鉄〔Fe(NO33・9H2O〕、267.6gの硝酸ニッケル〔Ni(NO32・6H2O〕、178.5gの硝酸コバルト〔Co(NO32・6H2O〕、160.2gの硝酸マグネシウム〔Mg(NO32・6H2O〕、5.12gの硝酸ルビジウム〔RbNO3〕を溶解させて得られた液を、上記第2の混合液に加えて水性原料混合物(原料スラリー)を得た(第1の工程)。次に、乾燥器上部中央に設置された皿型回転子を備えた噴霧装置を用い、入口温度約250℃、出口温度約140℃の条件で上記水性原料混合物の噴霧乾燥を行った(第2の工程)。次いで、乾燥した触媒前駆体に電気炉を用いて、空気雰囲気下、320℃で2時間の前焼成を施した後、空気雰囲気下、590℃で2時間の本焼成を施して(第3の工程)、最終的に791gの触媒を得た。 666.7 g of an aqueous silica sol containing 30% by mass of SiO 2 having an average particle diameter of 12 nm of silica primary particles and 492.6 g of an aqueous silica sol containing 40.6% by mass of SiO 2 having an average particle diameter of 41 nm of silica primary particles. A first mixed solution was obtained by mixing. Next, a solution in which 509.7 g of ammonium paramolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] is dissolved in 1019 g of water is added to the first mixed solution to obtain a second mixed solution. It was. Furthermore, 27.4 g of bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O] and 16.1 g of cerium nitrate [Ce (NO 3 ) 3 .6H 2 O] are added to 418 g of nitric acid having a concentration of 16.6% by mass. 144.4 g of iron nitrate [Fe (NO 3 ) 3 .9H 2 O], 267.6 g of nickel nitrate [Ni (NO 3 ) 2 .6H 2 O], 178.5 g of cobalt nitrate [Co (NO 3 ) 2 · 6H 2 O], 160.2 g of magnesium nitrate [Mg (NO 3 ) 2 · 6H 2 O], and 5.12 g of rubidium nitrate [RbNO 3 ] were dissolved in the second solution. In addition to the mixed solution, an aqueous raw material mixture (raw material slurry) was obtained (first step). Next, the aqueous raw material mixture was spray-dried under conditions of an inlet temperature of about 250 ° C. and an outlet temperature of about 140 ° C. using a spray device equipped with a dish-shaped rotor installed in the upper center of the dryer (second). Process). Next, the dried catalyst precursor was pre-baked at 320 ° C. for 2 hours in an air atmosphere using an electric furnace, and then subjected to main baking at 590 ° C. for 2 hours in an air atmosphere (third Step), finally 791 g of catalyst was obtained.

得られた触媒の一部を取り出し細孔分布を測定したところ、細孔直径1〜200nmの細孔の占める細孔容積が0.199cc、細孔直径8nm以下の細孔の占める細孔容積が0.007cc/gとなり、全細孔容積に対する細孔直径80nm以下の細孔の積算容積(細孔率)は3.5%となった。また、触媒の形状は中実球であり、平均粒径は60μm、見掛比重は1.00g/ccという結果が得られた。次に、この触媒50gを用いて、接触時間Θ=4.8(sec・g/cc)でプロピレンのアンモ酸化反応を行った。反応開始から24時間後のプロピレンの転化率は99.1%となり、アクリロニトリル選択率は85.2%、アクリロニトリル収率は84.4%となった。
また、上記触媒50gについてACC法に準じて耐摩耗性強度を測定したところ、摩耗損失(%)は1.0%であった。
触媒組成と焼成温度を表3に、反応結果及び物性測定結果を表4に示す。
When a part of the obtained catalyst was taken out and the pore distribution was measured, the pore volume occupied by pores having a pore diameter of 1 to 200 nm was 0.199 cc, and the pore volume occupied by pores having a pore diameter of 8 nm or less was It was 0.007 cc / g, and the cumulative volume (pore ratio) of pores having a pore diameter of 80 nm or less with respect to the total pore volume was 3.5%. Further, the shape of the catalyst was a solid sphere, the average particle size was 60 μm, and the apparent specific gravity was 1.00 g / cc. Next, 50 g of this catalyst was used to carry out ammoxidation of propylene with a contact time Θ = 4.8 (sec · g / cc). After 24 hours from the start of the reaction, the propylene conversion was 99.1%, the acrylonitrile selectivity was 85.2%, and the acrylonitrile yield was 84.4%.
Further, when the wear resistance strength of the catalyst 50g was measured according to the ACC method, the wear loss (%) was 1.0%.
The catalyst composition and calcination temperature are shown in Table 3, and the reaction results and physical property measurement results are shown in Table 4.

(実施例13)
金属組成がMo12.5Bi0.22Ce0.09Fe1.82Ni6.17Mg1.64Zn1.0Rb0.13(α=0.04、β=0.31、γ=0.50)で表される金属酸化物を45質量%のシリカ担体に担持した触媒を下記のようにして調製した。
(Example 13)
45% by mass of a metal oxide having a metal composition of Mo 12.5 Bi 0.22 Ce 0.09 Fe 1.82 Ni 6.17 Mg 1.64 Zn 1.0 Rb 0.13 (α = 0.04, β = 0.31, γ = 0.50) A catalyst supported on a silica support was prepared as follows.

シリカ一次粒子の平均粒子直径が12nmのSiO2を30質量%含む水性シリカゾル1500gを準備した。次に、水929gに464.6gのパラモリブデン酸アンモニウム〔(NH46Mo724・4H2O〕を溶解させた液を上記水性シリカゾルに加えて混合液を得た。さらに、16.6質量%濃度の硝酸413gに22.7gの硝酸ビスマス〔Bi(NO33・5H2O〕、8.18gの硝酸セリウム〔Ce(NO33・6H2O〕、156.4gの硝酸鉄〔Fe(NO33・9H2O〕、382.7gの硝酸ニッケル〔Ni(NO32・6H2O〕、89.7gの硝酸マグネシウム〔Mg(NO32・6H2O〕、62.8gの硝酸亜鉛〔Zn(NO32・6H2O〕、4.01gの硝酸ルビジウム〔RbNO3〕を溶解させて得られた液を、上記混合液に加えて水性原料混合物(原料スラリー)を得た(第1の工程)。次に、乾燥器上部中央に設置された皿型回転子を備えた噴霧装置を用い、入口温度約250℃、出口温度約140℃の条件で上記水性原料混合物の噴霧乾燥を行った(第2の工程)。次いで、乾燥した触媒前駆体に電気炉を用いて、空気雰囲気下、320℃で2時間の前焼成を施した後、空気雰囲気下、600℃で2時間の本焼成を施して(第3の工程)、最終的に814gの触媒を得た。 1500 g of an aqueous silica sol containing 30% by mass of SiO 2 having an average particle diameter of silica primary particles of 12 nm was prepared. Next, a solution in which 464.6 g of ammonium paramolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] was dissolved in 929 g of water was added to the aqueous silica sol to obtain a mixed solution. Further, 2413 g of bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O] and 8.18 g of cerium nitrate [Ce (NO 3 ) 3 .6H 2 O] are added to 413 g of nitric acid having a concentration of 16.6% by mass. 156.4 g of iron nitrate [Fe (NO 3 ) 3 .9H 2 O], 382.7 g of nickel nitrate [Ni (NO 3 ) 2 .6H 2 O], 89.7 g of magnesium nitrate [Mg (NO 3 ) 2 · 6H 2 O], 62.8 g of zinc nitrate [Zn (NO 3 ) 2 · 6H 2 O] and 4.01 g of rubidium nitrate [RbNO 3 ] were dissolved in the above mixture. In addition, an aqueous raw material mixture (raw material slurry) was obtained (first step). Next, the aqueous raw material mixture was spray-dried under conditions of an inlet temperature of about 250 ° C. and an outlet temperature of about 140 ° C. using a spray device equipped with a dish-shaped rotor installed in the upper center of the dryer (second). Process). Next, the dried catalyst precursor was pre-baked at 320 ° C. for 2 hours in an air atmosphere using an electric furnace, and then subjected to main baking at 600 ° C. for 2 hours in an air atmosphere (third Step), finally 814 g of catalyst was obtained.

