JP2009249705A - Electrode for electrolysis and use thereof - Google Patents
Electrode for electrolysis and use thereof Download PDFInfo
- Publication number
- JP2009249705A JP2009249705A JP2008100897A JP2008100897A JP2009249705A JP 2009249705 A JP2009249705 A JP 2009249705A JP 2008100897 A JP2008100897 A JP 2008100897A JP 2008100897 A JP2008100897 A JP 2008100897A JP 2009249705 A JP2009249705 A JP 2009249705A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- electrolysis
- conductive polymer
- treated
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
- Catalysts (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Abstract
Description
本発明は、被処理水中に含有される窒素化合物を電気化学的に処理するための電解用電極に関するものであり、より詳しくは、1つの電極上で、被処理水中に含まれる硝酸性窒素化合物をアンモニア性窒素化合物にまで還元できる触媒能を有し、かつ該被処理水中に含まれる有機物や細菌を分解・殺菌するための活性酸素を生成することができる電解用陰極電極に関するものである。 The present invention relates to an electrode for electrolysis for electrochemically treating nitrogen compounds contained in water to be treated, and more specifically, nitrate nitrogen compounds contained in water to be treated on one electrode. The present invention relates to a cathode electrode for electrolysis having a catalytic ability capable of reducing hydrogen to an ammoniacal nitrogen compound and capable of generating active oxygen for decomposing and sterilizing organic substances and bacteria contained in the water to be treated.
近年、湖沼や閉鎖性海域の富栄養化防止のため窒素化合物に対する排出規制が強化され、硝酸性窒素含有廃水を排出する事業所等では、その対策が緊急の課題となっている。この硝酸性窒素含有廃水の処理方法として、生物的還元処理技術がほぼ確立されているが、該処理技術に用いる脱窒素菌はpHや水温の影響を受け易く、反応速度が遅いうえに、おびただしいスラッジも発生するという欠点がある。 In recent years, emission regulations on nitrogen compounds have been strengthened to prevent eutrophication in lakes and closed waters, and countermeasures have become an urgent issue at business establishments that discharge nitrate-containing wastewater. Biological reduction treatment technology has been almost established as a treatment method for this nitrate nitrogen-containing wastewater, but denitrifying bacteria used in this treatment technology are easily affected by pH and water temperature, and the reaction rate is slow and numerous. There is a disadvantage that sludge is also generated.
それに対して、陰イオン交換法、陽イオン交換法及び電気透析法等に挙げられる物理化学的還元処理技術は、生物的還元処理に比べて処理速度が大幅に速いという利点を有する。しかし、該方法においては、高濃度硝酸イオンを含む廃液が生じ、その処理をさらに必要とする点に問題が認められる。 In contrast, physicochemical reduction treatment techniques such as anion exchange method, cation exchange method, and electrodialysis method have the advantage that the treatment speed is significantly faster than biological reduction treatment. However, in this method, there is a problem in that a waste liquid containing high-concentration nitrate ions is generated and further processing is required.
近年、電解還元を利用した硝酸性窒素含有廃水の処理方法が特許文献1や非特許文献1により開示されている。
該方法は、イオン交換膜などの隔膜を具備する電解槽にて、該硝酸性窒素含有廃水を電解処理する方法である。陰極側では、硝酸性窒素化合物の還元反応に対して高い触媒能を示す銅系合金からなる陰極を用い、NO3 −を還元してNO2 −を生成し、ついで、該NO2 −を更に還元してアンモニアを生成する。陽極側においては、Ti基体上に白金、二酸化イリジウムなどが被覆された寸法安定性電極を用い、該電極上で塩素を生成させ、陰極側で生成したアンモニアと該塩素とを反応させて、窒素にすることにより廃水を脱窒する。このように、その発生させた塩素により、廃水中に含まれる雑菌や有機物を殺菌、分解することで、高度の廃水処理が可能となる。
In recent years,
This method is a method in which the nitrate nitrogen-containing wastewater is subjected to electrolytic treatment in an electrolytic cell having a diaphragm such as an ion exchange membrane. In the cathode side, using a cathode made of a copper-based alloy exhibiting high catalytic ability to reduction reaction of nitrate nitrogen compounds, NO 3 - by reducing NO 2 - was produced and then, the NO 2 - further Reduce to produce ammonia. On the anode side, a dimensional stability electrode in which platinum, iridium dioxide, etc. are coated on a Ti substrate is used. Chlorine is produced on the electrode, and ammonia produced on the cathode side is reacted with the chlorine to produce nitrogen. By denitrifying the wastewater. In this way, it is possible to perform advanced wastewater treatment by sterilizing and decomposing germs and organic substances contained in the wastewater with the generated chlorine.
ここで、上記処理方法に用いられる還元電極について、一般的に銅系合金は硝酸性窒素化合物の還元に対して高い触媒能を示すと言われているが、本発明者らが試験した結果、硝酸性窒素を含む水溶液を無隔膜法にて電解還元した場合、その転換物は亜硝酸性窒素が主であり、亜硝酸性窒素からアンモニア性窒素へ転換する触媒能は決して高くはないという事実が認められた。
また、陰電極と陽電極間との電位差や、処理液に含まれる腐食性物質により銅系合金電極は腐食され易く、その触媒能が失われる電極被毒問題も抱えているため、さらなる高耐久性を有した陰電極が求められている。
Here, with respect to the reduction electrode used in the above-described treatment method, it is generally said that the copper-based alloy exhibits a high catalytic ability for the reduction of the nitrate nitrogen compound. The fact that when an aqueous solution containing nitrate nitrogen is electrolytically reduced by the diaphragmless method, the conversion product is mainly nitrite nitrogen and the catalytic ability to convert nitrite nitrogen to ammonia nitrogen is not high. Was recognized.
In addition, the copper alloy electrode is easily corroded by the potential difference between the negative electrode and the positive electrode and the corrosive substance contained in the treatment liquid, and there is also an electrode poisoning problem that loses its catalytic ability, so it is even more durable There is a demand for a negative electrode having the property.
また、陽極で生成される塩素は、アンモニアを脱窒及び排水中の有機物や細菌を分解・殺菌するために用いられ、より高度な排水処理が可能となる一方、過剰の塩素を効率良く生成させるために塩化ナトリウムなどのハロゲン原料を加える必要性があることから処理装置が複雑となり、経済的観点からより簡便な手法が求められている。さらに、フミン質などの有機物質が過剰塩素と反応して発癌性を有するトリハロメタンが生成される恐れがあるという問題もあるため、塩素発生の伴う電解処理方法を回避できる処理方法の開発が求められている。 Chlorine produced at the anode is used to denitrify ammonia and decompose and disinfect organic substances and bacteria in the wastewater, enabling more advanced wastewater treatment while efficiently producing excess chlorine. Therefore, since it is necessary to add a halogen raw material such as sodium chloride, the processing apparatus becomes complicated, and a simpler method is required from an economical viewpoint. In addition, there is a problem that organic substances such as humic substances may react with excess chlorine to produce carcinogenic trihalomethane, and therefore, it is necessary to develop a treatment method that can avoid the electrolytic treatment method accompanied by chlorine generation. ing.
