JP2009012444A - Layered product and its manufacturing method - Google Patents
Layered product and its manufacturing method Download PDFInfo
- Publication number
- JP2009012444A JP2009012444A JP2007239653A JP2007239653A JP2009012444A JP 2009012444 A JP2009012444 A JP 2009012444A JP 2007239653 A JP2007239653 A JP 2007239653A JP 2007239653 A JP2007239653 A JP 2007239653A JP 2009012444 A JP2009012444 A JP 2009012444A
- Authority
- JP
- Japan
- Prior art keywords
- titanium oxide
- anatase
- fine particles
- type titanium
- oxide fine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 25
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 165
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 151
- 239000000758 substrate Substances 0.000 claims abstract description 52
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 45
- 239000013078 crystal Substances 0.000 claims abstract description 33
- 239000010419 fine particle Substances 0.000 claims description 88
- 238000000576 coating method Methods 0.000 claims description 58
- 239000011248 coating agent Substances 0.000 claims description 56
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 46
- 239000006185 dispersion Substances 0.000 claims description 39
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 24
- 229910052717 sulfur Inorganic materials 0.000 claims description 24
- 239000011593 sulfur Substances 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 23
- 229910052757 nitrogen Inorganic materials 0.000 claims description 23
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 21
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 claims description 17
- 229910001930 tungsten oxide Inorganic materials 0.000 claims description 17
- 150000002484 inorganic compounds Chemical class 0.000 claims description 15
- 229910010272 inorganic material Inorganic materials 0.000 claims description 15
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 claims description 14
- 150000001450 anions Chemical class 0.000 claims description 10
- 239000012736 aqueous medium Substances 0.000 claims description 10
- 239000002071 nanotube Substances 0.000 claims description 10
- 238000000746 purification Methods 0.000 claims description 9
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 239000004202 carbamide Substances 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 229910052731 fluorine Inorganic materials 0.000 claims description 6
- 239000011737 fluorine Substances 0.000 claims description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 5
- 229910052796 boron Inorganic materials 0.000 claims description 5
- 238000010335 hydrothermal treatment Methods 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 239000011574 phosphorus Substances 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 4
- 230000002829 reductive effect Effects 0.000 claims description 4
- 230000004044 response Effects 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 2
- 239000011859 microparticle Substances 0.000 claims description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract description 26