得られた触媒の一部を取り出し細孔分布を測定したところ、細孔直径1〜200nmの細孔の占める細孔容積が0.206cc、細孔直径8nm以下の細孔の占める細孔容積が0.051cc/gとなり、全細孔容積に対する細孔直径80nm以下の細孔の積算容積(細孔率)は24.8%となった。また、触媒の形状は中実球であり、平均粒径は61μm、見掛比重は0.99g/ccという結果が得られた。次に、この触媒50gを用いて、接触時間Θ=4.2(sec・g/cc)でプロピレンのアンモ酸化反応を行った。反応開始から24時間後のプロピレンの転化率は99.2%となり、アクリロニトリル選択率は84.7%、アクリロニトリル収率は84.0%となった。
また、上記触媒50gについてACC法に準じて耐摩耗性強度を測定したところ、摩耗損失(%)は0.2%であった。
触媒組成と焼成温度を表3に、反応結果及び物性測定結果を表4に示す。
When a part of the obtained catalyst was taken out and the pore distribution was measured, the pore volume occupied by pores having a pore diameter of 1 to 200 nm was 0.206 cc, and the pore volume occupied by pores having a pore diameter of 8 nm or less was The integrated volume (pore ratio) of pores having a pore diameter of 80 nm or less with respect to the total pore volume was 24.8%. Further, the catalyst was a solid sphere, the average particle size was 61 μm, and the apparent specific gravity was 0.99 g / cc. Next, 50 g of this catalyst was used to carry out ammoxidation of propylene with a contact time Θ = 4.2 (sec · g / cc). After 24 hours from the start of the reaction, the propylene conversion was 99.2%, the acrylonitrile selectivity was 84.7%, and the acrylonitrile yield was 84.0%.
Further, when the wear resistance strength of the catalyst 50g was measured according to the ACC method, the wear loss (%) was 0.2%.
The catalyst composition and calcination temperature are shown in Table 3, and the reaction results and physical property measurement results are shown in Table 4.

(比較例7)
金属組成がMo12Bi0.45Ce0.9Fe1.80Ni5Mg2Sb0.5Rb0.15(α=0.21、β=0.39、γ=−0.23)で表される金属酸化物を40質量%のシリカ担体に担持した触媒を下記のようにして調製した。
(Comparative Example 7)
40% by mass of a metal oxide whose metal composition is represented by Mo 12 Bi 0.45 Ce 0.9 Fe 1.80 Ni 5 Mg 2 Sb 0.5 Rb 0.15 (α = 0.21, β = 0.39, γ = −0.23) A catalyst supported on a silica support was prepared as follows.

シリカ一次粒子の平均粒子直径が12nmのSiO2を30質量%含む水性シリカゾル666.7gと、シリカ一次粒子の平均粒子直径が41nmのSiO2を40.6質量%含む水性シリカゾル492.6gとを混合して第1の混合液を得た。次に、水961gに480.4gのパラモリブデン酸アンモニウム〔(NH46Mo724・4H2O〕を溶解させた液を上記第1の混合液に加えて第2の混合液を得た。次いで、16.6質量%濃度の硝酸442.7gに50.0gの硝酸ビスマス〔Bi(NO33・5H2O〕、88.1gの硝酸セリウム〔Ce(NO33・6H2O〕、166.6gの硝酸鉄〔Fe(NO33・9H2O〕、334.1gの硝酸ニッケル〔Ni(NO32・6H2O〕、117.8gの硝酸マグネシウム〔Mg(NO32・6H2O〕、4.99gの硝酸カリウム〔KNO3〕を溶解させて得られた液を、上記第2の混合液に加え、さらにそこに、16.74gの三酸化アンチモン〔Sb23〕を344.2gの20質量%酒石酸水溶液に溶解した液を最後に加えて水性原料混合物(原料スラリー)を得た。次に、乾燥器上部中央に設置された皿型回転子を備えた噴霧装置を用い、入口温度約250℃、出口温度約140℃の条件で上記水性原料混合物の噴霧乾燥を行った。次いで、乾燥した触媒前駆体に電気炉を用いて、空気雰囲気下、320℃で2時間の前焼成を施した後、空気雰囲気下、615℃で2時間の本焼成を施して、最終的に793gの触媒を得た。 666.7 g of an aqueous silica sol containing 30% by mass of SiO 2 having an average particle diameter of 12 nm of silica primary particles and 492.6 g of an aqueous silica sol containing 40.6% by mass of SiO 2 having an average particle diameter of 41 nm of silica primary particles. A first mixed solution was obtained by mixing. Next, a solution obtained by dissolving 480.4 g of ammonium paramolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] in 961 g of water is added to the first mixed solution, and the second mixed solution is added. Obtained. Subsequently, 50.0 g of bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O] and 88.1 g of cerium nitrate [Ce (NO 3 ) 3 .6H 2 O are added to 442.7 g of nitric acid having a concentration of 16.6% by mass. 166.6 g of iron nitrate [Fe (NO 3 ) 3 .9H 2 O], 334.1 g of nickel nitrate [Ni (NO 3 ) 2 .6H 2 O], 117.8 g of magnesium nitrate [Mg (NO 3) 2 · 6H 2 O], a solution obtained by dissolving potassium nitrate [KNO 3] of 4.99 g, was added to the second mixture, there further antimony trioxide 16.74g [Sb 2 O 3 ] dissolved in 344.2 g of a 20% by mass tartaric acid aqueous solution was finally added to obtain an aqueous raw material mixture (raw material slurry). Next, the above aqueous raw material mixture was spray-dried under conditions of an inlet temperature of about 250 ° C. and an outlet temperature of about 140 ° C. using a spray device equipped with a dish-shaped rotor installed in the upper center of the dryer. Next, the dried catalyst precursor was pre-fired at 320 ° C. for 2 hours in an air atmosphere using an electric furnace, and then finally fired at 615 ° C. for 2 hours in an air atmosphere. 793 g of catalyst was obtained.

