JP2009235225A - Polyamide resin - Google Patents

Polyamide resin Download PDF

Info

Publication number
JP2009235225A
JP2009235225A JP2008082611A JP2008082611A JP2009235225A JP 2009235225 A JP2009235225 A JP 2009235225A JP 2008082611 A JP2008082611 A JP 2008082611A JP 2008082611 A JP2008082611 A JP 2008082611A JP 2009235225 A JP2009235225 A JP 2009235225A
Authority
JP
Japan
Prior art keywords
polyamide resin
diamine
methyl
polyamide
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008082611A
Other languages
Japanese (ja)
Inventor
Yoji Okushita
洋司 奥下
Koichiro Kurachi
幸一郎 倉知
Masahito Shimokawa
雅人 下川
Shoichi Tanaka
章一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2008082611A priority Critical patent/JP2009235225A/en
Publication of JP2009235225A publication Critical patent/JP2009235225A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyamides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyamide resin, which is sufficiently polymerized in comparison with a conventional polyamide 92, has a wide moldable temperature range estimated from a difference between a melting point and a thermal decomposition temperature and excellent melt moldability, and in comparison with a conventional aliphatic polyamide resin, exhibits excellent low ethanol absorbency, chemical resistance, hydrolysis resistance and the like without deteriorating low water absorbency observed in an aliphatic normal chain polyoxamide resin. <P>SOLUTION: The polyamide resin is obtained by condensing a dicarboxylic acid component and a diamine component. The dicarboxylic acid component consists of oxalic acid, while the diamine component consists of 1,9-nonane diamine and 2-methyl-1,8-octane diamine. The number of moles of 2-methyl-1,8-octane diamine is larger than that of the 1,9-nonane diamine. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、新規なポリアミド樹脂に関する。詳しくは、ジカルボン酸成分が蓚酸であるポリアミド樹脂であって、成形可能温度幅が広く、成形加工性に優れ、かつ低吸水性、低エタノール吸収性、耐薬品性、耐加水分解性などにも優れたポリアミド樹脂に関するものである。   The present invention relates to a novel polyamide resin. Specifically, it is a polyamide resin whose dicarboxylic acid component is oxalic acid, has a wide moldable temperature range, excellent molding processability, and low water absorption, low ethanol absorption, chemical resistance, hydrolysis resistance, etc. It relates to an excellent polyamide resin.

ナイロン6、ナイロン66などに代表される結晶性ポリアミドは、その優れた特性と溶融成形の容易さから、衣料用、産業資材用繊維、あるいは汎用のエンジニアリングプラスチックとして広く用いられているが、一方では吸水による物性変化、酸、高温のアルコール、熱水中での劣化などの問題点も指摘されており、より寸法安定性、耐薬品性に優れたポリアミドへの要求が高まっている。   Crystalline polyamides such as nylon 6 and nylon 66 are widely used as clothing, industrial material fibers, or general-purpose engineering plastics because of their excellent properties and ease of melt molding. Problems such as changes in physical properties due to water absorption, acid, high-temperature alcohol, and deterioration in hot water have also been pointed out, and there is an increasing demand for polyamides with superior dimensional stability and chemical resistance.

一方、ジカルボン酸成分として蓚酸を用いるポリアミド樹脂はポリオキサミド樹脂と呼ばれ、同じアミノ基濃度の他のポリアミド樹脂と比較して融点が高いこと、吸水率が低いことが知られ(特許文献1)、吸水による物性変化が問題となっていた従来のポリアミドが使用困難な分野での活用が期待される。   On the other hand, a polyamide resin using oxalic acid as a dicarboxylic acid component is called a polyoxamide resin, and is known to have a higher melting point and lower water absorption than other polyamide resins having the same amino group concentration (Patent Document 1). It is expected to be used in fields where the use of conventional polyamide, where the change in physical properties due to water absorption has been a problem, is difficult.

これまでに、ジアミン成分として種々の脂肪族直鎖ジアミンを用いたポリオキサミド樹脂が提案されている。しかしながら、例えば、ジアミン成分として1,6−ヘキサンジアミンを用いたポリオキサミド樹脂は融点(約320℃)が熱分解温度(窒素中の1%重量減少温度;約310℃)より高いため(非特許文献1)、溶融重合、溶融成形が困難であり実用に耐えうるものではなかった。   So far, polyoxamide resins using various aliphatic linear diamines as diamine components have been proposed. However, for example, a polyoxamide resin using 1,6-hexanediamine as a diamine component has a melting point (about 320 ° C.) higher than the thermal decomposition temperature (1% weight loss temperature in nitrogen; about 310 ° C.) (non-patent document). 1) Melt polymerization and melt molding were difficult and could not withstand practical use.

ジアミン成分が1,9−ノナンジアミンであるポリオキサミド樹脂(以後、PA92と略称する)については、L. Francoらが蓚酸源として蓚酸ジエチルを用いた場合の製造法とその結晶構造を開示している(非特許文献2)。ここで得られるPA92は固有粘度が0.97dL/g、融点が246℃のポリマーであるが、強靭な成形体が成形出来ない程度の低分子量体しか得られていない。また、特表平5−506466号公報には、ジカルボン酸エステルとして蓚酸ジブチルを用いた場合について、固有粘度が0.99dL/g、融点が248℃のPA92を製造したことが示されている(特許文献2)。この場合も強靭な成形体が成形出来ない程度の低分子量体しか得られていないという問題点がある。
先行文献においてはジアミン成分として1,9−ノナンジアミン及び2−メチル−1,8−オクタンジアミンの2種のジアミンを特定の比率で用いたポリオキサミド樹脂の具体的な開示はない。
S. W. Shalaby., J. Polym. Sci., 11, 1(1973) L. Franco et al., Macromolecules., 31, 3912(1988) 特開2006−57033 特表平5−506466
For a polyoxamide resin (hereinafter abbreviated as PA92) whose diamine component is 1,9-nonanediamine, L. Franco et al. Discloses a production method and crystal structure when diethyl oxalate is used as the oxalic acid source ( Non-patent document 2). The PA 92 obtained here is a polymer having an intrinsic viscosity of 0.97 dL / g and a melting point of 246 ° C., but only a low molecular weight substance that cannot form a tough molded article is obtained. In addition, JP-A-5-506466 discloses that PA92 having an intrinsic viscosity of 0.99 dL / g and a melting point of 248 ° C. was produced when dibutyl oxalate was used as the dicarboxylic acid ester ( Patent Document 2). In this case as well, there is a problem that only a low molecular weight body that cannot be formed into a tough molded body is obtained.
In the prior literature, there is no specific disclosure of a polyoxamide resin using two kinds of diamines of 1,9-nonanediamine and 2-methyl-1,8-octanediamine as a diamine component in a specific ratio.
SW Shalaby., J. Polym. Sci., 11, 1 (1973) L. Franco et al., Macromolecules., 31, 3912 (1988) JP 2006-57033 A Special table 5-506466

本発明が解決しようとする課題は、従来のPA92と比較して十分な高分子量化が達成され、融点と熱分解温度の差から見積もられる成形可能温度幅が広く、溶融成形性に優れ、さらに、脂肪族直鎖ポリオキサミド樹脂に見られる低吸水性を損なうことなく、従来の脂肪族ポリアミド樹脂に比較して、低エタノール吸収性、耐薬品性、耐加水分解性などに優れたポリアミド樹脂を提供することにある。   The problem to be solved by the present invention is that a sufficiently high molecular weight is achieved as compared with the conventional PA92, the moldable temperature range estimated from the difference between the melting point and the thermal decomposition temperature is wide, and the melt moldability is excellent. Provided a polyamide resin with superior low ethanol absorption, chemical resistance and hydrolysis resistance compared to conventional aliphatic polyamide resin without impairing the low water absorption found in aliphatic linear polyoxamide resin There is to do.

本発明者らは、上記の課題を解決するために鋭意検討を重ねた結果、蓚酸源として蓚酸ジエステルを用い、ジアミン成分が1,9−ノナンジアミン及び2−メチル−1,8−オクタンジアミンからなり、かつ1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンのモル比が6:94〜50:50でである混合物を用いることにより、高分子量で、融点と熱分解温度の差が大きく溶融成形性に優れ、さらに直鎖ポリオキサミド樹脂に見られる低吸水性を損なうことなく、従来のポリアミドに比較して低エタノール吸収性、耐薬品性ならびに耐加水分解性に優れるポリアミド樹脂が得られることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventors have used oxalic acid diester as the oxalic acid source, and the diamine component comprises 1,9-nonanediamine and 2-methyl-1,8-octanediamine. In addition, by using a mixture in which the molar ratio of 1,9-nonanediamine and 2-methyl-1,8-octanediamine is 6:94 to 50:50, the difference between the melting point and the thermal decomposition temperature is high. Large, excellent melt moldability, and without impairing the low water absorption found in linear polyoxamide resins, it is possible to obtain polyamide resins that are superior in low ethanol absorption, chemical resistance, and hydrolysis resistance compared to conventional polyamides. As a result, the present invention has been completed.