- 230000001699 photocatalysis Effects 0.000 abstract description 15
- 230000009257 reactivity Effects 0.000 abstract 1
- 239000010408 film Substances 0.000 description 24
- 239000010409 thin film Substances 0.000 description 17
- 230000000694 effects Effects 0.000 description 14
- 239000011521 glass Substances 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- 239000000126 substance Substances 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 13
- 239000002244 precipitate Substances 0.000 description 13
- 239000002904 solvent Substances 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- -1 nitrogen or sulfur Chemical class 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000002585 base Substances 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 8
- 238000004140 cleaning Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 229910017604 nitric acid Inorganic materials 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 5
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000000839 emulsion Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 239000011941 photocatalyst Substances 0.000 description 5
- 230000001443 photoexcitation Effects 0.000 description 5
- 238000004528 spin coating Methods 0.000 description 5
- 239000007858 starting material Substances 0.000 description 5
- 238000002834 transmittance Methods 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000005357 flat glass Substances 0.000 description 4
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 4
- 229910052753 mercury Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000013032 photocatalytic reaction Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 229910052724 xenon Inorganic materials 0.000 description 4
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 239000002537 cosmetic Substances 0.000 description 3
- 238000010893 electron trap Methods 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 241000264877 Hippospongia communis Species 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000002003 electron diffraction Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- VSQYNPJPULBZKU-UHFFFAOYSA-N mercury xenon Chemical compound [Xe].[Hg] VSQYNPJPULBZKU-UHFFFAOYSA-N 0.000 description 2
- 229910001507 metal halide Inorganic materials 0.000 description 2
- 150000005309 metal halides Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000006864 oxidative decomposition reaction Methods 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- DENFJSAFJTVPJR-UHFFFAOYSA-N triethoxy(ethyl)silane Chemical compound CCO[Si](CC)(OCC)OCC DENFJSAFJTVPJR-UHFFFAOYSA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- BVNZLSHMOBSFKP-UHFFFAOYSA-N (2-methylpropan-2-yl)oxysilane Chemical compound CC(C)(C)O[SiH3] BVNZLSHMOBSFKP-UHFFFAOYSA-N 0.000 description 1
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- WAYINTBTZWQNSN-UHFFFAOYSA-N 11-methyldodecyl 3,5,5-trimethylhexanoate Chemical compound CC(C)CCCCCCCCCCOC(=O)CC(C)CC(C)(C)C WAYINTBTZWQNSN-UHFFFAOYSA-N 0.000 description 1