得られた触媒の一部を取り出し細孔分布を測定したところ、細孔直径1〜200nmの細孔の占める細孔容積が0.210cc、細孔直径8nm以下の細孔の占める細孔容積が0.006cc/gとなり、全細孔容積に対する細孔直径80nm以下の細孔の積算容積(細孔率)は2.9%となった。また、触媒の形状は中実球であり、平均粒径は56μm、見掛比重は0.98g/ccという結果が得られた。次に、この触媒50gを用いて、接触時間4.9(sec・g/cc)でプロピレンのアンモ酸化反応を行った。反応開始から24時間後のプロピレンの転化率は99.2%となり、アクリロニトリル選択率は82.2%、アクリロニトリル収率は81.5%となった。
また、上記触媒50gについてACC法に準じて耐摩耗性強度を測定したところ、摩耗損失(%)は0.9%であった。
触媒組成と焼成温度を表3に、反応結果及び物性測定結果を表4に示す。
When a part of the obtained catalyst was taken out and the pore distribution was measured, the pore volume occupied by pores having a pore diameter of 1 to 200 nm was 0.210 cc, and the pore volume occupied by pores having a pore diameter of 8 nm or less was The integrated volume (pore ratio) of pores having a pore diameter of 80 nm or less with respect to the total pore volume was 2.9%. Further, the catalyst was a solid sphere, the average particle size was 56 μm, and the apparent specific gravity was 0.98 g / cc. Next, 50 g of this catalyst was used to carry out ammoxidation of propylene with a contact time of 4.9 (sec · g / cc). After 24 hours from the start of the reaction, the propylene conversion was 99.2%, the acrylonitrile selectivity was 82.2%, and the acrylonitrile yield was 81.5%.
Further, when the wear resistance strength of the catalyst 50 g was measured according to the ACC method, the wear loss (%) was 0.9%.
The catalyst composition and calcination temperature are shown in Table 3, and the reaction results and physical property measurement results are shown in Table 4.

(比較例8)
金属組成がMo12Bi0.4Ce0.26Fe2.1Ni6Mg2.40.3Rb0.1(α=0.09、β=0.38、γ=−0.84)で表される金属酸化物を40質量%のシリカ担体に担持した触媒を下記のようにして調製した。
(Comparative Example 8)
40% by mass of a metal oxide whose metal composition is represented by Mo 12 Bi 0.4 Ce 0.26 Fe 2.1 Ni 6 Mg 2.4 P 0.3 Rb 0.1 (α = 0.09, β = 0.38, γ = −0.84) A catalyst supported on a silica support was prepared as follows.

シリカ一次粒子の平均粒子直径が41nmのSiO2を40.6質量%含む水性シリカゾル985.2gに7.96gのリン酸を滴下して混合液を得た。次いで、水982gに491.2gのパラモリブデン酸アンモニウム〔(NH46Mo724・4H2O〕を溶解させた液を上記混合液に加え、さらにそこに、16.6質量%濃度の硝酸416gに45.4gの硝酸ビスマス〔Bi(NO33・5H2O〕、26.0gの硝酸セリウム〔Ce(NO33・6H2O〕、198.7gの硝酸鉄〔Fe(NO33・9H2O〕、409.9gの硝酸ニッケル〔Ni(NO32・6H2O〕、144.5gの硝酸マグネシウム〔Mg(NO32・6H2O〕、3.40gの硝酸ルビジウム〔RbNO3〕を溶解させて得られた液を加えて水性原料混合物(原料スラリー)を得た。次に、乾燥器上部中央に設置された皿型回転子を備えた噴霧装置を用い、入口温度約250℃、出口温度約140℃の条件で上記水性原料混合物の噴霧乾燥を行った。次いで、乾燥した触媒前駆体に電気炉を用いて、空気雰囲気下、320℃で2時間の前焼成を施した後、空気雰囲気下、580℃で2時間の本焼成を施して、最終的に804gの触媒を得た。 7.96 g of phosphoric acid was added dropwise to 985.2 g of an aqueous silica sol containing 40.6% by mass of SiO 2 having an average particle diameter of 41 nm of silica primary particles to obtain a mixed solution. Next, a solution in which 491.2 g of ammonium paramolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] was dissolved in 982 g of water was added to the above mixture, and further, 16.6% by mass concentration was added thereto. 45.4 g of bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O], 26.0 g of cerium nitrate [Ce (NO 3 ) 3 .6H 2 O], 198.7 g of iron nitrate [Fe (NO 3 ) 3 · 9H 2 O], 409.9 g of nickel nitrate [Ni (NO 3 ) 2 · 6H 2 O], 144.5 g of magnesium nitrate [Mg (NO 3 ) 2 · 6H 2 O], 3 A liquid obtained by dissolving 40 g of rubidium nitrate [RbNO 3 ] was added to obtain an aqueous raw material mixture (raw material slurry). Next, the above aqueous raw material mixture was spray-dried under conditions of an inlet temperature of about 250 ° C. and an outlet temperature of about 140 ° C. using a spray device equipped with a dish-shaped rotor installed in the upper center of the dryer. Next, the dried catalyst precursor was pre-fired at 320 ° C. for 2 hours in an air atmosphere using an electric furnace, and then finally fired at 580 ° C. for 2 hours in an air atmosphere. 804 g of catalyst was obtained.

得られた触媒の一部を取り出し細孔分布を測定したところ、細孔直径1〜200nmの細孔の占める細孔容積が0.221cc、細孔直径8nm以下の細孔の占める細孔容積が0.004cc/gとなり、全細孔容積に対する細孔直径80nm以下の細孔の積算容積(細孔率)は1.8%となった。また、触媒の形状は中実球であり、平均粒径は60μm、見掛比重は1.00g/ccという結果が得られた。次に、この触媒50gを用いて、接触時間Θ=3.6(sec・g/cc)でプロピレンのアンモ酸化反応を行った。反応開始から24時間後のプロピレンの転化率は99.3%となり、アクリロニトリル選択率は82.1%、アクリロニトリル収率は81.5%となった。
また、上記触媒50gについてACC法に準じて耐摩耗性強度を測定したところ、摩耗損失(%)は3.7%であって、工業使用に適用可能な強度は示さなかった。
触媒組成と焼成温度を表3に、反応結果及び物性測定結果を表4に示す。
When a part of the obtained catalyst was taken out and the pore distribution was measured, the pore volume occupied by pores having a pore diameter of 1 to 200 nm was 0.221 cc, and the pore volume occupied by pores having a pore diameter of 8 nm or less was The integrated volume (pore ratio) of pores having a pore diameter of 80 nm or less with respect to the total pore volume was 1.8%. Further, the shape of the catalyst was a solid sphere, the average particle size was 60 μm, and the apparent specific gravity was 1.00 g / cc. Next, 50 g of this catalyst was used to carry out ammoxidation of propylene with a contact time Θ = 3.6 (sec · g / cc). After 24 hours from the start of the reaction, the propylene conversion was 99.3%, the acrylonitrile selectivity was 82.1%, and the acrylonitrile yield was 81.5%.
Further, when 50 g of the catalyst was measured for wear resistance strength according to the ACC method, the wear loss (%) was 3.7%, and the strength applicable to industrial use was not shown.
The catalyst composition and calcination temperature are shown in Table 3, and the reaction results and physical property measurement results are shown in Table 4.

(実施例14)
金属組成がMo12Bi0.22Ce0.15Fe1.2Ni7Mg2.8Rb0.12(α=0.05、β=0.18、γ=−0.16)で表される金属酸化物を35質量%のシリカ担体に担持した触媒を下記のようにして調製した。
(Example 14)
35% by mass of a metal oxide having a metal composition represented by Mo 12 Bi 0.22 Ce 0.15 Fe 1.2 Ni 7 Mg 2.8 Rb 0.12 (α = 0.05, β = 0.18, γ = −0.16) A catalyst supported on a carrier was prepared as follows.