本発明のポリアミド樹脂は、溶融重合による高分子量化が可能であり、成形可能温度幅が90℃以上と広く、溶融成形性に優れ、さらに低吸水性、低エタノール吸収性、耐薬品性、耐加水分解性にも優れており、例えば燃料チューブ、エアチューブ、燃料補助タンク、ベーパーキャニスタ、クイックコネクタ、ファン、クリップ、ファスナー、エンジンカバー、ラジエタータンク、エアダクトホース、アームレスト、ギアなどの自動車部材に使用できる。また、従来ポリアミド成形物が用いられてきた各種成形品、シート、フィルム、パイプ、チューブ、モノフィラメント、繊維、容器等として、自動車部材、コンピューター及び関連機器、光学機器部材、電気・電子機器、情報・通信機器、精密機器、土木・建築用品、医療用品、家庭用品などの成形材料として広範に使用することができる。   The polyamide resin of the present invention can have a high molecular weight by melt polymerization, has a wide moldable temperature range of 90 ° C. or more, is excellent in melt moldability, and further has low water absorption, low ethanol absorption, chemical resistance, resistance to resistance. Excellent hydrolyzability, used for automotive parts such as fuel tubes, air tubes, fuel auxiliary tanks, vapor canisters, quick connectors, fans, clips, fasteners, engine covers, radiator tanks, air duct hoses, armrests, gears, etc. it can. In addition, various molded products, sheets, films, pipes, tubes, monofilaments, fibers, containers, etc., for which polyamide molded products have been conventionally used, such as automobile members, computers and related equipment, optical equipment members, electrical / electronic equipment, information / electronic equipment, It can be widely used as a molding material for communication equipment, precision equipment, civil engineering / building supplies, medical supplies, and household goods.

(1)ポリアミド樹脂の構成成分
本発明のポリアミドは、ジカルボン酸成分が蓚酸であり、ジアミン成分が1,9−ノナンジアミン及び2−メチル−1,8−オクタンジアミンからなり、かつ1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンのモル比が6:94〜50:50あるジアミン混合物であるポリアミド樹脂である。
(1) Constituent Component of Polyamide Resin In the polyamide of the present invention, the dicarboxylic acid component is oxalic acid, the diamine component is composed of 1,9-nonanediamine and 2-methyl-1,8-octanediamine, and 1,9-nonanediamine. And 2-methyl-1,8-octanediamine is a polyamide resin which is a diamine mixture having a molar ratio of 6:94 to 50:50.

本発明のポリアミドの製造に用いられる蓚酸源としては、蓚酸ジエステルが用いられ、これらはアミノ基との反応性を有するものであれば特に制限はなく、蓚酸ジメチル、蓚酸ジエチル、蓚酸ジn−(またはi−)プロピル、蓚酸ジn−(またはi−、またはt−)ブチル等の脂肪族1価アルコールの蓚酸ジエステル、蓚酸ジシクロヘキシル等の脂環式アルコールの蓚酸ジエステル、蓚酸ジフェニル等の芳香族アルコールの蓚酸ジエステル等が挙げられる。   As the oxalic acid source used in the production of the polyamide of the present invention, oxalic acid diesters are used, and these are not particularly limited as long as they have reactivity with amino groups. Dimethyl oxalate, diethyl oxalate, di-n-oxalate ( Or i-) propyl, oxalic acid diester of aliphatic monohydric alcohol such as di-n- (or i-, or t-) butyl oxalate, oxalic acid diester of alicyclic alcohol such as dicyclohexyl oxalate, aromatic alcohol such as diphenyl oxalate And oxalic acid diesters.

上記の蓚酸ジエステルの中でも炭素原子数が3を超える脂肪族1価アルコールの蓚酸ジエステル、脂環式アルコールの蓚酸ジエステル、芳香族アルコールの蓚酸ジエステルが好ましく、その中でも蓚酸ジブチル及び蓚酸ジフェニルが特に好ましい。   Among the above oxalic acid diesters, oxalic acid diesters of aliphatic monohydric alcohols having more than 3 carbon atoms, oxalic acid diesters of alicyclic alcohols, and oxalic acid diesters of aromatic alcohols are preferred, and among them, dibutyl oxalate and diphenyl oxalate are particularly preferred.

ジアミン成分としては1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンの混合物を用いる。さらに、1,9−ノナンジアミン成分と2−メチル−1,8−オクタンジアミン成分のモル比は、6:94〜50:50モル%であり、好ましくは6:94〜40:60モル%、より好ましくは6:94〜30:70モル%である。1,9−ノナンジアミン及び2−メチル−1,8−オクタンジアミンを上記の特定量共重合することにより、成形可能温度幅が広く、溶融成形性に優れ、かつ低吸水性、耐薬品性、耐加水分解性などにも優れたポリアミドが得られる。   As the diamine component, a mixture of 1,9-nonanediamine and 2-methyl-1,8-octanediamine is used. Furthermore, the molar ratio of the 1,9-nonanediamine component and the 2-methyl-1,8-octanediamine component is 6:94 to 50:50 mol%, preferably 6:94 to 40:60 mol%, and more. Preferably it is 6: 94-30: 70 mol%. By copolymerizing 1,9-nonanediamine and 2-methyl-1,8-octanediamine as described above, the moldable temperature range is wide, the melt moldability is excellent, and the low water absorption, chemical resistance, resistance A polyamide having excellent hydrolyzability can be obtained.

(2)ポリアミド樹脂の製造
本発明のポリアミド樹脂は、ポリアミドを製造する方法として知られている任意の方法を用いて製造することができる。本発明者らの研究によれば、ジアミン及び蓚酸ジエステルをバッチ式又は連続式で重縮合反応させることにより得ることができる。具体的には、以下の操作で示されるような、(i)前重縮合工程、(ii)後重縮合工程の順で行うのが好ましい。
(2) Manufacture of polyamide resin The polyamide resin of this invention can be manufactured using the arbitrary methods known as a method of manufacturing polyamide. According to the study by the present inventors, it can be obtained by subjecting diamine and oxalic acid diester to a polycondensation reaction in a batch or continuous manner. Specifically, it is preferable to carry out in the order of (i) pre-polycondensation step and (ii) post-polycondensation step as shown by the following operations.

(i)前重縮合工程:まず反応器内を窒素置換した後、ジアミン(ジアミン成分)及び蓚酸ジエステル(蓚酸源)を混合する。混合する場合にジアミン及び蓚酸ジエステルが共に可溶な溶媒を用いても良い。ジアミン成分及び蓚酸源が共に可溶な溶媒としては、特に制限されないが、トルエン、キシレン、トリクロロベンゼン、フェノール、トリフルオロエタノールなどを用いることができ、特にトルエンを好ましく用いることができる。例えば、ジアミンを溶解したトルエン溶液を50℃に加熱した後、これに対して蓚酸ジエステルを加える。このとき、蓚酸ジエステルと上記ジアミンの仕込み比は、蓚酸ジエステル/上記ジアミンで、0.8〜1.5(モル比)、好ましくは0.91〜1.1(モル比)、更に好ましくは0.99〜1.01(モル比)である。   (I) Pre-polycondensation step: First, the inside of the reactor is purged with nitrogen, and then diamine (diamine component) and oxalic acid diester (oxalic acid source) are mixed. When mixing, a solvent in which both the diamine and the oxalic acid diester are soluble may be used. The solvent in which both the diamine component and the oxalic acid source are soluble is not particularly limited, but toluene, xylene, trichlorobenzene, phenol, trifluoroethanol, and the like can be used, and particularly, toluene can be preferably used. For example, after heating the toluene solution which melt | dissolved diamine to 50 degreeC, oxalic acid diester is added with respect to this. At this time, the charging ratio of the oxalic acid diester and the diamine is oxalic acid diester / the diamine, 0.8 to 1.5 (molar ratio), preferably 0.91 to 1.1 (molar ratio), more preferably 0. .99 to 1.01 (molar ratio).

このように仕込んだ反応器内を攪拌及び/又は窒素バブリングしながら、常圧下で昇温する。反応温度は、最終到達温度が80〜150℃、好ましくは100〜140℃の範囲になるように制御するのが好ましい。最終到達温度での反応時間は3時間〜6時間である。   The temperature in the reactor charged in this way is increased under normal pressure while stirring and / or nitrogen bubbling. The reaction temperature is preferably controlled so that the final temperature reaches 80 to 150 ° C, preferably 100 to 140 ° C. The reaction time at the final temperature reached is 3-6 hours.

(ii)後重縮合工程:更に高分子量化を図るために、前重縮合工程で生成した重合物を常圧下において反応器内で徐々に昇温する。昇温過程において前重縮合工程の最終到達温度、すなわち80〜150℃から、最終的に220℃以上300℃以下、好ましくは230℃以上280℃以下、更に好ましくは240℃以上270℃以下の温度範囲にまで到達させる。昇温時間を含めて1〜8時間、好ましくは2〜6時間保持して反応を行うことが好ましい。さらに後重合工程において、必要に応じて減圧下での重合を行うこともできる。減圧重合を行う場合の好ましい最終到達圧力は0.1MPa未満〜13.3Paである。   (Ii) Post-polycondensation step: In order to further increase the molecular weight, the polymer produced in the pre-polycondensation step is gradually heated in the reactor under normal pressure. In the temperature rising process, the final temperature of the prepolycondensation step, that is, from 80 to 150 ° C, is finally 220 ° C to 300 ° C, preferably 230 ° C to 280 ° C, more preferably 240 ° C to 270 ° C. Let reach the range. It is preferable to carry out the reaction for 1 to 8 hours including the temperature raising time, preferably 2 to 6 hours. Furthermore, in the post-polymerization step, polymerization can be performed under reduced pressure as necessary. The preferable final ultimate pressure in the case of performing the vacuum polymerization is less than 0.1 MPa to 13.3 Pa.

