JP2009226277A - Acetylene occluding material and manufacturing method, as well as high-purity acetylene supply device - Google Patents

Acetylene occluding material and manufacturing method, as well as high-purity acetylene supply device Download PDF

Info

Publication number
JP2009226277A
JP2009226277A JP2008072711A JP2008072711A JP2009226277A JP 2009226277 A JP2009226277 A JP 2009226277A JP 2008072711 A JP2008072711 A JP 2008072711A JP 2008072711 A JP2008072711 A JP 2008072711A JP 2009226277 A JP2009226277 A JP 2009226277A
Authority
JP
Japan
Prior art keywords
ligand
acetylene
metal
storage material
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008072711A
Other languages
Japanese (ja)
Other versions
JP5156445B2 (en
Inventor
Koji Hasegawa
公司 長谷川
Susumu Kitagawa
進 北川
Daisuke Tanaka
大輔 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani Industrial Gases Corp
Kyoto University NUC
Original Assignee
Iwatani Industrial Gases Corp
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani Industrial Gases Corp, Kyoto University NUC filed Critical Iwatani Industrial Gases Corp
Priority to JP2008072711A priority Critical patent/JP5156445B2/en
Publication of JP2009226277A publication Critical patent/JP2009226277A/en
Application granted granted Critical
Publication of JP5156445B2 publication Critical patent/JP5156445B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Pyridine Compounds (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metallic complex which can store a large quantity of acetylene gas at so low a pressure as not causing cracking explosion. <P>SOLUTION: This acetylene occluding material composed of a porous metal complex, is configured to comprise a divalent transition-metal cation, a first ligand i.e. a divalent anion with a site capable of coordinated linkage to a metal and a second ligand with a site capable of coordinated linkage to a metal at its both ends. Thus, the acetylene occluding material comes to have pores suitable for adsorbing acetylene. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、アセチレンを安全に貯蔵するアセチレン吸蔵材料とその製造方法、及びその吸蔵材料を使用したアセチレン貯蔵容器、並びにその吸蔵材料を使用したアセチレンの供給装置とその吸蔵材料を使用してのアセチレン精製装置に関する。   The present invention relates to an acetylene storage material for safely storing acetylene, a method for producing the same, an acetylene storage container using the storage material, an acetylene supply device using the storage material, and an acetylene using the storage material. The present invention relates to a purification apparatus.

従来、アセチレンを含むガスを貯蔵するものとして、2価の金属イオンと、剛直な骨格の利用端末に前記2価の金属イオンに配位可能な窒素原子を有す2座配位可能な有機配位子と、2,3−ピラジンジカルボン酸とにより構成された有機金属錯体(特許文献1)や、2価の金属イオン、前記金属イオンに配位可能な原子を有する2座配置可能な有機配位子(Ligand)及び2,3ピラジンジカルボン酸(pyzdc)からなる
化学式:Cu(Ligand)(pyzdc)
で表される三次元構造を有する有機金属錯体(特許文献2)等が知られている。
特許第3746321号公報 特開2000−210559号公報
Conventionally, as a gas storage device containing acetylene, an organic configuration capable of bidentate coordination having a divalent metal ion and a nitrogen atom capable of coordinating to the divalent metal ion at a rigid skeleton utilization terminal. Organometallic complex composed of a ligand and 2,3-pyrazinedicarboxylic acid (Patent Document 1), a divalent metal ion, and an organic compound capable of bidentate arrangement having an atom capable of coordinating to the metal ion Chemical formula consisting of ligand and 2,3 pyrazinedicarboxylic acid (pyzdc): Cu 2 (Ligand) (pyzdc) 2
An organometallic complex having a three-dimensional structure represented by (Patent Document 2) and the like are known.
Japanese Patent No. 3746321 JP 2000-210559 A

従来の有機金属錯体では、その結晶構造中に空間を有し、その空間の大きさと構成成分の特性に応じてガス成分を吸着・貯蔵するようにしているが、前記した従来の金属錯体では、アセチレンガスの貯蔵量を充分確保することができないという問題を残していた。   In the conventional organometallic complex, there is a space in the crystal structure, and the gas component is adsorbed and stored according to the size of the space and the characteristics of the constituent components. However, in the conventional metal complex described above, The problem was that a sufficient amount of acetylene gas could not be secured.

本発明は、このような点に着目してなされたもので、アセチレンガスを分解爆発を起こさない低い圧力で大量に貯蔵することのできる金属錯体を提供することを目的とする。   The present invention has been made paying attention to such points, and an object thereof is to provide a metal complex capable of storing a large amount of acetylene gas at a low pressure that does not cause decomposition and explosion.

上述の目的を達成するために、請求項1に記載の発明では、2価の遷移金属陽イオンと、金属に配位結合可能な部位を有する2価の陰イオンである第1配位子と、両末端に金属に配位結合可能な部位を有する第2配位子とで構成したアセチレン吸着に適した細孔を有することを特徴としている。また、請求項2に記載の発明は、2価の遷移金属陽イオンと、金属に配位結合可能な部位を有する2価の陰イオンである第1配位子と、両末端に金属に配位結合可能な部位を有する電荷を持たない第2配位子とで構成されていることを特徴としている。   In order to achieve the above-mentioned object, in the invention according to claim 1, a divalent transition metal cation and a first ligand which is a divalent anion having a site capable of coordinating with a metal, And having a pore suitable for acetylene adsorption composed of a second ligand having a site capable of coordinating and binding to a metal at both ends. Further, the invention according to claim 2 is directed to a divalent transition metal cation, a first ligand that is a divalent anion having a site capable of coordinating with a metal, and a metal at both ends. It is characterized by being composed of a second ligand having a site capable of positional bonding and having no charge.

さらに、請求項5に記載の発明では、2価の遷移金属陽イオンと、金属に配位結合可能な部位を有する2価の陰イオンである第1配位子により形成される層状構造を、第2配位子が柱状に連結することにより多孔質構造を形成し、第1配位子に導入した置換基により細孔径を制御することを特徴としている。   Furthermore, in the invention according to claim 5, a layered structure formed by a divalent transition metal cation and a first ligand that is a divalent anion having a site capable of coordinating with a metal, A porous structure is formed by connecting the second ligand in a columnar shape, and the pore diameter is controlled by a substituent introduced into the first ligand.

本発明では、2価の遷移金属陽イオンと、金属に配位結合可能な部位を有する2価の陰イオンである第1配位子と、両末端に金属に配位結合可能な部位を有する第2配位子とでアセチレン吸着に適した細孔を構成しているので、分解爆発を起こさない低い圧力でアセチレンガスを大量に貯蔵することができる。   In the present invention, a divalent transition metal cation, a first ligand that is a divalent anion having a site capable of coordinating with a metal, and a site capable of coordinating with a metal at both ends are provided. Since the second ligand constitutes pores suitable for acetylene adsorption, a large amount of acetylene gas can be stored at a low pressure that does not cause decomposition explosion.

2価の遷移金属陽イオンとして塩化銅や硝酸銅等の第二銅の塩を使用し、金属に配位結合可能な部位を有する2価の陰イオンである第1配位子として2,3−ピラジンジカルボン酸を使用し、両末端に金属に配位結合可能な部位を有する電化を持たない第2配位子として非対称な構造の物質である4−アミノメチルピリジン(4−amp)を用いることでより高い貯蔵量と、貯蔵・放出に適した圧力特性とを両立する多孔質金属錯体が得られる。   A cupric salt such as copper chloride or copper nitrate is used as a divalent transition metal cation, and a divalent anion having a site capable of coordinating with a metal is used as a first ligand, 2, 3 -Using pyrazinedicarboxylic acid, 4-aminomethylpyridine (4-amp) which is a substance having an asymmetric structure is used as a second ligand having no site that can be coordinated to a metal at both ends and having no electrification As a result, a porous metal complex having both a higher storage capacity and a pressure characteristic suitable for storage / release can be obtained.