シリカ一次粒子の平均粒子直径が41nmのSiO2を40.6質量%含む水性シリカゾル862.1gを準備した。次に、水1089gに544.7gのパラモリブデン酸アンモニウム〔(NH46Mo724・4H2O〕を溶解させた液を上記水性シリカゾルに加えて混合液を得た。次いで、16.6質量%濃度の硝酸421.4gに27.7gの硝酸ビスマス〔Bi(NO33・5H2O〕、16.6gの硝酸セリウム〔Ce(NO33・6H2O〕、125.9gの硝酸鉄〔Fe(NO33・9H2O〕、530.4gの硝酸ニッケル〔Ni(NO32・6H2O〕、187.0gの硝酸マグネシウム〔Mg(NO32・6H2O〕、4.52gの硝酸ルビジウム〔RbNO3〕を溶解させて得られた液を、上記混合液に加えて水性原料混合物(原料スラリー)を得た(第1の工程)。次に、乾燥器上部中央に設置された皿型回転子を備えた噴霧装置を用い、入口温度約250℃、出口温度約140℃の条件で上記水性原料混合物の噴霧乾燥を行った(第2の工程)。次いで、乾燥した触媒前駆体に電気炉を用いて、空気雰囲気下、320℃で2時間の前焼成を施した後、空気雰囲気下、640℃で2時間の本焼成を施して(第3の工程)、最終的に811gの触媒を得た。 862.1 g of an aqueous silica sol containing 40.6% by mass of SiO 2 having an average particle diameter of silica primary particles of 41 nm was prepared. Next, a solution obtained by dissolving 544.7 g of ammonium paramolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] in 1089 g of water was added to the aqueous silica sol to obtain a mixed solution. Next, 27.7 g of bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O] and 16.6 g of cerium nitrate [Ce (NO 3 ) 3 .6H 2 O are added to 421.4 g of nitric acid having a concentration of 16.6% by mass. 125.9 g of iron nitrate [Fe (NO 3 ) 3 .9H 2 O], 530.4 g of nickel nitrate [Ni (NO 3 ) 2 .6H 2 O], 187.0 g of magnesium nitrate [Mg (NO 3) 2 · 6H 2 O], rubidium nitrate [RbNO 3] dissolved in the resulting solution of 4.52 g, was obtained aqueous raw material mixture (slurry) was added to the mixed solution (first step ). Next, the aqueous raw material mixture was spray-dried under conditions of an inlet temperature of about 250 ° C. and an outlet temperature of about 140 ° C. using a spray device equipped with a dish-shaped rotor installed in the upper center of the dryer (second). Process). The dried catalyst precursor was then pre-baked at 320 ° C. for 2 hours in an air atmosphere using an electric furnace, and then subjected to main baking at 640 ° C. for 2 hours in an air atmosphere (third Step) and finally 811 g of catalyst was obtained.

得られた触媒の一部を取り出し細孔分布を測定したところ、細孔直径1〜200nmの細孔の占める細孔容積が0.229cc、細孔直径8nm以下の細孔の占める細孔容積が0.005cc/gとなり、全細孔容積に対する細孔直径80nm以下の細孔の積算容積(細孔率)は2.2%となった。また、触媒の形状は中実球であり、平均粒径は66μm、見掛比重は1.02g/ccという結果が得られた。次に、この触媒50gを用いて、接触時間Θ=4.9(sec・g/cc)でプロピレンのアンモ酸化反応を行った。反応開始から24時間後のプロピレンの転化率は99.2%となり、アクリロニトリル選択率は86.9%、アクリロニトリル収率は86.2%となった。
また、上記触媒50gについてACC法に準じて耐摩耗性強度を測定したところ、摩耗損失(%)は1.7%であった。
触媒組成と焼成温度を表3に、反応結果及び物性測定結果を表4に示す。
When a part of the obtained catalyst was taken out and the pore distribution was measured, the pore volume occupied by pores having a pore diameter of 1 to 200 nm was 0.229 cc, and the pore volume occupied by pores having a pore diameter of 8 nm or less was It was 0.005 cc / g, and the cumulative volume (pore ratio) of pores having a pore diameter of 80 nm or less with respect to the total pore volume was 2.2%. The catalyst was a solid sphere, the average particle size was 66 μm, and the apparent specific gravity was 1.02 g / cc. Next, 50 g of this catalyst was used to carry out ammoxidation of propylene with a contact time Θ = 4.9 (sec · g / cc). After 24 hours from the start of the reaction, the propylene conversion was 99.2%, the acrylonitrile selectivity was 86.9%, and the acrylonitrile yield was 86.2%.
Further, when the wear resistance strength of the catalyst 50 g was measured according to the ACC method, the wear loss (%) was 1.7%.
The catalyst composition and calcination temperature are shown in Table 3, and the reaction results and physical property measurement results are shown in Table 4.

(実施例15)
金属組成がMo12.2Bi0.24Ce0.16Fe1.52Ni6.5Mg2.60.19(α=0.05、β=0.25、γ=0.22)で表される金属酸化物を65質量%のシリカ担体に担持した触媒を下記のようにして調製した。
(Example 15)
Silica support having a metal composition of Mo 12.2 Bi 0.24 Ce 0.16 Fe 1.52 Ni 6.5 Mg 2.6 K 0.19 (α = 0.05, β = 0.25, γ = 0.22) and 65% by mass The catalyst supported on was prepared as follows.

シリカ一次粒子の平均粒子直径が12nmのSiO2を30質量%含む水性シリカゾル1083gと、シリカ一次粒子の平均粒子直径が41nmのSiO2を40.6質量%含む水性シリカゾル800.5gとを混合して第1の混合液を得た。次に、水593gに296.7gのパラモリブデン酸アンモニウム〔(NH46Mo724・4H2O〕を溶解させた液を上記第1の混合液に加えて第2の混合液を得た。次いで、16.6質量%濃度の硝酸402.5gに16.2gの硝酸ビスマス〔Bi(NO33・5H2O〕、9.51gの硝酸セリウム〔Ce(NO33・6H2O〕、85.4gの硝酸鉄〔Fe(NO33・9H2O〕、263.8gの硝酸ニッケル〔Ni(NO32・6H2O〕、93.01gの硝酸マグネシウム〔Mg(NO32・6H2O〕、2.64gの硝酸カリウム〔KNO3〕を溶解させて得られた液を、上記第2の混合液に加えて水性原料混合物(原料スラリー)を得た(第1の工程)。次に、乾燥器上部中央に設置された皿型回転子を備えた噴霧装置を用い、入口温度約250℃、出口温度約140℃の条件で上記水性原料混合物の噴霧乾燥を行った(第2の工程)。次いで、乾燥した触媒前駆体に電気炉を用いて、空気雰囲気下、320℃で2時間の前焼成を施した後、空気雰囲気下、590℃で2時間の本焼成を施して(第3の工程)、最終的に788gの触媒を得た。 1083 g of an aqueous silica sol containing 30% by mass of SiO 2 having an average particle diameter of 12 nm of silica primary particles and 800.5 g of an aqueous silica sol containing 40.6% by mass of SiO 2 having an average particle diameter of 41 nm of silica primary particles were mixed. Thus, a first mixed solution was obtained. Next, a solution obtained by dissolving 296.7 g of ammonium paramolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] in 593 g of water is added to the first mixed solution, and the second mixed solution is added. Obtained. Next, 402.5 g of nitric acid having a concentration of 16.6% by mass is mixed with 16.2 g of bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O] and 9.51 g of cerium nitrate [Ce (NO 3 ) 3 .6H 2 O 85.4 g of iron nitrate [Fe (NO 3 ) 3 .9H 2 O], 263.8 g of nickel nitrate [Ni (NO 3 ) 2 .6H 2 O], 93.01 g of magnesium nitrate [Mg (NO 3) 2 · 6H 2 O], potassium nitrate [KNO 3] solution obtained by dissolving the 2.64 g, was obtained aqueous raw material mixture (slurry) was added to the second mixture (first Process). Next, the aqueous raw material mixture was spray-dried under conditions of an inlet temperature of about 250 ° C. and an outlet temperature of about 140 ° C. using a spray device equipped with a dish-shaped rotor installed in the upper center of the dryer (second). Process). Next, the dried catalyst precursor was pre-baked at 320 ° C. for 2 hours in an air atmosphere using an electric furnace, and then subjected to main baking at 590 ° C. for 2 hours in an air atmosphere (third Step), and finally 788 g of catalyst was obtained.