(3)ポリアミド樹脂の性状及び物性
本発明から得られるポリアミド樹脂の分子量に特別の制限はないが、ポリアミド樹脂濃度が1.0g/dlの96%濃硫酸溶液を用い、25℃で測定した相対粘度ηrが1.8〜6.0の範囲内である。好ましくは2.0〜5.5であり、2.5〜4.5が特に好ましい。ηrが1.8より低いと成形物が脆くなり物性が低下する。一方、ηrが6.0より高いと溶融粘度が高くなり、成形加工性が悪くなる。
(3) Properties and properties of polyamide resin There is no particular limitation on the molecular weight of the polyamide resin obtained from the present invention, but the relative value measured at 25 ° C. using a 96% concentrated sulfuric acid solution with a polyamide resin concentration of 1.0 g / dl. The viscosity ηr is in the range of 1.8 to 6.0. Preferably it is 2.0-5.5, and 2.5-4.5 is especially preferable. If ηr is lower than 1.8, the molded product becomes brittle and the physical properties deteriorate. On the other hand, if ηr is higher than 6.0, the melt viscosity becomes high, and the molding processability deteriorates.

本発明のポリアミド樹脂は、カルボン酸成分として蓚酸を用い、ジアミン成分として1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンを共重合することで、蓚酸と1,9−ノナンジアミンからなるポリアミドと比べて、上記相対粘度を増加させること、すなわち分子量を増加させることが可能である。また、実質的な熱分解の指標である1%重量減少温度(以下、Tdと略す)と融点(以下、Tmと略す)の差(Td−Tm)で表される成形可能温度範囲が、蓚酸と1,9−ノナンジアミンからなるポリアミドと比べて拡大し、好ましくは60℃以上、より好ましくは70℃以上であることができ、さらには90℃以上も可能である。本発明のポリアミド樹脂は、Tdが好ましくは300℃以上、さらに好ましくは320℃以上であり、高い耐熱性を有することを特徴とする。   The polyamide resin of the present invention comprises oxalic acid and 1,9-nonanediamine by copolymerizing oxalic acid as the carboxylic acid component and copolymerizing 1,9-nonanediamine and 2-methyl-1,8-octanediamine as the diamine component. Compared to polyamide, the relative viscosity can be increased, that is, the molecular weight can be increased. The moldable temperature range represented by the difference (Td−Tm) between the 1% weight loss temperature (hereinafter abbreviated as Td) and the melting point (hereinafter abbreviated as Tm), which is a substantial thermal decomposition index, is oxalic acid. And a polyamide composed of 1,9-nonanediamine, preferably 60 ° C. or higher, more preferably 70 ° C. or higher, and even 90 ° C. or higher. The polyamide resin of the present invention has a Td of preferably 300 ° C. or higher, more preferably 320 ° C. or higher, and has high heat resistance.

(4)ポリアミド樹脂に配合できる成分
本発明により得られるポリアミド樹脂には、本発明の効果を損なわない範囲で他のジカルボン酸成分を混合する事が出来る。蓚酸以外の他のジカルボン酸成分としては、マロン酸、ジメチルマロン酸、コハク酸、グルタル酸、アジピン酸、2−メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、2,2−ジメチルグルタル酸、3,3−ジエチルコハク酸、アゼライン酸、セバシン酸、スベリン酸などの脂肪族ジカルボン酸、また、1,3−シクロペンタンジカルボン酸、1,4−シクロヘキサンジカルボン酸などの脂環式ジカルボン酸、さらにテレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸、1,4−フェニレンジオキシジ酢酸、1,3−フェニレンジオキシジ酢酸、ジ安息香酸、4,4’−オキシジ安息香酸、ジフェニルメタン−4,4’−ジカルボン酸、ジフェニルスルホン−4,4’−ジカルボン酸、4,4’−ビフェニルジカルボン酸などの芳香族ジカルボン酸などを単独で、あるいはこれらの任意の混合物を重縮合反応時に添加することもできる。さらに、トリメリット酸、トリメシン酸、ピロメリット酸などの多価カルボン酸を溶融成形が可能な範囲内で用いることもできる。
(4) Components that can be blended with the polyamide resin The polyamide resin obtained according to the present invention can be mixed with other dicarboxylic acid components as long as the effects of the present invention are not impaired. Other dicarboxylic acid components other than succinic acid include malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, 2,2-dimethylglutaric acid, 3, Aliphatic dicarboxylic acids such as 3-diethylsuccinic acid, azelaic acid, sebacic acid and suberic acid, alicyclic dicarboxylic acids such as 1,3-cyclopentanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid, and terephthalic acid , Isophthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,4-phenylenedioxydiacetic acid, 1,3-phenylenedioxydiacetic acid, dibenzoic acid Acid, 4,4′-oxydibenzoic acid, diphenylmethane-4,4′-dicarboxylic acid, diphenyls Hong-4,4'-dicarboxylic acid, 4,4'-biphenyl and the like alone aromatic dicarboxylic acids such as dicarboxylic acids, or may be added to any mixture thereof during the polycondensation reaction. Furthermore, polyvalent carboxylic acids such as trimellitic acid, trimesic acid, and pyromellitic acid can be used as long as melt molding is possible.

また、本発明から得られるポリアミド樹脂には本発明の効果を損なわない範囲で、他のジアミン成分を混合する事が出来る。1,9−ノナンジアミン及び2−メチル−1,8−オクタンジアミン以外の他のジアミン成分としては、エチレンジアミン、プロピレンジアミン、1,4−ブタンジアミン、1,6−ヘキサンジアミン、1,8−オクタンジアミン、1,10−デカンジアミン、1,12−ドデカンジアミン、3−メチル−1,5−ペンタンジアミン、2,2,4−トリメチル−1,6−ヘキサンジアミン、2,4,4−トリメチル−1,6−ヘキサンジアミン、5−メチル−1,9−ノナンジアミンなどの脂肪族ジアミン、さらにシクロヘキサンジアミン、メチルシクロヘキサンジアミン、イソホロンジアミンなどの脂環式ジアミン、さらにp−フェニレンジアミン、m−フェニレンジアミン、p−キシレンジアミン、m−キシレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルエーテルなどの芳香族ジアミンなどを単独で、あるいはこれらの任意の混合物を重縮合反応時に添加することもできる。   The polyamide resin obtained from the present invention can be mixed with other diamine components as long as the effects of the present invention are not impaired. Examples of diamine components other than 1,9-nonanediamine and 2-methyl-1,8-octanediamine include ethylenediamine, propylenediamine, 1,4-butanediamine, 1,6-hexanediamine, and 1,8-octanediamine. 1,10-decanediamine, 1,12-dodecanediamine, 3-methyl-1,5-pentanediamine, 2,2,4-trimethyl-1,6-hexanediamine, 2,4,4-trimethyl-1 , 6-hexanediamine, aliphatic diamines such as 5-methyl-1,9-nonanediamine, alicyclic diamines such as cyclohexanediamine, methylcyclohexanediamine and isophoronediamine, p-phenylenediamine, m-phenylenediamine, p -Xylenediamine, m-xylenediamine, 4,4'-di Mino diphenylmethane, 4,4'-diaminodiphenyl sulfone, 4,4'-and aromatic diamines, such as diaminodiphenyl ether by itself, or may be added to any mixture thereof during the polycondensation reaction.

また、本発明には本発明の効果を損なわない範囲で、他のポリオキサミドや、芳香族ポリアミド、脂肪族ポリアミド、脂環式ポリアミドなどポリアミド類を混合することが可能である。更に、ポリアミド以外の熱可塑性ポリマー、エラストマー、フィラーや、補強繊維、各種添加剤を同様に配合することができる。   In the present invention, other polyoxamides, polyamides such as aromatic polyamides, aliphatic polyamides, and alicyclic polyamides can be mixed within a range not impairing the effects of the present invention. Furthermore, thermoplastic polymers other than polyamide, elastomers, fillers, reinforcing fibers, and various additives can be similarly blended.

さらに、本発明により得られるポリアミド樹脂には必要に応じて、銅化合物などの安定剤、着色剤、紫外線吸収剤、光安定化剤、酸化防止剤、帯電防止剤、難燃剤、結晶化促進剤、ガラス繊維、可塑剤、潤滑剤などを重縮合反応時、またはその後に添加することもできる。   Furthermore, the polyamide resin obtained according to the present invention may optionally contain a stabilizer such as a copper compound, a colorant, an ultraviolet absorber, a light stabilizer, an antioxidant, an antistatic agent, a flame retardant, and a crystallization accelerator. Glass fiber, plasticizer, lubricant and the like can be added during or after the polycondensation reaction.