なお、この電化を持たない第2配位子としては、上述の4−アミノメチルピリジン(4−amp)に変えて、4−(2−アミノエチル)ピリジンや4−(3−アミノプロピル)ピリジン等のアミノ基が結合する炭素鎖を2つ以上に増加させたものであってもよい。   In addition, as a 2nd ligand which does not have this electrification, it changes into the above-mentioned 4-aminomethylpyridine (4-amp), 4- (2-aminoethyl) pyridine, 4- (3-aminopropyl) pyridine. The number of carbon chains to which an amino group is bonded may be increased to two or more.

上述の多孔質金属錯体の合成手順は、まず、各原料を以下のモル比となるように計量する。

Figure 2009226277
In the procedure for synthesizing the porous metal complex described above, first, each raw material is weighed so as to have the following molar ratio.
Figure 2009226277

ついで、第1配位子である2,3−ピラジンジカルボン酸(Hpzdc)を容器内で水に溶解し、炭酸水素ナトリウムを加えて2,3−ピラジンジカルボン酸を中和する。中和後の溶液に第2配位子である4−アミノメチルピリジン(4−amp)を加えて攪拌・混合する。 Next, 2,3-pyrazinedicarboxylic acid (H 2 pzdc), which is the first ligand, is dissolved in water in a container, and sodium bicarbonate is added to neutralize 2,3-pyrazinedicarboxylic acid. The secondary ligand 4-aminomethylpyridine (4-amp) is added to the neutralized solution and stirred and mixed.

配位子の混合溶液に、硝酸銅水溶液を徐々に滴下する。この硝酸銅水溶液の滴下により、粉末状沈殿が生成し始める。滴下終了後しばらくは攪拌を継続する。沈殿物を吸引濾過して回収する。このとき、吸引しながら水及びアルコール(メタノール又はエタノール)で沈殿物を洗浄した後に風乾して収量を測定する。   An aqueous copper nitrate solution is gradually added dropwise to the ligand solution. By dropping the aqueous copper nitrate solution, a powdery precipitate starts to form. Stirring is continued for a while after the dropping is completed. The precipitate is collected by suction filtration. At this time, the precipitate is washed with water and alcohol (methanol or ethanol) while sucking and then air-dried to measure the yield.

このとき、2価の遷移金属塩としては、第1〜第3系列の遷移金属元素の2価の陽イオンを含み、対イオンとして金属に2座以上のキレート配位をしない化学種を含むものが望ましく、具体的には、塩化物イオン、硝酸イオン、過塩素酸イオンなどである。   At this time, the divalent transition metal salt includes a divalent cation of the first to third series transition metal elements, and includes a chemical species that does not have a bidentate or more chelate coordination to the metal as a counter ion. More specifically, chloride ions, nitrate ions, perchlorate ions, and the like are preferable.

なお、配位子が酸性物質であるときには、他の原料と混合する前に単独の溶液としてから、塩基を加えて中和する。中和後の溶液には金属又は第1・第2配位子と強固な配位結合を形成して目的の多孔質錯体の生成を妨げる可能性のある不純物が含まれないことが望ましい。この点から、中和の際にはアルカリ金属の水酸化物、炭酸塩(水酸化ナトリウム、水酸化カリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウムなど)を塩基として用いることが最も望ましい。また、中和後の塩を結晶化して単離精製してもよい。   When the ligand is an acidic substance, it is neutralized by adding a base before mixing with other raw materials, and then adding a base. It is desirable that the neutralized solution does not contain impurities that may form a strong coordinate bond with the metal or the first and second ligands and prevent the formation of the target porous complex. From this point, it is most desirable to use an alkali metal hydroxide or carbonate (sodium hydroxide, potassium hydroxide, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, etc.) as a base during neutralization. Further, the neutralized salt may be crystallized for isolation and purification.

さらに、溶媒としては、水のみではなく、水と完全混合する極性有機溶媒(メタノール・エタノールなどのアルコール、アセトン、N,N´−ジメチルホルムアルデヒド、ジメチルスルホキシド、1,4−ジオキサン等の極性溶媒)、あるいはそれらを予め混合した溶媒を、各原料の溶解性に応じて適宜用いてもよい。水と分相する有機溶媒は原料物質が均一に混合しないため好ましくない副反応を併発する。   Furthermore, as a solvent, not only water but a polar organic solvent that is completely mixed with water (polar solvents such as alcohols such as methanol and ethanol, acetone, N, N′-dimethylformaldehyde, dimethyl sulfoxide, and 1,4-dioxane) Alternatively, a solvent prepared by mixing them in advance may be appropriately used depending on the solubility of each raw material. The organic solvent that separates water phase causes undesirable side reactions because the raw materials are not uniformly mixed.

そして、混合の順番としては、あらかじめ第1配位子と第2配位子とを混合した溶液を調整し、この混合溶液と金属塩とを反応させることが適切である。単独の配位子と金属塩とを混合することは、それらの組み合わせによっては目的物が得られなくなるため、避けるべきである。   And as an order of mixing, it is appropriate to prepare a solution in which the first ligand and the second ligand are mixed in advance and to react this mixed solution with the metal salt. Mixing of a single ligand and a metal salt should be avoided because the desired product cannot be obtained depending on the combination thereof.

(1) 三角フラスコ中に第1配位子として、0.297g(1.8mmol)の2,3−ピラジンジカルボン酸を水100mLに溶解し、淡褐色の水溶液をえた。
(2) 溶液に0.296g(3.5mmol)の炭酸水素ナトリウムを加え、2,3−ピラジンジカルボン酸を中和した。中和の確認は二酸化炭素の発泡を目視することで行った。
(3) 中和後の溶液に第2配位子として、0.100g(0.9mmol)の4−アミノメチルピリジンを加えて、溶解した。
(4) 配位子の混合溶液を攪拌しながら、第二銅の塩として0.405g(1.7mmol)の硝酸銅三水和物を水100mLに溶解して得られた淡青色水溶液を少量づつ滴下した。滴下を続けると、青色粉末状沈殿が生成した。滴下終了後約1時間攪拌を継続した。
(5) 生成物をブフナー漏斗により吸引濾過することで固液分離して沈殿を回収した。未反応物を除去するために吸引を続けながら水及びアルコール(メタノール又はエタノール)を注いで沈殿を洗浄した。これを風乾し、目的錯体とした。
(6) 25℃において、アセチレン吸着を測定したところ大気圧付近で、錯体1g当たり67mLの吸着量が得られた。
(1) 0.297 g (1.8 mmol) of 2,3-pyrazinedicarboxylic acid was dissolved in 100 mL of water as a first ligand in an Erlenmeyer flask to obtain a light brown aqueous solution.
(2) 0.296 g (3.5 mmol) of sodium bicarbonate was added to the solution to neutralize 2,3-pyrazinedicarboxylic acid. The neutralization was confirmed by visually observing the foaming of carbon dioxide.
(3) To the neutralized solution, 0.100 g (0.9 mmol) of 4-aminomethylpyridine was added and dissolved as the second ligand.
(4) While stirring the mixed solution of the ligand, a small amount of a pale blue aqueous solution obtained by dissolving 0.405 g (1.7 mmol) of copper nitrate trihydrate as a cupric salt in 100 mL of water. It was dripped one by one. When dropping was continued, a blue powdery precipitate was formed. Stirring was continued for about 1 hour after the completion of dropping.
(5) The product was subjected to suction filtration with a Buchner funnel to separate the solid and liquid, and the precipitate was collected. In order to remove unreacted substances, the precipitate was washed by pouring water and alcohol (methanol or ethanol) while continuing suction. This was air-dried to obtain a target complex.
(6) When acetylene adsorption was measured at 25 ° C., an adsorption amount of 67 mL per 1 g of complex was obtained near atmospheric pressure.