上記問題点に対しては、塩素の代替として活性酸素を用いることが期待されている。
特許文献2には、導電性物質表面に、導電性物質の粉末、バインダー及びポリアニリンからなる導電性組成物の被覆を施した電解用電極を用い、電気化学的手法により活性酸素を生成させる方法が開示されている。しかし、該導電性高分子被覆電極を用いることによる硝酸性窒素含有水の電解処理による還元触媒能については不明なところが多い。
For the above problems, it is expected to use active oxygen as an alternative to chlorine.
さらに、ポリアニリンは電気化学的に非常に貴な電位を有しているため、卑な電位を有する金属と接すると、局部電池を形成して金属が溶解する。導電性物質としてカーボンを用いる方法も考えられるが、陰極として使用すると、水素のインターカレーションによって電極内部に応力が生じて、短時間で電極が崩壊してしまうという電極寿命の点で問題がある。 Furthermore, since polyaniline has an electrochemically very precious potential, when it contacts a metal having a base potential, a local battery is formed and the metal dissolves. A method using carbon as a conductive material is also conceivable, but when used as a cathode, there is a problem in terms of electrode life that stress is generated inside the electrode due to hydrogen intercalation and the electrode collapses in a short time. .
本発明の目的は上記した問題点を総合的に解決することであり、その第一の課題は、被処理水液中に含有される硝酸性窒素化合物を、速やかにアンモニア性窒素化合物にまで還元でき、該被処理液中に含まれる腐食性物質の存在下においても腐食されることなく安定して用いることができる耐被毒性の電解用電極を提供することである。また、第二の課題は、被処理液中の雑菌・有機物等の殺菌・分解を過剰の塩素を用いることなく簡便に処理可能とする電解用電極及びそれを用いた硝酸性化合物含有廃液の処理方法を提供することである。 The object of the present invention is to comprehensively solve the above-mentioned problems, and the first problem is to quickly reduce nitrate nitrogen compounds contained in the water to be treated to ammonia nitrogen compounds. Another object of the present invention is to provide a poisoning-resistant electrolysis electrode that can be used stably without being corroded even in the presence of a corrosive substance contained in the liquid to be treated. In addition, the second problem is that an electrode for electrolysis that can easily treat sterilization / decomposition of germs and organic substances in the liquid to be treated without using excessive chlorine, and treatment of waste liquid containing nitrate compounds using the same. Is to provide a method.
本発明者らは上記課題に鑑み、鋭意検討した結果、
金属又は炭素製芯材表面上に、導電性高分子層を形成してなる電解用電極を使用し、被処理水を還元処理した結果、硝酸性窒素化合物を速やかに還元でき、さらに、同一電極から高効率で活性酸素を発生し得ることを見出し、本発明を完成するに至った。
すなわち、本発明は以下(1)〜(5)に示すものである。
In light of the above problems, the present inventors have conducted extensive studies,
As a result of reducing the water to be treated using an electrode for electrolysis formed by forming a conductive polymer layer on the surface of a metal or carbon core material, nitrate nitrogen compounds can be quickly reduced, and the same electrode From this, it was found that active oxygen can be generated with high efficiency, and the present invention has been completed.
That is, this invention is shown to the following (1)-(5).
(1)中心線平均粗さが、1.5μmから15μmである金属または炭素製芯材基体表面上に、導電性高分子層が形成されてなることを特徴とする電解用電極。 (1) An electrode for electrolysis wherein a conductive polymer layer is formed on the surface of a metal or carbon core substrate having a center line average roughness of 1.5 to 15 μm.
(2)前記導電性高分子層が、ポリピロール誘導体、ポリチオフェン誘導体及びポリアニリン誘導体からなる群から選ばれる少なくとも1つであることを特徴とする前記(1)に記載の電解用電極。 (2) The electrode for electrolysis according to (1), wherein the conductive polymer layer is at least one selected from the group consisting of a polypyrrole derivative, a polythiophene derivative, and a polyaniline derivative.
(3)前記導電性高分子層の電気伝導度が、1S/cm〜100S/cmであることを特徴とする前記(1)又は(2)に記載の電解用電極。 (3) The electrode for electrolysis according to (1) or (2) above, wherein the electric conductivity of the conductive polymer layer is 1 S / cm to 100 S / cm.
(4)用途が、被処理水中に含有される窒素化合物を電解還元反応させるための前記(1)〜(3)のいずれかに記載の電解用電極。 (4) The electrode for electrolysis according to any one of (1) to (3), wherein the use is an electrolytic reduction reaction of a nitrogen compound contained in the water to be treated.
(5)被処理水中に含有される窒素化合物を電解することで電気化学的に還元する処理方法であって、
前記(1)〜(4)のいずれかに記載の電解用電極を用い、被処理水中に含有された硝酸性窒素化合物を、アンモニア性窒素に還元し、さらに該被処理水中に含まれる雑菌及び有機物を、該電解用電極より発生する活性酸素により殺菌・分解することを特徴とする窒素化合物含有水溶液の処理方法。
(5) A treatment method for electrochemical reduction by electrolyzing a nitrogen compound contained in the water to be treated,
Using the electrode for electrolysis according to any one of the above (1) to (4), a nitrate nitrogen compound contained in the water to be treated is reduced to ammonia nitrogen, and further various bacteria contained in the water to be treated; A method for treating a nitrogen compound-containing aqueous solution, wherein organic matter is sterilized and decomposed by active oxygen generated from the electrode for electrolysis.
本発明によれば、金属またはカーボン製芯材基体上に導電性高分子層を設け、電気化学的手法による硝酸性窒素還元機能及び活性酸素生成のための電解用陰極電極として用いることで、導電性高分子が硝酸性窒素還元反応および活性酸素生成のための電極触媒として高く機能し、1つの電極で高度な水処理が可能となる。 According to the present invention, a conductive polymer layer is provided on a metal or carbon core substrate and used as an electrolysis cathode electrode for nitrate nitrogen reduction function and active oxygen generation by an electrochemical method. The highly functional polymer functions highly as an electrode catalyst for nitrate nitrogen reduction reaction and active oxygen generation, and high water treatment is possible with one electrode.
すなわち、中心線平均粗さが1.5μm以上に処理された金属またはカーボンを芯材基体とし、該芯材基体表面に、好ましくは電解重合法または化学重合法により電極活物質である1S/cm以上の伝導度を有する導電性高分子とを形成した電極を用いることで、ガス発生を伴う電解においても良好な密着性を有し、1つの電極表面上で硝酸性窒素還元反応および活性酸素生成のための触媒として同時に作用させることが可能となる。 That is, a metal or carbon having a center line average roughness of 1.5 μm or more is used as a core substrate, and the surface of the core substrate is preferably 1 S / cm which is an electrode active material by an electrolytic polymerization method or a chemical polymerization method. By using an electrode formed with a conductive polymer having the above conductivity, it has good adhesion even in electrolysis with gas generation, and nitrate nitrogen reduction reaction and active oxygen generation on one electrode surface It becomes possible to act simultaneously as a catalyst for.
さらに、上記導電性高分子層で被覆された電極は、その耐食性が著しく向上するため、耐被毒性に優れた電解用電極となる。 Furthermore, since the electrode coated with the conductive polymer layer has significantly improved corrosion resistance, it becomes an electrode for electrolysis excellent in poisoning resistance.
