JP2009281464A - Fluid bearing device - Google Patents

Fluid bearing device Download PDF

Info

Publication number
JP2009281464A
JP2009281464A JP2008133061A JP2008133061A JP2009281464A JP 2009281464 A JP2009281464 A JP 2009281464A JP 2008133061 A JP2008133061 A JP 2008133061A JP 2008133061 A JP2008133061 A JP 2008133061A JP 2009281464 A JP2009281464 A JP 2009281464A
Authority
JP
Japan
Prior art keywords
housing
bearing sleeve
peripheral surface
bearing
shaft member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008133061A
Other languages
Japanese (ja)
Other versions
JP5133131B2 (en
Inventor
Hiromichi Kunigome
広道 國米
Takaharu Inazuka
貴開 稲塚
Isao Komori
功 古森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2008133061A priority Critical patent/JP5133131B2/en
Publication of JP2009281464A publication Critical patent/JP2009281464A/en
Application granted granted Critical
Publication of JP5133131B2 publication Critical patent/JP5133131B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance fixing strength of a bearing sleeve and a housing and improve slip-off resisting force of the bearing sleeve. <P>SOLUTION: A tapered face 7a13 having a diameter reduced on the housing opening side is provided on the inner peripheral face 7a1 of the housing 7, and the outer peripheral face 8d of the bearing sleeve 8 is formed to have a shape of a tapered face having a diameter reduced on the housing opening side. Tapered fitting of these faces is performed. When stripping force is applied to the bearing sleeve 8, since the tapered face 7a13 of the housing 7 applies downward resistance to the outer peripheral face 8d of the bearing sleeve 8, movement of the bearing sleeve 8 to the housing opening side is regulated. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ラジアル軸受隙間に生じる潤滑膜で軸部材を回転可能に支持する流体軸受装置に関する。   The present invention relates to a hydrodynamic bearing device that rotatably supports a shaft member with a lubricating film generated in a radial bearing gap.

流体軸受装置は、その高回転精度および静粛性から、情報機器(例えばHDD)の磁気ディスク駆動装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク駆動装置、若しくはMD、MO等の光磁気ディスク駆動装置等のスピンドルモータ用、レーザビームプリンタ(LBP)のポリゴンスキャナモータ用、プロジェクタのカラーホイールモータ用、又は電気機器の冷却等に使用されるファンモータなどの小型モータ用として使用されている。   Due to its high rotational accuracy and quietness, the hydrodynamic bearing device is a magnetic disk drive device for information equipment (for example, HDD), an optical disk drive device such as a CD-ROM, CD-R / RW, DVD-ROM / RAM, or MD, For spindle motors of magneto-optical disk drive devices such as MO, for polygon scanner motors of laser beam printers (LBP), for color wheel motors of projectors, or for small motors such as fan motors used for cooling of electrical equipment, etc. It is used as

例えば、特許文献1に記載されている流体軸受装置は、軸部及びフランジ部を有する軸部材と、内周に軸部材を挿入した軸受スリーブと、内周面に軸受スリーブを固定し、一端を開口すると共に他端を閉塞したハウジングと、ハウジングの開口部に固定されたシール部材とを備える。軸受スリーブの外周面とハウジングの内周面とは、圧入や接着により固定されている。   For example, a hydrodynamic bearing device described in Patent Document 1 includes a shaft member having a shaft portion and a flange portion, a bearing sleeve having the shaft member inserted into the inner periphery, a bearing sleeve fixed to the inner peripheral surface, and one end thereof A housing that is open and has the other end closed, and a seal member that is fixed to the opening of the housing. The outer peripheral surface of the bearing sleeve and the inner peripheral surface of the housing are fixed by press-fitting or bonding.

この流体軸受装置において、軸部材のフランジ部と軸受スリーブとが軸方向で係合すると、軸受スリーブにハウジング開口側への力が加わる。このとき、軸受スリーブの抜け耐力は、軸受スリーブとハウジングとの固定強度、及び、シール部材とハウジングとの固定強度に依存している。   In this fluid dynamic bearing device, when the flange portion of the shaft member and the bearing sleeve are engaged in the axial direction, a force toward the housing opening is applied to the bearing sleeve. At this time, the pull-out strength of the bearing sleeve depends on the fixing strength between the bearing sleeve and the housing and the fixing strength between the seal member and the housing.

特開2003−239974号公報JP 2003-239974 A 特開2005−155912号公報JP 2005-155912 A

例えば、HDD用のスピンドルモータに組み込まれる流体軸受装置では、HDDの高容量化に伴って、搭載されるディスクの枚数は増加する傾向にある。これにより、流体軸受装置に加わる負荷が増大し、軸部材と軸受スリーブとの軸方向の係合部に加わる衝撃荷重が大きくなっているため、軸受スリーブとハウジングとの固定強度の向上が求められている。特に、シール部材とハウジングとが固定されない流体軸受装置(例えば、特許文献2)では、シール部材で軸部材の抜け耐力を受け持つことができないため、軸受スリーブとハウジングとの固定強度の向上が必要となる。   For example, in a hydrodynamic bearing device incorporated in a spindle motor for an HDD, the number of mounted disks tends to increase as the capacity of the HDD increases. As a result, the load applied to the hydrodynamic bearing device is increased, and the impact load applied to the axial engagement portion between the shaft member and the bearing sleeve is increased, so that an improvement in the fixing strength between the bearing sleeve and the housing is required. ing. In particular, in a hydrodynamic bearing device in which the seal member and the housing are not fixed (for example, Patent Document 2), the seal member cannot handle the pull-out strength of the shaft member, so that it is necessary to improve the fixing strength between the bearing sleeve and the housing. Become.

本発明の課題は、流体軸受装置の軸受スリーブとハウジングとの固定強度を高めることにある。   An object of the present invention is to increase the fixing strength between a bearing sleeve and a housing of a hydrodynamic bearing device.

前記課題を解決するために、本発明は、軸部材と、内周に軸部材を挿入した軸受スリーブと、内周面に軸受スリーブが固定され、一端を開口すると共に他端を閉塞したハウジングと、軸部材の外周面と軸受スリーブの内周面との間のラジアル軸受隙間に生じる潤滑膜で軸部材をラジアル方向に支持するラジアル軸受部とを備えた流体軸受装置において、 ハウジングの内周面の少なくとも一部に、ハウジング開口側へ向けて縮径させたテーパ面を設けたことを特徴とする。   In order to solve the above-described problems, the present invention provides a shaft member, a bearing sleeve having a shaft member inserted into an inner periphery, a housing having a bearing sleeve fixed to an inner peripheral surface, having one end opened and the other end closed. A hydrodynamic bearing device including a radial bearing portion that supports a shaft member in a radial direction with a lubricating film generated in a radial bearing gap between an outer peripheral surface of the shaft member and an inner peripheral surface of the bearing sleeve. A taper surface having a diameter reduced toward the housing opening side is provided on at least a part of the housing.

このように、本発明の流体軸受装置では、ハウジングの内周面の少なくとも一部に、ハウジング開口側へ向けて縮径させたテーパ面を設ける。この場合、例えばテーパ面の少なくともハウジング開口側の端部で、テーパ面を軸受スリーブの外周面と密着させると、軸受スリーブをハウジングから引抜こうとする力(抜去力)が作用した際に、ハウジングのテーパ面が軸受スリーブに軸方向の抗力を付与する。この抗力で軸受スリーブのハウジング開口側への相対移動を規制して軸受スリーブの抜け耐力を高めることができる。この効果は、テーパ面を軸受スリーブの外周面と締め代をもって密着させることにより、より一層効果的に得られる。尚、「ハウジング開口側へ向けて縮径させたテーパ面」とは、図14(a),(b)に示すように、テーパ面Tp(太線部)の端部Tp1がハウジング7の開口端部7fまで達しているものに限定する意図ではなく、図14(c),(d)に示すように、テーパ面Tpの端部Tp1がハウジング7の開口端部7fまで達していないものも含む(後述のスリーブに形成されたテーパ面についても同様)。   As described above, in the hydrodynamic bearing device of the present invention, a tapered surface having a diameter reduced toward the housing opening side is provided on at least a part of the inner peripheral surface of the housing. In this case, for example, when the taper surface is brought into close contact with the outer peripheral surface of the bearing sleeve at least at the end portion of the housing opening side of the taper surface, a force (extraction force) for pulling the bearing sleeve from the housing is applied. The taper surface provides axial resistance to the bearing sleeve. With this resistance, the relative movement of the bearing sleeve toward the housing opening side can be restricted to increase the bearing sleeve's pull-out resistance. This effect can be obtained even more effectively by bringing the tapered surface into close contact with the outer peripheral surface of the bearing sleeve with a tightening margin. The “tapered surface reduced in diameter toward the housing opening side” means that the end portion Tp1 of the tapered surface Tp (thick line portion) is the opening end of the housing 7, as shown in FIGS. 14 (a) and 14 (b). It is not intended to be limited to the portion that reaches the portion 7f, and includes those in which the end portion Tp1 of the tapered surface Tp does not reach the opening end portion 7f of the housing 7, as shown in FIGS. 14 (c) and 14 (d). (The same applies to a tapered surface formed on a sleeve described later).

また、軸受スリーブの外周面形状によっては(例えば円筒面形状とする)、ハウジング内周のテーパ面と軸受スリーブの外周面との間に隙間を形成することもできる。この隙間を接着剤溜まりとして使用すれば、軸受スリーブの抜け耐力をさらに向上させることができる。   Further, depending on the outer peripheral surface shape of the bearing sleeve (for example, a cylindrical surface shape), a gap may be formed between the tapered surface on the inner periphery of the housing and the outer peripheral surface of the bearing sleeve. If this gap is used as an adhesive reservoir, it is possible to further improve the pull-out resistance of the bearing sleeve.