- RKJGFHYCZPZJPE-UHFFFAOYSA-N 2,2-bis(16-methylheptadecanoyloxymethyl)butyl 16-methylheptadecanoate Chemical compound CC(C)CCCCCCCCCCCCCCC(=O)OCC(CC)(COC(=O)CCCCCCCCCCCCCCC(C)C)COC(=O)CCCCCCCCCCCCCCC(C)C RKJGFHYCZPZJPE-UHFFFAOYSA-N 0.000 description 1
- JRGQKLFZSNYTDX-UHFFFAOYSA-N 3-(oxiran-2-ylmethoxy)propyl-tri(propan-2-yloxy)silane Chemical compound CC(C)O[Si](OC(C)C)(OC(C)C)CCCOCC1CO1 JRGQKLFZSNYTDX-UHFFFAOYSA-N 0.000 description 1
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- HXLAEGYMDGUSBD-UHFFFAOYSA-N 3-[diethoxy(methyl)silyl]propan-1-amine Chemical compound CCO[Si](C)(OCC)CCCN HXLAEGYMDGUSBD-UHFFFAOYSA-N 0.000 description 1
- MBNRBJNIYVXSQV-UHFFFAOYSA-N 3-[diethoxy(methyl)silyl]propane-1-thiol Chemical compound CCO[Si](C)(OCC)CCCS MBNRBJNIYVXSQV-UHFFFAOYSA-N 0.000 description 1
- DOYKFSOCSXVQAN-UHFFFAOYSA-N 3-[diethoxy(methyl)silyl]propyl 2-methylprop-2-enoate Chemical compound CCO[Si](C)(OCC)CCCOC(=O)C(C)=C DOYKFSOCSXVQAN-UHFFFAOYSA-N 0.000 description 1
- ZYAASQNKCWTPKI-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propan-1-amine Chemical compound CO[Si](C)(OC)CCCN ZYAASQNKCWTPKI-UHFFFAOYSA-N 0.000 description 1
- IKYAJDOSWUATPI-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propane-1-thiol Chemical compound CO[Si](C)(OC)CCCS IKYAJDOSWUATPI-UHFFFAOYSA-N 0.000 description 1
- LZMNXXQIQIHFGC-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propyl 2-methylprop-2-enoate Chemical compound CO[Si](C)(OC)CCCOC(=O)C(C)=C LZMNXXQIQIHFGC-UHFFFAOYSA-N 0.000 description 1
- LQMCVFDSKWCIGP-UHFFFAOYSA-N 3-[tris[(2-methylpropan-2-yl)oxy]silyl]propane-1-thiol Chemical compound CC(C)(C)O[Si](OC(C)(C)C)(OC(C)(C)C)CCCS LQMCVFDSKWCIGP-UHFFFAOYSA-N 0.000 description 1
- QTLRFJLBOVEWPM-UHFFFAOYSA-N 3-[tris[(2-methylpropan-2-yl)oxy]silyl]propyl prop-2-enoate Chemical compound CC(C)(C)O[Si](OC(C)(C)C)(OC(C)(C)C)CCCOC(=O)C=C QTLRFJLBOVEWPM-UHFFFAOYSA-N 0.000 description 1
- OXKAXHPVFLEQHV-UHFFFAOYSA-N 3-tri(propan-2-yloxy)silylpropan-1-amine Chemical compound CC(C)O[Si](OC(C)C)(OC(C)C)CCCN OXKAXHPVFLEQHV-UHFFFAOYSA-N 0.000 description 1
- CJUFQURUUZMUOG-UHFFFAOYSA-N 3-tri(propan-2-yloxy)silylpropane-1-thiol Chemical compound CC(C)O[Si](OC(C)C)(OC(C)C)CCCS CJUFQURUUZMUOG-UHFFFAOYSA-N 0.000 description 1
- CHPNMYQJQQGAJS-UHFFFAOYSA-N 3-tri(propan-2-yloxy)silylpropyl 2-methylprop-2-enoate Chemical compound CC(C)O[Si](OC(C)C)(OC(C)C)CCCOC(=O)C(C)=C CHPNMYQJQQGAJS-UHFFFAOYSA-N 0.000 description 1
- URDOJQUSEUXVRP-UHFFFAOYSA-N 3-triethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CCO[Si](OCC)(OCC)CCCOC(=O)C(C)=C URDOJQUSEUXVRP-UHFFFAOYSA-N 0.000 description 1
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- DXOZGQZJMPUKTK-UHFFFAOYSA-N Cl[Si](Cl)(Cl)Cl.C1(=CC=CC=C1)[Si](OC(C)(C)C)(OC(C)(C)C)OC(C)(C)C Chemical compound Cl[Si](Cl)(Cl)Cl.C1(=CC=CC=C1)[Si](OC(C)(C)C)(OC(C)(C)C)OC(C)(C)C DXOZGQZJMPUKTK-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 229920001780 ECTFE Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 230000032900 absorption of visible light Effects 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000004887 air purification Methods 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000001098 anti-algal effect Effects 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- UWMGVIKSCFGFDR-UHFFFAOYSA-N benzyl(dibromo)silane Chemical compound Br[SiH](Br)CC1=CC=CC=C1 UWMGVIKSCFGFDR-UHFFFAOYSA-N 0.000 description 1