前記実施例1で得られた錯体について、元素分析と熱重量分析を行った結果、得られた錯体の組成は、下表に示すように金属と配位子の比がCu:pzdc(第1配位子):4−amp(第2配位子)が1:1:0.5(=2:2:1)でCu1原子あたり水が2分子取り込まれているとして計算した値とよく一致した。

Figure 2009226277
As a result of conducting elemental analysis and thermogravimetric analysis on the complex obtained in Example 1, the composition of the obtained complex has a metal to ligand ratio of Cu: pzdc (first Ligand): 4-amp (secondary ligand) is 1: 1: 0.5 (= 2: 2: 1) and agrees well with the value calculated assuming that two molecules of water are taken up per Cu atom. did.
Figure 2009226277

また、熱重量分析の結果を図1に示す。この図1から、100℃までに約11.5%の重量減少を示し、この値は、元素分析で水2分子を吸着しているとした値(11.3%)とよく一致した。   The results of thermogravimetric analysis are shown in FIG. From FIG. 1, a weight loss of about 11.5% was shown up to 100 ° C., and this value was in good agreement with the value (11.3%) that two molecules of water were adsorbed by elemental analysis.

[比較例1]
(1) 三角フラスコ中に第1配位子として、0.375g(2.27mmol)の2,3−ピラジンジカルボン酸を水100mLに溶解し、淡褐色の水溶液をえた。
(2) 溶液に0.296g(3.5mmol)の炭酸水素ナトリウムを加え、2,3−ピラジンジカルボン酸を中和した。中和の確認は二酸化炭素の発泡を目視することで行った。
(3) 中和後の溶液に第2配位子として、0.100g(0.9mmol)のピラジンを加えて、溶解した。
(4) 配位子の混合溶液を攪拌しながら、第二銅の塩として0.405g(1.7mmol)の硝酸銅三水和物を水100mLに溶解して得られた淡青色水溶液を少量づつ滴下した。滴下を続けると、青色粉末状沈殿が生成した。滴下終了後約1時間攪拌を継続した。
(5) 生成物をブフナー漏斗により吸引濾過することで固液分離して沈殿を回収した。未反応物を除去するために吸引を続けながら水及びアルコール(メタノール又はエタノール)を注いで沈殿を洗浄した。これを風乾し、目的錯体とした。
(6) 25℃において、アセチレン吸着量を測定したところ大気圧付近で、錯体1g当たり42mLの吸着量が得られた。
[Comparative Example 1]
(1) 0.375 g (2.27 mmol) of 2,3-pyrazinedicarboxylic acid as a first ligand in an Erlenmeyer flask was dissolved in 100 mL of water to obtain a light brown aqueous solution.
(2) 0.296 g (3.5 mmol) of sodium bicarbonate was added to the solution to neutralize 2,3-pyrazinedicarboxylic acid. The neutralization was confirmed by visually observing the foaming of carbon dioxide.
(3) 0.1100 g (0.9 mmol) of pyrazine was added as a second ligand to the neutralized solution and dissolved.
(4) While stirring the mixed solution of the ligand, a small amount of a pale blue aqueous solution obtained by dissolving 0.405 g (1.7 mmol) of copper nitrate trihydrate as a cupric salt in 100 mL of water. It was dripped one by one. When dropping was continued, a blue powdery precipitate was formed. Stirring was continued for about 1 hour after the completion of dropping.
(5) The product was subjected to suction filtration with a Buchner funnel to separate the solid and liquid, and the precipitate was collected. In order to remove unreacted substances, the precipitate was washed by pouring water and alcohol (methanol or ethanol) while continuing suction. This was air-dried to obtain a target complex.
(6) When the acetylene adsorption amount was measured at 25 ° C., an adsorption amount of 42 mL per 1 g of the complex was obtained near atmospheric pressure.

[比較例2]
(1) 三角フラスコ中に第1配位子として、0.468g(2.8mmol)の2,3−ピラジンジカルボン酸を水50mLに溶解し、淡褐色の水溶液をえた。
(2) 溶液に0.0.470g(5.6mmol)の炭酸水素ナトリウムを加え、2,3−ピラジンジカルボン酸を中和した。中和の確認は二酸化炭素の発泡を目視することで行った。
(3) 中和後の溶液に第2配位子として、0.217g(1.4mmol)の4,4´−ビピリジルをエタノール50mLに溶解したものを加えて混合した。
(4) 配位子の混合溶液を攪拌しながら、第二銅の塩として0.683g(2.8mmol)の硝酸銅三水和物を水100mLに溶解して得られた淡青色水溶液を少量づつ滴下した。滴下を続けると、青色粉末状沈殿が生成した。滴下終了後約1時間攪拌を継続した。
(5) 生成物をブフナー漏斗により吸引濾過することで固液分離して沈殿を回収した。未反応物を除去するために吸引を続けながら水及びアルコール(メタノール又はエタノール)を注いで沈殿を洗浄した。これを風乾し、目的錯体とした。
(6) 25℃において、アセチレン吸着量を測定したところ大気圧付近で、錯体1g当たり58mLの吸着量が得られた。
[Comparative Example 2]
(1) 0.468 g (2.8 mmol) of 2,3-pyrazinedicarboxylic acid was dissolved in 50 mL of water as a first ligand in an Erlenmeyer flask to obtain a light brown aqueous solution.
(2) To the solution, 0.0470 g (5.6 mmol) of sodium bicarbonate was added to neutralize 2,3-pyrazinedicarboxylic acid. The neutralization was confirmed by visually observing the foaming of carbon dioxide.
(3) A solution obtained by dissolving 0.217 g (1.4 mmol) of 4,4′-bipyridyl in 50 mL of ethanol as the second ligand was added to the neutralized solution and mixed.
(4) While stirring the mixed solution of the ligand, a small amount of a pale blue aqueous solution obtained by dissolving 0.683 g (2.8 mmol) of copper nitrate trihydrate as a cupric salt in 100 mL of water. It was dripped one by one. When dropping was continued, a blue powdery precipitate was formed. Stirring was continued for about 1 hour after the completion of dropping.
(5) The product was subjected to suction filtration with a Buchner funnel to separate the solid and liquid, and the precipitate was collected. In order to remove unreacted substances, the precipitate was washed by pouring water and alcohol (methanol or ethanol) while continuing suction. This was air-dried to obtain a target complex.
(6) When the acetylene adsorption amount was measured at 25 ° C., an adsorption amount of 58 mL per 1 g of the complex was obtained near atmospheric pressure.

