JP2009195871A - Spiral membane element - Google Patents
Spiral membane element Download PDFInfo
- Publication number
- JP2009195871A JP2009195871A JP2008042646A JP2008042646A JP2009195871A JP 2009195871 A JP2009195871 A JP 2009195871A JP 2008042646 A JP2008042646 A JP 2008042646A JP 2008042646 A JP2008042646 A JP 2008042646A JP 2009195871 A JP2009195871 A JP 2009195871A
- Authority
- JP
- Japan
- Prior art keywords
- channel material
- peripheral side
- flow path
- permeate
- membrane element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
本発明は、液体中に浮遊及び溶存している成分を分離するスパイラル型膜エレメントに関する。 The present invention relates to a spiral membrane element that separates components suspended and dissolved in a liquid.
従来のスパイラル型膜エレメント(以下、単に「膜エレメント」ともいう)の構造としては、分離膜、供給側流路材及び透過側流路材の単数または複数が、有孔の中空状中心管(以下、単に「中心管」ともいう)の周りに巻きつけられたものが知られている(例えば、特許文献1参照)。 As a structure of a conventional spiral membrane element (hereinafter also simply referred to as “membrane element”), one or more of a separation membrane, a supply-side channel material, and a permeate-side channel material are perforated hollow center tubes ( Hereafter, what is simply wound around the "center tube" is known (see, for example, Patent Document 1).
図3は、従来の膜エレメントの一部切欠き斜視図である。この図に示す膜エレメント1は、分離膜2、供給側流路材6及び透過側流路材3を含む分離膜ユニットが、中心管5の周りに巻きつけられた構造を有する。より具体的には、透過側流路材3の両面に分離膜2を重ね合わせて3辺を接着することにより封筒状膜(袋状膜)4を形成し、その封筒状膜4の開口部を中心管5に取り付け、ネット状(網状)の供給側流路材6とともに中心管5の外周面にスパイラル状に巻回することにより構成される。 FIG. 3 is a partially cutaway perspective view of a conventional membrane element. The membrane element 1 shown in this figure has a structure in which a separation membrane unit including a separation membrane 2, a supply-side channel material 6 and a permeation-side channel material 3 is wound around a central tube 5. More specifically, an envelope-like membrane (bag-like membrane) 4 is formed by overlapping the separation membrane 2 on both sides of the permeate-side flow path material 3 and adhering three sides, and the opening of the envelope-like membrane 4 Is attached to the central tube 5 and wound around the outer peripheral surface of the central tube 5 together with a net-like (net-like) supply-side flow path member 6 in a spiral shape.
上記膜エレメント1を使用する際は、供給液7は膜エレメント1の一方の端面側から供給される。供給された供給液7は、供給側流路材6に沿って中心管5の軸方向に平行な方向に流れ、膜エレメント1の他方の端面側から濃縮液9として排出される。また、供給液7が供給側流路材6に沿って流れる過程で分離膜2を透過した透過液8は、図中破線矢印に示すように透過側流路材3に沿って中心管5の内部に流れ込み、この中心管5の端部から排出される。 When the membrane element 1 is used, the supply liquid 7 is supplied from one end face side of the membrane element 1. The supplied supply liquid 7 flows along the supply-side flow path member 6 in a direction parallel to the axial direction of the central tube 5 and is discharged as a concentrated liquid 9 from the other end face side of the membrane element 1. Further, the permeated liquid 8 that has permeated through the separation membrane 2 in the process in which the supply liquid 7 flows along the supply-side flow path material 6 passes through the permeation-side flow path material 3 along the permeation-side flow path material 3 as shown by the broken line arrow in the figure. It flows into the interior and is discharged from the end of the central tube 5.