一方、軸受スリーブの外周面の少なくとも一部にハウジング開口側へ向けて縮径させたテーパ面を形成してもよい。この場合、テーパ面の少なくともハウジング開口側の端部で、テーパ面をハウジングの内周面と締め代をもって密着させれば、ハウジングから軸受スリーブに軸方向の抗力を付与して軸受スリーブの抜け耐力を向上させることができる。その一方で、ハウジングの内周面と軸受スリーブ外周のテーパ面との間に隙間を形成した場合には、この隙間を接着剤溜まりとして使用することもでき、接着力の強化を通じて軸受スリーブの抜け耐力を向上させることができる。   On the other hand, you may form the taper surface diameter-reduced toward the housing opening side in at least one part of the outer peripheral surface of a bearing sleeve. In this case, if the taper surface is brought into close contact with the inner peripheral surface of the housing at the end of the taper surface at the housing opening side, an axial drag is applied from the housing to the bearing sleeve, thereby allowing the bearing sleeve to pull out. Can be improved. On the other hand, when a gap is formed between the inner peripheral surface of the housing and the taper surface of the outer periphery of the bearing sleeve, this gap can also be used as an adhesive reservoir. Yield can be improved.

さらに、ハウジングの内周面に、ハウジング開口側を縮径させたテーパ面を設けると共に、軸受スリーブの外周面に、ハウジング開口側を縮径させたテーパ面を設ければ、ハウジングからの軸受スリーブの抜けを規制する方向でテーパ面同士がテーパ嵌合するので、軸受スリーブの抜け耐力を向上させることができる。両テーパ面の嵌合部分の少なくともハウジング開口側の端部で、締め代をもってテーパ面同士を密着させれば、抜け耐力をさらに高めることができる。   Further, if a tapered surface having a reduced diameter on the housing opening side is provided on the inner peripheral surface of the housing, and a tapered surface having a reduced diameter on the housing opening side is provided on the outer peripheral surface of the bearing sleeve, the bearing sleeve from the housing is provided. Since the taper surfaces are taper-fitted in a direction in which the slippage of the bearing sleeve is restricted, the slippage resistance of the bearing sleeve can be improved. If the taper surfaces are brought into close contact with each other with a tightening margin at least at the end portion on the housing opening side of the fitting portions of both the taper surfaces, it is possible to further increase the proof stress.

ところで、図15(a)に示すように、ハウジング107の内周面107aと軸受スリーブ108の内周面108aとを共に円筒面状に形成し、これらを接着剤を介在させて圧入固定する場合、以下のような問題が生じることがある。すなわち、ハウジング107の内周面107aに予め接着剤Gを塗布した状態で、ハウジング107の内周面107aの開口側から軸受スリーブ108を圧入する場合、軸受スリーブ108の一方の端面108bでハウジング107の内周面107aに塗布した接着剤Gが捕捉される。これにより、軸受スリーブ108が所定位置まで挿入されると、図15(b)に示すように、軸受スリーブ108の一方の端面108bに接着剤Gが回り込んだ状態となることがある。このように、接着剤Gが軸受スリーブ108の端面108bに回り込むと、軸受スリーブ108とハウジング107との固定面に介在する接着剤Gが減少し、これらの固定強度が低下する。また、軸受スリーブ108の端面108bが軸部材のフランジ部と対向する場合、回り込んだ接着剤Gがフランジ部と接触し、軸受の運転に支承を来たす恐れがある。   By the way, as shown in FIG. 15A, the inner peripheral surface 107a of the housing 107 and the inner peripheral surface 108a of the bearing sleeve 108 are both formed into a cylindrical surface, and these are press-fitted and fixed with an adhesive interposed therebetween. The following problems may occur. That is, when the bearing sleeve 108 is press-fitted from the opening side of the inner peripheral surface 107 a of the housing 107 with the adhesive G applied to the inner peripheral surface 107 a of the housing 107 in advance, the housing 107 The adhesive G applied to the inner peripheral surface 107a is captured. As a result, when the bearing sleeve 108 is inserted to a predetermined position, the adhesive G may wrap around one end face 108b of the bearing sleeve 108 as shown in FIG. As described above, when the adhesive G wraps around the end surface 108b of the bearing sleeve 108, the adhesive G present on the fixing surface between the bearing sleeve 108 and the housing 107 decreases, and the fixing strength thereof decreases. Further, when the end surface 108b of the bearing sleeve 108 faces the flange portion of the shaft member, the wraparound adhesive G may come into contact with the flange portion, and support for the operation of the bearing may occur.

かかる接着剤Gの回り込みは、ハウジングの内周面に、ハウジング開口側を縮径させたテーパ面を設けることによって回避することができる。この場合、ハウジングの内周面に接着剤を塗布した状態で軸受スリーブをハウジングの内周に押し進めると、軸受スリーブがテーパ面を通過する際に、ハウジング閉塞側の端部で軸受スリーブの外周面とハウジング内周のテーパ面との間の隙間が徐々に拡大するため、この隙間で接着剤を捕捉して軸受スリーブの端面への接着剤の回り込みを回避することができる。同様に、軸受スリーブの外周面にハウジング開口側を縮径させたテーパ面を形成し、軸受スリーブの外周面に接着剤を塗布した状態でハウジングの内周に圧入することによっても、接着剤Gの回り込みを防止することができる。   Such wraparound of the adhesive G can be avoided by providing a tapered surface having a diameter reduced on the housing opening side on the inner peripheral surface of the housing. In this case, when the bearing sleeve is pushed to the inner periphery of the housing with the adhesive applied to the inner peripheral surface of the housing, the outer peripheral surface of the bearing sleeve at the end of the housing closing side when the bearing sleeve passes through the tapered surface. Since the gap between the taper and the taper surface on the inner periphery of the housing gradually increases, the adhesive can be captured by this gap and the wraparound of the adhesive to the end surface of the bearing sleeve can be avoided. Similarly, the adhesive G can also be formed by forming a tapered surface in which the diameter of the housing opening is reduced on the outer peripheral surface of the bearing sleeve and press-fitting the inner periphery of the housing with an adhesive applied to the outer peripheral surface of the bearing sleeve. Can be prevented.

この流体軸受装置において、ハウジングの内周面と軸受スリーブの外周面との間に接着剤溜まりを介在させれば、両者の固定強度をさらに高めることができる。また、ハウジングの内周面に、接着剤溜まりとなる複数の溝を軸方向の複数箇所に形成し、そのうちハウジング閉塞側の溝を、軸受スリーブのハウジング閉塞側端面の近傍に設ければ、軸受スリーブをハウジングの内周に挿入する際、軸受スリーブの端面で捕捉された接着剤を環状溝で保持することができるため、接着剤の回りこみをより確実に防止できる。   In this fluid dynamic bearing device, if an adhesive reservoir is interposed between the inner peripheral surface of the housing and the outer peripheral surface of the bearing sleeve, the fixing strength of both can be further increased. Further, if a plurality of axial grooves are formed on the inner peripheral surface of the housing in the axial direction, and a groove on the housing closing side is provided near the housing closing side end surface of the bearing sleeve, the bearing When the sleeve is inserted into the inner periphery of the housing, the adhesive trapped at the end face of the bearing sleeve can be held by the annular groove, so that it is possible to prevent the adhesive from wrapping around more reliably.

軸受スリーブが軸方向方向で非対称形状に形成される場合、ハウジングに所定の方向で固定する必要がある。例えば、軸受スリーブにハウジング開口側を縮径させたテーパ面を形成する場合、テーパ面の小径側がハウジング開口側となるように固定する必要がある。しかし、軸受スリーブのテーパ面は僅かな径差で形成されることが多く、この場合肉眼でテーパ面の縮径方向を確認することは困難となる。そこで、軸受スリーブの端面に動圧発生部を形成すれば、動圧発生部を目印として軸受スリーブのハウジングへの組み付け方向を容易に確認することができる。   When the bearing sleeve is formed in an asymmetric shape in the axial direction, it must be fixed to the housing in a predetermined direction. For example, when a tapered surface is formed on the bearing sleeve by reducing the diameter of the housing opening side, it is necessary to fix the tapered surface so that the small diameter side of the tapered surface is the housing opening side. However, the taper surface of the bearing sleeve is often formed with a slight diameter difference, and in this case, it is difficult to confirm the direction of diameter reduction of the taper surface with the naked eye. Therefore, if the dynamic pressure generating portion is formed on the end surface of the bearing sleeve, the assembly direction of the bearing sleeve to the housing can be easily confirmed using the dynamic pressure generating portion as a mark.

以上のように、本発明によれば、軸受スリーブとハウジングとの固定強度を高め、軸受スリーブの抜け耐力を向上させることができる。   As described above, according to the present invention, it is possible to increase the fixing strength between the bearing sleeve and the housing, and to improve the slip-off resistance of the bearing sleeve.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施形態に係る流体軸受装置1を組み込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に支持する流体軸受装置1と、軸部材2に装着されたディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5とを備えている。ステータコイル4はブラケット6の外周に取付けられ、ロータマグネット5はディスクハブ3の内周に取付けられる。流体軸受装置1のハウジング7は、ブラケット6の内周に装着される。ディスクハブ3には、磁気ディスク等のディスクDが一又は複数枚保持される。ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間の電磁力でロータマグネット5が回転し、それによって、ディスクハブ3および軸部材2が一体となって回転する。   FIG. 1 conceptually shows a configuration example of a spindle motor for information equipment incorporating a hydrodynamic bearing device 1 according to an embodiment of the present invention. This spindle motor is used for a disk drive device such as an HDD, and has a hydrodynamic bearing device 1 that rotatably supports a shaft member 2, a disk hub 3 mounted on the shaft member 2, and a radial gap, for example. And a stator magnet 4 and a rotor magnet 5 which are opposed to each other. The stator coil 4 is attached to the outer periphery of the bracket 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The housing 7 of the hydrodynamic bearing device 1 is attached to the inner periphery of the bracket 6. The disk hub 3 holds one or more disks D such as magnetic disks. When the stator coil 4 is energized, the rotor magnet 5 is rotated by the electromagnetic force between the stator coil 4 and the rotor magnet 5, whereby the disk hub 3 and the shaft member 2 are rotated together.

図2に示す流体軸受装置1は、軸部材2と、一端を開口すると共に他端を閉塞したハウジング7と、ハウジング7の内周に固定された軸受スリーブ8と、ハウジング7の開口部をシールするシール部材9とを主要な構成部品としている。なお、以下では、説明の便宜上、ハウジング7の開口側を上側、その軸方向反対側を下側として説明を進める。   A hydrodynamic bearing device 1 shown in FIG. 2 seals a shaft member 2, a housing 7 having one end opened and the other end closed, a bearing sleeve 8 fixed to the inner periphery of the housing 7, and an opening of the housing 7. The sealing member 9 to be used is a main component. In the following description, for convenience of explanation, the description will proceed with the opening side of the housing 7 as the upper side and the opposite side in the axial direction as the lower side.