得られた触媒の一部を取り出し細孔分布を測定したところ、細孔直径1〜200nmの細孔の占める細孔容積が0.219cc、細孔直径8nm以下の細孔の占める細孔容積が0.008cc/gとなり、全細孔容積に対する細孔直径80nm以下の細孔の積算容積(細孔率)は3.7%となった。また、触媒の形状は中実球であり、平均粒径は59μm、見掛比重は1.04g/ccという結果が得られた。次に、この触媒50gを用いて、接触時間Θ=4.1(sec・g/cc)でプロピレンのアンモ酸化反応を行った。反応開始から24時間後のプロピレンの転化率は99.4%となり、アクリロニトリル選択率は86.9%、アクリロニトリル収率は86.4%となった。
また、上記触媒50gについてACC法に準じて耐摩耗性強度を測定したところ、摩耗損失(%)は0.4%であった。
触媒組成と焼成温度を表3に、反応結果及び物性測定結果を表4に示す。
When a part of the obtained catalyst was taken out and the pore distribution was measured, the pore volume occupied by pores having a pore diameter of 1 to 200 nm was 0.219 cc, and the pore volume occupied by pores having a pore diameter of 8 nm or less was It was 0.008 cc / g, and the cumulative volume (pore ratio) of pores having a pore diameter of 80 nm or less with respect to the total pore volume was 3.7%. Further, the catalyst was a solid sphere, the average particle size was 59 μm, and the apparent specific gravity was 1.04 g / cc. Next, 50 g of this catalyst was used to carry out ammoxidation of propylene with a contact time Θ = 4.1 (sec · g / cc). After 24 hours from the start of the reaction, the propylene conversion was 99.4%, the acrylonitrile selectivity was 86.9%, and the acrylonitrile yield was 86.4%.
Further, when the wear resistance strength of the catalyst 50g was measured according to the ACC method, the wear loss (%) was 0.4%.
The catalyst composition and calcination temperature are shown in Table 3, and the reaction results and physical property measurement results are shown in Table 4.

(比較例9)
金属組成がMo11.2Bi0.35Ce0.35Fe0.15Ni8.92Mg2.240.13(α=0.09、β=0.02、γ=−1.24)で表される金属酸化物を80質量%のシリカ担体に担持した触媒を下記のようにして調製した。
(Comparative Example 9)
80% by mass of a metal oxide having a metal composition represented by Mo 11.2 Bi 0.35 Ce 0.35 Fe 0.15 Ni 8.92 Mg 2.24 K 0.13 (α = 0.09, β = 0.02, γ = −1.24) A catalyst supported on a carrier was prepared as follows.

シリカ一次粒子の平均粒子直径が12nmのSiO2を30質量%含む水性シリカゾル2667gを準備した。次に、水315gに157.7gのパラモリブデン酸アンモニウム〔(NH46Mo724・4H2O〕を溶解させた液を上記水性シリカゾルに加えて混合液を得た。次いで、16.6質量%濃度の硝酸391gに13.66gの硝酸ビスマス〔Bi(NO33・5H2O〕、12.05gの硝酸セリウム〔Ce(NO33・6H2O〕、4.88gの硝酸鉄〔Fe(NO33・9H2O〕、209.6gの硝酸ニッケル〔Ni(NO32・6H2O〕、46.39gの硝酸マグネシウム〔Mg(NO32・6H2O〕、1.05gの硝酸カリウム〔KNO3〕を溶解させて得られた液を、上記混合液に加えて水性原料混合物(原料スラリー)を得た。次に、乾燥器上部中央に設置された皿型回転子を備えた噴霧装置を用い、入口温度約250℃、出口温度約140℃の条件で上記水性原料混合物の噴霧乾燥を行った。次いで、乾燥した触媒前駆体に電気炉を用いて、空気雰囲気下、320℃で2時間の前焼成を施した後、空気雰囲気下、600℃で2時間の本焼成を施して、最終的に781gの触媒を得た。
この触媒の形状は中実球のもの、穴があいたもの、球体表面所々に窪みがあり歪な形状をしたものが混ざった粉体であることが確認された。また、この触媒の平均粒径を測定したところ60μmであったが、見掛比重が0.83g/ccと低い結果となった。
次に、この触媒50gを用いてプロピレンのアンモ酸化反応を行おうと試みたが、接触時間Θ=6(sec・g/cc)にしても全く反応が進まないため中止した。なお、細孔分布測定は行わなかった。
触媒組成と焼成温度を表3に、物性測定結果を表4に示す。
2667 g of an aqueous silica sol containing 30% by mass of SiO 2 having an average particle diameter of silica primary particles of 12 nm was prepared. Next, a solution obtained by dissolving 157.7 g of ammonium paramolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] in 315 g of water was added to the aqueous silica sol to obtain a mixed solution. Next, 391 g of nitric acid having a concentration of 16.6% by mass was charged with 13.66 g of bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O], 12.05 g of cerium nitrate [Ce (NO 3 ) 3 .6H 2 O], 4.88 g of iron nitrate [Fe (NO 3 ) 3 .9H 2 O], 209.6 g of nickel nitrate [Ni (NO 3 ) 2 .6H 2 O], 46.39 g of magnesium nitrate [Mg (NO 3 ) 2 · 6H 2 O], a solution obtained by dissolving potassium nitrate [KNO 3] of 1.05 g, was obtained aqueous raw material mixture (slurry) was added to the above mixture. Next, the above aqueous raw material mixture was spray-dried under conditions of an inlet temperature of about 250 ° C. and an outlet temperature of about 140 ° C. using a spray device equipped with a dish-shaped rotor installed in the upper center of the dryer. Next, the dried catalyst precursor was pre-fired at 320 ° C. for 2 hours in an air atmosphere using an electric furnace, and then finally fired at 600 ° C. for 2 hours in an air atmosphere. 781 g of catalyst was obtained.
It was confirmed that the catalyst was a solid sphere, a hole, or a powder having a distorted shape with depressions on the surface of the sphere. Further, when the average particle diameter of this catalyst was measured, it was 60 μm, but the apparent specific gravity was as low as 0.83 g / cc.
Next, an attempt was made to carry out an ammoxidation reaction of propylene using 50 g of this catalyst, but the reaction was stopped at all even if the contact time Θ = 6 (sec · g / cc). The pore distribution measurement was not performed.
Table 3 shows the catalyst composition and calcination temperature, and Table 4 shows the physical property measurement results.