従来の膜エレメント1では、透過液8が中心管5の内部に流れ込む際、中心管5に近寄るほど透過液8の流量が増えるため、透過側流路材3の外周側から内周側にかけて流路抵抗が大きくなる現象が生じる。その結果、膜エレメント1の径方向における透過効率の勾配により、分離性能のばらつきが生じるおそれがあった。 In the conventional membrane element 1, when the permeate 8 flows into the center tube 5, the flow rate of the permeate 8 increases toward the center tube 5, so that the permeate 8 flows from the outer periphery side to the inner periphery side. A phenomenon occurs in which the road resistance increases. As a result, the separation efficiency may vary due to the gradient of the permeation efficiency in the radial direction of the membrane element 1.
他方、膜処理プラントの大型化に伴い、膜分離装置の設置面積の削減が望まれている。従来は、直径8インチ(約200mm)の膜エレメントを用いるのが主流であったが、上記要望により、膜エレメントの本数の削減が求められており、そのために膜エレメントを大径化して1本当たりの膜面積を増やす対策が進められている。
しかしながら、膜エレメントを大径化すると、その径方向における透過効率の勾配により、分離性能のばらつきが顕在化するおそれがあった。 However, when the diameter of the membrane element is increased, variation in separation performance may become apparent due to the gradient of permeation efficiency in the radial direction.
本発明の目的は、径方向における透過効率の勾配を緩和し、分離性能のばらつきを低減できるスパイラル型膜エレメントを提供することにある。 An object of the present invention is to provide a spiral-type membrane element that can alleviate the gradient of the transmission efficiency in the radial direction and reduce the variation in separation performance.
本発明者らは、鋭意研究を重ねた結果、透過側流路材の外周側から内周側にかけて、透過液流路の厚みを漸増させることにより、透過側流路材の内周側における流路抵抗の増加を抑制できることを見出し、本発明を完成するに至った。 As a result of intensive research, the present inventors have gradually increased the thickness of the permeate channel from the outer periphery side to the inner periphery side of the permeate side channel material, so that the flow on the inner periphery side of the permeate side channel material is increased. It has been found that an increase in road resistance can be suppressed, and the present invention has been completed.
上記目的を達成するため、本発明の第1のスパイラル型膜エレメントは、分離膜、供給側流路材及び透過側流路材の単数又は複数が、有孔の中空状中心管の周りに巻きつけられているスパイラル型膜エレメントにおいて、前記透過側流路材は、その外周側端部から内周側端部にかけて、厚みが漸増することを特徴とする。なお、透過側流路材の端部の厚みとは、当該端部において最も嵩高い部分の厚みをさす。例えば、透過側流路材が縦糸と横糸からなるネット状シートの場合、透過側流路材の端部の厚みは、当該端部における縦糸と横糸の交点部分の厚みをさす。後述する「供給側流路材の端部の厚み」や「流路材シートの厚み」も同様である。 In order to achieve the above object, the first spiral membrane element of the present invention includes a separation membrane, a supply side channel material and a permeation side channel material wound around a perforated hollow central tube. In the attached spiral membrane element, the thickness of the permeate-side channel material gradually increases from the outer peripheral side end portion to the inner peripheral side end portion. In addition, the thickness of the edge part of the permeation | transmission side channel material means the thickness of the bulky part in the said edge part. For example, when the permeate-side channel material is a net-like sheet composed of warp and weft, the thickness of the end of the permeate-side channel material refers to the thickness of the intersection of the warp and weft at the end. The same applies to “the thickness of the end of the supply-side channel material” and “the thickness of the channel material sheet” which will be described later.
本発明の第1のスパイラル型膜エレメントでは、透過側流路材の外周側端部から透過側流路材の内周側端部にかけて、厚みが漸増しているため、外周側から内周側にかけて透過液流路の厚みを漸増させることができる。これにより、透過側流路材の内周側における流路抵抗の増加を抑制できるため、膜エレメントの径方向における透過効率の勾配を緩和し、分離性能のばらつきを低減できる。 In the first spiral membrane element of the present invention, since the thickness gradually increases from the outer peripheral side end of the permeate side channel material to the inner peripheral side end of the permeate side channel material, the outer peripheral side to the inner peripheral side , The thickness of the permeate channel can be gradually increased. Thereby, since the increase in the channel resistance on the inner peripheral side of the permeation side channel material can be suppressed, the gradient of the permeation efficiency in the radial direction of the membrane element can be relaxed, and the variation in separation performance can be reduced.