- HGKOWIQVWAQWDS-UHFFFAOYSA-N bis(16-methylheptadecyl) 2-hydroxybutanedioate Chemical compound CC(C)CCCCCCCCCCCCCCCOC(=O)CC(O)C(=O)OCCCCCCCCCCCCCCCC(C)C HGKOWIQVWAQWDS-UHFFFAOYSA-N 0.000 description 1
- SXDBWCPKPHAZSM-UHFFFAOYSA-N bromic acid Chemical compound OBr(=O)=O SXDBWCPKPHAZSM-UHFFFAOYSA-N 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 229910002026 crystalline silica Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- BAAAEEDPKUHLID-UHFFFAOYSA-N decyl(triethoxy)silane Chemical compound CCCCCCCCCC[Si](OCC)(OCC)OCC BAAAEEDPKUHLID-UHFFFAOYSA-N 0.000 description 1
- KQAHMVLQCSALSX-UHFFFAOYSA-N decyl(trimethoxy)silane Chemical compound CCCCCCCCCC[Si](OC)(OC)OC KQAHMVLQCSALSX-UHFFFAOYSA-N 0.000 description 1
- AGUMJWWZSTXCAM-UHFFFAOYSA-N decyl-tris[(2-methylpropan-2-yl)oxy]silane Chemical compound CCCCCCCCCC[Si](OC(C)(C)C)(OC(C)(C)C)OC(C)(C)C AGUMJWWZSTXCAM-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- LIQOCGKQCFXKLF-UHFFFAOYSA-N dibromo(dimethyl)silane Chemical compound C[Si](C)(Br)Br LIQOCGKQCFXKLF-UHFFFAOYSA-N 0.000 description 1
- DBUGVTOEUNNUHR-UHFFFAOYSA-N dibromo(diphenyl)silane Chemical compound C=1C=CC=CC=1[Si](Br)(Br)C1=CC=CC=C1 DBUGVTOEUNNUHR-UHFFFAOYSA-N 0.000 description 1
- OSXYHAQZDCICNX-UHFFFAOYSA-N dichloro(diphenyl)silane Chemical compound C=1C=CC=CC=1[Si](Cl)(Cl)C1=CC=CC=C1 OSXYHAQZDCICNX-UHFFFAOYSA-N 0.000 description 1
- GNEPOXWQWFSSOU-UHFFFAOYSA-N dichloro-methyl-phenylsilane Chemical compound C[Si](Cl)(Cl)C1=CC=CC=C1 GNEPOXWQWFSSOU-UHFFFAOYSA-N 0.000 description 1
- ZZNQQQWFKKTOSD-UHFFFAOYSA-N diethoxy(diphenyl)silane Chemical compound C=1C=CC=CC=1[Si](OCC)(OCC)C1=CC=CC=C1 ZZNQQQWFKKTOSD-UHFFFAOYSA-N 0.000 description 1
- OTARVPUIYXHRRB-UHFFFAOYSA-N diethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](C)(OCC)CCCOCC1CO1 OTARVPUIYXHRRB-UHFFFAOYSA-N 0.000 description 1
- MNFGEHQPOWJJBH-UHFFFAOYSA-N diethoxy-methyl-phenylsilane Chemical compound CCO[Si](C)(OCC)C1=CC=CC=C1 MNFGEHQPOWJJBH-UHFFFAOYSA-N 0.000 description 1
- VGWJKDPTLUDSJT-UHFFFAOYSA-N diethyl dimethyl silicate Chemical compound CCO[Si](OC)(OC)OCC VGWJKDPTLUDSJT-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- JJQZDUKDJDQPMQ-UHFFFAOYSA-N dimethoxy(dimethyl)silane Chemical compound CO[Si](C)(C)OC JJQZDUKDJDQPMQ-UHFFFAOYSA-N 0.000 description 1
- AHUXYBVKTIBBJW-UHFFFAOYSA-N dimethoxy(diphenyl)silane Chemical compound C=1C=CC=CC=1[Si](OC)(OC)C1=CC=CC=C1 AHUXYBVKTIBBJW-UHFFFAOYSA-N 0.000 description 1
- WHGNXNCOTZPEEK-UHFFFAOYSA-N dimethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](C)(OC)CCCOCC1CO1 WHGNXNCOTZPEEK-UHFFFAOYSA-N 0.000 description 1
- CVQVSVBUMVSJES-UHFFFAOYSA-N dimethoxy-methyl-phenylsilane Chemical compound CO[Si](C)(OC)C1=CC=CC=C1 CVQVSVBUMVSJES-UHFFFAOYSA-N 0.000 description 1