軸部材2は、例えば、ステンレス鋼等の金属材料で形成され、軸部2aと、軸部2aの下端に一体又は別体に設けられたフランジ部2bとを備えている。フランジ部2bは軸受スリーブ8の下側端面8bと軸方向で対向し、このフランジ部2bと軸受スリーブ8とが軸方向で係合することで、軸部材2の抜け止めが行われる。軸部材2は、その全体を金属材料で形成する他、例えばフランジ部2bの全体あるいはその一部(例えば両端面)を樹脂で構成し、金属と樹脂のハイブリッド構造とすることもできる。   The shaft member 2 is formed of, for example, a metal material such as stainless steel, and includes a shaft portion 2a and a flange portion 2b provided integrally or separately at the lower end of the shaft portion 2a. The flange portion 2b faces the lower end surface 8b of the bearing sleeve 8 in the axial direction. The flange portion 2b and the bearing sleeve 8 engage in the axial direction, thereby preventing the shaft member 2 from coming off. The shaft member 2 may be entirely formed of a metal material, or may be a hybrid structure of metal and resin, for example, the entire flange portion 2b or a part thereof (for example, both end surfaces) made of resin.

軸受スリーブ8は、多孔質体、例えば銅(あるいは銅及び鉄)を主成分とする焼結金属で円筒状に形成される。この他、多孔質体ではない他の金属材料、例えば黄銅等の軟質金属で軸受スリーブ8を形成することも可能である。   The bearing sleeve 8 is formed in a cylindrical shape with a porous material, for example, a sintered metal mainly composed of copper (or copper and iron). In addition, it is also possible to form the bearing sleeve 8 with another metal material that is not a porous body, for example, a soft metal such as brass.

軸受スリーブ8の内周面8aには、第1ラジアル軸受部R1と第2ラジアル軸受部R2のラジアル軸受面となる上下2つの領域(図2の黒塗り部分)が軸方向に離隔して設けられ、これらの2つの領域には、例えば図3に示すようなヘリングボーン形状の動圧溝8a1、8a2がそれぞれ形成される。上側の動圧溝8a1は、丘部(図3にクロスハッチングで示す)の軸方向中央部の帯状部分に対して軸方向非対称に形成されており、帯状部分より上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。なお、動圧溝は、軸部2aの外周面2a1に形成することもできる。   The inner peripheral surface 8a of the bearing sleeve 8 is provided with two upper and lower regions (black portions in FIG. 2) which are radial bearing surfaces of the first radial bearing portion R1 and the second radial bearing portion R2 and are separated in the axial direction. In these two regions, for example, herringbone-shaped dynamic pressure grooves 8a1 and 8a2 as shown in FIG. 3 are formed. The upper dynamic pressure groove 8a1 is formed to be axially asymmetric with respect to the belt-like portion at the central portion in the axial direction of the hill (shown by cross-hatching in FIG. 3), and the axial dimension X1 of the upper region from the belt-like portion is It is larger than the axial dimension X2 of the lower region. The dynamic pressure groove can also be formed on the outer peripheral surface 2a1 of the shaft portion 2a.

軸受スリーブ8の下側端面8bには第1スラスト軸受部T1のスラスト軸受面となる領域(図2の黒塗り部分)が設けられ、該領域には、図示は省略するが、例えばスパイラル状に配列された複数の動圧溝が形成されている。このように、軸受スリーブ8の一方に動圧溝を形成することで、軸受スリーブ8の上下を確認することができるため、組立時において軸受スリーブ8の上下を誤ってハウジング7に挿入する事態を回避することができる。   The lower end surface 8b of the bearing sleeve 8 is provided with a region (blacked portion in FIG. 2) that becomes the thrust bearing surface of the first thrust bearing portion T1, and this region is omitted in illustration, for example in a spiral shape. A plurality of arranged dynamic pressure grooves are formed. Thus, by forming the dynamic pressure groove in one of the bearing sleeves 8, it is possible to confirm the top and bottom of the bearing sleeve 8, so that the top and bottom of the bearing sleeve 8 may be erroneously inserted into the housing 7 during assembly. It can be avoided.

軸受スリーブ8の外周面8dは、上方へ向けて縮径したテーパ面状に形成される。外周面8dには、両端面8b、8cを連通させる1又は複数本の軸方向溝8d10が形成され、本実施形態で軸方向溝8d10は、円周方向の3箇所に等配されている。尚、図面では、理解し易いように、外周面8dの傾斜角を誇張して示している。   The outer peripheral surface 8d of the bearing sleeve 8 is formed in a tapered surface shape whose diameter is reduced upward. The outer peripheral surface 8d is formed with one or a plurality of axial grooves 8d10 that allow the both end surfaces 8b and 8c to communicate with each other. In the present embodiment, the axial grooves 8d10 are equally distributed at three locations in the circumferential direction. In the drawings, the inclination angle of the outer peripheral surface 8d is exaggerated for easy understanding.

ハウジング7は、円筒状の小径部7aと、小径部7aの上側に配置された円筒状の大径部7bと、小径部7aの下端開口部を封止する底部7cとで構成され、各部7a〜7cは一体に形成されている。小径部7aの内周面7a1および外周面7a4は、それぞれ、大径部7bの内周面7b1および外周面7b2に比べ小径に形成されている。小径部7aの内周面と大径部7bの内周面7b1とは、軸方向と直交する方向の平坦面状に形成された段差面7eで連続している。   The housing 7 includes a cylindrical small-diameter portion 7a, a cylindrical large-diameter portion 7b disposed above the small-diameter portion 7a, and a bottom portion 7c that seals the lower end opening of the small-diameter portion 7a. ˜7c are integrally formed. The inner peripheral surface 7a1 and the outer peripheral surface 7a4 of the small diameter portion 7a are formed with a smaller diameter than the inner peripheral surface 7b1 and the outer peripheral surface 7b2 of the large diameter portion 7b, respectively. The inner peripheral surface of the small-diameter portion 7a and the inner peripheral surface 7b1 of the large-diameter portion 7b are continuous with a step surface 7e formed in a flat surface shape in a direction orthogonal to the axial direction.

小径部7aの内周面7a1には、図4に示すように、上側円筒面7a11、上方へ向けて漸次拡径したテーパ面状のガイド面7a12、上方(ハウジング7の開口側)へ向けて漸次縮径したテーパ面7a13(太線で示す)、及び下側円筒面7a14が設けられる。上側円筒面7a11及び下側円筒面7a14は同一径に形成される。ハウジング7の内周面7a1と軸受スリーブ8の外周面8dとの間には接着剤溜まりが介在し、本実施形態では、ガイド面7a12とテーパ面7a13との軸方向間に形成した環状溝7a10が接着剤溜まりとして機能する。環状溝7a10は、小径部7aの内周面7a1のうち、軸方向中央部よりもやや上方に設けられる。小径部7aの内周面7a1には軸受スリーブ8が固定され、詳しくは、ハウジング7のテーパ面7a13と軸受スリーブ8の外周面8dとの間、及び環状溝7a10に接着剤を介在させた状態で、テーパ面7a13と軸受スリーブ8の外周面8dとが締め代をもって密着している。尚、図4中の点線は、軸受スリーブ8が挿入される前のハウジング7の内周面7a1’を示し、この点線7a1’と実線7a1との径差が締め代となる。また、図面では、理解し易いように、ガイド面7a12及びテーパ面7a13の傾斜角を誇張して示している。   As shown in FIG. 4, the inner peripheral surface 7a1 of the small-diameter portion 7a has an upper cylindrical surface 7a11, a tapered guide surface 7a12 that gradually increases in diameter upward, and upward (toward the opening side of the housing 7). A tapered surface 7a13 (indicated by a thick line) and a lower cylindrical surface 7a14 that are gradually reduced in diameter are provided. The upper cylindrical surface 7a11 and the lower cylindrical surface 7a14 are formed to have the same diameter. An adhesive reservoir is interposed between the inner peripheral surface 7a1 of the housing 7 and the outer peripheral surface 8d of the bearing sleeve 8. In this embodiment, an annular groove 7a10 formed between the guide surface 7a12 and the tapered surface 7a13 in the axial direction. Functions as an adhesive reservoir. The annular groove 7a10 is provided slightly above the central portion in the axial direction on the inner peripheral surface 7a1 of the small diameter portion 7a. A bearing sleeve 8 is fixed to the inner peripheral surface 7a1 of the small diameter portion 7a. Specifically, an adhesive is interposed between the tapered surface 7a13 of the housing 7 and the outer peripheral surface 8d of the bearing sleeve 8 and in the annular groove 7a10. Thus, the taper surface 7a13 and the outer peripheral surface 8d of the bearing sleeve 8 are in close contact with each other with a tightening margin. 4 indicates the inner peripheral surface 7a1 'of the housing 7 before the bearing sleeve 8 is inserted, and the diameter difference between the dotted line 7a1' and the solid line 7a1 is a tightening margin. In the drawings, the inclination angles of the guide surface 7a12 and the tapered surface 7a13 are exaggerated for easy understanding.

ハウジング7の底部7cの内底面7c1には、第2スラスト軸受部T2のスラスト軸受面となる領域(図2の黒塗り部分)が設けられ、該領域には、図示は省略するが、例えばスパイラル状に配列された複数の動圧溝が形成されている。   The inner bottom surface 7c1 of the bottom portion 7c of the housing 7 is provided with a region (blacked portion in FIG. 2) that becomes the thrust bearing surface of the second thrust bearing portion T2. A plurality of dynamic pressure grooves arranged in a shape are formed.

上記構成のハウジング7は、樹脂で射出成形される。成形収縮時の収縮量の差による変形を防止するため、ハウジング7の各部7a〜7cは略均一厚に形成されている。   The housing 7 having the above configuration is injection-molded with resin. In order to prevent deformation due to the difference in shrinkage during molding shrinkage, the portions 7a to 7c of the housing 7 are formed to have a substantially uniform thickness.