前記透過側流路材は、透過液流れ方向における単位長さ当たりの厚みの増加量が0.023mm/m以上であることが好ましい。透過側流路材の内周側における流路抵抗の増加を容易に抑制できるからである。 The permeate side channel material preferably has an increase in thickness per unit length in the permeate flow direction of 0.023 mm / m or more. This is because an increase in channel resistance on the inner peripheral side of the permeate-side channel material can be easily suppressed.
同じく上記目的を達成するため、本発明の第2のスパイラル型膜エレメントは、分離膜、供給側流路材及び透過側流路材の単数又は複数が、有孔の中空状中心管の周りに巻きつけられているスパイラル型膜エレメントにおいて、前記透過側流路材は、複数の流路材シートが積層された積層体であり、前記積層体は、その外周側端部から内周側端部にかけて、前記流路材シートの積層数が漸増することを特徴とする。 Similarly, in order to achieve the above object, the second spiral membrane element of the present invention includes a separation membrane, a supply-side flow channel material, and a permeation-side flow channel material around a perforated hollow central tube. In the spiral wound membrane element, the permeate-side channel material is a laminate in which a plurality of channel material sheets are laminated, and the laminate is arranged from the outer peripheral end to the inner peripheral end. The number of laminations of the flow path material sheets gradually increases.
本発明の第2のスパイラル型膜エレメントでは、透過側流路材を構成する流路材シートの積層数が、積層体の外周側端部から積層体の内周側端部にかけて漸増しているため、外周側から内周側にかけて透過液流路の厚みを漸増させることができる。これにより、透過側流路材の内周側における流路抵抗の増加を抑制できるため、膜エレメントの径方向における透過効率の勾配を緩和し、分離性能のばらつきを低減できる。 In the second spiral membrane element of the present invention, the number of laminations of the flow path material sheets constituting the permeate side flow path material is gradually increased from the outer peripheral side end of the laminated body to the inner peripheral side end of the laminated body. Therefore, the thickness of the permeate channel can be gradually increased from the outer peripheral side to the inner peripheral side. Thereby, since the increase in the channel resistance on the inner peripheral side of the permeation side channel material can be suppressed, the gradient of the permeation efficiency in the radial direction of the membrane element can be relaxed, and the variation in separation performance can be reduced.
前記積層体は、透過液流れ方向における単位長さ当たりの前記積層数の増加量が0.33枚/m以上であることが好ましい。透過側流路材の内周側における流路抵抗の増加を容易に抑制できるからである。 The laminated body preferably has an increase in the number of laminated layers per unit length in the permeate flow direction of 0.33 sheets / m or more. This is because an increase in channel resistance on the inner peripheral side of the permeate-side channel material can be easily suppressed.
また、上記第1及び第2のスパイラル型膜エレメントにおいて、上記供給側流路材は、その外周側端部から内周側端部にかけて、厚みが漸減することが好ましい。この構成によれば、分離膜ユニットの巻回が容易となる上、供給側流路材の外周側端部から内周側端部にかけて、供給側流路材から分離膜へ流れる供給液の量が減るため、透過側流路材の内周側において、透過液量の増加を抑制できる。これにより、透過側流路材の内周側における流路抵抗の増加を容易に抑制できる。 In the first and second spiral membrane elements, it is preferable that the supply-side channel material gradually decreases in thickness from the outer peripheral side end portion to the inner peripheral side end portion. According to this configuration, the separation membrane unit can be easily wound, and the amount of the supply liquid that flows from the supply-side channel material to the separation membrane from the outer peripheral side end to the inner peripheral side end of the supply-side channel material Therefore, an increase in the amount of permeated liquid can be suppressed on the inner peripheral side of the permeate-side channel material. Thereby, the increase in the channel resistance in the inner peripheral side of the permeation | transmission side channel material can be suppressed easily.