- LIKFHECYJZWXFJ-UHFFFAOYSA-N dimethyldichlorosilane Chemical compound C[Si](C)(Cl)Cl LIKFHECYJZWXFJ-UHFFFAOYSA-N 0.000 description 1
- YYLGKUPAFFKGRQ-UHFFFAOYSA-N dimethyldiethoxysilane Chemical compound CCO[Si](C)(C)OCC YYLGKUPAFFKGRQ-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000009189 diving Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000002524 electron diffraction data Methods 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- MABAWBWRUSBLKQ-UHFFFAOYSA-N ethenyl-tri(propan-2-yloxy)silane Chemical compound CC(C)O[Si](OC(C)C)(OC(C)C)C=C MABAWBWRUSBLKQ-UHFFFAOYSA-N 0.000 description 1
- BQRPSOKLSZSNAR-UHFFFAOYSA-N ethenyl-tris[(2-methylpropan-2-yl)oxy]silane Chemical compound CC(C)(C)O[Si](OC(C)(C)C)(OC(C)(C)C)C=C BQRPSOKLSZSNAR-UHFFFAOYSA-N 0.000 description 1
- SBRXLTRZCJVAPH-UHFFFAOYSA-N ethyl(trimethoxy)silane Chemical compound CC[Si](OC)(OC)OC SBRXLTRZCJVAPH-UHFFFAOYSA-N 0.000 description 1
- MYEJNNDSIXAGNK-UHFFFAOYSA-N ethyl-tri(propan-2-yloxy)silane Chemical compound CC(C)O[Si](CC)(OC(C)C)OC(C)C MYEJNNDSIXAGNK-UHFFFAOYSA-N 0.000 description 1
- ZVQNVYMTWXEMSF-UHFFFAOYSA-N ethyl-tris[(2-methylpropan-2-yl)oxy]silane Chemical compound CC(C)(C)O[Si](CC)(OC(C)(C)C)OC(C)(C)C ZVQNVYMTWXEMSF-UHFFFAOYSA-N 0.000 description 1
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 235000013611 frozen food Nutrition 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- QFWPJPIVLCBXFJ-UHFFFAOYSA-N glymidine Chemical compound N1=CC(OCCOC)=CN=C1NS(=O)(=O)C1=CC=CC=C1 QFWPJPIVLCBXFJ-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- CZWLNMOIEMTDJY-UHFFFAOYSA-N hexyl(trimethoxy)silane Chemical compound CCCCCC[Si](OC)(OC)OC CZWLNMOIEMTDJY-UHFFFAOYSA-N 0.000 description 1
- DPTKSEHTOJHGOV-UHFFFAOYSA-N hexyl-tri(propan-2-yloxy)silane Chemical compound CCCCCC[Si](OC(C)C)(OC(C)C)OC(C)C DPTKSEHTOJHGOV-UHFFFAOYSA-N 0.000 description 1
- QECCXOBPOBIUMS-UHFFFAOYSA-N hexyl-tris[(2-methylpropan-2-yl)oxy]silane Chemical compound CCCCCC[Si](OC(C)(C)C)(OC(C)(C)C)OC(C)(C)C QECCXOBPOBIUMS-UHFFFAOYSA-N 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000005001 laminate film Substances 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 230000004298 light response Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000005055 methyl trichlorosilane Substances 0.000 description 1
- HLXDKGBELJJMHR-UHFFFAOYSA-N methyl-tri(propan-2-yloxy)silane Chemical compound CC(C)O[Si](C)(OC(C)C)OC(C)C HLXDKGBELJJMHR-UHFFFAOYSA-N 0.000 description 1
- AHQDZKRRVNGIQL-UHFFFAOYSA-N methyl-tris[(2-methylpropan-2-yl)oxy]silane Chemical compound CC(C)(C)O[Si](C)(OC(C)(C)C)OC(C)(C)C AHQDZKRRVNGIQL-UHFFFAOYSA-N 0.000 description 1
- JLUFWMXJHAVVNN-UHFFFAOYSA-N methyltrichlorosilane Chemical compound C[Si](Cl)(Cl)Cl JLUFWMXJHAVVNN-UHFFFAOYSA-N 0.000 description 1
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- IHVVJLCVJNNCDK-UHFFFAOYSA-N octadecyl-tri(propan-2-yloxy)silane Chemical compound CCCCCCCCCCCCCCCCCC[Si](OC(C)C)(OC(C)C)OC(C)C IHVVJLCVJNNCDK-UHFFFAOYSA-N 0.000 description 1