本発明の電解用電極において、使用する芯材基体は金属またはカーボンであり、陰極として使用した場合に、使用環境に対する耐食性の観点からカーボンまたは鉄、ニッケル、コバルト、チタン、ジルコニウム、ニオブ、タンタル、アルミ、銅、亜鉛、錫、白金、ルテニウム、イリジウムおよびそれを主成分とする合金からなる群から選ばれる少なくとも一つの金属基体であることが好ましい。 In the electrode for electrolysis of the present invention, the core substrate used is a metal or carbon, and when used as a cathode, carbon or iron, nickel, cobalt, titanium, zirconium, niobium, tantalum, from the viewpoint of corrosion resistance to the use environment. It is preferably at least one metal substrate selected from the group consisting of aluminum, copper, zinc, tin, platinum, ruthenium, iridium, and alloys based on them.
芯材基体の実質的な表面積を増大させて、電極活物質である導電性高分子層の特性を十分に引き出し、表面を清浄にした後活性化させて芯材と導電性高分子層との密着性を向上させるために、事前に該基体表面に対してブラストやエッチング処理等により表面を粗面化処理を行ったものを使用することが好ましい。 By increasing the substantial surface area of the core material substrate, the characteristics of the conductive polymer layer, which is an electrode active material, can be fully extracted, and after the surface is cleaned, the core material and the conductive polymer layer are activated. In order to improve the adhesion, it is preferable to use a surface of which the surface is roughened by blasting, etching or the like in advance.
表面の粗面化度として、基体表面の中心線平均粗さは1.5μm以上または15.0μm以下であることが好ましい。なぜなら、基体表面の中心線平均粗さが1.5μm未満または15.0μm超では、密着性と表面積増大の効果が逆に低下し、さらに均一に電極活物質を形成することが困難になるためである。特に、密着性や化学的、物理的手法による粗面化し易さの観点から、粗面化度2.5μm以上10μm以下がより好ましく、粗面化度3.5μm以上10μm以下が最も好ましい。芯材基材表面を粗面化する方法としては、特に限定されず従来公知の方法を使用することができ、アルミナ粒子等を用いるブラスト法やフッ化水素酸等を用いた湿式エッチング法など、その芯材基材に適した方法を選択することができる。 As the surface roughness, the center line average roughness of the substrate surface is preferably 1.5 μm or more or 15.0 μm or less. This is because if the average roughness of the center line on the surface of the substrate is less than 1.5 μm or more than 15.0 μm, the effect of increasing the adhesion and the surface area decreases, and it becomes difficult to form an electrode active material more uniformly. It is. In particular, from the viewpoint of adhesion and ease of roughening by chemical and physical methods, the degree of roughening is more preferably 2.5 μm or more and 10 μm or less, and most preferably the degree of roughening is 3.5 μm or more and 10 μm or less. The method for roughening the surface of the core material substrate is not particularly limited, and a conventionally known method can be used, such as a blasting method using alumina particles or the like, a wet etching method using hydrofluoric acid, etc. A method suitable for the core material substrate can be selected.
次いで、この粗面化した芯材基体上に電極活物質である導電性高分子膜を被覆する。 Next, a conductive polymer film that is an electrode active material is coated on the roughened core material substrate.
本発明に用いることができる導電性高分子の種類としては、特に制限はされないが、導電性、安定性、還元触媒性能の面からポリピロール誘導体、ポリチオフェン誘導体及びポリアニリン誘導体からなる群から選ばれる少なくとも一つが好適である。その中でも、電極抵抗による発熱、水溶液中に含まれる酸化性物質である硝酸性物質などの雰囲気で使用されるため、耐熱性や対酸化性に優れるポリピロール誘導体、ポリチオフェン誘導体がより好ましい。
ポリピロール誘導体としては、具体的にはポリピロールが挙げられ、ポリチオフェン誘導体としては具体的にはポリ−3,4−エチレンジオキシチオフェンが挙げられる。
The type of the conductive polymer that can be used in the present invention is not particularly limited, but at least one selected from the group consisting of a polypyrrole derivative, a polythiophene derivative, and a polyaniline derivative in terms of conductivity, stability, and reduction catalyst performance. Is preferred. Among these, polypyrrole derivatives and polythiophene derivatives that are excellent in heat resistance and oxidation resistance are more preferable because they are used in an atmosphere such as heat generation due to electrode resistance and a nitrate substance that is an oxidizing substance contained in an aqueous solution.
Specific examples of the polypyrrole derivative include polypyrrole, and specific examples of the polythiophene derivative include poly-3,4-ethylenedioxythiophene.
上記導電性高分子の被覆方法としては電解重合法、化学重合法が挙げられる。
電解重合法による導電性高分子膜の形成法として、例えばポリピロール膜を成膜する場合には、単量体であるピロール、支持電解質として機能するナフタレンスルホン酸ナトリウムやテトラフルオロホウ酸テトラエチルアンモニウム等を純水など溶媒中に溶解させ、ステンレス基体などを陰極、粗面化した芯材基体を陽極として電解酸化重合することで、基体上にポリピロール膜を成膜することができる。電解重合法による電極活物質層は、緻密で規則性が高く、また高分子鎖が長くドーパント分子によく絡むことができるので、脱ドープされにくく、機械的強度にも優れる膜が得られるのが特徴で、ポリピロール、ポリアニリンおよびそれらの誘導体の形成に好適である。
化学重合法においては、粗面化した芯材基体上で目的とする導電性高分子の単量体と酸化剤溶液とを接触させることで、耐食性の高い導電性高分子膜を形成することができる。
例えばポリ−3,4−エチレンジオキシチオフェン被膜を形成する場合には、粗面化した芯材基体上で、単量体である3,4−エチレンジオキシチオフェン、酸化剤であるp−トルエンスルホン酸鉄(III)を含むブタノール溶液を接触させることによって、ポリ−3,4−エチレンジオキシチオフェン被膜を得ることができる。化学重合法は、微細な粒子が緻密に充填され、実質的な表面積をさらに増大させて電極物質の特性を飛躍的に引き出すことができ、ポリチオフェン誘導体の形成に好適である。
Examples of the method for coating the conductive polymer include an electrolytic polymerization method and a chemical polymerization method.
As a method for forming a conductive polymer film by electrolytic polymerization, for example, when a polypyrrole film is formed, pyrrole as a monomer, sodium naphthalenesulfonate functioning as a supporting electrolyte, tetraethylammonium tetrafluoroborate, etc. A polypyrrole film can be formed on the substrate by dissolution in a solvent such as pure water and electrolytic oxidation polymerization using a stainless steel substrate as a cathode and a roughened core substrate as an anode. The electrode active material layer by the electrolytic polymerization method is dense and highly regular, and has a long polymer chain and can be entangled with the dopant molecule well, so that a film that is difficult to be dedoped and excellent in mechanical strength can be obtained. Features are suitable for the formation of polypyrrole, polyaniline and their derivatives.
In the chemical polymerization method, a conductive polymer film having high corrosion resistance can be formed by bringing a monomer of a desired conductive polymer into contact with an oxidizing agent solution on a roughened core material substrate. it can.
For example, when a poly-3,4-ethylenedioxythiophene film is formed, 3,4-ethylenedioxythiophene as a monomer and p-toluene as an oxidant are formed on a roughened core substrate. A poly-3,4-ethylenedioxythiophene coating can be obtained by contacting a butanol solution containing iron (III) sulfonate. The chemical polymerization method is suitable for forming a polythiophene derivative, because fine particles are densely packed, can further increase the substantial surface area, and can dramatically bring out the characteristics of the electrode material.