(比較例10)
金属組成がMo11.6Bi1.85Fe2.05Ni6.150.3(α=0.30、β=0.50、γ=−0.40)で表される金属酸化物を25質量%のシリカ担体に担持した触媒を下記のようにして調製した。
(Comparative Example 10)
A metal oxide having a metal composition of Mo 11.6 Bi 1.85 Fe 2.05 Ni 6.15 K 0.3 (α = 0.30, β = 0.50, γ = −0.40) was supported on a 25% by mass silica support. The catalyst was prepared as follows.

シリカ一次粒子の平均粒子直径が12nmのSiO2を30質量%含む水性シリカゾル833.3gを準備した。次に、水1130gに565.0gのパラモリブデン酸アンモニウム〔(NH46Mo724・4H2O〕を溶解させた液を上記水性シリカゾルに加えて混合液を得た。次いで、16.6質量%濃度の硝酸401.3gに249.8gの硝酸ビスマス〔Bi(NO33・5H2O〕、230.8gの硝酸鉄〔Fe(NO33・9H2O〕、499.9gの硝酸ニッケル〔Ni(NO32・6H2O〕、8.35gの硝酸カリウム〔KNO3〕を溶解させて得られた液を、上記混合液に加えて水性原料混合物(原料スラリー)を得た。乾燥器上部中央に設置された皿型回転子を備えた噴霧装置を用い、入口温度約250℃、出口温度約140℃の条件で上記水性原料混合物の噴霧乾燥を行った。次いで、乾燥した触媒前駆体に電気炉を用いて、空気雰囲気下、320℃で2時間の前焼成を施した後、空気雰囲気下、600℃で2時間の本焼成を施して、最終的に808gの触媒を得た。この触媒の形状は中実球であり、平均粒径を測定したところ63μmであり、見掛比重は1.10g/ccという結果になった。次に、この触媒50gを用いて、接触時間Θ=4.4(sec・g/cc)でプロピレンのアンモ酸化反応を行った。反応開始から24時間後のプロピレンの転化率は99.2%となり、アクリロニトリル選択率は80.6%、アクリロニトリル収率は80.0%となった。
ただし、上記触媒50gについてACC法に準じて耐摩耗性強度を測定したところ、摩耗損失(%)は4.2%であり、工業使用に適用可能な強度は示さなかった。
触媒組成と焼成温度を表3に、反応結果及び物性測定結果を表4に示す。
833.3 g of an aqueous silica sol containing 30% by mass of SiO 2 having an average particle diameter of silica primary particles of 12 nm was prepared. Next, a solution in which 565.0 g of ammonium paramolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] was dissolved in 1130 g of water was added to the aqueous silica sol to obtain a mixed solution. Next, 249.8 g of bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O] and 230.8 g of iron nitrate [Fe (NO 3 ) 3 .9H 2 O are added to 401.3 g of nitric acid having a concentration of 16.6% by mass. ] A solution obtained by dissolving 499.9 g of nickel nitrate [Ni (NO 3 ) 2 .6H 2 O] and 8.35 g of potassium nitrate [KNO 3 ] is added to the above mixture to add an aqueous raw material mixture ( A raw slurry) was obtained. The aqueous raw material mixture was spray-dried under conditions of an inlet temperature of about 250 ° C. and an outlet temperature of about 140 ° C. using a spray device equipped with a dish-shaped rotor installed in the upper center of the dryer. Next, the dried catalyst precursor was pre-fired at 320 ° C. for 2 hours in an air atmosphere using an electric furnace, and then finally fired at 600 ° C. for 2 hours in an air atmosphere. 808 g of catalyst was obtained. The shape of the catalyst was a solid sphere, and the average particle diameter was measured to be 63 μm. The apparent specific gravity was 1.10 g / cc. Next, 50 g of this catalyst was used to carry out ammoxidation of propylene with a contact time Θ = 4.4 (sec · g / cc). After 24 hours from the start of the reaction, the propylene conversion was 99.2%, the acrylonitrile selectivity was 80.6%, and the acrylonitrile yield was 80.0%.
However, when the abrasion resistance strength of the catalyst 50g was measured according to the ACC method, the wear loss (%) was 4.2%, and the strength applicable to industrial use was not shown.
The catalyst composition and calcination temperature are shown in Table 3, and the reaction results and physical property measurement results are shown in Table 4.

Figure 2009285581
Figure 2009285581

Figure 2009285581
Figure 2009285581

Figure 2009285581
Figure 2009285581

Figure 2009285581
Figure 2009285581

本発明の流動床用アンモ酸化触媒は、プロピレン、イソブテン又は3級ブタノールに対して過剰量のアンモニアが少ない条件下で目的生成物の収率が高く、また、工業的に使用する場合においての耐摩耗性、見掛比重、粒径等の取扱性も良く、反応安定性にも優れている。本発明の触媒を用いて流動床反応器でプロピレン、イソブテン又は3級ブタノールのアンモ酸化反応を行うことにより、高収率で安定的にアクリロニトリル又はメタクリロニトリルを製造することができ、工業的に有利である。   The ammoxidation catalyst for a fluidized bed of the present invention has a high yield of the target product under conditions where the amount of ammonia is small relative to propylene, isobutene or tertiary butanol, and is resistant to industrial use. Good handleability such as wear, apparent specific gravity, particle size, etc., and excellent reaction stability. By carrying out the ammoxidation reaction of propylene, isobutene or tertiary butanol in a fluidized bed reactor using the catalyst of the present invention, acrylonitrile or methacrylonitrile can be produced stably in a high yield. It is advantageous.