本発明のスパイラル型膜エレメントは、分離膜、供給側流路材及び透過側流路材の単数又は複数が、有孔の中心管の周りに巻きつけられている構造を有する。かかる膜エレメントは、前記の特許文献1にも詳細に記載されており、透過側流路材以外の構成に関しては、従来公知の分離膜、供給側流路材、中心管などが何れも採用できる。例えば、供給側流路材と透過側流路材が複数用いられる場合には、複数の膜リーフが中心管の周りに巻きつけられた構造となる。 The spiral membrane element of the present invention has a structure in which one or more of a separation membrane, a supply-side channel material and a permeation-side channel material are wound around a perforated central tube. Such a membrane element is also described in detail in Patent Document 1 described above, and regarding the configuration other than the permeation side channel material, any conventionally known separation membrane, supply side channel material, center tube, etc. can be adopted. . For example, when a plurality of supply-side channel materials and permeation-side channel materials are used, a structure in which a plurality of membrane leaves are wound around the central tube is obtained.
以下、本発明の実施の形態について、図面を参照しながら説明する。図1及び図2は、それぞれ本発明のスパイラル型膜エレメントの一例を説明するための模式的な概略側面図である。なお、図1及び図2では、説明を容易にするために、中心管から分離膜ユニットの巻回を解いた状態を示しており、拡大または縮小等して図示した部分がある。また、同じく説明を容易にするために、図1及び図2では分離膜ユニットを一組のみ示しているが、本発明のスパイラル型膜エレメントは、複数の分離膜ユニットが積層された状態で中心管に巻回されていてもよい。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG.1 and FIG.2 is a typical schematic side view for demonstrating an example of the spiral membrane element of this invention, respectively. 1 and FIG. 2 show a state in which the winding of the separation membrane unit is unwound from the central tube for easy explanation, and there are parts shown enlarged or reduced. For ease of explanation, FIGS. 1 and 2 show only one set of separation membrane units. However, the spiral membrane element of the present invention is centered in a state where a plurality of separation membrane units are stacked. It may be wound around a tube.
図1に示す実施形態では、分離膜ユニットUとして、封筒状膜10と供給側流路材11とを含むものが使用されており、封筒状膜10の開口部10aを中心管12に取り付け、供給側流路材11とともに中心管12の外周面に巻回することにより、膜エレメントが形成される。また、封筒状膜10は、透過側流路材13の両面に分離膜14を重ね合わせて、開口部10aを除く3辺を接着することにより形成されている。本実施形態では、分離膜14を透過した透過液は、透過液流れ方向15に沿って透過側流路材13を通過して、中心管12の内部に流れ込む。
In the embodiment shown in FIG. 1, the separation membrane unit U includes an
そして、透過側流路材13は、その外周側端部13aから内周側端部13bにかけて、厚みが漸増している。これにより、外周側から内周側にかけて透過液流路の厚みを漸増させることができるため、透過側流路材13の内周側における流路抵抗の増加を抑制できる。よって、膜エレメントの径方向における透過効率の勾配を緩和し、分離性能のばらつきを低減できる。特に、大径化した膜エレメント(例えば、直径16インチ以上)に本発明を適用すると、従来の透過側流路材を用いた場合に比べ、分離性能のばらつきを効果的に防止できる。
And the permeation | transmission
供給側流路材11には、ひし形、ラダー形、斜めラダー形などのネット状シートや、溝付き構造や波形構造のシート等が使用できる。中心管12は、管の周囲に開孔12aを有するものであれば良く、従来のものが何れも使用できる。透過側流路材13には、トリコット編みなどのネット状シートや、平織りなどのメッシュ状シート、あるいは溝付き構造や波形構造のシート等が使用できる。分離膜14には、逆浸透膜、限外ろ過膜、精密ろ過膜等が使用できる。