- SLYCYWCVSGPDFR-UHFFFAOYSA-N octadecyltrimethoxysilane Chemical compound CCCCCCCCCCCCCCCCCC[Si](OC)(OC)OC SLYCYWCVSGPDFR-UHFFFAOYSA-N 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- VPLNCHFJAOKWBT-UHFFFAOYSA-N phenyl-tri(propan-2-yloxy)silane Chemical compound CC(C)O[Si](OC(C)C)(OC(C)C)C1=CC=CC=C1 VPLNCHFJAOKWBT-UHFFFAOYSA-N 0.000 description 1
- 239000005054 phenyltrichlorosilane Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- ZMYXZXUHYAGGKG-UHFFFAOYSA-N propoxysilane Chemical compound CCCO[SiH3] ZMYXZXUHYAGGKG-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000001028 reflection method Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- AIFMYMZGQVTROK-UHFFFAOYSA-N silicon tetrabromide Chemical compound Br[Si](Br)(Br)Br AIFMYMZGQVTROK-UHFFFAOYSA-N 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- UQMOLLPKNHFRAC-UHFFFAOYSA-N tetrabutyl silicate Chemical compound CCCCO[Si](OCCCC)(OCCCC)OCCCC UQMOLLPKNHFRAC-UHFFFAOYSA-N 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- PCADGSDEFOMDNL-UHFFFAOYSA-N tri(propan-2-yloxy)-(3,3,3-trifluoropropyl)silane Chemical compound CC(C)O[Si](OC(C)C)(OC(C)C)CCC(F)(F)F PCADGSDEFOMDNL-UHFFFAOYSA-N 0.000 description 1
- MQVCTPXBBSKLFS-UHFFFAOYSA-N tri(propan-2-yloxy)-propylsilane Chemical compound CCC[Si](OC(C)C)(OC(C)C)OC(C)C MQVCTPXBBSKLFS-UHFFFAOYSA-N 0.000 description 1
- MLZOPJVPCGTFGS-UHFFFAOYSA-N tribromo(3,3,3-trifluoropropyl)silane Chemical compound FC(F)(F)CC[Si](Br)(Br)Br MLZOPJVPCGTFGS-UHFFFAOYSA-N 0.000 description 1
- LYZDWEPTQWHDLZ-UHFFFAOYSA-N tribromo(decyl)silane Chemical compound CCCCCCCCCC[Si](Br)(Br)Br LYZDWEPTQWHDLZ-UHFFFAOYSA-N 0.000 description 1
- KVENDAGPVNAYLY-UHFFFAOYSA-N tribromo(ethyl)silane Chemical compound CC[Si](Br)(Br)Br KVENDAGPVNAYLY-UHFFFAOYSA-N 0.000 description 1
- VRUFDMFAHKOFOT-UHFFFAOYSA-N tribromo(hexyl)silane Chemical compound CCCCCC[Si](Br)(Br)Br VRUFDMFAHKOFOT-UHFFFAOYSA-N 0.000 description 1
- KBSUPJLTDMARAI-UHFFFAOYSA-N tribromo(methyl)silane Chemical compound C[Si](Br)(Br)Br KBSUPJLTDMARAI-UHFFFAOYSA-N 0.000 description 1
- RCEOWKUMFSNHFM-UHFFFAOYSA-N tribromo(octadecyl)silane Chemical compound CCCCCCCCCCCCCCCCCC[Si](Br)(Br)Br RCEOWKUMFSNHFM-UHFFFAOYSA-N 0.000 description 1
- HPTIEXHGTPSFDC-UHFFFAOYSA-N tribromo(phenyl)silane Chemical compound Br[Si](Br)(Br)C1=CC=CC=C1 HPTIEXHGTPSFDC-UHFFFAOYSA-N 0.000 description 1
- RWRKNKVDHIEKHS-UHFFFAOYSA-N tribromo(propyl)silane Chemical compound CCC[Si](Br)(Br)Br RWRKNKVDHIEKHS-UHFFFAOYSA-N 0.000 description 1
- WEUBQNJHVBMUMD-UHFFFAOYSA-N trichloro(3,3,3-trifluoropropyl)silane Chemical compound FC(F)(F)CC[Si](Cl)(Cl)Cl WEUBQNJHVBMUMD-UHFFFAOYSA-N 0.000 description 1
- HLWCOIUDOLYBGD-UHFFFAOYSA-N trichloro(decyl)silane Chemical compound CCCCCCCCCC[Si](Cl)(Cl)Cl HLWCOIUDOLYBGD-UHFFFAOYSA-N 0.000 description 1
- GQIUQDDJKHLHTB-UHFFFAOYSA-N trichloro(ethenyl)silane Chemical compound Cl[Si](Cl)(Cl)C=C GQIUQDDJKHLHTB-UHFFFAOYSA-N 0.000 description 1
- ZOYFEXPFPVDYIS-UHFFFAOYSA-N trichloro(ethyl)silane Chemical compound CC[Si](Cl)(Cl)Cl ZOYFEXPFPVDYIS-UHFFFAOYSA-N 0.000 description 1