Claims (6)

プロピレン、イソブテン又は3級ブタノールと、分子状酸素と、アンモニアとを反応させてアクリロニトリル又はメタクリロニトリルを製造する際に用いる触媒であって、下記一般式(1)
MoaBibCecFedefghi・・・(1)
(式(1)中、Eはニッケル及びコバルトからなる群より選ばれる少なくとも1種の元素を表し、Jはマグネシウム、亜鉛及びマンガンからなる群より選ばれる少なくとも1種の元素を表し、Gはアンチモン及びリンからなる群より選ばれる少なくとも1種の元素を表し、Lはカリウム、ルビジウム及びセシウムからなる群より選ばれる少なくとも1種の元素を表し、a、b、c、d、e、f、g及びhは、それぞれ各元素の原子比を表し、10≦a≦14、0.03≦b≦1、0.03≦c≦1、0.5≦d≦4、2≦e≦10、0≦f≦8、0≦g≦2、0.02≦h≦1であり、iは酸素以外の構成元素の原子価を満足する酸素原子の原子比を表す。)
で表される元素組成を有し、各元素の前記原子比から下記式(2)及び(3)により算出されるα及びβが0.02≦α≦0.08、0.08≦β≦0.35を同時に満たす酸化物と、その酸化物を担持した担体と、を備える流動床用アンモ酸化触媒。
α=1.5(b+c)/(1.5d+e+f)・・・(2)
β=1.5d/(e+f)・・・(3)
A catalyst used for producing acrylonitrile or methacrylonitrile by reacting propylene, isobutene or tertiary butanol, molecular oxygen, and ammonia, which is represented by the following general formula (1)
Mo a Bi b Ce c Fe d E e J f G g L h O i ··· (1)
(In the formula (1), E represents at least one element selected from the group consisting of nickel and cobalt, J represents at least one element selected from the group consisting of magnesium, zinc and manganese, and G represents antimony) And L represents at least one element selected from the group consisting of phosphorus, L represents at least one element selected from the group consisting of potassium, rubidium and cesium, and a, b, c, d, e, f, g And h each represent an atomic ratio of each element, 10 ≦ a ≦ 14, 0.03 ≦ b ≦ 1, 0.03 ≦ c ≦ 1, 0.5 ≦ d ≦ 4, 2 ≦ e ≦ 10, 0 ≦ f ≦ 8, 0 ≦ g ≦ 2, 0.02 ≦ h ≦ 1, and i represents an atomic ratio of oxygen atoms satisfying the valence of a constituent element other than oxygen.)
Α and β calculated by the following formulas (2) and (3) from the atomic ratio of each element are 0.02 ≦ α ≦ 0.08, 0.08 ≦ β ≦ A fluidized bed ammoxidation catalyst comprising: an oxide that simultaneously satisfies 0.35; and a carrier that supports the oxide.
α = 1.5 (b + c) / (1.5d + e + f) (2)
β = 1.5d / (e + f) (3)
各元素の前記原子比から下記式(4)により算出されるγが、−1≦γ≦1.5を満たす、請求項1に記載の流動床用アンモ酸化触媒。
γ=a−1.5(b+c+d)+e+f+g・・・(4)
The ammoxidation catalyst for fluidized beds according to claim 1, wherein γ calculated from the atomic ratio of each element according to the following formula (4) satisfies −1 ≦ γ ≦ 1.5.
γ = a−1.5 (b + c + d) + e + f + g (4)
前記担体がシリカを含有する、請求項1又は2に記載の流動床用アンモ酸化触媒。   The ammoxidation catalyst for fluidized beds according to claim 1 or 2, wherein the carrier contains silica. 前記担体のシリカ量が30〜70質量%である、請求項1〜3のいずれか一項に記載の流動床用アンモ酸化触媒。   The ammoxidation catalyst for fluidized beds according to any one of claims 1 to 3, wherein the amount of silica in the carrier is 30 to 70% by mass. 細孔直径1〜200nmの細孔の占める全細孔容積を基準として、細孔直径8nm以下の細孔の占める細孔容積が20%以下である、請求項1〜4のいずれか一項に記載の流動床用アンモ酸化触媒。   The pore volume occupied by pores having a pore diameter of 8 nm or less is 20% or less, based on the total pore volume occupied by pores having a pore diameter of 1 to 200 nm, according to any one of claims 1 to 4. The ammoxidation catalyst for fluidized beds as described. 請求項1〜5のいずれか一項に記載の流動床用アンモ酸化触媒を用い、プロピレン、イソブテン又は3級ブタノールと、分子状酸素と、アンモニアとを反応させてアクリロニトリル又はメタクリロニトリルを製造するアクリロニトリル又はメタクリロニトリルの製造方法。   Using the ammoxidation catalyst for fluidized bed according to any one of claims 1 to 5, acrylonitrile or methacrylonitrile is produced by reacting propylene, isobutene or tertiary butanol, molecular oxygen and ammonia. A method for producing acrylonitrile or methacrylonitrile.
JP2008141457A 2008-05-29 2008-05-29 Ammoxidation catalyst for fluidized bed and method for producing acrylonitrile or methacrylonitrile using the same Active JP5361034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008141457A JP5361034B2 (en) 2008-05-29 2008-05-29 Ammoxidation catalyst for fluidized bed and method for producing acrylonitrile or methacrylonitrile using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008141457A JP5361034B2 (en) 2008-05-29 2008-05-29 Ammoxidation catalyst for fluidized bed and method for producing acrylonitrile or methacrylonitrile using the same

Publications (2)

Publication Number Publication Date
JP2009285581A true JP2009285581A (en) 2009-12-10
JP5361034B2 JP5361034B2 (en) 2013-12-04

Family

ID=41455330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008141457A Active JP5361034B2 (en) 2008-05-29 2008-05-29 Ammoxidation catalyst for fluidized bed and method for producing acrylonitrile or methacrylonitrile using the same

Country Status (1)

Country Link
JP (1) JP5361034B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172851A (en) * 2009-01-30 2010-08-12 Asahi Kasei Chemicals Corp Catalyst for producing acrylonitrile, and method of producing acrylonitrile
WO2012144369A1 (en) * 2011-04-21 2012-10-26 旭化成ケミカルズ株式会社 Silica-loaded catalyst
JP2013527141A (en) * 2010-03-23 2013-06-27 イネオス ユーエスエイ リミテッド ライアビリティ カンパニー Highly efficient ammoxidation method and mixed metal oxide catalyst
WO2013129363A1 (en) * 2012-02-29 2013-09-06 三菱レイヨン株式会社 Method for producing acrylonitrile
US20140350282A1 (en) * 2012-11-26 2014-11-27 Ineos Usa Llc Pre calcination additives for mixed metal oxide ammoxidation catalysts
WO2017217343A1 (en) * 2016-06-14 2017-12-21 旭化成株式会社 Method for manufacturing ammoxidation catalyst and method for manufacturing acrylonitrile
WO2018211858A1 (en) * 2017-05-19 2018-11-22 旭化成株式会社 Catalyst for ammoxidation, method for producing same and method for producing acrylonitrile
WO2019187786A1 (en) * 2018-03-28 2019-10-03 旭化成株式会社 Method for producing acrylonitrile
CN113828337A (en) * 2020-06-24 2021-12-24 中国石油化工股份有限公司 Catalyst for preparing acrylonitrile by propylene ammoxidation, preparation method and application thereof
WO2024135497A1 (en) * 2022-12-20 2024-06-27 日本化薬株式会社 Catalyst, and compound production method using same
WO2024135496A1 (en) * 2022-12-20 2024-06-27 日本化薬株式会社 Catalyst and method for producing compound using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004078344A1 (en) * 2003-03-05 2004-09-16 Asahi Kasei Chemicals Corporation Particulate porous ammoxidation catalyst
JP2006061888A (en) * 2004-08-30 2006-03-09 Asahi Kasei Chemicals Corp Metal oxide catalyst, manufacturing method of the catalyst and manufacturing method of nitrile
JP3875023B2 (en) * 1998-02-13 2007-01-31 コリア リサーチ インスティチュート オブ ケミカル テクノロジイ Solid catalyst of core-shell catalyst phase and production method thereof
JP4356303B2 (en) * 2001-12-04 2009-11-04 三菱化学株式会社 Composite oxide catalyst and method for producing the same
JP4565712B2 (en) * 2000-07-27 2010-10-20 旭化成ケミカルズ株式会社 Nitrile production catalyst and nitrile production method using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3875023B2 (en) * 1998-02-13 2007-01-31 コリア リサーチ インスティチュート オブ ケミカル テクノロジイ Solid catalyst of core-shell catalyst phase and production method thereof
JP4565712B2 (en) * 2000-07-27 2010-10-20 旭化成ケミカルズ株式会社 Nitrile production catalyst and nitrile production method using the same
JP4356303B2 (en) * 2001-12-04 2009-11-04 三菱化学株式会社 Composite oxide catalyst and method for producing the same
WO2004078344A1 (en) * 2003-03-05 2004-09-16 Asahi Kasei Chemicals Corporation Particulate porous ammoxidation catalyst
JP2006061888A (en) * 2004-08-30 2006-03-09 Asahi Kasei Chemicals Corp Metal oxide catalyst, manufacturing method of the catalyst and manufacturing method of nitrile