(5)ポリアミド樹脂の成形加工
本発明により得られるポリアミド樹脂の成形方法としては、射出、押出、中空、プレス、ロール、発泡、真空・圧空、延伸などポリアミドに適用できる公知の成形加工法はすべて可能であり、これらの成形法によってフィルム、シート、成形品、繊維などに加工することができる。
(5) Polyamide resin molding process The polyamide resin molding method obtained by the present invention includes all known molding process methods applicable to polyamide, such as injection, extrusion, hollow, press, roll, foaming, vacuum / pressure, and stretching. The film can be processed into a film, a sheet, a molded product, a fiber, or the like by these molding methods.

(6)ポリアミド成形物の用途
本発明によって得られるポリアミドの成形物は、従来ポリアミド成形物が用いられてきた各種成形品、シート、フィルム、パイプ、チューブ、モノフィラメント、繊維、容器等として自動車部材、コンピューター及び関連機器、光学機器部材、電気・電子機器、情報・通信機器、精密機器、土木・建築用品、医療用品、家庭用品など広範な用途に使用できる。
(6) Use of polyamide molded product Polyamide molded product obtained according to the present invention includes various molded products, sheets, films, pipes, tubes, monofilaments, fibers, containers, etc., for which conventional polyamide molded products have been used. It can be used in a wide range of applications such as computers and related equipment, optical equipment components, electrical / electronic equipment, information / communication equipment, precision equipment, civil engineering / building supplies, medical supplies, and household goods.

[物性測定、成形、評価方法]
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらにより何ら制限されるものではない。なお、実施例中の相対粘度、融点、結晶化温度、1%重量減少温度、溶融粘度及び飽和吸水率の測定、耐薬品性、耐加水分解性の評価、フィルム成形及び引張強度、引張伸び、曲げ強度、曲げ弾性率、耐衝撃強度、熱変形温度の測定は以下の方法により行った。
[Physical property measurement, molding, evaluation method]
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, relative viscosity in the examples, melting point, crystallization temperature, 1% weight loss temperature, measurement of melt viscosity and saturated water absorption, chemical resistance, evaluation of hydrolysis resistance, film molding and tensile strength, tensile elongation, The bending strength, flexural modulus, impact strength, and heat distortion temperature were measured by the following methods.

(1)相対粘度(ηr)
ηrはポリアミドの96%硫酸溶液(濃度:1.0g/dl)を使用してオストワルド型粘度計を用いて25℃で測定した。
(1) Relative viscosity (ηr)
ηr was measured at 25 ° C. using an Ostwald viscometer using a 96% polyamide sulfuric acid solution (concentration: 1.0 g / dl).

(2)融点(Tm)及び結晶化温度(Tc)
Tm及びTcは、PerkinELmer社製PYRIS Diamond DSC用いて窒素雰囲気下で測定した。30℃から270℃まで10℃/分の速度で昇温し(昇温ファーストランと呼ぶ)、270℃で3分保持したのち、−100℃まで10℃/分の速度で降温し(降温ファーストランと呼ぶ)、次に270℃まで10℃/分の速度で昇温した(昇温セカンドランと呼ぶ)。得られたDSCチャートから降温ファーストランの発熱ピーク温度をTc、昇温セカンドランの吸熱ピーク温度をTmとした。
(2) Melting point (Tm) and crystallization temperature (Tc)
Tm and Tc were measured under a nitrogen atmosphere using a PYRIS Diamond DSC manufactured by PerkinELmer. The temperature was raised from 30 ° C. to 270 ° C. at a rate of 10 ° C./min (referred to as a temperature rise first run), held at 270 ° C. for 3 minutes, and then lowered to −100 ° C. at a rate of 10 ° C./min (temperature fall first). Then, the temperature was raised to 270 ° C. at a rate of 10 ° C./min (called a temperature raised second run). From the obtained DSC chart, the exothermic peak temperature of the temperature decrease first run was Tc, and the endothermic peak temperature of the temperature increase second run was Tm.

(3)1%重量減少温度(Td)
Tdは島津製作所社製THERMOGRAVIMETRIC ANALYZER TGA−50を用い、熱重量分析(TGA)により測定した。20ml/分の窒素気流下室温から500℃まで10℃/分の昇温速度で昇温し、Tdを測定した。
(3) 1% weight loss temperature (Td)
Td was measured by thermogravimetric analysis (TGA) using THERMOGRAVIMETRIC ANALYZER TGA-50 manufactured by Shimadzu Corporation. The temperature was raised from room temperature to 500 ° C. at a rate of 10 ° C./min under a nitrogen stream of 20 ml / min, and Td was measured.

(4)フィルム成形
東邦マシナリー社製真空プレス機TMB−10を用いてフィルム成形を行った。500〜700Paの減圧雰囲気下260℃で5分間加熱溶融させた後、5MPaで1分間プレスを行いフィルム成形した。次に減圧雰囲気を常圧まで戻したのち室温5MPaで1分間冷却結晶化させてフィルムを得た。
(4) Film formation Film formation was performed using a vacuum press TMB-10 manufactured by Toho Machinery Co., Ltd. After being melted by heating at 260 ° C. for 5 minutes in a reduced pressure atmosphere of 500 to 700 Pa, the film was formed by pressing at 5 MPa for 1 minute. Next, the reduced-pressure atmosphere was returned to normal pressure, and then cooled and crystallized at room temperature of 5 MPa for 1 minute to obtain a film.

(5)飽和吸水率
ポリアミド樹脂を(4)の条件で成形したフィルム(寸法:20mm×10mm、厚さ0.25mm;重量約0.05g)を23℃のイオン交換水に浸漬し、所定時間ごとにフィルムを取り出し、フィルムの重量を測定した。フィルム重量の増加率が0.2%の範囲で3回続いた場合にポリアミド樹脂フィルムへの水分の吸収が飽和に達したと判断して、水に浸漬する前のフィルムの重量(Xg)と飽和に達した時のフィルムの重量(Yg)から式(1)により飽和吸水率(%)を算出した。
(5) Saturated water absorption rate A film (dimensions: 20 mm × 10 mm, thickness 0.25 mm; weight about 0.05 g) obtained by molding a polyamide resin under the condition (4) is immersed in ion-exchanged water at 23 ° C. for a predetermined time. Each time the film was removed and the weight of the film was measured. When the rate of increase in the film weight lasts three times in the range of 0.2%, it is determined that the absorption of water into the polyamide resin film has reached saturation, and the film weight (Xg) before dipping in water The saturated water absorption (%) was calculated from the weight (Yg) of the film when the saturation was reached by the formula (1).

Figure 2009235225
Figure 2009235225

(6)シート成形
東邦マシナリー社製真空プレス機TMB−10を用いて、直径約50mm、厚さ約2mmの円盤を成形した。500〜700Paの減圧雰囲気下260℃で5分間加熱溶融させた後、5MPaで1分間プレスを行い成形した。次に減圧雰囲気を常圧まで戻したのち145℃、5MPaで1分間冷却結晶化させて試料を得た。
(6) Sheet forming A disk having a diameter of about 50 mm and a thickness of about 2 mm was formed using a vacuum press TMB-10 manufactured by Toho Machinery Co., Ltd. After being melted by heating at 260 ° C. for 5 minutes in a reduced pressure atmosphere of 500 to 700 Pa, pressing was performed at 5 MPa for 1 minute to form. Next, the reduced pressure atmosphere was returned to normal pressure, and then cooled and crystallized at 145 ° C. and 5 MPa for 1 minute to obtain a sample.

(7)飽和エタノール吸収率
ポリアミド樹脂を(6)の条件で成形した円盤状の試料(寸法:直径約50mm、厚さ約2mm;重量約3.54g)を25℃の試薬特級エタノールに浸漬し、所定時間ごとに試料を取り出し、重量を測定した。試料重量の増加率が0.2%の範囲で3回続いた場合にポリアミド樹脂へのエタノールの吸収が飽和に達したと判断して、エタノールに浸漬する前の試料の重量(Xg)と飽和に達した時の試料の重量(Yg)から式(2)により飽和エタノール吸収率(%)を算出した。
(7) Saturated ethanol absorption rate A disk-shaped sample (dimensions: diameter of about 50 mm, thickness of about 2 mm; weight of about 3.54 g) molded from a polyamide resin under the conditions of (6) is immersed in reagent-grade ethanol at 25 ° C. The sample was taken out every predetermined time, and the weight was measured. When the increase rate of the sample weight lasts 3 times in the range of 0.2%, it is judged that the absorption of ethanol into the polyamide resin has reached saturation, and the sample weight (Xg) before being immersed in ethanol is saturated. The saturated ethanol absorption rate (%) was calculated from the weight (Yg) of the sample at the time of reaching Equation (2) by the formula (2).