また、ポリアニリン粉末などの導電性高分子をN−ピロリドンなどのような特殊な溶媒に溶解させ塗布液を調製し、該塗布液を導電性物質表面に塗布後、100℃以上の高温で乾燥する溶液法も使用できるが、可溶性の導電性高分子は極限られ、分子構造的に電極活物質の伝導度が低く、その溶媒も環境負荷が大きい。さらに、乾燥時の脱溶媒による収縮および冷却時に発生する収縮により高い内部応力が発生するため、ガス発生を伴う電解時に基体との密着性を保つことが困難となる場合がある。
そのため、本願発明の効果をより良く達成するためには、化学重合法及び電解重合法が好適である。
Further, a conductive polymer such as polyaniline powder is dissolved in a special solvent such as N-pyrrolidone to prepare a coating solution, and the coating solution is applied to the surface of the conductive material and then dried at a high temperature of 100 ° C. or higher. Although the solution method can also be used, the soluble conductive polymer is limited, the conductivity of the electrode active material is low in molecular structure, and the solvent has a large environmental load. Furthermore, since high internal stress is generated due to shrinkage caused by solvent removal during drying and shrinkage generated during cooling, it may be difficult to maintain adhesion to the substrate during electrolysis accompanied by gas generation.
Therefore, in order to achieve the effect of the present invention better, the chemical polymerization method and the electrolytic polymerization method are suitable.
本電極は、水溶液中で陰極電極として機能するが、硝酸性窒素の還元反応および活性酸素生成の反応の他に、水素発生反応を伴う。該水素は電極活物質である導電性高分子膜を芯材基体から剥離しようとする力を発生させるため、機械的強度を高め易く、良好な密着性が得られ易い電解重合法による被覆法がより好ましく、その中でも硝酸性窒素還元能および活性酸素生成能が高いポリピロール膜がさらに好ましい。 This electrode functions as a cathode electrode in an aqueous solution, but involves a hydrogen generation reaction in addition to the reduction reaction of nitrate nitrogen and the reaction of generating active oxygen. The hydrogen generates a force to peel the conductive polymer film, which is an electrode active material, from the core material substrate. Therefore, there is a coating method by an electropolymerization method that can easily increase the mechanical strength and easily obtain good adhesion. Among them, a polypyrrole film having high nitrate nitrogen reducing ability and active oxygen generating ability is more preferred.
電解用電極として機能させるには、導電性高分子に高い伝導度が要求される。1S/cm未満では電解電圧が異常に高くなって電極活物質である導電性高分子が破壊されるため、1〜100S/cm程度の伝導度を持つπ共役系導電性高分子を用いるのが好ましいが、電解還元能の観点から、より好ましくは5〜100S/cmであり、さらに好ましくは10〜100S/cmである。また、上述した方法により形成されるポリピロールやポリチオフェン、それらの誘導体はドーパントが高分子鎖に強固に固定されて十分にドープされ、伝導度が1〜100S/cm程度と高伝導度電極活物質を容易に形成することができる。 In order to function as an electrode for electrolysis, the conductive polymer is required to have high conductivity. If it is less than 1 S / cm, the electrolysis voltage becomes abnormally high and the conductive polymer as the electrode active material is destroyed. Therefore, a π-conjugated conductive polymer having a conductivity of about 1 to 100 S / cm is used. Although preferable, from a viewpoint of electrolytic reduction ability, More preferably, it is 5-100 S / cm, More preferably, it is 10-100 S / cm. In addition, polypyrrole, polythiophene, and derivatives thereof formed by the above-described method are highly doped with a dopant firmly fixed to a polymer chain and having a conductivity of about 1 to 100 S / cm and a high conductivity electrode active material. It can be formed easily.
また、あらかじめ芯材基体にプレス加工等の曲げ加工、切削加工、エッチング加工等の機械加工を施した後に、導電性高分子の形成工程を行うことによって、複雑な形状の電極に対しても導電性高分子膜を損傷することなく、該導電性高分子膜の効果を確実に得ることができる。例えば、導電性高分子膜の形成に関し、上記のように加工後の芯材基体を電極として電解重合を行えば、加工によって基体表面が凹凸状態にあっても、均一に導電性高分子膜を形成することが可能となり、安定した性能を得ることができる。 In addition, the core material substrate is subjected to bending processing such as press processing, cutting processing, etching processing, etc., and then conducting a conductive polymer forming step, so that even a complex-shaped electrode is conductive. The effect of the conductive polymer film can be reliably obtained without damaging the conductive polymer film. For example, regarding the formation of a conductive polymer film, if electrolytic polymerization is performed using the processed core material substrate as an electrode as described above, the conductive polymer film can be uniformly formed even if the substrate surface is uneven by processing. It becomes possible to form, and stable performance can be obtained.
形成する導電性高分子層の厚みは、0.01μm〜100μmが適当であるが、経済的観点および機械的強度の面から、0.05μm〜50μmがより好ましく、0.5μm〜35μmが最も好ましい。 The thickness of the conductive polymer layer to be formed is suitably 0.01 μm to 100 μm, but from the viewpoints of economy and mechanical strength, 0.05 μm to 50 μm is more preferable, and 0.5 μm to 35 μm is most preferable. .
次に、本発明の被処理水中に含有される窒素化合物を電解還元処理する方法について説明する。具体的には、電解槽内に、本発明の電解用電極を陰極、白金箔等からなる電極を陽極として設置し、硝酸性窒素源を含有する水溶液を無隔膜電解することで、硝酸性窒素を亜硝酸性窒素、さらにはアンモニア性窒素にまで還元することができる。 Next, a method for electrolytic reduction of the nitrogen compound contained in the water to be treated according to the present invention will be described. Specifically, in the electrolytic cell, the electrode for electrolysis of the present invention is set as a cathode, and an electrode made of platinum foil or the like is set as an anode, and an aqueous solution containing a nitrate nitrogen source is subjected to diaphragmless electrolysis so that nitrate nitrogen is obtained. Can be reduced to nitrite nitrogen and even ammonia nitrogen.
以下、実施例により本発明をより詳細に説明する。なお、本発明は本実施例によりなんら限定されるものでない。 Hereinafter, the present invention will be described in more detail with reference to examples. In addition, this invention is not limited at all by this Example.
(実施例1)
金属基体としてTi基材(JIS2種)を用いた。Ti基体は大きさが50×50mm、厚さが0.5mmの圧延材である。該基体に、ジルコンショットを用いたショットブラスト加工により、梨地仕上げを行い、中心線平均粗さが11.5μmの表面を得た。次に、アセトン溶媒による脱脂処理後、3N塩酸中に30秒間浸漬させて酸水溶液洗浄を行い、水洗してTi基体表面処理工程を終了した。
Example 1
A Ti substrate (JIS type 2) was used as the metal substrate. The Ti substrate is a rolled material having a size of 50 × 50 mm and a thickness of 0.5 mm. The substrate was finished with a satin finish by shot blasting using a zircon shot to obtain a surface with a center line average roughness of 11.5 μm. Next, after degreasing treatment with an acetone solvent, the substrate was immersed in 3N hydrochloric acid for 30 seconds to perform acid aqueous solution cleaning, and then washed with water to complete the Ti substrate surface treatment step.