ハウジング7を形成する樹脂は主に熱可塑性樹脂であり、例えば、非晶性樹脂として、ポリサルフォン(PSU)、ポリエーテルサルフォン(PES)、ポリフェニルサルフォン(PPSU)、ポリエーテルイミド(PEI)等、結晶性樹脂として、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)等を用いることができる。また、上記の樹脂に、充填材として、例えばガラス繊維等の繊維状充填材、チタン酸カリウム等のウィスカー状充填材、マイカ等の鱗片状充填材、カーボンファイバー、カーボンブラック、黒鉛、カーボンナノマテリアル、金属粉末等の繊維状又は粉末状の導電性充填材を用いることができる。これらの充填材は、単独で用い、あるいは、二種以上を混合して使用しても良い。   The resin forming the housing 7 is mainly a thermoplastic resin. For example, as the amorphous resin, polysulfone (PSU), polyethersulfone (PES), polyphenylsulfone (PPSU), polyetherimide (PEI) As the crystalline resin, liquid crystal polymer (LCP), polyether ether ketone (PEEK), polybutylene terephthalate (PBT), polyphenylene sulfide (PPS), or the like can be used. In addition, as a filler, for example, fiber filler such as glass fiber, whisker filler such as potassium titanate, scaly filler such as mica, carbon fiber, carbon black, graphite, carbon nanomaterial A fibrous or powdery conductive filler such as metal powder can be used. These fillers may be used alone or in combination of two or more.

シール部材9は、例えば、黄銅等の軟質金属材料やその他の金属材料、あるいは上述したハウジング7の成形に用いられる樹脂材料で、円盤状の第1シール部9aと、第1シール部9aの外径側から下方に張り出した円筒状の第2シール部9bとを備える断面逆L字形に一体形成される。第1シール部9aの内周面9a2は軸部2aの外周面2a1との間に所定容積の第1のシール空間S1を形成する。また、第2シール部9bの外周面9b1は、ハウジング7を構成する大径部7bの内周面7b1との間に所定容積の第2のシール空間S2を形成する。本実施形態において、第1シール部9aの内周面9a2およびハウジング7の大径部7bの内周面7b1は、何れも上方を拡径させたテーパ面状に形成され、そのため第1および第2のシール空間S1,S2は下方に向かって漸次縮小したテーパ形状を呈する。   The seal member 9 is made of, for example, a soft metal material such as brass, or other metal material, or a resin material used for molding the housing 7 described above, and the disc-shaped first seal portion 9a and the outside of the first seal portion 9a. The cylindrical second seal portion 9b projecting downward from the radial side is integrally formed with an inverted L-shaped cross section. A first seal space S1 having a predetermined volume is formed between the inner peripheral surface 9a2 of the first seal portion 9a and the outer peripheral surface 2a1 of the shaft portion 2a. Further, the outer peripheral surface 9 b 1 of the second seal portion 9 b forms a second seal space S 2 having a predetermined volume with the inner peripheral surface 7 b 1 of the large diameter portion 7 b constituting the housing 7. In the present embodiment, the inner peripheral surface 9a2 of the first seal portion 9a and the inner peripheral surface 7b1 of the large-diameter portion 7b of the housing 7 are both formed in a tapered surface shape whose diameter is enlarged upward, and therefore the first and first The two seal spaces S1, S2 have a tapered shape that gradually decreases downward.

第1シール部9aの下側端面9a1には、図5に示すように、下側端面9a1を横断する一又は複数の径方向溝10が形成されている。本実施形態で径方向溝10は、図6に示すように円周方向三箇所に等配されている。   As shown in FIG. 5, one or a plurality of radial grooves 10 that cross the lower end surface 9a1 are formed in the lower end surface 9a1 of the first seal portion 9a. In this embodiment, the radial grooves 10 are equally distributed at three places in the circumferential direction as shown in FIG.

上記の構成部材からなる流体軸受装置1は、ハウジング7内に軸部材2を収容した後、ハウジング7の内周に軸受スリーブ8を固定し、さらに軸受スリーブ8にシール部材9を固定することで組み立てることができる。以下、ハウジング7と軸受スリーブ8との固定方法について、図7〜図10を用いて説明する。尚、これらの図では軸部材2を省略している。   In the hydrodynamic bearing device 1 composed of the above-described constituent members, the shaft member 2 is accommodated in the housing 7, the bearing sleeve 8 is fixed to the inner periphery of the housing 7, and the seal member 9 is fixed to the bearing sleeve 8. Can be assembled. Hereinafter, a method of fixing the housing 7 and the bearing sleeve 8 will be described with reference to FIGS. In these drawings, the shaft member 2 is omitted.

まず、図7に示すように、ハウジング7と軸受スリーブ8を形成する。軸受スリーブ8の下端面8bの外径寸法dは、ハウジング7の内周面7a1の上側円筒面7a11及び下側円筒面7a14の内径dと同径か、あるいはこれより僅かに小径に形成される(d≦d)。このハウジング7の内周面7a1に、例えば熱硬化性の接着剤Gを塗布する。図示例では、内周面7a1に設けられた環状溝7a10に接着剤Gが塗布される。この状態で、ハウジング7の開口側から軸受スリーブ8を挿入する。 First, as shown in FIG. 7, the housing 7 and the bearing sleeve 8 are formed. Outer diameter d 1 of the lower end surface 8b of the bearing sleeve 8, formed slightly smaller inner peripheral surface 7a1 upper cylindrical surface 7a11 and an internal diameter d 2 whether same diameter of the lower cylindrical surface 7a14 of, or from which the housing 7 (D 1 ≦ d 2 ). For example, a thermosetting adhesive G is applied to the inner peripheral surface 7 a 1 of the housing 7. In the illustrated example, the adhesive G is applied to the annular groove 7a10 provided on the inner peripheral surface 7a1. In this state, the bearing sleeve 8 is inserted from the opening side of the housing 7.

軸受スリーブ8は、図8に示すように、ハウジング7のガイド面7a12で案内されながら、環状溝7a10まで挿入される。さらに挿入を進めると、軸受スリーブ8の下側端面8bで環状溝7a10に塗布された接着剤Gの一部を捕捉しながら、軸受スリーブ8がテーパ面7a13に圧入される(図9参照)。このとき、軸受スリーブ8の外周面8dとテーパ面7a13との間に接着剤Gが入り込みながら、軸受スリーブ8の圧入を進めることにより、接着剤Gが潤滑剤として機能し、圧入をスムーズに行うことができる。また、軸受スリーブ8の圧入に伴って、軸受スリーブ8の外周面8dとハウジング7のテーパ面7a13と間に接着剤Gを介在させることができるため、両者の固定力を高めることができる。ガイド面7a12及びテーパ面7a13のうち、軸受スリーブ8の下側端面8bが通過した領域は、軸受スリーブ8の外周面形状に倣って弾性復元し、外周面8dに締め代をもって密着する。   As shown in FIG. 8, the bearing sleeve 8 is inserted to the annular groove 7 a 10 while being guided by the guide surface 7 a 12 of the housing 7. When the insertion is further advanced, the bearing sleeve 8 is press-fitted into the tapered surface 7a13 while capturing a part of the adhesive G applied to the annular groove 7a10 at the lower end surface 8b of the bearing sleeve 8 (see FIG. 9). At this time, by pressing the bearing sleeve 8 while the adhesive G enters between the outer peripheral surface 8d of the bearing sleeve 8 and the tapered surface 7a13, the adhesive G functions as a lubricant, and press-fit is performed smoothly. be able to. In addition, since the adhesive G can be interposed between the outer peripheral surface 8d of the bearing sleeve 8 and the tapered surface 7a13 of the housing 7 as the bearing sleeve 8 is press-fitted, the fixing force between them can be increased. Of the guide surface 7a12 and the tapered surface 7a13, the region through which the lower end surface 8b of the bearing sleeve 8 passes is elastically restored following the shape of the outer peripheral surface of the bearing sleeve 8 and closely contacts the outer peripheral surface 8d with a margin.

さらに挿入を進め、軸受スリーブ8が所定位置まで達したら、挿入を停止する(図10参照)。このとき、軸受スリーブ8の下側端面8bに接着剤Gが回り込まないように、接着剤Gの塗布量や、ハウジング7と軸受スリーブ8との圧入代等を適宜設定すればよい。その後、加熱処理(ベーキング)することによって、ハウジング7の環状溝7a10及びテーパ面7a13と軸受スリーブ8の外周面8dとの間に介在した接着剤Gを硬化させ、両者を固定する。   When the insertion is further advanced and the bearing sleeve 8 reaches a predetermined position, the insertion is stopped (see FIG. 10). At this time, the application amount of the adhesive G and the press-fitting allowance between the housing 7 and the bearing sleeve 8 may be set as appropriate so that the adhesive G does not enter the lower end surface 8 b of the bearing sleeve 8. Thereafter, the adhesive G interposed between the annular groove 7a10 and the tapered surface 7a13 of the housing 7 and the outer peripheral surface 8d of the bearing sleeve 8 is cured by heat treatment (baking), and both are fixed.

上記のようにしてハウジング7の内周に軸受スリーブ8した後、シール部材9を接着、圧入、圧入接着等適宜の手段によって軸受スリーブ8の外周上端に固定する。シール部材9の組立が完了すると、シール部材9を構成する第1シール部9aの下側端面9a1は軸受スリーブ8の上側端面8cと当接し、第2シール部9bの下側端面は所定の軸方向隙間11を介してハウジング7の段差面7eと対向する。同時に、第1シール部9aの内周面9a2と軸部2aの外周面2a1との間に第1のシール空間S1が形成され、第2シール部9bの外周面9b1とハウジング7の大径部内周面7b1との間に第2のシール空間S2が形成される。その後、シール部材9で密封されたハウジング7の内部空間に、軸受スリーブ8の内部気孔を含め、潤滑油を充満させることにより、図2に示す流体軸受装置1が完成する。   After the bearing sleeve 8 is formed on the inner periphery of the housing 7 as described above, the seal member 9 is fixed to the upper end of the outer periphery of the bearing sleeve 8 by appropriate means such as adhesion, press-fitting, and press-fitting adhesion. When the assembly of the seal member 9 is completed, the lower end surface 9a1 of the first seal portion 9a constituting the seal member 9 comes into contact with the upper end surface 8c of the bearing sleeve 8, and the lower end surface of the second seal portion 9b is a predetermined axis. It faces the stepped surface 7e of the housing 7 through the directional gap 11. At the same time, a first seal space S1 is formed between the inner peripheral surface 9a2 of the first seal portion 9a and the outer peripheral surface 2a1 of the shaft portion 2a, and within the outer peripheral surface 9b1 of the second seal portion 9b and the large-diameter portion of the housing 7. A second seal space S2 is formed between the peripheral surface 7b1. Thereafter, the internal space of the housing 7 sealed with the seal member 9 is filled with lubricating oil including the internal pores of the bearing sleeve 8, whereby the hydrodynamic bearing device 1 shown in FIG. 2 is completed.