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172851A (en) * 2009-01-30 2010-08-12 Asahi Kasei Chemicals Corp Catalyst for producing acrylonitrile, and method of producing acrylonitrile
JP2013527141A (en) * 2010-03-23 2013-06-27 イネオス ユーエスエイ リミテッド ライアビリティ カンパニー Highly efficient ammoxidation method and mixed metal oxide catalyst
WO2012144369A1 (en) * 2011-04-21 2012-10-26 旭化成ケミカルズ株式会社 Silica-loaded catalyst
JP5710749B2 (en) * 2011-04-21 2015-04-30 旭化成ケミカルズ株式会社 Silica supported catalyst
US9199921B2 (en) 2011-04-21 2015-12-01 Asahi Kasei Chemicals Corporation Silica-supported catalyst
WO2013129363A1 (en) * 2012-02-29 2013-09-06 三菱レイヨン株式会社 Method for producing acrylonitrile
US9334233B2 (en) 2012-02-29 2016-05-10 Mitsubishi Rayon Co., Ltd. Method for producing acrylonitrile
US20140350282A1 (en) * 2012-11-26 2014-11-27 Ineos Usa Llc Pre calcination additives for mixed metal oxide ammoxidation catalysts
US9295977B2 (en) * 2012-11-26 2016-03-29 Ineos Usa Llc Pre calcination additives for mixed metal oxide ammoxidation catalysts
CN109311003A (en) * 2016-06-14 2019-02-05 旭化成株式会社 The manufacturing method of ammoxydation catalyst and the manufacturing method of acrylonitrile
US11433383B2 (en) 2016-06-14 2022-09-06 Asahi Kasei Kabushiki Kaisha Method for producing ammoxidation catalyst and method for producing acrylonitrtie
TWI648103B (en) * 2016-06-14 2019-01-21 旭化成股份有限公司 Method for producing catalyst for ammonia oxidation and method for producing acrylonitrile
WO2017217343A1 (en) * 2016-06-14 2017-12-21 旭化成株式会社 Method for manufacturing ammoxidation catalyst and method for manufacturing acrylonitrile
JPWO2017217343A1 (en) * 2016-06-14 2019-03-28 旭化成株式会社 Method for producing catalyst for ammoxidation, and method for producing acrylonitrile
JPWO2018211858A1 (en) * 2017-05-19 2019-11-07 旭化成株式会社 Ammoxidation catalyst, method for producing the same, and method for producing acrylonitrile
WO2018211858A1 (en) * 2017-05-19 2018-11-22 旭化成株式会社 Catalyst for ammoxidation, method for producing same and method for producing acrylonitrile
CN110248729B (en) * 2017-05-19 2020-06-30 旭化成株式会社 Catalyst for ammoxidation, process for producing the same, and process for producing acrylonitrile
CN110248729A (en) * 2017-05-19 2019-09-17 旭化成株式会社 The manufacturing method of ammoxydation catalyst and its manufacturing method and acrylonitrile
WO2019187786A1 (en) * 2018-03-28 2019-10-03 旭化成株式会社 Method for producing acrylonitrile
JPWO2019187786A1 (en) * 2018-03-28 2021-02-12 旭化成株式会社 Method for producing acrylonitrile
US11827585B2 (en) 2018-03-28 2023-11-28 Asahi Kasei Kabushiki Kaisha Method for producing acrylonitrile
CN113828337A (en) * 2020-06-24 2021-12-24 中国石油化工股份有限公司 Catalyst for preparing acrylonitrile by propylene ammoxidation, preparation method and application thereof
CN113828337B (en) * 2020-06-24 2024-02-02 中国石油化工股份有限公司 Catalyst for preparing acrylonitrile by ammoxidation of propylene, preparation method and application thereof
WO2024135497A1 (en) * 2022-12-20 2024-06-27 日本化薬株式会社 Catalyst, and compound production method using same
WO2024135496A1 (en) * 2022-12-20 2024-06-27 日本化薬株式会社 Catalyst and method for producing compound using same

Also Published As

Publication number Publication date
JP5361034B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5491037B2 (en) Catalyst for producing acrylonitrile and method for producing acrylonitrile
JP5361034B2 (en) Ammoxidation catalyst for fluidized bed and method for producing acrylonitrile or methacrylonitrile using the same
KR102119088B1 (en) Fluidized bed ammoxidation reaction catalyst and method for producing acrylonitrile
JP6343109B2 (en) Fluidized bed ammoxidation catalyst and method for producing acrylonitrile
JP5919870B2 (en) Method for producing acrylonitrile production catalyst and method for producing acrylonitrile using the acrylonitrile production catalyst
JP5011176B2 (en) Catalyst for synthesizing acrylonitrile and method for producing acrylonitrile
JP5188005B2 (en) Metal oxide catalyst, method for producing the catalyst, and method for producing nitrile
JPWO2004078344A1 (en) Granular porous ammoxidation catalyst
JP4954750B2 (en) Method for producing molybdenum, bismuth, iron, silica-containing composite oxide catalyst
JP6722284B2 (en) Method for producing ammoxidation catalyst and method for producing acrylonitrile
TW201138963A (en) Process for preparing improved mixed metal oxide ammoxidation catalysts
JP2016120468A (en) Ammoxidation catalyst and production method therefor, and production method for acrylonitrile
JP5011167B2 (en) Catalyst for producing acrylonitrile and method for producing acrylonitrile
JPWO2016159085A1 (en) Method for producing oxide catalyst and method for producing unsaturated nitrile
JP5011178B2 (en) Method for producing catalyst for acrylonitrile synthesis and method for producing acrylonitrile
JP5210835B2 (en) Method for producing catalyst for acrylonitrile synthesis and method for producing acrylonitrile
JP2008237963A (en) Method for preparing catalyst for manufacturing acrylonitrile
JP4565712B2 (en) Nitrile production catalyst and nitrile production method using the same
JP5609285B2 (en) Method for producing composite oxide catalyst
JP4606897B2 (en) Method for producing composite oxide catalyst for fluidized bed ammoxidation process
JP2009220051A (en) Manufacturing method of catalyst for acrylonitrile synthesis, and manufacturing method of acrylonitrile
WO2024181436A1 (en) Catalyst, catalyst production method, and acrylonitrile production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Ref document number: 5361034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350