The supply-
内周側端部13bの厚みT2と外周側端部13aの厚みT1との差は、透過側流路材13の内周側における流路抵抗の増加を抑制できる限り、特に限定されない。これらは、膜エレメントの径や分離膜ユニットUの積層数などに応じて適宜設定すればよい。上記厚みを変化させる方法は特に限定されないが、例えば透過側流路材13としてネット状シートを用いる場合は、外周側端部13aから内周側端部13bにかけて、ネット構成糸の径を漸増させればよい。この場合、全てのネット構成糸の径を漸増させる必要はなく、例えば、透過液流れ方向15に沿って配されるネット構成糸のみを漸増させればよい。
The difference between the thickness T 1 of the inner
透過側流路材13の内周側における流路抵抗の増加を容易に抑制するには、透過液流れ方向15における単位長さ当たりの厚みの増加量が、0.023mm/m以上であることが好ましく、0.07mm/m以上であることがより好ましい。ここで、上記「厚みの増加量」の値は、内周側端部13bの厚みT2(mm)と外周側端部13aの厚みT1(mm)との差を、透過側流路材13の透過液流れ方向15における長さL1(m)で割った値である。また、分離膜ユニットUの巻回を容易にするためには、上記厚みの増加量が、2.5mm/m以下であることが好ましく、1.7mm/m以下であることがより好ましい。なお、透過側流路材13の外周側端部13aの厚みT1は、例えば0.2〜0.3mm程度であり、透過側流路材13の内周側端部13bの厚みT2は、例えば0.5〜1.0mm程度である。これらの厚みの値については、いずれも最低10点以上を測定した平均値とするのが好ましい。その測定方法としては、ダイヤルシックネスゲージなどの厚み測定計測器、あるいは光学顕微鏡やCCDカメラ等の拡大装置で測定する方法が好ましい。後述する「供給側流路材の端部の厚み」や「流路材シートの厚み」も同様である。また、上記長さL1は、例えば0.5〜3m程度である。
In order to easily suppress an increase in flow path resistance on the inner peripheral side of the permeate side
供給側流路材11は、その外周側端部11aから内周側端部11bにかけて、厚みが漸減している。これにより、分離膜ユニットUの巻回が容易となる上、供給側流路材11の外周側端部11aから内周側端部11bにかけて、供給側流路材11から分離膜14へ流れる供給液の量が減るため、透過側流路材13の内周側において、透過液量の増加を抑制できる。よって、透過側流路材13の内周側における流路抵抗の増加を容易に抑制できる。供給側流路材11の上記厚みの減少量は、透過側流路材13の上記厚みの増加量に応じて設定すればよいが、分離膜ユニットUを巻回し易くする観点から、分離膜ユニットUの厚みが略一定となるように設定するのが好ましい。供給側流路材11の厚みを変化させる方法は、特に限定されないが、例えば供給側流路材11としてネット状シートを用いる場合は、外周側端部11aから内周側端部11bにかけて、ネット構成糸の径を漸減させればよい。この場合、全てのネット構成糸の径を漸減させる必要はなく、例えば、供給液流れ方向に沿って配されるネット構成糸のみを漸減させればよい。なお、供給側流路材11の外周側端部11aの厚みは、例えば1.0〜5.0mm程度であり、供給側流路材11の内周側端部11bの厚みは、例えば0.6〜0.9mm程度である。
The supply-
次に、図2に示す実施形態について説明する。この実施形態では、透過側流路材13の構成のみが上述した図1に示す実施形態と異なる。本実施形態の透過側流路材13は、図中下方から流路材シート20a,20b,20cが順次積層された積層体20である。流路材シート20a,20b,20cは、それらの内周側端部が中心管12に取り付けられている。そして、流路材シート20a,20b,20cは、透過液流れ方向15における長さが相違している。具体的には、流路材シート20bの長さは、流路材シート20aの長さの半分であり、流路材シート20cの長さは、流路材シート20bの長さの半分である。よって、積層体20は、その外周側端部20dから内周側端部20eにかけて、流路材シートの積層数が漸増している。これにより、外周側から内周側にかけて透過液流路の厚みを漸増させることができるため、積層体20(透過側流路材13)の内周側における流路抵抗の増加を抑制できる。よって、膜エレメントの径方向における透過効率の勾配を緩和し、分離性能のばらつきを低減できる。
Next, the embodiment shown in FIG. 2 will be described. In this embodiment, only the configuration of the permeate-
流路材シート20a,20b,20cには、ネット状シート、メッシュ状シート、溝付シート、波形シート等が使用できる。なお、流路材シート20a,20b,20cの厚みは、例えば0.2〜0.6mm程度である。
A net-like sheet, a mesh-like sheet, a grooved sheet, a corrugated sheet, or the like can be used for the flow path
本実施形態では、内周側端部20eにおける流路材シートの積層数と、外周側端部20dにおける流路材シートの積層数との差は2枚であるが、透過側流路材13の内周側における流路抵抗の増加を抑制できる限り、上記差については特に限定されない。これらは、膜エレメントの径や分離膜ユニットUの積層数などに応じて適宜設定すればよい。