軸部材2の回転時、軸受スリーブ8の内周面8aのラジアル軸受面となる上下2箇所の領域は、それぞれ、軸部2aの外周面2a1とラジアル軸受隙間を介して対向する。また、軸受スリーブ8の下側端面8bのスラスト軸受面となる領域は、フランジ部2bの上側端面2b1とスラスト軸受隙間を介して対向し、ハウジング7の内底面7c1のスラスト軸受面となる領域は、フランジ部2bの下側端面2b2とスラスト軸受隙間を介して対向する。そして、軸部材2の回転に伴い、上記ラジアル軸受隙間に潤滑油の動圧が発生し、軸部材2の軸部2aが上記ラジアル軸受隙間内に形成される潤滑油の油膜によってラジアル方向に回転自在に非接触支持される。これにより、軸部材2をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが構成される。同時に、上記スラスト軸受隙間に潤滑油の動圧が発生し、軸部材2が上記スラスト軸受隙間内に形成される潤滑油の油膜によってスラスト方向に回転自在に非接触支持される。これにより、軸部材2を両スラスト方向に回転自在に非接触支持する第1スラスト軸受部T1と第2スラスト軸受部T2とが構成される。   When the shaft member 2 is rotated, the upper and lower two regions serving as the radial bearing surface of the inner peripheral surface 8a of the bearing sleeve 8 are opposed to the outer peripheral surface 2a1 of the shaft portion 2a via the radial bearing gap. Further, the region that becomes the thrust bearing surface of the lower end surface 8b of the bearing sleeve 8 faces the upper end surface 2b1 of the flange portion 2b via the thrust bearing gap, and the region that becomes the thrust bearing surface of the inner bottom surface 7c1 of the housing 7 is It faces the lower end surface 2b2 of the flange portion 2b through a thrust bearing gap. As the shaft member 2 rotates, the dynamic pressure of the lubricating oil is generated in the radial bearing gap, and the shaft portion 2a of the shaft member 2 is rotated in the radial direction by the lubricating oil film formed in the radial bearing gap. It is supported non-contact freely. Thus, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in a non-contact manner so as to be rotatable in the radial direction are configured. At the same time, the dynamic pressure of the lubricating oil is generated in the thrust bearing gap, and the shaft member 2 is supported in a non-contact manner rotatably in the thrust direction by the lubricating oil film formed in the thrust bearing gap. Thereby, the 1st thrust bearing part T1 and 2nd thrust bearing part T2 which non-contact-support the shaft member 2 so that rotation in both thrust directions is possible are comprised.

また、軸部材2の回転時には、上述のように、第1および第2のシール空間S1、S2が、ハウジング7の内部側に向かって漸次縮小したテーパ形状を呈しているため、両シール空間S1、S2内の潤滑油は毛細管力による引き込み作用により、シール空間が狭くなる方向、すなわちハウジング7の内部側に向けて引き込まれる。これにより、ハウジング7の内部からの潤滑油の漏れ出しが効果的に防止される。また、シール空間S1、S2は、ハウジング7の内部空間に充填された潤滑油の温度変化に伴う容積変化量を吸収するバッファ機能を有し、想定される温度変化の範囲内では、潤滑油の油面は常にシール空間S1、S2内にある。   Further, when the shaft member 2 is rotated, as described above, the first and second seal spaces S1 and S2 have a tapered shape that is gradually reduced toward the inner side of the housing 7, and thus both the seal spaces S1. The lubricating oil in S2 is drawn toward the direction in which the seal space becomes narrow, that is, toward the inside of the housing 7, by the drawing action by the capillary force. Thereby, the leakage of the lubricating oil from the inside of the housing 7 is effectively prevented. Further, the seal spaces S1 and S2 have a buffer function of absorbing a volume change amount accompanying a temperature change of the lubricating oil filled in the internal space of the housing 7, and within the range of the assumed temperature change, The oil level is always in the seal space S1, S2.

なお、第1シール部9aの内周面9a2を円筒面とする一方、これに対向する軸部2aの外周面をテーパ面状としてもよく、この場合、第1のシール空間S1には、さらに遠心力シールとしての機能も付与することができるのでシール効果が一層高まる。   In addition, while the inner peripheral surface 9a2 of the first seal portion 9a is a cylindrical surface, the outer peripheral surface of the shaft portion 2a facing this may be a tapered surface. In this case, the first seal space S1 further includes Since the function as a centrifugal force seal can also be provided, the sealing effect is further enhanced.

また、上述したように、上側の動圧溝8a1は軸方向非対称に形成されており、丘部の帯状部分より上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている(図3参照)。そのため、軸部材2の回転時、動圧溝8a1による潤滑油の引き込み力(ポンピング力)は上側領域が下側領域に比べて相対的に大きくなる。そして、この引き込み力の差圧によって、軸受スリーブ8の内周面8aと軸部2aの外周面2a1との間の隙間に満たされた潤滑油は下方に流動し、第1スラスト軸受部T1のスラスト軸受隙間→軸受スリーブ8の軸方向溝8d10によって形成される流体通路→第1シール部9aの径方向溝10によって形成される流体通路という経路を循環して、第1ラジアル軸受部R1のラジアル軸受隙間に再び引き込まれる。   Further, as described above, the upper dynamic pressure groove 8a1 is formed to be axially asymmetric, and the axial dimension X1 of the upper region is larger than the axial dimension X2 of the lower region than the belt-like portion of the hill. (See FIG. 3). Therefore, when the shaft member 2 rotates, the lubricating oil pulling force (pumping force) by the dynamic pressure groove 8a1 is relatively larger in the upper region than in the lower region. Then, due to the differential pressure of the pulling force, the lubricating oil filled in the gap between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a1 of the shaft portion 2a flows downward, and the first thrust bearing portion T1 The radial passage of the first radial bearing portion R1 is circulated through a path of thrust bearing clearance → fluid passage formed by the axial groove 8d10 of the bearing sleeve 8 → fluid passage formed by the radial groove 10 of the first seal portion 9a. It is pulled back into the bearing gap.

このように、潤滑油がハウジング7の内部空間を流動循環するように構成することで、潤滑油の圧力バランスが保たれると同時に、局部的な負圧の発生に伴う気泡の生成、気泡の生成に起因する潤滑油の漏れや振動の発生等の問題を解消することができる。上記の循環経路には、第1のシール空間S1が連通し、さらに軸方向隙間11を介して第2のシール空間S2が連通しているので、何らかの理由で潤滑油中に気泡が混入した場合でも、気泡が潤滑油に伴って循環する際にシール空間S1、S2内の潤滑油の油面(気液界面)から外気に排出される。従って、気泡による悪影響はより一層効果的に防止される。   In this way, by configuring the lubricating oil to flow and circulate in the internal space of the housing 7, the pressure balance of the lubricating oil is maintained, and at the same time, the generation of bubbles accompanying the generation of local negative pressure, Problems such as leakage of lubricating oil and generation of vibration due to generation can be solved. When the first seal space S1 communicates with the circulation path, and the second seal space S2 communicates with the axial clearance 11, the bubbles are mixed into the lubricating oil for some reason. However, when the bubbles circulate with the lubricating oil, the air is discharged from the oil surface (gas-liquid interface) of the lubricating oil in the seal spaces S1 and S2 to the outside air. Therefore, adverse effects due to air bubbles can be more effectively prevented.

なお、図示は省略するが、軸方向の流体通路はハウジング7の内周面に軸方向溝を設けることによって形成することもでき、径方向の流体通路は軸受スリーブ8の上側端面8cに径方向溝を設けることによって形成することもできる。   Although illustration is omitted, the axial fluid passage can be formed by providing an axial groove on the inner peripheral surface of the housing 7, and the radial fluid passage is radially formed on the upper end surface 8 c of the bearing sleeve 8. It can also be formed by providing a groove.

以上のような流体軸受装置1の軸部材2に上向きの荷重が加わると、軸部材2のフランジ部2bの上側端面2b1と軸受スリーブ8の下側端面8bとが係合し、軸受スリーブ8にハウジング開口側向きの荷重(抜去力)が加わる。このとき、上記のように、ハウジング7の内周面7a1にテーパ面7a13を設けると共に、軸受スリーブ8の外周面8dをテーパ面状に形成しているため、これらの面がテーパ嵌合することにより、軸受スリーブ8にハウジング7のテーパ面7a13から下向き(ハウジング閉塞側)の抗力が付与される。これにより軸受スリーブ8のハウジング開口側への移動が規制され、軸受スリーブ8の抜け耐力が高められる。また、本実施形態では、ハウジング7の環状溝7a10及びテーパ面7a13と軸受スリーブ8の外周面8dとの間に接着剤が介在することで両者の固定力がさらに高められる。特に、図2に示すように軸受スリーブ8の外径側に第2シール空間S2を形成すると、軸受スリーブ8とハウジング7との固定面積が減少するため、本発明を適用してハウジング7と軸受スリーブ8との固定強度を高めることが望ましい。   When an upward load is applied to the shaft member 2 of the fluid dynamic bearing device 1 as described above, the upper end surface 2b1 of the flange portion 2b of the shaft member 2 and the lower end surface 8b of the bearing sleeve 8 are engaged with each other. Load (extraction force) toward the housing opening side is applied. At this time, as described above, the tapered surface 7a13 is provided on the inner peripheral surface 7a1 of the housing 7, and the outer peripheral surface 8d of the bearing sleeve 8 is formed into a tapered surface. Accordingly, a downward drag (housing closing side) is applied to the bearing sleeve 8 from the tapered surface 7a13 of the housing 7. As a result, the movement of the bearing sleeve 8 toward the housing opening is restricted, and the slip-off resistance of the bearing sleeve 8 is increased. Further, in the present embodiment, the adhesive force is further interposed between the annular groove 7a10 and the tapered surface 7a13 of the housing 7 and the outer peripheral surface 8d of the bearing sleeve 8, whereby the fixing force between the two is further increased. In particular, as shown in FIG. 2, when the second seal space S2 is formed on the outer diameter side of the bearing sleeve 8, the fixed area between the bearing sleeve 8 and the housing 7 is reduced. It is desirable to increase the fixing strength with the sleeve 8.