次に、表面処理工程を終えたTi基体上に、電解重合法によって電極活物質である導電性高分子膜を形成する。溶媒を純水とし、単量体としてピロール0.5mol/L、支持電解質としてテトラエチルアンモニウム−p−トルエンスルホン酸0.25mol/Lを含む電解液を用いて、表面処理を施したTi基体を陽極、SUS304を陰極、電解重合時間は1時間、電流密度を1mA/cm2として電解重合を行い、25μm厚みのポリピロール膜を形成し、電解用陰極電極を作製した。
なお、該導電性高分子膜の電気伝導度を測定したところ53S/cmであった。
Next, a conductive polymer film that is an electrode active material is formed by electrolytic polymerization on the Ti substrate that has undergone the surface treatment process. A Ti substrate subjected to surface treatment using an electrolytic solution containing pure water as a solvent, pyrrole 0.5 mol / L as a monomer, and tetraethylammonium-p-toluenesulfonic acid 0.25 mol / L as a supporting electrolyte is an anode. SUS304 was used as the cathode, the electropolymerization time was 1 hour, and the current density was 1 mA / cm 2 , and electropolymerization was performed to form a 25 μm-thick polypyrrole film to prepare a cathode electrode for electrolysis.
The electrical conductivity of the conductive polymer film was measured and found to be 53 S / cm.
(実施例2)
金属基体としてSUS316基材を用いた。SUS316基体は大きさが50×50mm、厚さが0.5mmの圧延材である。該基体に、ジルコンショットを用いたショットブラスト加工により、梨地仕上げを行い、中心線平均粗さが9.5μmの表面を得た。次に、アセトン溶媒による脱脂処理後、3N塩酸中に30秒間浸漬させて酸水溶液洗浄を行い、水洗してSUS316基体表面処理工程を終了した。
(Example 2)
A SUS316 substrate was used as the metal substrate. The SUS316 substrate is a rolled material having a size of 50 × 50 mm and a thickness of 0.5 mm. The substrate was satin-finished by shot blasting using zircon shot to obtain a surface with a center line average roughness of 9.5 μm. Next, after degreasing treatment with an acetone solvent, the substrate was immersed in 3N hydrochloric acid for 30 seconds, washed with an aqueous acid solution, washed with water, and the SUS316 substrate surface treatment step was completed.
次に、化学重合法によって電極活物質である導電性高分子膜を形成する。表面処理工程を終えたSUS316基体表面上に、単量体であるピロールとドーパント剤であるポリビニルスルホン酸テトラエチルアンモニウム(平均分子量100,000)を含むエタノール溶液をスプレーにより塗布後、酸化剤溶液であるポリビニルスルホン酸鉄(III)を溶解させたブタノール溶液を噴霧し、40℃で5分間乾燥するこの一連の工程を繰り返し、厚みが21μmであるポリピロール膜を形成し、電解用陰極電極を作製した。
なお、該導電性高分子膜の電気伝導度を測定したところ16S/cmであった。
Next, a conductive polymer film as an electrode active material is formed by chemical polymerization. On the surface of the SUS316 substrate after finishing the surface treatment process, an ethanol solution containing pyrrole as a monomer and tetraethylammonium polyvinylsulfonate (average molecular weight 100,000) as a dopant agent is applied by spraying, and then an oxidizer solution. This series of steps of spraying a butanol solution in which iron (III) polyvinyl sulfonate was dissolved and drying at 40 ° C. for 5 minutes was repeated to form a polypyrrole film having a thickness of 21 μm, and a cathode electrode for electrolysis was produced.
The electrical conductivity of the conductive polymer film was measured and found to be 16 S / cm.
(実施例3)
カーボン基体として高純度黒鉛基体を用いた。高純度黒鉛基体は大きさが50×50mm、厚さが5mmの板材である。該基体に、ガラスビーズを用いたブラスト加工により、梨地仕上げを行い、中心線平均粗さが10.7μmの表面を得た。次に、アセトン溶媒による脱脂処理後、1Nフッ酸中に1分間浸漬させて酸水溶液洗浄を行い、水洗してカーボン基体表面処理工程を終了した。
(Example 3)
A high purity graphite substrate was used as the carbon substrate. The high purity graphite substrate is a plate material having a size of 50 × 50 mm and a thickness of 5 mm. The substrate was finished with a satin finish by blasting using glass beads to obtain a surface with a centerline average roughness of 10.7 μm. Next, after degreasing treatment with an acetone solvent, the substrate was immersed in 1N hydrofluoric acid for 1 minute, washed with an acid aqueous solution, washed with water, and the carbon substrate surface treatment step was completed.
次に、表面処理工程を終えた高純度黒鉛基体上に、電解重合法によって電極活物質である導電性高分子膜を形成する。溶媒を炭酸プロピレンとし、単量体としてエチレンジオキシチオフェン0.2mol/L、支持電解質としてテトラエチルアンモニウム−6−[3,6-ビス(ジエチルアミノ)キサンテニウム−9−イル]ベンゼン−1,3−ジスルホン酸0.1mol/Lを含む電解液を用いて、表面処理を施した高純度黒鉛基体を陽極、SUS304を陰極、電極電解重合時間は1時間、電流密度を1mA/cm2として電解重合を行い、13μm厚みのポリエチレンジオキシチオフェン膜を形成し、電解用陰極電極を作製した。
なお、該導電性高分子膜の電気伝導度を測定したところ22S/cmであった。
Next, a conductive polymer film, which is an electrode active material, is formed on the high-purity graphite substrate after the surface treatment process by an electrolytic polymerization method. The solvent is propylene carbonate, the monomer is ethylenedioxythiophene 0.2 mol / L, and the supporting electrolyte is tetraethylammonium-6- [3,6-bis (diethylamino) xanthenium-9-yl] benzene-1,3-disulfone Using an electrolytic solution containing 0.1 mol / L of acid, surface-treated high-purity graphite substrate is used as an anode, SUS304 is used as a cathode, electrode electropolymerization time is 1 hour, and current density is 1 mA / cm 2. A polyethylene dioxythiophene film having a thickness of 13 μm was formed to produce a cathode electrode for electrolysis.
The electrical conductivity of the conductive polymer film was measured and found to be 22 S / cm.
(実施例4)
金属基体としてリン脱酸銅基体を用いた。リン脱酸銅基体は大きさが50×50mm、厚さが0.5mmの圧延材である。該基体に、アルミナ粒子を用いたブラスト加工により、梨地仕上げを行い、中心線平均粗さが9.9μmの表面を得た。次に、アセトン溶媒による脱脂処理後、1N塩酸中に1分間浸漬させて酸水溶液洗浄を行い、水洗してリン脱酸銅基体表面処理工程を終了した。
Example 4
A phosphorous deoxidized copper substrate was used as the metal substrate. The phosphorous deoxidized copper substrate is a rolled material having a size of 50 × 50 mm and a thickness of 0.5 mm. The base was finished by blasting using alumina particles to obtain a surface with a centerline average roughness of 9.9 μm. Next, after degreasing treatment with an acetone solvent, the substrate was immersed in 1N hydrochloric acid for 1 minute to wash with an aqueous acid solution, and washed with water to finish the phosphorous deoxidized copper substrate surface treatment step.