Figure 2009235225
Figure 2009235225

(8)機械的物性
以下に示す〔1〕〜〔3〕の測定は、下記の試験片を樹脂温度260℃、金型温度80℃の射出成形により成形し、これを用いて行った。
〔1〕 引張試験(引張降伏点強さ及び引張破断伸び):ASTM D638に記載のTypeIの試験片を用いてASTM D638に準拠し、23℃で測定した。
〔2〕 曲げ試験(曲げ強さ及び曲げ弾性率):試験片寸法129mm×12.7mm×3.2mmの試験片を用いてASTM D790に準拠し、23℃で測定した。
〔3〕 衝撃強度(アイゾットノッチ付):試験片寸法63.5mm×12.7mm×3.2mmの試験片を用いてASTM D256に準拠し、23℃で測定した。
(8) Mechanical properties [1] to [3] shown below were measured by molding the following test pieces by injection molding at a resin temperature of 260 ° C. and a mold temperature of 80 ° C.
[1] Tensile test (tensile yield point strength and tensile elongation at break): Measured at 23 ° C. in accordance with ASTM D638 using a Type I test piece described in ASTM D638.
[2] Bending test (bending strength and flexural modulus): Measured at 23 ° C. in accordance with ASTM D790 using a test piece having a test piece size of 129 mm × 12.7 mm × 3.2 mm.
[3] Impact strength (with Izod notch): Measured at 23 ° C. in accordance with ASTM D256 using a test piece having a size of 63.5 mm × 12.7 mm × 3.2 mm.

[実施例1]
(i)前重縮合工程:撹拌機、還流冷却器、窒素導入管、原料投入口を備えた内容積が500mlのセパラブルフラスコの内部を純度が99.9999%の窒素ガスで置換し、脱水済みトルエン200ml、1,9−ノナンジアミン 16.1129g(0.1018モル)、2−メチル−1,8−オクタンジアミン16.1129g(0.1018モル)を仕込んだ。このセパラブルフラスコをオイルバス中に設置して50℃に昇温した後、蓚酸ジブチル 41.1761g(0.2036モル)を仕込んだ。次にオイルバスの温度を130℃まで昇温し、還流下、5時間反応を行った。なお、原料仕込みから反応終了までの全ての操作は50ml/分の窒素気流下で行った。
[Example 1]
(I) Pre-polycondensation step: The interior of a 500 ml separable flask equipped with a stirrer, reflux condenser, nitrogen inlet tube, and raw material inlet is replaced with nitrogen gas having a purity of 99.9999% for dehydration. 200 ml of used toluene, 16.129 g (0.1018 mol) of 1,9-nonanediamine, and 16.129 g (0.1018 mol) of 2-methyl-1,8-octanediamine were charged. After this separable flask was placed in an oil bath and heated to 50 ° C., 41.1761 g (0.2036 mol) of dibutyl oxalate was charged. Next, the temperature of the oil bath was raised to 130 ° C., and the reaction was carried out for 5 hours under reflux. Note that all operations from preparation of raw materials to completion of the reaction were performed under a nitrogen stream of 50 ml / min.

(ii)後重縮合工程:上記操作によって得られた前重合物を撹拌機、空冷管、窒素導入管を備えた直径約35mmφのガラス製反応管に仕込み、反応管内を13.3Pa以下の減圧下に保ち、次に常圧まで窒素ガスを導入する操作を5回繰り返した後、50ml/分の窒素気流下210℃に保った塩浴に移し、直ちに昇温を開始した。1時間かけて塩浴の温度を260℃とした後、容器内を約66.5Paまで減圧し、さらに2時間反応させた。続いて常圧まで窒素ガスを導入したのち、塩浴から取り出し50ml/分の窒素気流下で室温まで冷却してポリアミド樹脂を得た。得られたポリアミドは白色の強靭なポリマーであった。   (Ii) Post-polycondensation step: The prepolymer obtained by the above operation is charged into a glass reaction tube having a diameter of about 35 mmφ equipped with a stirrer, an air cooling tube, and a nitrogen introduction tube, and the pressure inside the reaction tube is reduced to 13.3 Pa or less. Then, the operation of introducing nitrogen gas to normal pressure was repeated five times, and then the mixture was transferred to a salt bath maintained at 210 ° C. under a nitrogen stream of 50 ml / min, and temperature increase was immediately started. After the temperature of the salt bath was adjusted to 260 ° C. over 1 hour, the inside of the container was depressurized to about 66.5 Pa and further reacted for 2 hours. Subsequently, after introducing nitrogen gas to normal pressure, it was removed from the salt bath and cooled to room temperature under a nitrogen stream of 50 ml / min to obtain a polyamide resin. The obtained polyamide was a white tough polymer.

[実施例2]
前重合工程において、1,9−ノナンジアミン 9.6677g(0.0611モル)、2−メチル−1,8−オクタンジアミン22.5581g(0.1425モル)を仕込んだ以外は実施例1と同様に反応を行ってポリアミドを得た。得られたポリアミドは白色の強靭なポリマーであった。
[Example 2]
In the prepolymerization step, the same as in Example 1 except that 9.6777 g (0.0611 mol) of 1,9-nonanediamine and 22.5581 g (0.1425 mol) of 2-methyl-1,8-octanediamine were charged. Reaction was performed to obtain polyamide. The obtained polyamide was a white tough polymer.

[実施例3]
前重合工程において、1,9−ノナンジアミン 1.9335g(0.122モル)、2−メチル−1,8−オクタンジアミン30.2923g(0.1914モル)を仕込んだ以外は実施例1と同様に反応を行ってポリアミドを得た。得られたポリアミドは白色の強靭なポリマーであった。
[Example 3]
In the prepolymerization step, the same as in Example 1 except that 1.9335 g (0.122 mol) of 1,9-nonanediamine and 30.2923 g (0.1914 mol) of 2-methyl-1,8-octanediamine were charged. Reaction was performed to obtain polyamide. The obtained polyamide was a white tough polymer.

[実施例4]
(i)前重縮合工程:攪拌機、温度計、トルクメーター、圧力計、窒素ガス導入口、放圧口、ポリマー取出口、および直径1/8インチのSUS316製配管によって原料フィードポンプを直結させた原料投入口を備えた1Lの耐圧容器に、シュウ酸ジブチル224.12g(1.1083モル)を仕込み、耐圧容器内を純度が99.9999%の窒素ガスで3.0MPaに加圧した後、次に常圧まで窒素ガスを放出する操作を5回繰り返した後、封圧下、40℃において1,9−ノナンジアミン10.59g(0.06687モル)と2−メチル−1,8−オクタンジアミン165.83g(1.0477モル)の混合物(1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンのモル比が6:94)を原料フィードポンプにより流速200ml/分で1分間かけて反応容器内に注入した。注入直後の耐圧容器内の温度は137℃まで上昇した。
(ii)後重縮合工程:その後、40ml/分の窒素気流下において昇温を開始し、5.5時間かけて内部温度を260℃にした後に2時間反応させた。次に、攪拌を止めて系内を窒素で1MPaに加圧して10分間静置した後、重合物を圧力容器下部より紐状に抜き出した。紐状の重合物は直ちに水冷し、水冷した紐状の重合物はペレタイザーによってペレット化した。得られた重合物は白色の強靭なポリマーであった。相対粘度は3.47であった。
[Example 4]
(I) Pre-polycondensation step: A raw material feed pump was directly connected by a stirrer, a thermometer, a torque meter, a pressure gauge, a nitrogen gas inlet, a pressure outlet, a polymer outlet, and a pipe made of SUS316 having a diameter of 1/8 inch. After charging 224.12 g (1.1083 mol) of dibutyl oxalate into a 1 L pressure vessel equipped with a raw material inlet, the inside of the pressure vessel was pressurized to 3.0 MPa with nitrogen gas having a purity of 99.9999%, Next, the operation of releasing nitrogen gas to normal pressure was repeated 5 times, and then 105.9 g (0.06687 mol) of 1,9-nonanediamine and 2-methyl-1,8-octanediamine 165 at 40 ° C. under a sealing pressure. .83 g (1.0477 mol) of a mixture (1,9-nonanediamine and 2-methyl-1,8-octanediamine molar ratio of 6:94) was mixed with a raw material feed pump. It was injected into the reaction vessel over a period of 1 minute at a flow rate of 200ml / min. The temperature in the pressure vessel immediately after the injection rose to 137 ° C.
(Ii) Post-polycondensation step: Thereafter, the temperature was raised under a nitrogen stream of 40 ml / min, and the reaction was carried out for 2 hours after the internal temperature was raised to 260 ° C over 5.5 hours. Next, the stirring was stopped, the inside of the system was pressurized to 1 MPa with nitrogen and allowed to stand for 10 minutes, and then the polymer was extracted from the lower part of the pressure vessel in a string shape. The string-like polymer was immediately cooled with water, and the water-cooled string-like polymer was pelletized with a pelletizer. The obtained polymer was a white tough polymer. The relative viscosity was 3.47.