尚、ハウジング7のテーパ面7a13の上端部と下端部における径差は、小さすぎると上記の効果を得ることができず、大きすぎるとハウジング7の内周面7a1が塑性変形する恐れがある。従って、上記径差は2〜50μmの範囲内、好ましくは5〜30μmの範囲内に設定することが好ましい。 If the difference in diameter between the upper end portion and the lower end portion of the tapered surface 7a13 of the housing 7 is too small, the above effect cannot be obtained. If it is too large, the inner peripheral surface 7a1 of the housing 7 may be plastically deformed. Therefore, it is preferable that the diameter difference is set in the range of 2 to 50 μm, preferably in the range of 5 to 30 μm.

また、本実施形態の流体軸受装置1では、シール部材9の内周側だけでなく、外周側にもシール空間が形成されている。シール空間は、ハウジング7の内部空間に充満された潤滑油の温度変化に伴う容積変化量を吸収しうる容積を有するものであり、従って本実施形態の構成であれば、第2のシール空間S2をシール部材9の外周側にも設けている分、第1のシール空間S1の軸方向寸法を図9に示す構成よりも小さくすることが可能である。そのため、例えば、軸受装置(ハウジング7)の軸方向寸法を長大化させることなく軸受スリーブ8の軸方向長さ、換言すると両ラジアル軸受部R1、R2間の軸受スパンを図9に示す構成よりも大きくすることができ、モーメント剛性を高めることができる。この点からも、ディスクの多積層化に対応することが可能となる。   Further, in the hydrodynamic bearing device 1 of the present embodiment, a seal space is formed not only on the inner peripheral side of the seal member 9 but also on the outer peripheral side. The seal space has a volume capable of absorbing a volume change amount due to a temperature change of the lubricating oil filled in the internal space of the housing 7, and therefore the second seal space S2 has the configuration of this embodiment. The axial dimension of the first seal space S1 can be made smaller than that of the configuration shown in FIG. Therefore, for example, the axial length of the bearing sleeve 8 without increasing the axial dimension of the bearing device (housing 7), in other words, the bearing span between the radial bearing portions R1 and R2, than the configuration shown in FIG. The moment rigidity can be increased. Also from this point, it becomes possible to cope with the multi-stacking of disks.

本発明は上記の実施形態に限られない。以下、本発明の他の実施形態を説明する。尚、以下の説明において、上記実施形態と同様の構成、機能を有する部位には、同一の符号を付して説明を省略する。   The present invention is not limited to the above embodiment. Hereinafter, other embodiments of the present invention will be described. In the following description, parts having the same configuration and function as those in the above embodiment are denoted by the same reference numerals and description thereof is omitted.

上記の実施形態では、予めハウジング7の内周面7a1にテーパ面7a13を形成し、このテーパ面7a13に軸受スリーブ8の縮径部(外周面8d)を圧入しているが、これに限られない。例えば、図11の点線で示すように、ハウジング7の内周面7a1に円筒面7a13’を設け、この円筒面7a13’に軸受スリーブ8のテーパ状外周面8dを圧入することで、ハウジング7の内周面を軸受スリーブ8の外周面形状に倣わせ、これによりハウジング7にテーパ面7a13を形成することもできる。   In the above embodiment, the tapered surface 7a13 is formed in advance on the inner peripheral surface 7a1 of the housing 7, and the reduced diameter portion (outer peripheral surface 8d) of the bearing sleeve 8 is press-fitted into the tapered surface 7a13. Absent. For example, as shown by a dotted line in FIG. 11, a cylindrical surface 7a13 ′ is provided on the inner peripheral surface 7a1 of the housing 7, and the tapered outer peripheral surface 8d of the bearing sleeve 8 is press-fitted into the cylindrical surface 7a13 ′. The inner peripheral surface can be made to follow the shape of the outer peripheral surface of the bearing sleeve 8, whereby the tapered surface 7 a 13 can be formed on the housing 7.

また、図11に示すように、ハウジング7の内周面7a1に、接着剤溜まりとなる複数の環状溝を軸方向の複数箇所に形成してもよい。このとき、下側の環状溝7a15は、軸受スリーブ8の下側端面8bの近傍に設けることが好ましい。図示例では、環状溝7a15の下端部が、軸受スリーブ8の外周面8dの下端部と同位置に配されている。これにより、ハウジング7の内周面7a1に軸受スリーブ8を圧入する際、軸受スリーブ8の下側端面8bで捕捉された接着剤Gを、下側の環状溝7a15で保持することができ、スラスト軸受面となる軸受スリーブ8の下側端面8bに接着剤Gが回り込む事態を確実に防止することができる。   In addition, as shown in FIG. 11, a plurality of annular grooves serving as adhesive reservoirs may be formed at a plurality of locations in the axial direction on the inner peripheral surface 7 a 1 of the housing 7. At this time, the lower annular groove 7a15 is preferably provided in the vicinity of the lower end surface 8b of the bearing sleeve 8. In the illustrated example, the lower end portion of the annular groove 7 a 15 is disposed at the same position as the lower end portion of the outer peripheral surface 8 d of the bearing sleeve 8. As a result, when the bearing sleeve 8 is press-fitted into the inner peripheral surface 7a1 of the housing 7, the adhesive G captured by the lower end surface 8b of the bearing sleeve 8 can be held by the lower annular groove 7a15. The situation where the adhesive G wraps around the lower end surface 8b of the bearing sleeve 8 serving as the bearing surface can be reliably prevented.

また、上記の実施形態では、接着剤溜まりがハウジング7の内周面7a1に設けた環状溝で構成されているが、これに限られない。例えば、環状溝を軸受スリーブ8の外周面8dに設けても良い。あるいは、ハウジング7の内周面及び軸受スリーブ8の外周面8dの双方に環状溝を設けても良い。また、接着剤溜まりは環状溝に限らず、例えば、円周方向一部を切欠いた環状溝や、円周方向で離隔した複数の凹部で構成することもできる。   Moreover, in said embodiment, although the adhesive reservoir is comprised by the annular groove provided in the internal peripheral surface 7a1 of the housing 7, it is not restricted to this. For example, an annular groove may be provided on the outer peripheral surface 8 d of the bearing sleeve 8. Alternatively, annular grooves may be provided on both the inner peripheral surface of the housing 7 and the outer peripheral surface 8 d of the bearing sleeve 8. Further, the adhesive reservoir is not limited to the annular groove, and may be constituted by, for example, an annular groove that is partially cut off in the circumferential direction or a plurality of concave portions that are separated in the circumferential direction.

また、上記の実施形態では、ハウジング7及び軸受スリーブ8の双方にテーパ面が設けられているが、これに限らず、何れか一方にテーパ面を設けても良い。例えば、図12に示す実施形態では、軸受スリーブ8の外周面8dを円筒面状に設けている。この場合、ハウジング7のテーパ面7a13と軸受スリーブ8の円筒面状外周面8dとの間に、下方へ向けて径方向寸法を漸次拡大した空間P1が形成される。この空間P1が接着剤溜まりとして機能することで、ハウジング7と軸受スリーブ8との固定強度を高めることができる。また、軸受スリーブ8をハウジング7の内周に挿入する際、予めハウジング7のテーパ面7a13に接着剤を塗布しておけば、前記空間P1で接着剤Gを捕捉することができるため、軸受スリーブ8の下側端面8bへの接着剤Gの回りこみを防止できる。また、ハウジング7のテーパ面7a13の一部を、軸受スリーブ8の外周面8dと締め代をもって密着すれば、この密着部でハウジング7を軸受スリーブ8側に極僅か凹ませることができる。これにより、軸受スリーブ8に抜去力が加わった際には、密着部においてテーパ面7a13が軸受スリーブ8に下向きの抗力を付与し、軸受スリーブ8の抜け耐力を高めることができる。尚、このような空間P1は、ハウジング7の内周面7a1を円筒面状に形成すると共に、軸受スリーブ8の外周面8dを上方へ向けて漸次拡径したテーパ面状に形成することによって、構成することもできる(図示省略)。   In the above embodiment, both the housing 7 and the bearing sleeve 8 are provided with tapered surfaces. However, the present invention is not limited to this, and either one may be provided with a tapered surface. For example, in the embodiment shown in FIG. 12, the outer peripheral surface 8d of the bearing sleeve 8 is provided in a cylindrical surface shape. In this case, a space P1 is formed between the tapered surface 7a13 of the housing 7 and the cylindrical outer peripheral surface 8d of the bearing sleeve 8 with the radial dimension gradually enlarged downward. Since the space P1 functions as an adhesive reservoir, the fixing strength between the housing 7 and the bearing sleeve 8 can be increased. Further, when the bearing sleeve 8 is inserted into the inner periphery of the housing 7, if the adhesive is applied to the taper surface 7a13 of the housing 7 in advance, the adhesive G can be captured in the space P1, so the bearing sleeve 8 can prevent the adhesive G from wrapping around the lower end surface 8b. Further, if a part of the taper surface 7a13 of the housing 7 is brought into close contact with the outer peripheral surface 8d of the bearing sleeve 8 with a tightening margin, the housing 7 can be slightly recessed toward the bearing sleeve 8 by this contact portion. Thereby, when an extraction force is applied to the bearing sleeve 8, the taper surface 7 a 13 gives a downward drag to the bearing sleeve 8 at the close contact portion, and it is possible to increase the pull-out resistance of the bearing sleeve 8. In addition, such a space P1 is formed by forming the inner peripheral surface 7a1 of the housing 7 into a cylindrical surface and forming the outer peripheral surface 8d of the bearing sleeve 8 into a tapered surface gradually increasing in diameter upward. It can also be configured (not shown).