[比較例3]
実施例1と同じ原料を用いて、第2配位子が過剰となるよう、Cu:pzdc(第1配位子):4−amp(第2配位子)のモル比が1:1:2の条件で同様に合成を行った。
(1) 三角フラスコ中に第1配位子として、0.491g(2.9mmol)の2,3−ピラジンジカルボン酸を水100mLに溶解し、淡褐色の水溶液をえた。
(2) 溶液に0.492g(5.9mmol)の炭酸水素ナトリウムを加え、2,3−ピラジンジカルボン酸を中和した。中和の確認は二酸化炭素の発泡を目視することで行った。
(3) 中和後の溶液に第2配位子として、0.631g(5.8mmol)の4−アミノメチルピリジンを加えて、溶解した。
(4) 配位子の混合溶液を攪拌しながら、第二銅の塩として0.703g(2.9mmol)の硝酸銅三水和物の淡青色水溶液を少量づつ滴下した。滴下を続けると、青色粉末状沈殿が生成した。滴下終了後約1時間攪拌を継続した。
(5) 生成物をブフナー漏斗により吸引濾過することで固液分離して沈殿を回収した。未反応物を除去するために吸引を続けながら水及びアルコール(メタノール又はエタノール)を注いで沈殿を洗浄した。これを風乾し収量を測定したところ0.861gであった。
(6) この生成物は真空化で130℃に加熱すると、褐色に変色し、不安定なものであることが確認された。
[Comparative Example 3]
Using the same raw material as in Example 1, the molar ratio of Cu: pzdc (first ligand): 4-amp (second ligand) is 1: 1: 2 so that the second ligand is excessive. The synthesis was performed in the same manner under the conditions of 2.
(1) 0.491 g (2.9 mmol) of 2,3-pyrazinedicarboxylic acid was dissolved in 100 mL of water as a first ligand in an Erlenmeyer flask to obtain a light brown aqueous solution.
(2) 0.492 g (5.9 mmol) of sodium bicarbonate was added to the solution to neutralize 2,3-pyrazinedicarboxylic acid. The neutralization was confirmed by visually observing the foaming of carbon dioxide.
(3) To the solution after neutralization, 0.631 g (5.8 mmol) of 4-aminomethylpyridine was added and dissolved as the second ligand.
(4) While stirring the mixed solution of the ligand, 0.703 g (2.9 mmol) of a pale blue aqueous solution of copper nitrate trihydrate was added dropwise as a cupric salt. When dropping was continued, a blue powdery precipitate was formed. Stirring was continued for about 1 hour after the completion of dropping.
(5) The product was subjected to suction filtration with a Buchner funnel to separate the solid and liquid, and the precipitate was collected. In order to remove unreacted substances, the precipitate was washed by pouring water and alcohol (methanol or ethanol) while continuing suction. This was air-dried and the yield was measured to be 0.861 g.
(6) When this product was heated to 130 ° C. under vacuum, it turned brown and was confirmed to be unstable.

これにより、同じ原料を用いても、第2配位子が過剰量となるようにすると、実施例1とは異なる生成物が得られることを確認した。この生成物は吸着した水分などを除去するための加熱真空脱気中に分解し、ガスの吸着材として使用するには不適当なものであった。   Thereby, even if the same raw material was used, it was confirmed that a product different from that in Example 1 was obtained when the second ligand was in an excessive amount. This product was decomposed during heating vacuum deaeration for removing adsorbed moisture and the like, and was unsuitable for use as a gas adsorbent.

実施例1と比較例1及び2での錯体において25℃、大気圧付近でのアセチレン吸着量の測定結果を次表に示す。

Figure 2009226277
この表からも分かるように、実施例1で示す本発明の錯体は、従来技術として例示した比較例1及び2で得られる錯体に比して、15〜59%のアセチレン吸着量の向上が見られる。 The measurement results of the acetylene adsorption amount at 25 ° C. and near atmospheric pressure in the complexes of Example 1 and Comparative Examples 1 and 2 are shown in the following table.
Figure 2009226277
As can be seen from this table, the complex of the present invention shown in Example 1 shows 15 to 59% improvement in acetylene adsorption compared to the complexes obtained in Comparative Examples 1 and 2 exemplified as the prior art. It is done.

また、各錯体の圧力と吸着量との関係は、図2に示す通りであった。   Moreover, the relationship between the pressure of each complex and the amount of adsorption was as shown in FIG.

さらに、実施例1で示す本発明の錯体、及び従来技術として例示した比較例1で得られる錯体について、多孔質材料の表面積・細孔容積・細孔径等の物性を評価する手法として一般的に行われる、液化窒素温度における窒素ガス吸着量を測定した結果を図3に示す。
比較例1の手法で得られた錯体はごく低い圧力から吸着等温線が急激に立ち上がり、直径2nm以下のミクロ孔と呼ばれる細孔を有する多孔質材料に特徴的な挙動を示した。一方、本発明(実施例1)の手法で得られた錯体は、低圧部の立ち上がりのない緩やかな曲線を示した。この等温線は非多孔質である場合に特徴的な挙動である。相対圧力0.8で吸着量が増大するのは、固体表面における窒素の液化によるものである。
これらのことから、本発明(実施例1)の手法で得られた錯体は、アセチレンに対して親和力が高く、アセチレン分子を選択的に吸着する細孔を有することが確認された。
Furthermore, as a method for evaluating physical properties such as the surface area, pore volume, and pore diameter of the porous material, the complex of the present invention shown in Example 1 and the complex obtained in Comparative Example 1 exemplified as the prior art are generally used. The results of measuring the amount of nitrogen gas adsorbed at the liquefied nitrogen temperature are shown in FIG.
The complex obtained by the method of Comparative Example 1 has an adsorption isotherm that suddenly rises from a very low pressure, and exhibits a behavior characteristic of a porous material having pores called micropores having a diameter of 2 nm or less. On the other hand, the complex obtained by the method of the present invention (Example 1) showed a gentle curve with no rise in the low-pressure part. This isotherm is a characteristic behavior when it is non-porous. The increase in the amount of adsorption at a relative pressure of 0.8 is due to the liquefaction of nitrogen on the solid surface.
From these, it was confirmed that the complex obtained by the method of the present invention (Example 1) has a high affinity for acetylene and has pores that selectively adsorb acetylene molecules.

さらにまた、図4に示すように吸着量は温度を上げると減少することから、圧力操作に温度操作を加えて効率的にアセチレンの吸脱着を行うことができる。   Furthermore, as shown in FIG. 4, the amount of adsorption decreases as the temperature is raised, so that the adsorption and desorption of acetylene can be performed efficiently by adding the temperature operation to the pressure operation.

また本発明に係る多孔質金属錯体の別の実施形態として、2価の遷移金属陽イオンと、金属に配位結合可能な部位を有する2価の陰イオンである第1配位子により形成される層状構造を、第2配位子が柱状に連結することにより多孔質構造を形成し、第1配位子に導入した置換基により細孔径を制御することも考えられる。   In another embodiment of the porous metal complex according to the present invention, the porous metal complex is formed of a divalent transition metal cation and a first ligand that is a divalent anion having a site capable of coordinating with a metal. It is also conceivable to form a porous structure by linking the layered structure in a columnar shape with the second ligand, and to control the pore diameter by the substituent introduced into the first ligand.

この多孔質金属錯体は、2価の遷移金属陽イオンとして亜鉛の塩を使用し、金属に配位結合可能な部位を有する2価の陰イオンである第1配位子として9,10−アントラセンジカルボン酸又は1−4ナフタレンジカルボン酸を使用し、第2配位子としてピラー配位子である1,4−ジアザビシクロ[2,2,2]オクタンを用い、ジメチルホルムアミド(DMF)溶液中で混合することにより合成される。そして、得られた多孔質金属錯体は粉末して得られる。   This porous metal complex uses a zinc salt as a divalent transition metal cation, and 9,10-anthracene as a first ligand which is a divalent anion having a site capable of coordinating with a metal. Dicarboxylic acid or 1-4 naphthalenedicarboxylic acid is used, and the pillar ligand 1,4-diazabicyclo [2,2,2] octane is used as the second ligand and mixed in a dimethylformamide (DMF) solution. To be synthesized. The obtained porous metal complex is obtained by powdering.

なお、この第2配位子としては、上述の1,4−ジアザビシクロ[2,2,2]オクタンに変えて、ピラジンや4,4´−ビピルジル等のような両末端に窒素原子を有する化合物も利用することができる。   In addition, as this 2nd ligand, it changes into the above-mentioned 1, 4- diazabicyclo [2, 2, 2] octane, and is a compound which has a nitrogen atom in both ends, such as a pyrazine and 4,4'- bipyridyl. Can also be used.