[実施例5]
(i)前重縮合工程:攪拌機、温度計、トルクメーター、圧力計、窒素ガス導入口、放圧口、ポリマー取出口、および直径1/8インチのSUS316製配管によって原料フィードポンプを直結させた原料投入口を備えた5Lの耐圧容器に、シュウ酸ジブチル1048.87g(5.18616モル)を仕込み、耐圧容器内を純度が99.9999%の窒素ガスで3.0MPaに加圧した後、次に常圧まで窒素ガスを放出する操作を5回繰り返した後、封圧下、系内を昇温した。20分間かけて内部温度を100℃にした後、1,9−ノナンジアミン49.26g(0.3112モル)と2−メチル−1,8−オクタンジアミン771.74g(4.8756モル)の混合物(1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンのモル比が6:94)を原料フィードポンプにより流速13ml/分で17分間かけて反応容器内に注入すると同時に昇温した。全量注入直後の耐圧容器内の内圧は、重縮合反応により生成した1−ブタノールによって0.35MPaまで上昇し、内部温度は168℃まで上昇した。
(ii)後重縮合工程:注入直後から生成したブタノールの留去を開始し、内圧を0.25MPaに保持したまま、2時間かけて内部温度を235℃にした。内部温度が235℃に達した直後から放圧口より重縮合反応によって生成した1−ブタノールを20分間かけて抜き出した。放圧後、260ml/分の窒素気流下において昇温を開始し、1時間かけて内部温度を260℃にし、260℃において0.5時間反応させた。その後、攪拌を止めて系内を窒素で3MPaに加圧して10分間静置した後、内圧0.5MPaまで放圧し、重合物を圧力容器下部より紐状に抜き出した。紐状の重合物は直ちに水冷し、水冷した紐状の重合物はペレタイザーによってペレット化した。得られた重合物は白色の強靭なポリマーであった。相対粘度は4.00であった。
[Example 5]
(I) Pre-polycondensation step: A raw material feed pump was directly connected by a stirrer, a thermometer, a torque meter, a pressure gauge, a nitrogen gas inlet, a pressure outlet, a polymer outlet, and a pipe made of SUS316 having a diameter of 1/8 inch. After charging 1048.87 g (5.18616 mol) of dibutyl oxalate into a 5 L pressure vessel equipped with a raw material inlet, the inside of the pressure vessel was pressurized to 3.0 MPa with nitrogen gas having a purity of 99.9999%, Next, the operation of releasing nitrogen gas to normal pressure was repeated five times, and then the system was heated under a sealing pressure. After the internal temperature was raised to 100 ° C. over 20 minutes, a mixture of 49.26 g (0.3112 mol) of 1,9-nonanediamine and 771.74 g (4.8756 mol) of 2-methyl-1,8-octanediamine (4.8756 mol) The molar ratio of 1,9-nonanediamine and 2-methyl-1,8-octanediamine was 6:94) was poured into the reaction vessel over 17 minutes at a flow rate of 13 ml / min by a raw material feed pump, and the temperature was increased. The internal pressure in the pressure vessel immediately after injection of the entire amount increased to 0.35 MPa by 1-butanol generated by the polycondensation reaction, and the internal temperature increased to 168 ° C.
(Ii) Post-polycondensation step: Distillation of butanol produced immediately after injection was started, and the internal temperature was maintained at 235 ° C. over 2 hours while maintaining the internal pressure at 0.25 MPa. Immediately after the internal temperature reached 235 ° C., 1-butanol produced by the polycondensation reaction was extracted from the pressure release port over 20 minutes. After releasing the pressure, the temperature was raised under a nitrogen stream of 260 ml / min. The internal temperature was raised to 260 ° C. over 1 hour, and the reaction was carried out at 260 ° C. for 0.5 hour. Thereafter, the stirring was stopped, the inside of the system was pressurized to 3 MPa with nitrogen and allowed to stand for 10 minutes, and then released to an internal pressure of 0.5 MPa, and the polymer was extracted from the lower part of the pressure vessel in a string shape. The string-like polymer was immediately cooled with water, and the water-cooled string-like polymer was pelletized with a pelletizer. The obtained polymer was a white tough polymer. The relative viscosity was 4.00.

[比較例1]
(i)前重縮合工程:撹拌機、還流冷却器、窒素導入管、原料投入口を備えた内容積が1Lのセパラブルフラスコの内部を純度が99.9999%の窒素ガスで置換し、脱水済みトルエン500ml、1,9−ノナンジアミン68.3091g(0.4316モル)、2−メチル−1,8−オクタンジアミン12.0545g(0.0762モル)を仕込んだ。このセパラブルフラスコをオイルバス中に設置して50℃に昇温した後、蓚酸ジブチル102.1956g(0.5053モル)を仕込んだ。次にオイルバスの温度を130℃まで昇温し、還流下、5時間反応を行った。なお、原料仕込みから反応終了までの全ての操作は50ml/分の窒素気流下で行った。
[Comparative Example 1]
(I) Pre-polycondensation step: The inside of a 1 L separable flask equipped with a stirrer, reflux condenser, nitrogen inlet tube, and raw material inlet is replaced with nitrogen gas having a purity of 99.9999% for dehydration. 500 ml of used toluene, 68.3091 g (0.4316 mol) of 1,9-nonanediamine and 12.0545 g (0.0762 mol) of 2-methyl-1,8-octanediamine were charged. This separable flask was placed in an oil bath and heated to 50 ° C., and then 102.1195 g (0.5053 mol) of dibutyl oxalate was charged. Next, the temperature of the oil bath was raised to 130 ° C., and the reaction was carried out for 5 hours under reflux. Note that all operations from preparation of raw materials to completion of the reaction were performed under a nitrogen stream of 50 ml / min.

(ii)後重縮合工程:上記操作によって得られた前重合物を撹拌機、空冷管、窒素導入管を備えた直径約35mmφのガラス製反応管に仕込み、反応管内を13.3Pa以下の減圧下に保ち、次に常圧まで窒素ガスを導入する操作を5回繰り返した後、50ml/分の窒素気流下210℃に保った塩浴に移し、直ちに昇温を開始した。1時間かけて塩浴の温度を260℃とした後、容器内を約66.5Paまで減圧し、さらに2時間反応させた。続いて常圧まで窒素ガスを導入したのち、塩浴から取り出し50ml/分の窒素気流下で室温まで冷却してポリアミド樹脂を得た。得られたポリアミドは白色の強靭なポリマーであった。   (Ii) Post-polycondensation step: The prepolymer obtained by the above operation is charged into a glass reaction tube having a diameter of about 35 mmφ equipped with a stirrer, an air cooling tube, and a nitrogen introduction tube, and the pressure inside the reaction tube is reduced to 13.3 Pa or less. Then, the operation of introducing nitrogen gas to normal pressure was repeated five times, and then the mixture was transferred to a salt bath maintained at 210 ° C. under a nitrogen stream of 50 ml / min, and temperature increase was immediately started. After the temperature of the salt bath was adjusted to 260 ° C. over 1 hour, the inside of the container was depressurized to about 66.5 Pa and further reacted for 2 hours. Subsequently, after introducing nitrogen gas to normal pressure, it was removed from the salt bath and cooled to room temperature under a nitrogen stream of 50 ml / min to obtain a polyamide resin. The obtained polyamide was a white tough polymer.

[比較例2]
前重合工程において容積が500mlのセパラブルフラスコを使用し、脱水済みトルエン200ml、1,9−ノナンジアミン18.9835g(0.1199モル)、2−メチル−1,8−オクタンジアミン4.7459g(0.0300モル)、蓚酸ジブチル30.1957g(0.1493モル)を仕込んだほかは、実施例1と同様に反応を行ってポリアミドを得た。得られたポリアミドは白色の強靭なポリマーであった。このポリアミドから成形したフィルムは無色透明の強靭なフィルムであった。
[Comparative Example 2]
In the prepolymerization step, a separable flask having a volume of 500 ml was used, 200 ml of dehydrated toluene, 18.9835 g (0.1199 mol) of 1,9-nonanediamine, and 4.759 g of 2-methyl-1,8-octanediamine (0 0.0300 mol) and 30.1957 g (0.1493 mol) of dibutyl oxalate were charged, and a reaction was carried out in the same manner as in Example 1 to obtain a polyamide. The obtained polyamide was a white tough polymer. The film formed from this polyamide was a colorless transparent tough film.

[比較例3]
(i)前重縮合工程:撹拌機、空冷管、窒素導入管、原料投入口を備えた内容積が5リットルのセパラブルフラスコの内部を純度が99.9999%の窒素ガスで置換し、蓚酸ジブチル1211g(5.9871モル)を仕込んだ。この容器を20℃に保ち、攪拌しながら1,9−ノナンジアミン807.6g(5.102モル)、2−メチル−1,8−オクタンジアミン142.5g(0.9004モル)を加え、重縮合反応を行った。なお、原料仕込みから反応終了までの全ての操作は200ml/分の窒素気流下で行った。
[Comparative Example 3]
(I) Pre-polycondensation step: The inside of a separable flask having a volume of 5 liters equipped with a stirrer, an air cooling tube, a nitrogen introduction tube, and a raw material inlet is replaced with nitrogen gas having a purity of 99.9999%, and oxalic acid 1211 g (5.99871 mol) of dibutyl was charged. While maintaining this container at 20 ° C., 807.6 g (5.102 mol) of 1,9-nonanediamine and 142.5 g (0.9004 mol) of 2-methyl-1,8-octanediamine were added while stirring, and polycondensation was performed. Reaction was performed. Note that all operations from preparation of raw materials to completion of the reaction were performed under a nitrogen stream of 200 ml / min.