また、図13に示す実施形態では、ハウジング7の内周面7a1を円筒面状に形成すると共に、軸受スリーブ8の外周面8dを上方(ハウジング7の開口側)へ向けて縮径したテーパ状に形成している。この場合、ハウジング7の円筒面状内周面7a1と軸受スリーブ8のテーパ状外周面8d(太線で示す)との間に下方へ向けて径方向寸法を漸次縮小した空間P2が形成される。この空間P2が接着剤溜まりとして機能することで、ハウジング7と軸受スリーブ8との固定強度を高めることができる。また、軸受スリーブ8をハウジング7の内周に挿入する際、予め軸受スリーブ8の外周面8dに接着剤を塗布しておけば、前記空間P2で接着剤Gを保持することができるため、軸受スリーブ8の下側端面8bへの接着剤Gの回りこみを防止できる。このとき、ハウジング7の内周面7a1と軸受スリーブ8の外周面8dとを、少なくとも一部で締め代をもって密着すれば、上記と同様に、軸受スリーブ8の抜け耐力を高めることができる。尚、このような空間P2は、軸受スリーブ8の外周面8dを円筒面状に形成すると共に、ハウジング7の内周面7a1を上方へ向けて漸次拡径したテーパ面状に形成することによって、構成することもできる(図示省略)。   In the embodiment shown in FIG. 13, the inner peripheral surface 7a1 of the housing 7 is formed in a cylindrical shape, and the outer peripheral surface 8d of the bearing sleeve 8 is tapered toward the upper side (opening side of the housing 7). Is formed. In this case, a space P2 is formed between the cylindrical inner peripheral surface 7a1 of the housing 7 and the tapered outer peripheral surface 8d (shown by a thick line) of the bearing sleeve 8 with the radial dimension gradually reduced downward. Since the space P2 functions as an adhesive reservoir, the fixing strength between the housing 7 and the bearing sleeve 8 can be increased. Further, when the bearing sleeve 8 is inserted into the inner periphery of the housing 7, if the adhesive is applied to the outer peripheral surface 8d of the bearing sleeve 8 in advance, the adhesive G can be held in the space P2. It is possible to prevent the adhesive G from flowing into the lower end surface 8b of the sleeve 8. At this time, if the inner peripheral surface 7a1 of the housing 7 and the outer peripheral surface 8d of the bearing sleeve 8 are in close contact with each other with a tightening margin, the pull-out resistance of the bearing sleeve 8 can be increased as described above. In addition, such a space P2 is formed by forming the outer peripheral surface 8d of the bearing sleeve 8 into a cylindrical surface shape and forming the inner peripheral surface 7a1 of the housing 7 into a tapered surface shape whose diameter is gradually increased upward. It can also be configured (not shown).

上記のような断面楔形の空間P1あるいはP2は、ハウジングの内周面7a1及び軸受スリーブ8の外周面8dの双方に縮径部を形成し、これらの傾斜角を異ならせることにより形成することもできる。   The wedge-shaped space P1 or P2 as described above may be formed by forming a reduced diameter portion on both the inner peripheral surface 7a1 of the housing and the outer peripheral surface 8d of the bearing sleeve 8 and making the inclination angles thereof different. it can.

また、上記の実施形態では、シール部材9の内径側及び外径側にそれぞれシール空間が形成されているが、これに限らず、例えば内径側にのみシール空間を形成するシール部材をハウジングに固定してもよい。   Further, in the above embodiment, the seal space is formed on the inner diameter side and the outer diameter side of the seal member 9, respectively, but not limited to this, for example, a seal member that forms the seal space only on the inner diameter side is fixed to the housing. May be.

また、以上の実施形態では、ラジアル軸受部R1、R2及びスラスト軸受部T1、T2の動圧発生部がそれぞれ軸受スリーブ8の内周面8a、下側端面8b、及びハウジング7の内底面7c1に形成されているが、これらの面と軸受隙間を介して対向する面、すなわち軸部2aの外周面2a1、フランジ部2bの上側端面2b1及び下側端面2b2に形成してもよい。   In the above embodiment, the dynamic pressure generating portions of the radial bearing portions R1 and R2 and the thrust bearing portions T1 and T2 are respectively formed on the inner peripheral surface 8a, the lower end surface 8b of the bearing sleeve 8, and the inner bottom surface 7c1 of the housing 7. Although formed, they may be formed on the surfaces facing these surfaces through a bearing gap, that is, the outer peripheral surface 2a1 of the shaft portion 2a, the upper end surface 2b1 and the lower end surface 2b2 of the flange portion 2b.

また、以上の実施形態では、ラジアル軸受部R1、R2のラジアル動圧発生部として、ヘリングボーン形状の動圧溝が例示されているが、これに限らず、例えば、いわゆるステップ軸受や波型軸受、あるいは多円弧軸受を採用することもできる。また、軸受スリーブ8の内周面8a及び軸部材2の外周面2a1の双方を円筒面とし、ラジアル軸受部R1、R2として、動圧発生部を有しない、いわゆる真円軸受を採用することもできる。   Further, in the above embodiment, the herringbone-shaped dynamic pressure grooves are exemplified as the radial dynamic pressure generating portions of the radial bearing portions R1 and R2. However, the present invention is not limited to this, and for example, so-called step bearings and wave bearings Alternatively, a multi-arc bearing can be employed. Further, both the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a1 of the shaft member 2 may be cylindrical surfaces, and so-called circular bearings having no dynamic pressure generating portions may be employed as the radial bearing portions R1 and R2. it can.

また、以上の実施形態では、スラスト軸受部T1、T2のスラスト動圧発生部として、スパイラル形状の動圧溝が例示されているが、これに限らず、例えばステップ軸受や波型軸受を採用することもできる。あるいは、スラスト軸受部T1、T2として、軸部材の端部を接触支持するピボット軸受を採用することもできる。   In the above embodiment, the spiral dynamic pressure grooves are exemplified as the thrust dynamic pressure generating portions of the thrust bearing portions T1 and T2. However, the present invention is not limited to this, and for example, step bearings or wave bearings are employed. You can also. Or the pivot bearing which contacts and supports the edge part of a shaft member is also employable as thrust bearing part T1, T2.

また、以上の実施形態では、ラジアル軸受部R1、R2が軸方向に離隔して設けられているが、これらを軸方向で連続的に設けても良い。あるいは、これらの何れか一方のみを設けてもよい。   Further, in the above embodiment, the radial bearing portions R1 and R2 are provided separately in the axial direction, but these may be provided continuously in the axial direction. Alternatively, only one of these may be provided.

また、以上の実施形態では、流体軸受装置の内部空間に充満される潤滑剤として潤滑油が使用されているが、これに限らず、例えば空気等の気体や、潤滑グリース、磁性流体等を使用することもできる。   Further, in the above embodiment, lubricating oil is used as a lubricant that fills the internal space of the hydrodynamic bearing device. However, the present invention is not limited to this. For example, a gas such as air, lubricating grease, magnetic fluid, or the like is used. You can also

また、本発明の動圧軸受装置は、上記のようにHDD等のディスク駆動装置に用いられるスピンドルモータに限らず、光ディスクの光磁気ディスク駆動用のスピンドルモータ等、高速回転下で使用される情報機器用の小型モータ、レーザビームプリンタのポリゴンスキャナモータ等における回転軸支持用、あるいは電気機器の冷却用のファンモータとしても好適に使用することができる。   Further, the hydrodynamic bearing device of the present invention is not limited to the spindle motor used in the disk drive device such as the HDD as described above, but is used for information used under high-speed rotation, such as a spindle motor for driving a magneto-optical disk of an optical disk. It can also be suitably used as a fan motor for supporting a rotating shaft in a small motor for equipment, a polygon scanner motor of a laser beam printer, or for cooling an electrical equipment.

スピンドルモータの断面図である。It is sectional drawing of a spindle motor. 動圧軸受装置の断面図である。It is sectional drawing of a hydrodynamic bearing apparatus. 軸受スリーブの断面図である。It is sectional drawing of a bearing sleeve. ハウジングと軸受スリーブとの固定部を示す拡大断面図である。It is an expanded sectional view which shows the fixing | fixed part of a housing and a bearing sleeve. 図6のシール部材のA−A断面図である。It is AA sectional drawing of the sealing member of FIG. 図5のA方向から見たシール部材の平面図である。It is a top view of the sealing member seen from the A direction of FIG. ハウジングと軸受スリーブとの固定方法を示す断面図である。It is sectional drawing which shows the fixing method of a housing and a bearing sleeve. ハウジングと軸受スリーブとの固定方法を示す断面図である。It is sectional drawing which shows the fixing method of a housing and a bearing sleeve. ハウジングと軸受スリーブとの固定方法を示す断面図である。It is sectional drawing which shows the fixing method of a housing and a bearing sleeve. ハウジングと軸受スリーブとの固定方法を示す断面図である。It is sectional drawing which shows the fixing method of a housing and a bearing sleeve. 他の実施形態に係るハウジングと軸受スリーブとの固定部を示す拡大断面図である。It is an expanded sectional view which shows the fixing | fixed part of the housing and bearing sleeve which concern on other embodiment. 他の実施形態に係るハウジングと軸受スリーブとの固定部を示す拡大断面図である。It is an expanded sectional view which shows the fixing | fixed part of the housing and bearing sleeve which concern on other embodiment. 他の実施形態に係るハウジングと軸受スリーブとの固定部を示す拡大断面図である。It is an expanded sectional view which shows the fixing | fixed part of the housing and bearing sleeve which concern on other embodiment. 内周面にテーパ面が形成されたハウジングの例を示す断面図である。It is sectional drawing which shows the example of the housing in which the taper surface was formed in the internal peripheral surface. ハウジングと軸受スリーブとの固定面が共に円筒面状である場合における両者の固定方法を示す断面図である。It is sectional drawing which shows the fixing method of both when the fixing surfaces of a housing and a bearing sleeve are both cylindrical.