さらに、2価の遷移金属陽イオンとしては、この亜鉛や前記した銅のほか、2価の陽イオン状態をとり、6配位8面体の配位構造を取れる、例えば、鉄、コバルト、マンガン、クロム等の遷移金属元素を使用することも可能である。   Furthermore, as the divalent transition metal cation, in addition to the zinc and the above-described copper, a divalent cation state can be taken and a hexacoordinated octahedral coordination structure can be formed. For example, iron, cobalt, manganese, It is also possible to use transition metal elements such as chromium.

さらに、また、細孔径、吸着力を調整するための第1配位子のジカルボン酸にメチル基、ヒドロキシル基、カルボキシル基の置換基を導入してもよい。   Furthermore, you may introduce | transduce the substituent of a methyl group, a hydroxyl group, and a carboxyl group into the dicarboxylic acid of the 1st ligand for adjusting a pore diameter and adsorption power.

この多孔質金属錯体は、図5に示す細孔構造を有し、アセチレンの吸着力、吸着量は、従来構造の多孔質金属錯体よりも向上している。   This porous metal complex has the pore structure shown in FIG. 5, and the adsorption power and adsorption amount of acetylene are improved as compared with the conventional porous metal complex.

(1) 1gの硝酸亜鉛六水和物と、0.88gの9,10−アントラセンジカルボン酸と、0.19gの1,4−ジアザビシクロ[2,2,2]オクタンとを、メタノール:DMF=1:1に混合した混合溶媒100mLとともに、ナスフラスコに収容して、60℃に加熱した。
(2) 12時間、得られた白色沈殿を濾別し、メタノールで洗浄後、真空乾燥する。
(1) 1 g of zinc nitrate hexahydrate, 0.88 g of 9,10-anthracene dicarboxylic acid, and 0.19 g of 1,4-diazabicyclo [2,2,2] octane are mixed with methanol: DMF = Together with 100 mL of the mixed solvent mixed 1: 1, the mixture was accommodated in an eggplant flask and heated to 60 ° C.
(2) The resulting white precipitate is filtered off for 12 hours, washed with methanol, and dried in vacuo.

得られた粉末の粉末X線回折測定の結果から図6に示す構造体が形成されていることを確認した。
また、別途得られた単結晶のX線結晶構造解析の結果、図7に示す層状構造が図8のように1,4−ジアザビシクロ[2,2,2]オクタンにより連結された細孔構造であることを確認した。
From the result of the powder X-ray diffraction measurement of the obtained powder, it was confirmed that the structure shown in FIG. 6 was formed.
Further, as a result of X-ray crystal structure analysis of a single crystal obtained separately, the layered structure shown in FIG. 7 has a pore structure connected by 1,4-diazabicyclo [2,2,2] octane as shown in FIG. I confirmed that there was.

(1) 500mLのメタノール溶媒中で、0.4gのギ酸銅四水和物と0.53gの9,10−アントラセンジカルボン酸を48時間室温で攪拌し、沈殿を濾別した。
(2) 得られた沈殿25mLを耐圧容器に投入し、耐圧容器中で6mLのトルエンと6mLのメタノールの混合溶媒と、0.22gの1,4−ジアザビシクロ[2,2,2]オクタンを加え、150℃で12時間加熱した。
(3) 得られた沈殿を濾別し、メタノールで洗浄後、真空乾燥した。
(1) In 500 mL of methanol solvent, 0.4 g of copper formate tetrahydrate and 0.53 g of 9,10-anthracene dicarboxylic acid were stirred for 48 hours at room temperature, and the precipitate was separated by filtration.
(2) Put 25 mL of the resulting precipitate into a pressure vessel, and add 6 mL of toluene and 6 mL of methanol and 0.22 g of 1,4-diazabicyclo [2,2,2] octane in the pressure vessel. And heated at 150 ° C. for 12 hours.
(3) The resulting precipitate was filtered off, washed with methanol, and dried in vacuo.

得られた粉末の粉末X線回折測定の結果から図6に示す構造体が形成されていることを確認した。   From the result of the powder X-ray diffraction measurement of the obtained powder, it was confirmed that the structure shown in FIG. 6 was formed.

(1) 0.75gの硝酸亜鉛六水和物と、0.53gの1−4ナフタレンジカルボン酸と、0.138gの9,10−アントラセンジカルボン酸を40mLのジメチルホルムアミドで耐圧容器を用いて120℃に加熱した。
(2)12時間加熱後、得られた白色沈殿を濾別し、メタノールで洗浄後、真空乾燥した。
(1) 0.75 g of zinc nitrate hexahydrate, 0.53 g of 1-4 naphthalenedicarboxylic acid, 0.138 g of 9,10-anthracene dicarboxylic acid in 40 mL of dimethylformamide using a pressure vessel, 120 Heated to ° C.
(2) After heating for 12 hours, the resulting white precipitate was filtered off, washed with methanol, and dried in vacuo.

得られた粉末の粉末X線回折測定の結果から図6に示す構造体が形成されていることを確認した。   From the result of the powder X-ray diffraction measurement of the obtained powder, it was confirmed that the structure shown in FIG. 6 was formed.

(1) 500mLのメタノール溶媒中で、0.4gのギ酸銅四水和物と0.43gの1−4ナフタレンジカルボン酸を48時間室温で攪拌し、沈殿を濾別した。
(2) 得られた沈殿25mLを耐圧容器に投入し、耐圧容器中で6mLのトルエンと6mLのメタノールの混合溶媒と、0.22gの1,4−ジアザビシクロ[2,2,2]オクタンを加え、150℃で12時間加熱した。
(3) 得られた沈殿を濾別し、、メタノールで洗浄後、真空乾燥した。
(1) In 500 mL of methanol solvent, 0.4 g of copper formate tetrahydrate and 0.43 g of 1-4 naphthalenedicarboxylic acid were stirred at room temperature for 48 hours, and the precipitate was filtered off.
(2) Put 25 mL of the resulting precipitate into a pressure vessel, and add 6 mL of toluene and 6 mL of methanol and 0.22 g of 1,4-diazabicyclo [2,2,2] octane in the pressure vessel. And heated at 150 ° C. for 12 hours.
(3) The resulting precipitate was filtered off, washed with methanol, and dried in vacuo.

得られた粉末の粉末X線回折測定の結果から図6に示す構造体が形成されていることを確認した。   From the result of the powder X-ray diffraction measurement of the obtained powder, it was confirmed that the structure shown in FIG. 6 was formed.

[比較例4]
(1) 500mLのメタノール溶媒中で、0.4gのギ酸銅四水和物と0.33gのテレフタル酸を48時間室温で攪拌し、沈殿を濾別した。
(2) 得られた沈殿25mLを耐圧容器に投入し、耐圧容器中で6mLのトルエンと6mLのメタノールの混合溶媒と、0.22gの1,4−ジアザビシクロ[2,2,2]オクタンを加え、150℃で12時間加熱した。
(3) 得られた沈殿を濾別し、メタノールで洗浄後、真空乾燥した。
[Comparative Example 4]
(1) In 500 mL of methanol solvent, 0.4 g of copper formate tetrahydrate and 0.33 g of terephthalic acid were stirred for 48 hours at room temperature, and the precipitate was filtered off.
(2) Put 25 mL of the resulting precipitate into a pressure vessel, and add 6 mL of toluene and 6 mL of methanol and 0.22 g of 1,4-diazabicyclo [2,2,2] octane in the pressure vessel. And heated at 150 ° C. for 12 hours.
(3) The resulting precipitate was filtered off, washed with methanol, and dried in vacuo.

得られた粉末の粉末X線回折測定の結果から図6に示す構造体が形成されていることを確認した。
From the result of the powder X-ray diffraction measurement of the obtained powder, it was confirmed that the structure shown in FIG. 6 was formed.