(ii)後重縮合工程:上記操作によって得られた前重合物を攪拌機、温度計、トルクメーター、圧力計、窒素ガス導入口及びポリマー取り出し口を備えた5Lの圧力容器に仕込み、圧力容器内を3.0MPa以上の加圧下に保ち、次に常圧まで窒素ガスを放出する操作を5回繰り返した後、窒素気流及び常圧下、系内を昇温した。1.5時間かけて内部温度を120℃にした。この時、ブタノールの留出を確認した。ブタノールを留出させながら5時間かけて260℃まで昇温し、2時間反応させた。その後、系内を250℃に降温し、攪拌を止め25分間静置した後に系内を窒素で3.5MPaに加圧し、重合物を圧力容器下部より紐状に抜き出した。紐状の重合物は直ちに水冷し、水冷した紐状の重合物はペレタイザーによってペレット化した。得られた重合物は白色の強靭なポリマーであった。次に、このポリアミドを、シリンダ温度260℃、金型温度80℃、射出ピーク圧力140MPaで射出成形し、得られた成形品の各種物性値を測定した。得られた結果を下記の表5に示す。   (Ii) Post-polycondensation step: The prepolymer obtained by the above operation is charged into a 5 L pressure vessel equipped with a stirrer, thermometer, torque meter, pressure gauge, nitrogen gas inlet and polymer outlet, and the inside of the pressure vessel Was maintained under a pressure of 3.0 MPa or more and then the operation of releasing nitrogen gas to normal pressure was repeated five times, and then the system was heated under a nitrogen stream and normal pressure. The internal temperature was raised to 120 ° C. over 1.5 hours. At this time, distillation of butanol was confirmed. While distilling butanol, the temperature was raised to 260 ° C. over 5 hours and reacted for 2 hours. Thereafter, the temperature in the system was lowered to 250 ° C., stirring was stopped, and the system was allowed to stand for 25 minutes, and then the system was pressurized to 3.5 MPa with nitrogen, and the polymer was extracted from the lower part of the pressure vessel in a string shape. The string-like polymer was immediately cooled with water, and the water-cooled string-like polymer was pelletized with a pelletizer. The obtained polymer was a white tough polymer. Next, this polyamide was injection molded at a cylinder temperature of 260 ° C., a mold temperature of 80 ° C., and an injection peak pressure of 140 MPa, and various physical property values of the obtained molded product were measured. The results obtained are shown in Table 5 below.

[比較例4]
前重合工程において300ミリLの容積を持つセパラブルフラスコを使用し、脱水済みトルエン100ml、1,9−ノナンジアミン21.2125g(0.1340モル)、蓚酸ジブチル27.0852g(0.1339モル)を仕込み、後重合工程において常圧で重合を行ったほかは、実施例1と同様に反応を行ってポリアミドを得た。得られたポリアミドは黄色のポリマーであった。
[Comparative Example 4]
Using a separable flask having a volume of 300 ml in the prepolymerization step, 100 ml of dehydrated toluene, 21.2125 g (0.1340 mol) of 1,9-nonanediamine, and 27.0852 g (0.1339 mol) of dibutyl oxalate were added. A polyamide was obtained by reacting in the same manner as in Example 1 except that the polymerization was carried out at normal pressure in the post-polymerization step. The obtained polyamide was a yellow polymer.

実施例1、実施例2、実施例3、比較例1、比較例2、比較例3及び比較例4により得られたポリアミドのジアミン組成、ηr、融点(Tm)、結晶化温度(Tc)、1%重量減少温度(Td)、Td−Tm及び溶融粘度を表1に示す。実施例1、2及び3により得られるポリアミドのTd−Tmは比較例1、2、3及び4により得られるポリアミドのそれより大きく成形加工温度範囲が広い。また、実施例1、2及び3により得られるポリアミドのTdは比較例1、2、3及び4のTdよりも高く耐熱性に優れている。 The diamine composition, ηr, melting point (Tm), crystallization temperature (Tc) of the polyamides obtained in Example 1, Example 2, Example 3, Comparative Example 1, Comparative Example 2, Comparative Example 3 and Comparative Example 4, Table 1 shows the 1% weight loss temperature (Td), Td-Tm, and melt viscosity. The Td-Tm of the polyamides obtained in Examples 1, 2, and 3 is larger than that of the polyamides obtained in Comparative Examples 1, 2, 3, and 4, and the molding process temperature range is wide. Moreover, Td of the polyamide obtained by Examples 1, 2, and 3 is higher than Td of Comparative Examples 1, 2, 3, and 4, and is excellent in heat resistance.

Figure 2009235225
Figure 2009235225

[比較例5]
本発明で得られるポリアミド樹脂に替えてナイロン6(宇部興産製、UBEナイロン 1015B)を用いてフィルムを成形した。得られたナイロン6のフィルムは無色透明の強靭なフィルムであった。このフィルムの飽和吸水率を評価した。結果を表2に示す。
[Comparative Example 5]
A film was molded using nylon 6 (UBE Nylon 1015B, manufactured by Ube Industries) instead of the polyamide resin obtained in the present invention. The obtained nylon 6 film was a colorless transparent tough film. The saturated water absorption of this film was evaluated. The results are shown in Table 2.

[比較例6]
本発明で得られるポリアミド樹脂に替えてナイロン12(宇部興産製、UBESTA 3014U)を用いてフィルムを成形した。得られたナイロン12のフィルムは無色透明の強靭なフィルムであった。このフィルムの飽和吸水率を評価した。結果を表2に示す。
[Comparative Example 6]
Instead of the polyamide resin obtained in the present invention, a film was formed using nylon 12 (UBE Kosan, UBESTA 3014U). The obtained nylon 12 film was a colorless transparent tough film. The saturated water absorption of this film was evaluated. The results are shown in Table 2.

表2に実施例4、比較例2、比較例5及び比較例6で得られたポリアミド樹脂の飽和吸水率を示す。また、表3に実施例5と比較例3で得られたポリアミド樹脂の飽和エタノール吸収率を示す。表2から、本発明のポリアミド樹脂は、ナイロン6や12と比較して低吸水である。また表3から、本発明のポリアミド樹脂は、2−メチル−1,8−オクタンジアミンのモル数が1,9−ノナンジアミンのモル数未満である場合と比較して、低吸水であり、低エタノール吸収である。   Table 2 shows the saturated water absorption rates of the polyamide resins obtained in Example 4, Comparative Example 2, Comparative Example 5, and Comparative Example 6. Table 3 shows saturated ethanol absorption rates of the polyamide resins obtained in Example 5 and Comparative Example 3. From Table 2, the polyamide resin of the present invention has low water absorption compared to nylon 6 and 12. Also, from Table 3, the polyamide resin of the present invention has low water absorption compared to the case where the number of moles of 2-methyl-1,8-octanediamine is less than the number of moles of 1,9-nonanediamine. Absorption.

実施例5と比較例3で得られたポリアミド樹脂の射出成形物の機械的物性を表4に示す。   Table 4 shows the mechanical properties of the polyamide resin injection-molded articles obtained in Example 5 and Comparative Example 3.

Figure 2009235225
飽和吸水率
Figure 2009235225
Saturated water absorption

Figure 2009235225

飽和エタノール吸収率
Figure 2009235225

Saturated ethanol absorption rate

Figure 2009235225

機械的物性
Figure 2009235225

Mechanical properties

本発明のポリアミドは、低吸水性、低エタノール吸収性、耐薬品性、耐加水分解性などに優れ、溶融成形加工性に優れたポリオキサミド樹脂である。自動車部材、コンピューター及び関連機器、光学機器部材、電気・電子機器、情報・通信機器、精密機器、土木・建築用品、医療用品、家庭用品などの成形材料として好適に使用することができる。例えば燃料チューブ、エアチューブ、燃料補助タンク、ベーパーキャニスタ、クイックコネクタ、ファン、クリップ、ファスナー、エンジンカバー、ラジエタータンク、エアダクトホース、アームレスト、ギアなどの自動車部材に使用できる。また、従来ポリアミド成形物が用いられてきた各種成形品、シート、フィルム、パイプ、チューブ、モノフィラメント、繊維、容器等として、自動車部材、コンピューター及び関連機器、光学機器部材、電気・電子機器、情報・通信機器、精密機器、土木・建築用品、医療用品、家庭用品などの成形材料として広範に使用することができる。   The polyamide of the present invention is a polyoxamide resin excellent in low water absorption, low ethanol absorption, chemical resistance, hydrolysis resistance, etc., and excellent in melt molding processability. It can be suitably used as a molding material for automobile members, computers and related equipment, optical equipment members, electrical / electronic equipment, information / communication equipment, precision equipment, civil engineering / building supplies, medical supplies, household goods, and the like. For example, it can be used for automobile members such as fuel tubes, air tubes, fuel auxiliary tanks, vapor canisters, quick connectors, fans, clips, fasteners, engine covers, radiator tanks, air duct hoses, armrests, and gears. In addition, various molded products, sheets, films, pipes, tubes, monofilaments, fibers, containers, etc., for which polyamide molded products have been conventionally used, such as automobile members, computers and related equipment, optical equipment members, electrical / electronic equipment, information / electronic equipment, It can be widely used as a molding material for communication equipment, precision equipment, civil engineering / building supplies, medical supplies, and household goods.