In the present embodiment, the difference between the number of the flow path material sheets laminated at the inner
積層体20(透過側流路材13)の内周側における流路抵抗の増加を容易に抑制するには、透過液流れ方向15における単位長さ当たりの流路材シートの積層数の増加量が、0.33枚/m以上であることが好ましく、1枚/m以上であることがより好ましい。ここで、上記「積層数の増加量」の値は、内周側端部20eにおける積層数と外周側端部20dにおける積層数との差(図2では2枚)を、積層体20(透過側流路材13)の透過液流れ方向15における長さL2(m)で割った値である。また、分離膜ユニットUの巻回を容易にするためには、上記積層数の増加量が、8枚/m以下であることが好ましく、3枚/m以下であることがより好ましい。なお、上記長さL2は、例えば0.5〜3m程度である。
In order to easily suppress an increase in flow resistance on the inner peripheral side of the laminate 20 (permeation side flow path material 13), an increase amount of the number of flow path material sheets stacked per unit length in the
以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態には限定されない。例えば上記実施形態では、供給側流路材として、その外周側端部から内周側端部にかけて厚みが漸減するものを用いたが、本発明では、厚みが均一な供給側流路材を用いても、透過側流路材の内周側における流路抵抗の増加を抑制できる。 The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment. For example, in the above-described embodiment, the supply-side channel material whose thickness gradually decreases from the outer peripheral side end to the inner peripheral side end is used. However, in the present invention, the supply-side channel material is used with a uniform thickness. However, it is possible to suppress an increase in flow resistance on the inner peripheral side of the permeation side flow path material.
また、図1に示す実施形態では、透過側流路材として、外周側端部から内周側端部にかけて厚みが連続的に厚くなる例について説明したが、本発明では、外周側端部から内周側端部にかけて厚みが断続的に厚くなる透過側流路材を用いてもよい。 Further, in the embodiment shown in FIG. 1, the example in which the thickness continuously increases from the outer peripheral side end to the inner peripheral side end as the permeate side channel material has been described, but in the present invention, from the outer peripheral side end. You may use the permeation | transmission side flow path material which thickness becomes thick intermittently toward an inner peripheral side edge part.
また、図2に示す実施形態では、積層体の外周側端部から内周側端部にかけて、流路材シートの積層数が所定の間隔で増えていく例について説明したが、本発明では、外周側端部から内周側端部にかけて不規則な間隔で積層数が増える透過側流路材を用いてもよい。 Further, in the embodiment shown in FIG. 2, the example in which the number of laminations of the flow path material sheets increases at a predetermined interval from the outer peripheral side end to the inner peripheral side end of the laminated body has been described. You may use the permeation | transmission side flow path material in which the number of lamination | stacking increases at irregular intervals from an outer peripheral side edge part to an inner peripheral side edge part.