次に、化学重合法によって電極活物質である導電性高分子膜を形成する。表面処理工程を終えたリン脱酸銅基体表面上に、単量体であるエチレンジオキシチオフェンとドーパント剤であるテトラエチルアンモニウム−p−トルエンスルホン酸を含むエタノール溶液をスプレーにより塗布後、酸化剤溶液であるp−トルエンスルホン酸鉄(III)を溶解させたブタノール溶液を噴霧させ、40℃で5分間乾燥するこの一連の工程を繰り返し、厚みが9μmであるポリエチレンジオキシチオフェン膜を形成し、電解用陰極電極を作製した。
なお、該導電性高分子膜の電気伝導度を測定したところ32S/cmであった。
Next, a conductive polymer film as an electrode active material is formed by chemical polymerization. On the surface of the phosphorous deoxidized copper substrate after the surface treatment step, an ethanol solution containing ethylenedioxythiophene as a monomer and tetraethylammonium-p-toluenesulfonic acid as a dopant agent is applied by spray, and then an oxidant solution. This series of steps of spraying a butanol solution in which iron (III) p-toluenesulfonate is dissolved and drying at 40 ° C. for 5 minutes is repeated to form a polyethylene dioxythiophene film having a thickness of 9 μm. A cathode electrode was prepared.
The electrical conductivity of the conductive polymer film was measured and found to be 32 S / cm.
(実施例5)
カーボン基体として高純度黒鉛基体を用いた。高純度黒鉛基体は大きさが50×50mm、厚さが5mmの板材である。該基体に、ガラスビーズを用いたブラスト加工により、梨地仕上げを行い、中心線平均粗さが8.9μmの表面を得た。次に、アセトン溶媒による脱脂処理後、1Nフッ酸中に1分間浸漬させて酸水溶液洗浄を行い、水洗して高純度黒鉛基体表面処理工程を終了した。
(Example 5)
A high purity graphite substrate was used as the carbon substrate. The high purity graphite substrate is a plate material having a size of 50 × 50 mm and a thickness of 5 mm. The substrate was finished with a satin finish by blasting using glass beads to obtain a surface with a center line average roughness of 8.9 μm. Next, after degreasing treatment with an acetone solvent, it was immersed in 1N hydrofluoric acid for 1 minute, washed with an aqueous acid solution, washed with water, and the high purity graphite substrate surface treatment step was completed.
次に、化学重合法によって電極活物質である導電性高分子膜を形成する。表面処理工程を終えた高純度黒鉛基体を、単量体である0.1Mアニリンとドーパント剤である0.2Mドデシルベンゼンスルホン酸を含む溶液(硫酸にてpH1に調製)に1分間浸漬させ、引き上げ速度10mm/minにて引き上げることで表面にアニリン水溶液を塗布させた。続いて、2.5M過硫酸アンモニウム水溶液をスプレーにて噴霧させ、40℃で15分間乾燥するこの一連の工程を繰り返し、厚みが11μmであるポリアニリン膜を形成し、電解用陰極電極を作製した。
なお、該導電性高分子膜の電気伝導度を測定したところ1.8S/cmであった。
Next, a conductive polymer film as an electrode active material is formed by chemical polymerization. The high-purity graphite substrate after the surface treatment step was immersed in a solution containing 0.1M aniline as a monomer and 0.2M dodecylbenzenesulfonic acid as a dopant agent (adjusted to
The electrical conductivity of the conductive polymer film was measured and found to be 1.8 S / cm.
(比較例1)
実施例1において、電極活物質である導電性高分子膜を形成させなかった以外は、同様に実施してTi製電解用陰極電極を作製した。
(Comparative Example 1)
A cathode electrode for electrolysis made of Ti was produced in the same manner as in Example 1 except that the conductive polymer film as the electrode active material was not formed.
(比較例2)
実施例2において、電極活物質である導電性高分子膜を形成させなかった以外は、同様に実施してSUS316製電解用陰極電極を作製した。
(Comparative Example 2)
In Example 2, a SUS316 electrolysis cathode electrode was produced in the same manner except that the conductive polymer film as the electrode active material was not formed.
(比較例3)
実施例3において、電極活物質である導電性高分子膜を形成させなかった以外は、同様に実施して高純度黒鉛製電解用陰極電極を作製した。
(Comparative Example 3)
A high-purity graphite electrolysis cathode electrode was produced in the same manner as in Example 3 except that the conductive polymer film as the electrode active material was not formed.
(比較例4)
実施例4において、電極活物質である導電性高分子膜を形成させなかった以外は、同様に実施してリン脱酸銅基体製電解用陰極電極を作製した。
(Comparative Example 4)
A cathode electrode for electrolysis made of phosphorus-deoxidized copper base was prepared in the same manner as in Example 4 except that the conductive polymer film as the electrode active material was not formed.
1:硝酸性窒素還元用電極としての評価
このようにして作製した本発明にかかる電解用陰極電極および比較例で作製した電極に対して、電解用電極として作用させて硝酸性窒素を含む溶液を電解還元して比較した。実施例および比較例で作製した電解用電極を陰極、陽極には白金板、溶媒として超純水、支持電解質として硝酸カリウム、基質濃度として100mMに調製された電解液を用い、0.5A/dm2の定電流無隔膜電解にて実施した。反応中、硝酸性窒素が還元されて生成する亜硝酸性窒素、アンモニア性窒素をイオンクロマトグラフィー法(IC法)にて定量分析することで還元性能を比較した。実施例1〜5で作製した電極を用いた場合の硝酸性窒素濃度の経時変化を図1に、亜硝酸性窒素濃度の経時変化を図2に、アンモニア性窒素濃度の経時変化を図3に示した。また、比較例1〜4で作製した電極を用いた場合の硝酸性窒素濃度の経時変化を図4に、亜硝酸性窒素濃度の経時変化を図5に、アンモニア性窒素濃度の経時変化を図6に示した。
1: Evaluation as an electrode for reducing nitrate nitrogen A solution containing nitrate nitrogen was made to act as an electrode for electrolysis on the cathode electrode for electrolysis according to the present invention and the electrode prepared in the comparative example. Comparison was made by electrolytic reduction. The electrode for electrolysis produced in the examples and comparative examples was used as a cathode, a platinum plate as an anode, ultrapure water as a solvent, potassium nitrate as a supporting electrolyte, and an electrolyte prepared to 100 mM as a substrate concentration, and 0.5 A / dm 2 This was carried out by constant current non-electrolytic membrane electrolysis. During the reaction, the reduction performance was compared by quantitatively analyzing nitrite nitrogen and ammonia nitrogen generated by reduction of nitrate nitrogen by ion chromatography (IC method). FIG. 1 shows the change over time in the nitrate nitrogen concentration when using the electrodes prepared in Examples 1 to 5, FIG. 2 shows the change over time in the nitrite nitrogen concentration, and FIG. 3 shows the change over time in the ammonia nitrogen concentration. Indicated. Further, FIG. 4 shows the change over time in the nitrate nitrogen concentration when using the electrodes prepared in Comparative Examples 1 to 4, FIG. 5 shows the change over time in the nitrite nitrogen concentration, and FIG. 5 shows the change over time in the ammonia nitrogen concentration. This is shown in FIG.