- LFXJGGDONSCPOF-UHFFFAOYSA-N trichloro(hexyl)silane Chemical compound CCCCCC[Si](Cl)(Cl)Cl LFXJGGDONSCPOF-UHFFFAOYSA-N 0.000 description 1
- PYJJCSYBSYXGQQ-UHFFFAOYSA-N trichloro(octadecyl)silane Chemical compound CCCCCCCCCCCCCCCCCC[Si](Cl)(Cl)Cl PYJJCSYBSYXGQQ-UHFFFAOYSA-N 0.000 description 1
- ORVMIVQULIKXCP-UHFFFAOYSA-N trichloro(phenyl)silane Chemical compound Cl[Si](Cl)(Cl)C1=CC=CC=C1 ORVMIVQULIKXCP-UHFFFAOYSA-N 0.000 description 1
- DOEHJNBEOVLHGL-UHFFFAOYSA-N trichloro(propyl)silane Chemical compound CCC[Si](Cl)(Cl)Cl DOEHJNBEOVLHGL-UHFFFAOYSA-N 0.000 description 1
- ZLGWXNBXAXOQBG-UHFFFAOYSA-N triethoxy(3,3,3-trifluoropropyl)silane Chemical compound CCO[Si](OCC)(OCC)CCC(F)(F)F ZLGWXNBXAXOQBG-UHFFFAOYSA-N 0.000 description 1
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 1
- FZMJEGJVKFTGMU-UHFFFAOYSA-N triethoxy(octadecyl)silane Chemical compound CCCCCCCCCCCCCCCCCC[Si](OCC)(OCC)OCC FZMJEGJVKFTGMU-UHFFFAOYSA-N 0.000 description 1
- JCVQKRGIASEUKR-UHFFFAOYSA-N triethoxy(phenyl)silane Chemical compound CCO[Si](OCC)(OCC)C1=CC=CC=C1 JCVQKRGIASEUKR-UHFFFAOYSA-N 0.000 description 1
- NBXZNTLFQLUFES-UHFFFAOYSA-N triethoxy(propyl)silane Chemical compound CCC[Si](OCC)(OCC)OCC NBXZNTLFQLUFES-UHFFFAOYSA-N 0.000 description 1
- JXUKBNICSRJFAP-UHFFFAOYSA-N triethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCOCC1CO1 JXUKBNICSRJFAP-UHFFFAOYSA-N 0.000 description 1
- JLGNHOJUQFHYEZ-UHFFFAOYSA-N trimethoxy(3,3,3-trifluoropropyl)silane Chemical compound CO[Si](OC)(OC)CCC(F)(F)F JLGNHOJUQFHYEZ-UHFFFAOYSA-N 0.000 description 1
- ZNOCGWVLWPVKAO-UHFFFAOYSA-N trimethoxy(phenyl)silane Chemical compound CO[Si](OC)(OC)C1=CC=CC=C1 ZNOCGWVLWPVKAO-UHFFFAOYSA-N 0.000 description 1
- HQYALQRYBUJWDH-UHFFFAOYSA-N trimethoxy(propyl)silane Chemical compound CCC[Si](OC)(OC)OC HQYALQRYBUJWDH-UHFFFAOYSA-N 0.000 description 1
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- 229940118594 trimethylolpropane triisostearate Drugs 0.000 description 1
- JIOBRIJHDZBWDE-UHFFFAOYSA-N tris[(2-methylpropan-2-yl)oxy]-(3,3,3-trifluoropropyl)silane Chemical compound CC(C)(C)O[Si](OC(C)(C)C)(OC(C)(C)C)CCC(F)(F)F JIOBRIJHDZBWDE-UHFFFAOYSA-N 0.000 description 1
- WUSDGIZCXCUHAI-UHFFFAOYSA-N tris[(2-methylpropan-2-yl)oxy]-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CC(C)(C)O[Si](OC(C)(C)C)(OC(C)(C)C)CCCOCC1CO1 WUSDGIZCXCUHAI-UHFFFAOYSA-N 0.000 description 1
- DIZPPYBTFPZSGK-UHFFFAOYSA-N tris[(2-methylpropan-2-yl)oxy]-propylsilane Chemical compound CCC[Si](OC(C)(C)C)(OC(C)(C)C)OC(C)(C)C DIZPPYBTFPZSGK-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 239000005050 vinyl trichlorosilane Substances 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Surface Treatment Of Glass (AREA)
- Catalysts (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Laminated Bodies (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
本発明は、基材上にアナターゼ型酸化チタン微粒子を含む被膜を設けた、新規な積層体ならびにその製造方法に関する。 The present invention relates to a novel laminate in which a film containing anatase-type titanium oxide fine particles is provided on a substrate, and a method for producing the same.