10 封筒状膜
10a 開口部
11 供給側流路材
11a 外周側端部
11b 内周側端部
12 中心管
12a 開孔
13 透過側流路材
13a 外周側端部
13b 内周側端部
14 分離膜
15 透過液流れ方向
20 積層体
20a,20b,20c 流路材シート
20d 外周側端部
20e 内周側端部
U 分離膜ユニット
DESCRIPTION OF
Claims (5)
前記透過側流路材は、その外周側端部から内周側端部にかけて、厚みが漸増することを特徴とするスパイラル型膜エレメント。 In the spiral membrane element in which one or more of the separation membrane, the supply-side channel material and the permeation-side channel material are wound around a perforated hollow central tube,
The spiral-type membrane element characterized in that the permeation-side flow path material gradually increases in thickness from an outer peripheral side end to an inner peripheral side end.
前記透過側流路材は、複数の流路材シートが積層された積層体であり、
前記積層体は、その外周側端部から内周側端部にかけて、前記流路材シートの積層数が漸増することを特徴とするスパイラル型膜エレメント。 In the spiral membrane element in which one or more of the separation membrane, the supply-side channel material and the permeation-side channel material are wound around a perforated hollow central tube,
The permeate-side channel material is a laminate in which a plurality of channel material sheets are laminated,
The spirally-type membrane element, wherein the number of layers of the flow path material sheets gradually increases from the outer peripheral side end portion to the inner peripheral side end portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008042646A JP2009195871A (en) | 2008-02-25 | 2008-02-25 | Spiral membane element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008042646A JP2009195871A (en) | 2008-02-25 | 2008-02-25 | Spiral membane element |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009195871A true JP2009195871A (en) | 2009-09-03 |
Family
ID=41140004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008042646A Pending JP2009195871A (en) | 2008-02-25 | 2008-02-25 | Spiral membane element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009195871A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012058038A1 (en) * | 2010-10-26 | 2012-05-03 | Dow Global Technologies Llc | Spiral wound module including membrane sheet with regions having different permeabilities |
WO2012057902A1 (en) * | 2010-10-28 | 2012-05-03 | General Electric Company | Membrane separation module |
KR20150093261A (en) * | 2014-02-06 | 2015-08-18 | 한양대학교 에리카산학협력단 | Membrane distillation module, and desalination system using the same |
CN110461445A (en) * | 2017-04-12 | 2019-11-15 | 阿夸曼布拉尼斯公司 | Classification distance part for takeup type filter element |
JP2022543640A (en) * | 2019-08-06 | 2022-10-13 | アクア メンブレインズ,インコーポレイテッド | Preferred flow paths for spiral-wound elements |
EP3939692A4 (en) * | 2019-03-15 | 2022-11-16 | Seebio Inc. | Method for concentrating aqueous solution with low energy by using reverse osmosis and forward osmosis in state in which multiple-no osmotic pressure difference is induced |
US11633700B2 (en) | 2020-04-07 | 2023-04-25 | Aqua Membranes Inc. | Independent spacers and methods |
US11896933B2 (en) | 2017-04-20 | 2024-02-13 | Aqua Membranes Inc. | Non-nesting, non-deforming patterns for spiral-wound elements |
-
2008
- 2008-02-25 JP JP2008042646A patent/JP2009195871A/en active Pending
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012058038A1 (en) * | 2010-10-26 | 2012-05-03 | Dow Global Technologies Llc | Spiral wound module including membrane sheet with regions having different permeabilities |
US8496825B1 (en) | 2010-10-26 | 2013-07-30 | Dow Global Technologies Llc | Spiral wound module including membrane sheet with regions having different permeabilities |
WO2012057902A1 (en) * | 2010-10-28 | 2012-05-03 | General Electric Company | Membrane separation module |
CN103167902A (en) * | 2010-10-28 | 2013-06-19 | 通用电气公司 | Membrane separation module |