2:過酸化水素生成用電極としての評価
さらに、先の実験条件において、生成される活性酸素を過酸化水素として測定するため、電気化学検出器を備える高速液体クロマトグラフィー法(HPLC法)を用いて定量分析を行い、生成性能を比較した結果を図7(実施例1〜5で作製した電極用いた場合)、図8(比較例1〜4で作製した電極用いた場合)に示した。
2: Evaluation as an electrode for hydrogen peroxide generation Further, in the previous experimental conditions, in order to measure the generated active oxygen as hydrogen peroxide, a high performance liquid chromatography method (HPLC method) equipped with an electrochemical detector was used. The results of quantitative analysis and comparison of the production performance are shown in FIG. 7 (when using the electrodes prepared in Examples 1 to 5) and FIG. 8 (when using the electrodes prepared in Comparative Examples 1 to 4).
その図1の結果によれば、本発明にかかる電解用陰極電極を用いた電解では、電解10時間後には全ての電極において、硝酸性窒素は大きく低下して40mM以下となり、非常に高い還元能を有していることがわかった。それに対して、比較例で作製した電極を用いた結果である図4によれば、比較例4では硝酸性窒素は大きく低下して硝酸性窒素還元能があることが示されたが、比較例2の電極では60mM以上、比較例1、3での電極では95%以上残っており、硝酸性窒素を処理する電極として適当ではないことが確認された。 According to the results of FIG. 1, in electrolysis using the cathode electrode for electrolysis according to the present invention, nitrate nitrogen greatly decreased to 40 mM or less in all electrodes after 10 hours of electrolysis, and very high reducing ability. It was found that On the other hand, according to FIG. 4 which is a result of using the electrode produced in the comparative example, it was shown that in the comparative example 4, the nitrate nitrogen was greatly reduced and the nitrate nitrogen reducing ability was obtained. It was confirmed that the electrode of 2 was 60 mM or more, and the electrode of Comparative Examples 1 and 3 was 95% or more, which was not suitable as an electrode for treating nitrate nitrogen.
その図2の結果によれば、本発明にかかる電解用陰極電極を用いた電解では、電解初期には硝酸性窒素が還元され、亜硝酸性窒素が徐々に生成されて一時的に濃度は高くなるが、その亜硝酸性窒素も徐々に還元反応が開始されて減少傾向となる。電解10時間後には全ての電極において、亜硝酸性窒素濃度が50mM以下に抑制され、亜硝酸性窒素を還元する性能に優れていることが確認された。それに対して、比較例で作製した電極を用いた結果である図5によれば、硝酸性窒素を還元能力が高かった比較例4で作製した電極でも、亜硝酸性窒素濃度が電解時間とともに実施例よりも増加し、その後見られるその減少傾向が小さいことから、亜硝酸性窒素の還元性能は低いことが確認された。 According to the result of FIG. 2, in the electrolysis using the cathode electrode for electrolysis according to the present invention, nitrate nitrogen is reduced at the initial stage of electrolysis, and nitrite nitrogen is gradually generated, so that the concentration is temporarily high. However, the nitrite nitrogen also starts to reduce and gradually decreases. After 10 hours of electrolysis, in all the electrodes, the nitrite nitrogen concentration was suppressed to 50 mM or less, and it was confirmed that the performance of reducing nitrite nitrogen was excellent. On the other hand, according to FIG. 5, which is the result of using the electrode prepared in the comparative example, the nitrite nitrogen concentration was increased with the electrolysis time even in the electrode manufactured in Comparative Example 4 in which nitrate nitrogen was highly reduced. The reduction performance of nitrite nitrogen was confirmed to be low because it increased more than the example and the decreasing tendency seen thereafter was small.
その図3の結果によれば、本発明にかかる電解用陰極電極を用いた電解では、電解時間とともに亜硝酸性窒素が還元されてアンモニア性窒素が生成しており、特に電極活物質であるポリピロール、ポリエチレンジオキシチオフェンを電解重合で形成したものが優れることが確認された。それに対して、比較例で作製した電極を用いた結果である図6によれば、アンモニア性窒素の生成反応はほとんど起こらないことから、亜硝酸性窒素還元能力に劣ることが確認された。 According to the results of FIG. 3, in electrolysis using the cathode electrode for electrolysis according to the present invention, nitrite nitrogen is reduced with the electrolysis time to produce ammonia nitrogen, and in particular, polypyrrole which is an electrode active material It has been confirmed that polyethylene dioxythiophene formed by electrolytic polymerization is excellent. On the other hand, according to FIG. 6 which is the result of using the electrode produced in the comparative example, it was confirmed that the ammonia-nitrogen production reaction hardly occurred, so that the ability to reduce nitrite nitrogen was inferior.
その図7の結果によれば、本発明にかかる電解用陰極電極を用いた電解では、過酸化水素の生成が見られ、電極活物質がポリピロール、ポリエチレンジオキシチオフェンからなる電極では5ppm以上で特に優れることが確認された。それに対して、比較例で作製した電極を用いた結果である図8によれば、比較例で作製した電極では過酸化水素の生成は確認できないことから、金属やカーボンを用いた電解還元による過酸化水素の生成は困難であることがわかった。 According to the results of FIG. 7, in the electrolysis using the cathode electrode for electrolysis according to the present invention, the generation of hydrogen peroxide was observed, and in the case where the electrode active material was made of polypyrrole or polyethylenedioxythiophene, 5 ppm or more. It was confirmed to be excellent. On the other hand, according to FIG. 8, which is the result of using the electrode produced in the comparative example, since the production of hydrogen peroxide cannot be confirmed with the electrode produced in the comparative example, excess by electrolytic reduction using metal or carbon is not possible. Production of hydrogen oxide proved difficult.
本発明の電解用陰極電極は、電気化学的な硝酸性窒素の還元、制菌・殺菌あるいは有機物の分解などに有効な活性酸素を生成するための電極を主たる用途とするが、その他の電気化学反応用電極としても好適に使用できる。 The cathode electrode for electrolysis according to the present invention is mainly used for an electrode for generating active oxygen effective for electrochemical reduction of nitrate nitrogen, sterilization / sterilization, or decomposition of organic substances. It can also be suitably used as a reaction electrode.