Claims (6)

ジカルボン酸成分が蓚酸からなり、ジアミン成分が1,9−ノナンジアミン及び2−メチル−1,8−オクタンジアミンからなり、かつ、前記2−メチル−1,8−オクタンジアミンのモル数は、前記1,9−ノナンジアミンのモル数以上であり、前記ジカルボン酸成分と前記ジアミン成分とを縮合させて得られるポリアミド樹脂。   The dicarboxylic acid component is composed of oxalic acid, the diamine component is composed of 1,9-nonanediamine and 2-methyl-1,8-octanediamine, and the number of moles of the 2-methyl-1,8-octanediamine is 1 , 9-nonanediamine, and a polyamide resin obtained by condensing the dicarboxylic acid component and the diamine component. 96%硫酸水溶液を溶媒とし、濃度が1.0g/dlのポリアミド樹脂溶液の96%硫酸水溶液との相対粘度(ηr)が、25℃において、1.8〜6.0である請求項1に記載のポリアミド樹脂。   2. The relative viscosity (ηr) of a polyamide resin solution having a concentration of 1.0 g / dl with a 96% sulfuric acid aqueous solution as a solvent and a 96% sulfuric acid aqueous solution is 1.8 to 6.0 at 25 ° C. The polyamide resin described. 窒素雰囲気下にて10℃/分の昇温速度で測定した熱重量分析における1%重量減少温度と、窒素雰囲気下にて10℃/分の昇温速度で測定した示差走査熱量法により測定した融点との温度差が50℃以上である請求項1又は2に記載のポリアミド樹脂。   1% weight loss temperature in thermogravimetric analysis measured at 10 ° C./min heating rate under nitrogen atmosphere and differential scanning calorimetry measured at 10 ° C./min heating rate under nitrogen atmosphere The polyamide resin according to claim 1 or 2, wherein the temperature difference from the melting point is 50 ° C or more. ジカルボン酸成分とジアミン成分とを縮合させて得られるポリアミド樹脂の製造方法であって、前記ジカルボン酸成分が蓚酸からなり、前記ジアミン成分は1,9−ノナンジアミン及び2−メチル−1,8−オクタンジアミンからなり、かつ、前記2−メチル−1,8−オクタンジアミンのモル数は、前記1,9−ノナンジアミンのモル数以上であることを特徴とするポリアミド樹脂の製造方法。   A process for producing a polyamide resin obtained by condensing a dicarboxylic acid component and a diamine component, wherein the dicarboxylic acid component comprises oxalic acid, and the diamine component comprises 1,9-nonanediamine and 2-methyl-1,8-octane. A method for producing a polyamide resin, comprising a diamine, wherein the number of moles of the 2-methyl-1,8-octanediamine is not less than the number of moles of the 1,9-nonanediamine. 請求項1〜3のいずれか1項に記載のポリアミド樹脂を成形してなる成形品。   The molded article formed by shape | molding the polyamide resin of any one of Claims 1-3. 請求項1〜3のいずれか1項に記載のポリアミド樹脂を成形してなるエタノール含有燃料用部品。   The component for ethanol containing fuel formed by shape | molding the polyamide resin of any one of Claims 1-3.
JP2008082611A 2008-03-27 2008-03-27 Polyamide resin Pending JP2009235225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008082611A JP2009235225A (en) 2008-03-27 2008-03-27 Polyamide resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008082611A JP2009235225A (en) 2008-03-27 2008-03-27 Polyamide resin

Publications (1)

Publication Number Publication Date
JP2009235225A true JP2009235225A (en) 2009-10-15

Family

ID=41249587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008082611A Pending JP2009235225A (en) 2008-03-27 2008-03-27 Polyamide resin

Country Status (1)

Country Link
JP (1) JP2009235225A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011116056A (en) * 2009-12-04 2011-06-16 Ube Industries Ltd Industrial tube
JP2011118231A (en) * 2009-12-04 2011-06-16 Ube Industries Ltd Electrophotographic member comprising new polyamide resin
JP2011213978A (en) * 2010-03-16 2011-10-27 Ube Industries Ltd Method for producing polyoxamide resin
JP2011231167A (en) * 2010-04-26 2011-11-17 Ube Industries Ltd Polyamide resin for automobile component or for electric/electronic component, having small density change by heat treatment
JP2016121217A (en) * 2014-12-24 2016-07-07 宇部興産株式会社 Manufacturing method of polyoxamide resin
JP2016121218A (en) * 2014-12-24 2016-07-07 宇部興産株式会社 Manufacturing method of polyoxamide resin
JP2016204490A (en) * 2015-04-21 2016-12-08 宇部興産株式会社 Composition and molded article consisting of the same
JP2016204499A (en) * 2015-04-21 2016-12-08 宇部興産株式会社 Polyamide elastomer and molded article manufactured by using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05506466A (en) * 1990-02-20 1993-09-22 エクソン・ケミカル・パテンツ・インク oxygen barrier
JPH07228689A (en) * 1994-02-16 1995-08-29 Kuraray Co Ltd Polyamide resin
JPH0912713A (en) * 1995-06-26 1997-01-14 Kuraray Co Ltd Polyamide and polyamide composition
JP2004083817A (en) * 2002-08-29 2004-03-18 Kuraray Co Ltd Polyamide
JP2006057033A (en) * 2004-08-23 2006-03-02 Ube Ind Ltd Material with low water absorbency
JP2006281507A (en) * 2005-03-31 2006-10-19 Kuraray Co Ltd Laminated structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05506466A (en) * 1990-02-20 1993-09-22 エクソン・ケミカル・パテンツ・インク oxygen barrier
JPH07228689A (en) * 1994-02-16 1995-08-29 Kuraray Co Ltd Polyamide resin
JPH0912713A (en) * 1995-06-26 1997-01-14 Kuraray Co Ltd Polyamide and polyamide composition
JP2004083817A (en) * 2002-08-29 2004-03-18 Kuraray Co Ltd Polyamide
JP2006057033A (en) * 2004-08-23 2006-03-02 Ube Ind Ltd Material with low water absorbency
JP2006281507A (en) * 2005-03-31 2006-10-19 Kuraray Co Ltd Laminated structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011116056A (en) * 2009-12-04 2011-06-16 Ube Industries Ltd Industrial tube
JP2011118231A (en) * 2009-12-04 2011-06-16 Ube Industries Ltd Electrophotographic member comprising new polyamide resin
JP2011213978A (en) * 2010-03-16 2011-10-27 Ube Industries Ltd Method for producing polyoxamide resin
JP2011231167A (en) * 2010-04-26 2011-11-17 Ube Industries Ltd Polyamide resin for automobile component or for electric/electronic component, having small density change by heat treatment
JP2016121217A (en) * 2014-12-24 2016-07-07 宇部興産株式会社 Manufacturing method of polyoxamide resin
JP2016121218A (en) * 2014-12-24 2016-07-07 宇部興産株式会社 Manufacturing method of polyoxamide resin
JP2016204490A (en) * 2015-04-21 2016-12-08 宇部興産株式会社 Composition and molded article consisting of the same
JP2016204499A (en) * 2015-04-21 2016-12-08 宇部興産株式会社 Polyamide elastomer and molded article manufactured by using the same

Similar Documents

Publication Publication Date Title
JP5056763B2 (en) Polyamide resin
JP5796573B2 (en) Polyamide resin
JP2009235225A (en) Polyamide resin
JP5975038B2 (en) Polyamide resin and molded product comprising the same
JPWO2012036303A1 (en) Polyoxamide resin with excellent impact resistance and impact resistant parts
JP5321434B2 (en) Polyamide resin composition for SMT connectors
JP5584968B2 (en) Plasticizer-containing polyamide resin composition and molded article
JP2009299721A (en) Fuel tube
JP2009298853A (en) Polyamide resin composition
JP2009235223A (en) Polyamide resin for automobile member
JP5584963B2 (en) Polyamide resin composition
JP2009298857A (en) Polyamide resin composition and molded article formed from the polyamide resin composition
JP2009298856A (en) Heat-resistant agent-containing resin composition and molded article formed from the heat-resistant agent-containing resin composition
JP6273883B2 (en) Polyamide resin
JP5584966B2 (en) Heat-resistant agent-containing resin composition and molded product formed from the heat-resistant agent-containing resin composition
JP2011063695A (en) Transparent member using polyamide resin
JP2011231167A (en) Polyamide resin for automobile component or for electric/electronic component, having small density change by heat treatment
JP5446795B2 (en) Polyamide resin composition for IC tray and IC tray
JP6451082B2 (en) Polyamide resin
JP5572921B2 (en) Molded parts in direct contact with biodiesel fuel
JP2009298852A (en) Plasticizer-containing polyamide resin composition and molded article
JP2010018794A (en) Conductive polyamide resin composition
JP2013095792A (en) Filler-containing polyamide resin composition
JP2013095780A (en) Polyamide resin composition for injection molding and injection-molded product obtained by injection-molding the same
JP2009298864A (en) Injection-molding material containing new polyamide resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121127