JP2013544642A (en) * | 2010-10-28 | 2013-12-19 | ゼネラル・エレクトリック・カンパニイ | Membrane separation module |
KR20150093261A (en) * | 2014-02-06 | 2015-08-18 | 한양대학교 에리카산학협력단 | Membrane distillation module, and desalination system using the same |
KR101625274B1 (en) | 2014-02-06 | 2016-06-08 | 한양대학교 에리카산학협력단 | Membrane distillation module, and desalination system using the same |
EP3609607A4 (en) * | 2017-04-12 | 2021-01-27 | Aqua Membranes, Inc. | Graded spacers for filtration wound elements |
CN110461445A (en) * | 2017-04-12 | 2019-11-15 | 阿夸曼布拉尼斯公司 | Classification distance part for takeup type filter element |
CN110461445B (en) * | 2017-04-12 | 2022-10-21 | 阿夸曼布拉尼斯公司 | Stepped spacer for coiled filter elements |
US11612862B2 (en) | 2017-04-12 | 2023-03-28 | Aqua Membranes Inc. | Graded spacers in spiral wound elements |
US20230166216A1 (en) * | 2017-04-12 | 2023-06-01 | Aqua Membranes Inc. | Graded spacers in spiral wound elements |
US11896933B2 (en) | 2017-04-20 | 2024-02-13 | Aqua Membranes Inc. | Non-nesting, non-deforming patterns for spiral-wound elements |
EP3939692A4 (en) * | 2019-03-15 | 2022-11-16 | Seebio Inc. | Method for concentrating aqueous solution with low energy by using reverse osmosis and forward osmosis in state in which multiple-no osmotic pressure difference is induced |
JP2022543640A (en) * | 2019-08-06 | 2022-10-13 | アクア メンブレインズ,インコーポレイテッド | Preferred flow paths for spiral-wound elements |
JP7534383B2 (en) | 2019-08-06 | 2024-08-14 | アクア メンブレインズ,インコーポレイテッド | Preferred flow paths for spiral-wound elements |
US11633700B2 (en) | 2020-04-07 | 2023-04-25 | Aqua Membranes Inc. | Independent spacers and methods |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009195871A (en) | Spiral membane element | |
KR100846647B1 (en) | Spiral separation membrane element | |
US20130098829A1 (en) | Spiral wound membrane element and permeate carrier | |
JP7086098B2 (en) | Gradual spacers for filter winding elements | |
US8911625B2 (en) | Spiral wound module including membrane sheet with capillary channels | |
JP4650921B2 (en) | Spiral type separation membrane element | |
JP5179230B2 (en) | Spiral membrane element and spiral membrane module | |
JP7298101B2 (en) | Three-layer feed spacer and reverse osmosis filter module including same | |
JP2015009182A (en) | Spiral type separation membrane element and spiral type separation membrane module | |
JP2015205269A (en) | Separation membrane structure and separation membrane element | |
WO2019146342A1 (en) | Membrane separation system and operation method for membrane separation system | |
JP2017047417A (en) | Separation membrane module, separation membrane element and telescope prevention sheet | |
JP2000000437A (en) | Spiral reverse-osmosis membrane element and separator using the element | |
JP2009195870A (en) | Spiral membrane element | |
JP2010264421A (en) | Separation membrane element | |
JP2009050759A (en) | Spiral separation membrane element | |
JP6637232B2 (en) | Permeation-side flow path material for spiral-type membrane element and method for producing the same | |
KR20190031715A (en) | Four-layered feed spacer | |
JP6973650B2 (en) | Separation membrane element and its usage, as well as water treatment equipment | |
JP2007209956A (en) | Spiral type separation membrane element | |
EP3608012B1 (en) | Reverse osmosis filter module with a feedspacer | |
JP5540124B2 (en) | Spiral membrane element and spiral membrane module | |
JP2005279556A (en) | Spiral type separation membrane element | |
JP2007111674A (en) | Spiral separation membrane element | |
JP2010264420A (en) | Separation membrane element |