これら、実施例1〜5及び比較例4の298K、大気圧付近におけるアセチレン吸着量の測定結果を次表に示すとともに、多孔質物質のアセチレン吸着等温線を図9に示す。

Figure 2009226277
The measurement results of the acetylene adsorption amounts at 298 K and near atmospheric pressure in Examples 1 to 5 and Comparative Example 4 are shown in the following table, and the acetylene adsorption isotherm of the porous material is shown in FIG.
Figure 2009226277

この表から分かるように、本発明に係る多孔質金属錯体は、比較例4として挙げた従来の多孔質金属錯体に比して、アセチレン吸着量を60〜100%向上させることができる。
この場合、ジカルボン酸に導入されたベンゼン環が細孔内に張り出すため、細孔径は小さくなるが、孔径が小さくなると気体分子を吸着する力が強くなり、アセチレン吸着量を増加させる。
As can be seen from this table, the porous metal complex according to the present invention can improve the acetylene adsorption amount by 60 to 100% as compared with the conventional porous metal complex mentioned as Comparative Example 4.
In this case, since the benzene ring introduced into the dicarboxylic acid protrudes into the pores, the pore diameter becomes small. However, when the pore diameter becomes small, the force for adsorbing gas molecules becomes strong and the acetylene adsorption amount increases.

図10は上述の多孔質金属錯体を利用した高純度アセチレン供給装置の一例を示すフロー図を示す。
この高純度アセチレン供給装置は、アセチレン吸着能を有する多孔質金属錯体(1)を充填した容器(2)と、この容器(2)を加熱するヒータ(3)と、この容器(2)に流量調整弁(4)を介して連通接続したダイヤアラム式ドライ真空ポンプ(5)とで構成してある。
FIG. 10 is a flowchart showing an example of a high-purity acetylene supply device using the above-described porous metal complex.
This high-purity acetylene supply device is composed of a container (2) filled with a porous metal complex (1) having an acetylene adsorption capacity, a heater (3) for heating the container (2), and a flow rate in the container (2). It is comprised with the diamond aram type dry vacuum pump (5) connected in communication via the regulating valve (4).

この高純度アセチレン供給装置では、多孔質金属錯体(1)が内部に充填されている容器(2)内を真空引きして前処理を行い、別途精製した高純度アセチレンガスを容器(2)内の多孔質金属錯体(1)に吸着させ、真空ポンプ(5)を作動させて脱着させることで溶媒蒸気を含まない高純度のアセチレンガスを供給することになる。   In this high-purity acetylene supply device, the container (2) filled with the porous metal complex (1) is evacuated and pretreated, and separately purified high-purity acetylene gas is stored in the container (2). Is adsorbed on the porous metal complex (1) and desorbed by operating the vacuum pump (5) to supply a high-purity acetylene gas containing no solvent vapor.

図11は、多孔質金属錯体を利用した高純度アセチレン精製装置の一例を示すフロー図を示す。
この高純度アセチレン精製装置は、市場に流通している溶解アセチレンから高純度アセチレンを得る場合を示している。
図中符号(6)は溶解アセチレン容器、(7)は活性炭やゼオライト等の吸着剤を充填した水分・溶媒除去塔、(8)は本発明に係る多孔質金属錯体を充填したアセチレン精製塔、(9)はアセチレン精製塔内を減圧し、吸着したガスを他の塔に移送する又は系外に排気するための真空ポンプ、(10)は各精製塔(8)を加熱することで吸着したアセチレンガスを脱離させるためのヒーターである。
FIG. 11 is a flowchart showing an example of a high-purity acetylene purification apparatus using a porous metal complex.
This high-purity acetylene refining apparatus shows a case where high-purity acetylene is obtained from dissolved acetylene distributed in the market.
In the figure, reference numeral (6) is a dissolved acetylene container, (7) is a moisture / solvent removal tower packed with an adsorbent such as activated carbon or zeolite, (8) is an acetylene purification tower packed with the porous metal complex according to the present invention, (9) is a vacuum pump for reducing the pressure inside the acetylene purification tower and transferring the adsorbed gas to another tower or exhausting it out of the system. (10) is adsorbed by heating each purification tower (8). It is a heater for desorbing acetylene gas.

この高純度アセチレン精製装置では、溶解アセチレンに含まれるアセトンまたはジメチルホルムアミドの溶媒蒸気や水分を、水分・溶媒除去塔(7)で除去することからなる前処理を行い、この前処理済みアセチレンをアセチレン精製塔(8)に導入する。
アセチレン精製塔(8)では、多孔質金属錯体がアセチレンを吸脱着する性質を利用して、圧力スイング法や温度スイング法を用いて精製し、高純度のアセチレンガスを得ることができる。この場合の圧力スイング法としては、あらかじめ吸着ガスを脱離させたアセチレン精製塔(8)に原料ガスを吸着させ、自圧又は真空ポンプの作動で、他塔に移送して再吸着させるという操作を繰り返して、再吸着−脱離を繰り返すことで不純物が除去され精製アセチレンガスを得る。一方温度スイング法による場合は、加温により、吸着したガスを脱離させて圧力を上げ、他塔に移送し再吸着−脱離を繰り返すことで不純物が除去され精製アセチレンガスを得る。
精製工程の効率化のため、これら2つを組み合わせて装置を構成してもよい。
In this high-purity acetylene purification apparatus, a pretreatment consisting of removing the solvent vapor or water of acetone or dimethylformamide contained in the dissolved acetylene by a water / solvent removal tower (7) is performed, and this pretreated acetylene is removed from the acetylene. It introduce | transduces into a purification tower (8).
In the acetylene purification tower (8), by using the property that the porous metal complex absorbs and desorbs acetylene, the acetylene purification tower (8) can be purified using a pressure swing method or a temperature swing method to obtain a high-purity acetylene gas. In this case, the pressure swing method is an operation in which the raw material gas is adsorbed in the acetylene purification tower (8) from which the adsorbed gas has been desorbed in advance, and is transferred to another tower and re-adsorbed by the operation of the self-pressure or vacuum pump. Is repeated, and impurities are removed by repeating re-adsorption-desorption to obtain purified acetylene gas. On the other hand, in the case of the temperature swing method, the adsorbed gas is desorbed by heating, the pressure is increased, the gas is transferred to another tower, and re-adsorption-desorption is repeated to remove impurities and obtain purified acetylene gas.
In order to improve the efficiency of the purification process, the two may be combined to constitute an apparatus.

熱重量分析の結果を示すグラフである。It is a graph which shows the result of a thermogravimetric analysis. 各錯体の圧力と吸着量との関係を示すグラフである。It is a graph which shows the relationship between the pressure and adsorption amount of each complex. 液化窒素温度における窒素ガス吸着量を示すグラフである。It is a graph which shows the nitrogen gas adsorption amount in liquefied nitrogen temperature. 吸着量と温度との関係を示すグラフである。It is a graph which shows the relationship between adsorption amount and temperature. 多孔質金属錯体の細孔構造示す図である。It is a figure which shows the pore structure of a porous metal complex. 粉末X線回折測定で同定された生成された粉末の構造体を示す図である。It is a figure which shows the structure of the produced | generated powder identified by the powder X-ray-diffraction measurement. 単結晶の構造を示す図である。It is a figure which shows the structure of a single crystal. 図7に示す層状構造が1,4−ジアザビシクロ[2,2,2]オクタンにより連結された細孔構造であることを示す図である。FIG. 8 is a diagram showing that the layered structure shown in FIG. 7 is a pore structure connected by 1,4-diazabicyclo [2,2,2] octane. 多孔質物質のアセチレン吸着等温線を示すグラフである。It is a graph which shows the acetylene adsorption isotherm of a porous substance. 高純度アセチレン供給装置の一例を示すフロー図である。It is a flowchart which shows an example of a high purity acetylene supply apparatus. 高純度アセチレン精製装置の一例を示すフロー図である。It is a flowchart which shows an example of a high purity acetylene refinement | purification apparatus.