Claims (5)
請求項1〜4のいずれかに記載の電解用電極を用い、被処理水中に含有された硝酸性窒素化合物を、アンモニア性窒素に還元し、さらに該被処理水中に含まれる雑菌及び有機物を、該電解用電極より発生する活性酸素により殺菌・分解することを特徴とする窒素化合物含有水溶液の処理方法。 A treatment method for electrochemical reduction of a nitrogen compound contained in water to be treated by electrolysis,
Using the electrode for electrolysis according to any one of claims 1 to 4, the nitrate nitrogen compound contained in the water to be treated is reduced to ammonia nitrogen, and the germs and organic matter contained in the water to be treated are further reduced. A method for treating an aqueous solution containing a nitrogen compound, which comprises sterilizing and decomposing by active oxygen generated from the electrode for electrolysis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008100897A JP2009249705A (en) | 2008-04-09 | 2008-04-09 | Electrode for electrolysis and use thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008100897A JP2009249705A (en) | 2008-04-09 | 2008-04-09 | Electrode for electrolysis and use thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009249705A true JP2009249705A (en) | 2009-10-29 |
Family
ID=41310676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008100897A Pending JP2009249705A (en) | 2008-04-09 | 2008-04-09 | Electrode for electrolysis and use thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009249705A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011094211A (en) * | 2009-10-30 | 2011-05-12 | Mitsubishi Electric Corp | Active oxygen generating device, humidifier and air cleaner |
WO2013085022A1 (en) * | 2011-12-09 | 2013-06-13 | パナソニック株式会社 | Nitrate reduction method, nitrate reduction catalyst, nitrate reduction electrode, fuel cell, and water treatment apparatus |
KR20200117276A (en) * | 2019-04-03 | 2020-10-14 | 경북대학교 산학협력단 | Method for manufacturing conducting polymer electrode |
CN114105259A (en) * | 2021-12-01 | 2022-03-01 | 南京环保产业创新中心有限公司 | Cu-Co-PAC particle electrode, preparation method and application thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06503756A (en) * | 1992-06-26 | 1994-04-28 | アエロジェット―ジェネラル コーポレイション | Method for desensitizing active compositions by regenerating reagents |
JPH1099863A (en) * | 1996-08-07 | 1998-04-21 | Kenichi Morita | Method for sterilizing water and water-treating apparatus used therein |
JP2000239894A (en) * | 1999-02-08 | 2000-09-05 | Aerospatiale Matora | Method for surface control for absorption of light and polyaniline deposition |
JP2002030495A (en) * | 2000-06-09 | 2002-01-31 | De Nora Elettrodi Spa | Electrode characterized by surface catalytic layer having extremely high adhesive property |
JP2002273433A (en) * | 2001-03-15 | 2002-09-24 | Toin Gakuen | Method and device for generating active oxygen |
JP2006172719A (en) * | 2004-12-10 | 2006-06-29 | Japan Carlit Co Ltd:The | Separator for fuel cell and its manufacturing method |
JP2007046033A (en) * | 2005-07-13 | 2007-02-22 | Maruzen Petrochem Co Ltd | Method for producing conductive polymer membrane, conductive polymer film and method for forming coated membrane |
-
2008
- 2008-04-09 JP JP2008100897A patent/JP2009249705A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06503756A (en) * | 1992-06-26 | 1994-04-28 | アエロジェット―ジェネラル コーポレイション | Method for desensitizing active compositions by regenerating reagents |
JPH1099863A (en) * | 1996-08-07 | 1998-04-21 | Kenichi Morita | Method for sterilizing water and water-treating apparatus used therein |
JP2000239894A (en) * | 1999-02-08 | 2000-09-05 | Aerospatiale Matora | Method for surface control for absorption of light and polyaniline deposition |
JP2002030495A (en) * | 2000-06-09 | 2002-01-31 | De Nora Elettrodi Spa | Electrode characterized by surface catalytic layer having extremely high adhesive property |
JP2002273433A (en) * | 2001-03-15 | 2002-09-24 | Toin Gakuen | Method and device for generating active oxygen |
JP2006172719A (en) * | 2004-12-10 | 2006-06-29 | Japan Carlit Co Ltd:The | Separator for fuel cell and its manufacturing method |
JP2007046033A (en) * | 2005-07-13 | 2007-02-22 | Maruzen Petrochem Co Ltd | Method for producing conductive polymer membrane, conductive polymer film and method for forming coated membrane |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011094211A (en) * | 2009-10-30 | 2011-05-12 | Mitsubishi Electric Corp | Active oxygen generating device, humidifier and air cleaner |
WO2013085022A1 (en) * | 2011-12-09 | 2013-06-13 | パナソニック株式会社 | Nitrate reduction method, nitrate reduction catalyst, nitrate reduction electrode, fuel cell, and water treatment apparatus |
JP5655161B2 (en) * | 2011-12-09 | 2015-01-14 | パナソニック株式会社 | Nitrate reduction method, nitrate reduction catalyst, nitrate reduction electrode, fuel cell, and water treatment apparatus |
KR20200117276A (en) * | 2019-04-03 | 2020-10-14 | 경북대학교 산학협력단 | Method for manufacturing conducting polymer electrode |
KR102176727B1 (en) * | 2019-04-03 | 2020-11-09 | 경북대학교 산학협력단 | Method for manufacturing conducting polymer electrode |
CN114105259A (en) * | 2021-12-01 | 2022-03-01 | 南京环保产业创新中心有限公司 | Cu-Co-PAC particle electrode, preparation method and application thereof |
CN114105259B (en) * | 2021-12-01 | 2024-06-11 | 南京环保产业创新中心有限公司 | Cu-Co-PAC particle electrode, preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Patel et al. | Electro-catalytic materials (electrode materials) in electrochemical wastewater treatment | |
CN111041521B (en) | Copper-nickel loaded TiO for reducing nitrate nitrogen in water2Nanotube array electrode | |
Fontmorin et al. | Gas diffusion electrodes modified with binary doped polyaniline for enhanced CO2 conversion during microbial electrosynthesis | |
KR20120101329A (en) | Method for manufacturing aluminum foil | |
JP5898616B2 (en) | Method for producing copper foil for negative electrode current collector | |
Xie et al. | Photoelectrochemical degradation of acetaminophen and valacyclovir using nanoporous titanium dioxide | |
CN111792705A (en) | Graphene oxide loaded carbon-based copper-nickel electrode, preparation method and application | |
JP2009249705A (en) | Electrode for electrolysis and use thereof | |
CN102828218A (en) | Electrolyte used for magnesium alloy anode oxidation treatment and treatment method | |
Ji et al. | Constructing dimensionally stable TiO2 nanotube arrays/SnO2/RuO2 anode via successive electrodeposition for efficient electrocatalytic oxidation of As (III) | |
Li et al. | Ultrasonic-electrodeposition construction of high hydrophobic Ce-PDMS-PbO2/SS electrode for p-nitrophenol degradation: Catalytic, kinetics and mechanism | |
JP2004139951A (en) | Separator for fuel cell and its manufacturing method | |
JP6246828B2 (en) | Method of coating organic or metallic material surface with organic compound by electrochemical reduction of diazonium ion of specific organic compound by pulse current | |
JPS6330996B2 (en) | ||
JPH0820882A (en) | Preparation of titanium electrode having iridium/palladium oxide plating | |
Cheraghi et al. | Chemical and electrochemical deposition of conducting polyaniline on lead | |
KR101561105B1 (en) | Methods of manufacturing metal oxide electrodes | |
JP2024010240A (en) | Method of producing hydrogen generating electrode, and electrolysis method using hydrogen generating electrode | |
CN115466986B (en) | Electrode for producing hydrogen by waste water electrolysis and preparation method and application thereof | |
JP7133661B2 (en) | Polythiophene-based compound/carbon fiber cloth electrode for generating water-splitting oxygen and method for producing the same | |
JP6753195B2 (en) | Manufacturing method of hydrogen generation electrode and electrolysis method using hydrogen generation electrode | |
Sotgiu et al. | Manganese-containing mixed oxide electrodes as anode materials for degradation of model organic pollutants | |
JP2023095833A (en) | Electrode for chlorine generation | |
CN1405364A (en) | Method for preparing magnesium alloy surface well-distributed by polyaniline film | |
JPH0417689A (en) | Electrode for electrolyzing water and production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110318 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130305 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131002 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131028 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20140115 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20140116 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140219 |