符号の説明Explanation of symbols

1 流体軸受装置
2 軸部材
7 ハウジング
7a 小径部
7a1 内周面
7a10 環状溝
7a12 ガイド面
7a13 テーパ面
7a15 環状溝
8 軸受スリーブ
8d 外周面(テーパ面)
9 シール部材
G 接着剤
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
S1、S2 シール空間
DESCRIPTION OF SYMBOLS 1 Fluid dynamic bearing apparatus 2 Shaft member 7 Housing 7a Small diameter part 7a1 Inner peripheral surface 7a10 Annular groove 7a12 Guide surface 7a13 Tapered surface 7a15 Annular groove 8 Bearing sleeve 8d Outer peripheral surface (tapered surface)
9 Seal member G Adhesives R1, R2 Radial bearing part T1, T2 Thrust bearing part S1, S2 Seal space

Claims (7)

軸部材と、内周に軸部材を挿入した軸受スリーブと、内周面に軸受スリーブが固定され、一端を開口すると共に他端を閉塞したハウジングと、軸部材の外周面と軸受スリーブの内周面との間のラジアル軸受隙間に生じる潤滑膜で軸部材をラジアル方向に支持するラジアル軸受部とを備えた流体軸受装置において、
ハウジングの内周面の少なくとも一部に、ハウジング開口側へ向けて縮径させたテーパ面を設けたことを特徴とする流体軸受装置。
A shaft member, a bearing sleeve having a shaft member inserted into the inner periphery, a housing having a bearing sleeve fixed to the inner peripheral surface and having one end opened and the other end closed, an outer surface of the shaft member, and an inner periphery of the bearing sleeve In a hydrodynamic bearing device including a radial bearing portion that supports a shaft member in a radial direction with a lubricating film generated in a radial bearing gap between the surface and
A hydrodynamic bearing device, wherein a tapered surface having a diameter reduced toward a housing opening side is provided on at least a part of an inner peripheral surface of the housing.
軸部材と、内周に軸部材を挿入した軸受スリーブと、内周面に軸受スリーブが固定され、一端を開口すると共に他端を閉塞したハウジングと、軸部材の外周面と軸受スリーブの内周面との間のラジアル軸受隙間に生じる潤滑膜で軸部材をラジアル方向に支持するラジアル軸受部とを備えた流体軸受装置において、
軸受スリーブの外周面の少なくとも一部に、ハウジング開口側へ向けて縮径させたテーパ面を設けたことを特徴とする流体軸受装置。
A shaft member, a bearing sleeve having a shaft member inserted into the inner periphery, a housing having a bearing sleeve fixed to the inner peripheral surface and having one end opened and the other end closed, an outer surface of the shaft member, and an inner periphery of the bearing sleeve In a hydrodynamic bearing device including a radial bearing portion that supports a shaft member in a radial direction with a lubricating film generated in a radial bearing gap between the surface and
A hydrodynamic bearing device, wherein a tapered surface having a diameter reduced toward a housing opening side is provided on at least a part of an outer peripheral surface of the bearing sleeve.
軸部材と、内周に軸部材を挿入した軸受スリーブと、内周面に軸受スリーブが固定され、一端を開口すると共に他端を閉塞したハウジングと、軸部材の外周面と軸受スリーブの内周面との間のラジアル軸受隙間に生じる潤滑膜で軸部材をラジアル方向に支持するラジアル軸受部とを備えた流体軸受装置において、
ハウジングの内周面の少なくとも一部に、ハウジング開口側へ向けて縮径させたテーパ面を設けると共に、軸受スリーブの外周面の少なくとも一部に、ハウジング開口側へ向けて縮径させたテーパ面を設けたことを特徴とする流体軸受装置。
A shaft member, a bearing sleeve having a shaft member inserted into the inner periphery, a housing having a bearing sleeve fixed to the inner peripheral surface and having one end opened and the other end closed, an outer surface of the shaft member, and an inner periphery of the bearing sleeve In a hydrodynamic bearing device including a radial bearing portion that supports a shaft member in a radial direction with a lubricating film generated in a radial bearing gap between the surface and
A tapered surface having a diameter reduced toward the housing opening side is provided on at least a part of the inner peripheral surface of the housing, and a tapered surface having a diameter reduced toward the housing opening side on at least a part of the outer peripheral surface of the bearing sleeve. A hydrodynamic bearing device comprising:
前記テーパ面の少なくともハウジング開口側の端部で、軸受スリーブの外周面とハウジングの内周面とを締め代をもって密着させた請求項1〜3何れか記載の流体軸受装置。   The hydrodynamic bearing device according to any one of claims 1 to 3, wherein an outer peripheral surface of the bearing sleeve and an inner peripheral surface of the housing are in close contact with each other at at least an end of the tapered surface on the housing opening side. ハウジングの内周面と軸受スリーブの外周面との間に接着剤溜まりを介在させた請求項1〜3何れか記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein an adhesive reservoir is interposed between the inner peripheral surface of the housing and the outer peripheral surface of the bearing sleeve. ハウジングの内周面に接着剤溜まりとなる複数の溝を軸方向の複数箇所に形成し、そのうちハウジング閉塞側の溝を、軸受スリーブのハウジング閉塞側端面の近傍に設けた請求項5記載の流体軸受装置。   The fluid according to claim 5, wherein a plurality of grooves for forming an adhesive reservoir are formed at a plurality of axial positions on an inner peripheral surface of the housing, and a groove on the housing closing side is provided in the vicinity of the housing closing side end surface of the bearing sleeve. Bearing device. 軸受スリーブの端面に動圧発生部を形成した請求項1〜3何れか記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein a dynamic pressure generating portion is formed on an end surface of the bearing sleeve.
JP2008133061A 2008-05-21 2008-05-21 Hydrodynamic bearing device Active JP5133131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008133061A JP5133131B2 (en) 2008-05-21 2008-05-21 Hydrodynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008133061A JP5133131B2 (en) 2008-05-21 2008-05-21 Hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JP2009281464A true JP2009281464A (en) 2009-12-03
JP5133131B2 JP5133131B2 (en) 2013-01-30

Family

ID=41452132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008133061A Active JP5133131B2 (en) 2008-05-21 2008-05-21 Hydrodynamic bearing device

Country Status (1)

Country Link
JP (1) JP5133131B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121053A1 (en) * 2011-03-09 2012-09-13 Ntn株式会社 Fluid dynamic pressure bearing device
JP2012189089A (en) * 2011-03-09 2012-10-04 Ntn Corp Fluid dynamic pressure bearing device and method of manufacturing the same
JP2012189090A (en) * 2011-03-09 2012-10-04 Ntn Corp Fluid dynamic pressure bearing device
CN103415716A (en) * 2011-03-09 2013-11-27 Ntn株式会社 Fluid dynamic pressure bearing device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082252A (en) * 1998-09-04 2000-03-21 Matsushita Electric Ind Co Ltd Fixed magnetic disk drive assembly and its production
JP2000323870A (en) * 1999-05-14 2000-11-24 Hirosugi Keiki:Kk Spacer for printed substrate
JP2003239974A (en) * 2002-02-20 2003-08-27 Ntn Corp Dynamic pressure bearing device and manufacturing method therefor
JP2004176816A (en) * 2002-11-27 2004-06-24 Nippon Densan Corp Dynamic pressure bearing device
JP2006105183A (en) * 2004-10-01 2006-04-20 Nippon Densan Corp Method of manufacturing hydrodynamic pressure bearing, spindle motor and recording disk driving device
JP2006112497A (en) * 2004-10-14 2006-04-27 Canon Inc Static pressure gas bearing and manufacturing method thereof
JP2007255593A (en) * 2006-03-23 2007-10-04 Ntn Corp Liquid bearing device
JP2008039064A (en) * 2006-08-07 2008-02-21 Nippon Densan Corp Sleeve, sleeve unit, motor, and methods for manufacturing sleeve and sleeve unit

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082252A (en) * 1998-09-04 2000-03-21 Matsushita Electric Ind Co Ltd Fixed magnetic disk drive assembly and its production
JP2000323870A (en) * 1999-05-14 2000-11-24 Hirosugi Keiki:Kk Spacer for printed substrate
JP2003239974A (en) * 2002-02-20 2003-08-27 Ntn Corp Dynamic pressure bearing device and manufacturing method therefor
JP2004176816A (en) * 2002-11-27 2004-06-24 Nippon Densan Corp Dynamic pressure bearing device
JP2006105183A (en) * 2004-10-01 2006-04-20 Nippon Densan Corp Method of manufacturing hydrodynamic pressure bearing, spindle motor and recording disk driving device
JP2006112497A (en) * 2004-10-14 2006-04-27 Canon Inc Static pressure gas bearing and manufacturing method thereof
JP2007255593A (en) * 2006-03-23 2007-10-04 Ntn Corp Liquid bearing device
JP2008039064A (en) * 2006-08-07 2008-02-21 Nippon Densan Corp Sleeve, sleeve unit, motor, and methods for manufacturing sleeve and sleeve unit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121053A1 (en) * 2011-03-09 2012-09-13 Ntn株式会社 Fluid dynamic pressure bearing device
JP2012189089A (en) * 2011-03-09 2012-10-04 Ntn Corp Fluid dynamic pressure bearing device and method of manufacturing the same
JP2012189090A (en) * 2011-03-09 2012-10-04 Ntn Corp Fluid dynamic pressure bearing device
CN103415716A (en) * 2011-03-09 2013-11-27 Ntn株式会社 Fluid dynamic pressure bearing device
US8926183B2 (en) 2011-03-09 2015-01-06 Ntn Corporation Fluid dynamic bearing device

Also Published As

Publication number Publication date
JP5133131B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP5274820B2 (en) Hydrodynamic bearing device
JP5318344B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP5306747B2 (en) Hydrodynamic bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP5133131B2 (en) Hydrodynamic bearing device
JP4762757B2 (en) Hydrodynamic bearing device
JP4754418B2 (en) Hydrodynamic bearing device
JP4916673B2 (en) Hydrodynamic bearing device
JP2010106994A (en) Fluid bearing device
JP5318343B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP2007327588A (en) Fluid bearing device
JP2007024089A (en) Dynamic pressure bearing device and motor
JP2011007336A (en) Dynamic pressure bearing device and motor
JP2010096202A (en) Fluid bearing device and method of manufacturing the same
JP2009011018A (en) Fluid bearing device, and manufacturing method thereof
JP2006112614A (en) Dynamic pressure bearing device
JP5122205B2 (en) Method for assembling hydrodynamic bearing device
JP2007071312A (en) Dynamic pressure bearing device
JP4937524B2 (en) Hydrodynamic bearing device
JP5188942B2 (en) Fluid dynamic bearing device
JP2008111559A (en) Fluid bearing device
JP2009243605A (en) Fluid bearing device
JP2007100834A (en) Hydrodynamic bearing device
JP2010048309A (en) Fluid bearing device and motor equipped with the same
JP2006300178A (en) Fluid bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5133131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250