Claims (12)

2価の遷移金属陽イオンと、金属に配位結合可能な部位を有する2価の陰イオンである第1配位子と、両末端に金属に配位結合可能な部位を有する第2配位子とで構成したアセチレン吸着に適した細孔を有する多孔質金属錯体からなるアセチレン吸蔵材料。   A first ligand that is a divalent transition metal cation, a divalent anion having a site capable of coordinating to a metal, and a second coordination having sites capable of coordinating to a metal at both ends. An acetylene occlusion material comprising a porous metal complex having pores suitable for acetylene adsorption composed of a child. 2価の遷移金属陽イオンと、金属に配位結合可能な部位を有する2価の陰イオンである第1配位子と、両末端に金属に配位結合可能な部位を有する電荷を持たない第2配位子とで構成される請求項1に記載のアセチレン吸蔵材料。   No charge having a divalent transition metal cation, a first ligand that is a divalent anion having a site capable of coordinating to a metal, and a site having a site capable of coordinating to a metal at both ends. The acetylene storage material of Claim 1 comprised with a 2nd ligand. 多孔質金属錯体を構成する遷移金属陽イオンと第1配位子及び第2配位子とのモル比が2:2:1である請求項1又は2に記載のアセチレン吸蔵材料。   The acetylene occlusion material according to claim 1 or 2, wherein the molar ratio of the transition metal cation constituting the porous metal complex to the first ligand and the second ligand is 2: 2: 1. 2価の遷移金属陽イオンと、金属に配位結合可能な部位を有する2価の陰イオンである第1配位子により形成される層状構造を、第2配位子が柱状に連結することにより多孔質構造を形成し、第1配位子に導入した置換基により細孔径を制御する請求項1に記載のアセチレン吸蔵材料。   The second ligand links the layered structure formed by a divalent transition metal cation and a first ligand that is a divalent anion having a site capable of coordinating with a metal in a columnar shape. The acetylene occlusion material according to claim 1, wherein a porous structure is formed by controlling the pore diameter by a substituent introduced into the first ligand. 2価の遷移金属陽イオンと、1,4−ナフタレンジカルボン酸誘導体及び9,10−アントラセンジカルボン酸誘導体から選択される第1配位子とにより形成される層状構造を、両末端に金属に配位結合可能な部位を有する第2配位子が柱状に連結することにより多孔質構造を形成し、第1配位子に導入した置換基により細孔径を制御する、
化学式:[M(L1)(L2)]
で表される請求項1又は5に記載のアセチレン吸蔵材料。
(Mは2価の遷移金属陽イオン、L1は第1配位子、L2は第2配位子)
A layered structure formed by a divalent transition metal cation and a first ligand selected from a 1,4-naphthalenedicarboxylic acid derivative and a 9,10-anthracene dicarboxylic acid derivative is arranged on the metal at both ends. A porous structure is formed by connecting the second ligand having a site capable of positional binding in a columnar shape, and the pore diameter is controlled by a substituent introduced into the first ligand.
Chemical formula: [M 2 (L1) 2 (L2)] n
The acetylene storage material of Claim 1 or 5 represented by these.
(M is a divalent transition metal cation, L1 is the first ligand, L2 is the second ligand)
第1配位子が9,10−アントラセンジカルボン酸イオン、第2配位子が1,4−ジアザビシクロ[2,2,2]オクタンで、金属が銅又は亜鉛のいずれかである請求項5に記載のアセチレン吸蔵材料。   6. The first ligand is 9,10-anthracene dicarboxylate ion, the second ligand is 1,4-diazabicyclo [2,2,2] octane, and the metal is either copper or zinc. The acetylene storage material described. 第1配位子が1,4−ナフタレンジカルボン酸イオン、第2配位子が1,4−ジアザビシクロ[2,2,2]オクタンで、金属が銅又は亜鉛のいずれかである請求項5に記載のアセチレン吸蔵材料。   The first ligand is 1,4-naphthalenedicarboxylate ion, the second ligand is 1,4-diazabicyclo [2,2,2] octane, and the metal is either copper or zinc. The acetylene storage material described. 2価の遷移金属陽イオンと、2,3−ピリジンジカルボン酸、2,3−ピラジンジカルボン酸から選択される少なくとも一方を中和して得られる第1配位子と、以下の構造式で表されるピリジン誘導体である第2配位子とをモル比2:2:1となるように水又は水とメタノールあるいはエタノールの混合溶媒中で混合して反応させることにより得られる化学式:[M(pdc)(ap)]
で表される請求項1に記載のアセチレン吸蔵材料。
(Mは2価の遷移金属陽イオン、pdcは2,3−ピリジンジカルボン酸イオン又は2,3−ピラジンジカルボン酸イオン、apはピリジン誘導体、n=1〜3)
Figure 2009226277
A first ligand obtained by neutralizing a divalent transition metal cation, at least one selected from 2,3-pyridinedicarboxylic acid and 2,3-pyrazinedicarboxylic acid, and represented by the following structural formula: The chemical formula obtained by mixing and reacting the second ligand, which is a pyridine derivative, in a molar ratio of 2: 2: 1 in water or a mixed solvent of water and methanol or ethanol: [M 2 (pdc) 2 (ap)] n
The acetylene storage material of Claim 1 represented by these.
(M is a divalent transition metal cation, pdc is a 2,3-pyridinedicarboxylate ion or 2,3-pyrazinedicarboxylate ion, ap is a pyridine derivative, n = 1 to 3)
Figure 2009226277
第二銅の塩と、2,3−ピラジンジカルボン酸を中和して得られる塩と、4−アミノメチルピリジンとをモル比2:2:1となるように水中で混合して反応させることにより得られ、化学式:[Cu(pzdc)(4−amp)]
で表される請求項1に記載のアセチレン吸蔵材料。
(pzdcは2,3−ピラジンジカルボン酸イオン、4−ampは4−アミノメチルピリジン)
Mixing and reacting a cupric salt, a salt obtained by neutralizing 2,3-pyrazinedicarboxylic acid, and 4-aminomethylpyridine in water at a molar ratio of 2: 2: 1. The chemical formula: [Cu 2 (pzdc) 2 (4-amp)] n
The acetylene storage material of Claim 1 represented by these.
(Pzdc is 2,3-pyrazinedicarboxylate ion, 4-amp is 4-aminomethylpyridine)
請求項1〜9のいずれか1項に記載したアセチレン吸蔵材料を内部に充填したアセチレンを貯蔵するアセチレン貯蔵容器。   The acetylene storage container which stores the acetylene which filled the acetylene storage material of any one of Claims 1-9 inside. 請求項1〜9のいずれか1項に記載したアセチレン吸蔵材料を内部に充填したアセチレン貯蔵容器と、容器を減圧してアセチレンガスを脱着させる圧力操作機構とで構成した高純度アセチレンガスの供給装置。   A high-purity acetylene gas supply device comprising: an acetylene storage container filled with the acetylene storage material according to any one of claims 1 to 9; and a pressure operating mechanism for depressurizing the container to desorb acetylene gas. . 請求項1〜9のいずれか1項に記載したアセチレン吸蔵材料を吸着分離材として充填した塔と、圧力操作機構と温度操作機構との少なくとも一方とで構成した高純度アセチレンの精製装置。   An apparatus for purifying high-purity acetylene comprising a tower packed with the acetylene storage material according to any one of claims 1 to 9 as an adsorption separation material, and at least one of a pressure operation mechanism and a temperature operation mechanism.
JP2008072711A 2008-03-21 2008-03-21 Acetylene storage material, acetylene storage container, high purity acetylene supply device, and high purity acetylene purification device Active JP5156445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008072711A JP5156445B2 (en) 2008-03-21 2008-03-21 Acetylene storage material, acetylene storage container, high purity acetylene supply device, and high purity acetylene purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008072711A JP5156445B2 (en) 2008-03-21 2008-03-21 Acetylene storage material, acetylene storage container, high purity acetylene supply device, and high purity acetylene purification device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012210390A Division JP5460803B2 (en) 2012-09-25 2012-09-25 Acetylene storage material, acetylene storage container, high purity acetylene supply device, and high purity acetylene purification device

Publications (2)

Publication Number Publication Date
JP2009226277A true JP2009226277A (en) 2009-10-08
JP5156445B2 JP5156445B2 (en) 2013-03-06

Family

ID=41242338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008072711A Active JP5156445B2 (en) 2008-03-21 2008-03-21 Acetylene storage material, acetylene storage container, high purity acetylene supply device, and high purity acetylene purification device

Country Status (1)

Country Link
JP (1) JP5156445B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010189509A (en) * 2009-02-17 2010-09-02 Sumitomo Chemical Co Ltd Coordination polymer having pyridinium skeleton, and method for producing the same
JP2012184197A (en) * 2011-03-07 2012-09-27 Kuraray Co Ltd Metal complex and adsorbent, occlusion material, and separation material consisting of the same
JP2013124920A (en) * 2011-12-14 2013-06-24 Taiyo Nippon Sanso Corp Device for measuring moisture in acetylene
JP2018089577A (en) * 2016-12-02 2018-06-14 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Gas separation system and gas separation method
WO2021183922A1 (en) * 2020-03-13 2021-09-16 Lam Research Corporation Stabilization of carbon deposition precursors like c2h2
CN116554492A (en) * 2023-05-17 2023-08-08 浙江师范大学 Ion hybridization hierarchical pore metal organic framework material with wly topological structure and preparation and application thereof
US11837441B2 (en) 2019-05-29 2023-12-05 Lam Research Corporation Depositing a carbon hardmask by high power pulsed low frequency RF

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108671893B (en) * 2018-04-24 2021-03-30 浙江大学 Metal organic framework material for separating ethylene and acetylene and method for separating ethylene and acetylene

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000210559A (en) * 1999-01-22 2000-08-02 Osaka Gas Co Ltd Gas storable organic metal complex, manufacture thereof and gas storage device
JP2007534896A (en) * 2003-11-24 2007-11-29 ビーエーエスエフ アクチェンゲゼルシャフト Controlled storage and release of gases using electrochemically produced crystalline, porous, organometallic framework materials

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000210559A (en) * 1999-01-22 2000-08-02 Osaka Gas Co Ltd Gas storable organic metal complex, manufacture thereof and gas storage device
JP2007534896A (en) * 2003-11-24 2007-11-29 ビーエーエスエフ アクチェンゲゼルシャフト Controlled storage and release of gases using electrochemically produced crystalline, porous, organometallic framework materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6011069308; Ryotaro Matsuda, Yoshimi Mita et al.: 'Highly controlled acetylene accommodation in a metal-organic microporous material' Nature Vol. 436, 20050714, p.238-241 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010189509A (en) * 2009-02-17 2010-09-02 Sumitomo Chemical Co Ltd Coordination polymer having pyridinium skeleton, and method for producing the same
JP2012184197A (en) * 2011-03-07 2012-09-27 Kuraray Co Ltd Metal complex and adsorbent, occlusion material, and separation material consisting of the same
JP2013124920A (en) * 2011-12-14 2013-06-24 Taiyo Nippon Sanso Corp Device for measuring moisture in acetylene
JP2018089577A (en) * 2016-12-02 2018-06-14 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Gas separation system and gas separation method
US11837441B2 (en) 2019-05-29 2023-12-05 Lam Research Corporation Depositing a carbon hardmask by high power pulsed low frequency RF
WO2021183922A1 (en) * 2020-03-13 2021-09-16 Lam Research Corporation Stabilization of carbon deposition precursors like c2h2
CN116554492A (en) * 2023-05-17 2023-08-08 浙江师范大学 Ion hybridization hierarchical pore metal organic framework material with wly topological structure and preparation and application thereof
CN116554492B (en) * 2023-05-17 2024-02-20 浙江师范大学 Ion hybridization hierarchical pore metal organic framework material with wly topological structure and preparation and application thereof

Also Published As

Publication number Publication date
JP5156445B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
Sanz et al. Synthesis of a honeycomb-like Cu-based metal–organic framework and its carbon dioxide adsorption behaviour
JP2009226277A (en) Acetylene occluding material and manufacturing method, as well as high-purity acetylene supply device
ul Qadir et al. Structural stability of metal organic frameworks in aqueous media–controlling factors and methods to improve hydrostability and hydrothermal cyclic stability
Zheng et al. An unprecedented water stable acylamide-functionalized metal–organic framework for highly efficient CH 4/CO 2 gas storage/separation and acid–base cooperative catalytic activity
Hwang et al. Bifunctional 3D Cu-MOFs containing glutarates and bipyridyl ligands: selective CO 2 sorption and heterogeneous catalysis
Luo et al. pH-Dependent cobalt (ii) frameworks with mixed 3, 3′, 5, 5′-tetra (1 H-imidazol-1-yl)-1, 1′-biphenyl and 1, 3, 5-benzenetricarboxylate ligands: synthesis, structure and sorption property
Saha et al. A magnesium-based multifunctional metal–organic framework: Synthesis, thermally induced structural variation, selective gas adsorption, photoluminescence and heterogeneous catalytic study
Chen et al. A comparative study of the effect of functional groups on C 2 H 2 adsorption in NbO-type metal–organic frameworks
Cui et al. A microporous metal-organic framework of sql topology for C2H2/CO2 separation
KR20150007484A (en) Novel Zn-MOF compounds, and carbon dioxide sorption and heterogeneous catalysts for transesterification comprising the same
EP2917224A1 (en) Metal-organic materials (moms) for adsorption of polarizable gases and methods of using moms
Zheng et al. A microporous Zn (ii)–MOF with open metal sites: structure and selective adsorption properties
Wang et al. Two isostructural metal–organic frameworks with unique nickel clusters for C 2 H 2/C 2 H 6/C 2 H 4 mixture separation
Pal et al. Structural variation of transition metal coordination polymers based on bent carboxylate and flexible spacer ligand: polymorphism, gas adsorption and SC-SC transmetallation
Jiang et al. An N-oxide-functionalized nanocage-based copper-tricarboxylate framework for the selective capture of C 2 H 2
Jiao et al. A porous metal–organic framework based on an asymmetric angular diisophthalate for selective adsorption of C 2 H 2 and CO 2 over CH 4
JP5044815B2 (en) Method for producing metal complex
Sugamata et al. Structural analysis of and selective CO 2 adsorption in mixed-ligand hydroxamate-based metal–organic frameworks
JP2013216622A (en) Metal complex, method for producing the same, and adsorbent
Wei et al. Linker extension through hard-soft selective metal coordination for the construction of a non-rigid metal-organic framework
Jiang et al. Two Co-based MOFs assembled from an amine-functionalized pyridinecarboxylate ligand: inorganic acid-directed structural variety and gas adsorption properties
He et al. A lactam-functionalized copper bent diisophthalate framework displaying significantly enhanced adsorption of CO 2 and C 2 H 2 over CH 4
JP2011083755A (en) Porous organometallic complex for gas occlusion, gas storage method and gas storage device using the same, and fuel cell system using the gas storage device
Liu et al. Flexible porous coordination polymers constructed from 1, 2-bis (4-pyridyl) hydrazine via solvothermal in situ reduction of 4, 4′-azopyridine
JPH09227572A (en) Gas-storing organometallic complex, its production, gas-storing apparatus and automobile furnished with gas-storing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120925

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5156445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250