酸化チタンは、その化学的安定性、無毒、豊富な地球資源から産業上の利用に適しており、顔料や化粧料等に広く用いられている。また、酸化チタンは特異な物理・化学特性から、光触媒、光電変換材料、磁気光学材料、透明導電材料等の各種分野から大きな注目を集めている。
ところで、酸化チタンの結晶多形として、ルチル型とアナターゼ型が良く知られているが、アナターゼ型酸化チタンの方が、電子の還元力が高く移動度も高いため、光触媒や色素増感型の太陽電池の用途において広く用いられている。こうした酸化チタンの応用に際しては、微粒子の合成や簡便なプロセスによる薄膜化、コーティング化が必要不可欠となる。
Titanium oxide is suitable for industrial use because of its chemical stability, non-toxicity and abundant earth resources, and is widely used in pigments and cosmetics. Titanium oxide has attracted a great deal of attention from various fields such as photocatalysts, photoelectric conversion materials, magneto-optical materials, and transparent conductive materials because of its unique physical and chemical properties.
By the way, as crystalline polymorphs of titanium oxide, rutile type and anatase type are well known. However, since anatase type titanium oxide has higher electron reducing power and higher mobility, it is a photocatalyst or dye-sensitized type. Widely used in solar cell applications. In applying such titanium oxide, it is indispensable to synthesize fine particles and to make thin films and coatings by a simple process.
また、酸化チタンの結晶性は、電子・正孔の寿命や移動度に影響を及ぼす重要な要素であり、中でも高結晶性の酸化チタン粒子において、従来の粒子よりも高活性であることが報告されている。例えば、非特許文献1に示すように、結晶性の高い酸化チタン微粒子において、光触媒活性が従来の粒子に比較して優位である例が報告されている。 In addition, the crystallinity of titanium oxide is an important factor affecting the lifetime and mobility of electrons and holes, and it is reported that high-crystallinity titanium oxide particles are more active than conventional particles. Has been. For example, as shown in Non-Patent Document 1, there has been reported an example in which titanium oxide fine particles having high crystallinity have superior photocatalytic activity compared to conventional particles.
一方、性能を高めるため、粒子の結晶面の配向制御も重要となる。例えば、非特許文献2に示すように、アナターゼ型酸化チタンの結晶面のうち(001)面よりも(101)面に活性点となる電子のトラップサイトが多数存在することが報告されている。また、非特許文献3に示すように、アナターゼ型酸化チタンの(101)面はエネルギー的に安定である。 On the other hand, in order to improve performance, it is important to control the orientation of the crystal plane of the particles. For example, as shown in Non-Patent Document 2, it has been reported that there are many electron trap sites serving as active sites in the (101) plane rather than the (001) plane in the crystal plane of anatase-type titanium oxide. Further, as shown in Non-Patent Document 3, the (101) plane of anatase-type titanium oxide is energetically stable.
(101)面が露出しているアナターゼ型酸化チタンとして、非特許文献4に両角錐体状のアナターゼ型酸化チタン粒子が開示されている。この手法では、両角錐体状のアナターゼ型酸化チタン粒子を得るための加熱処理が300℃にも達し、粒子の結晶成長が促進される上、反応の添加剤として、極性の高いラウリン酸を添加しているため、両角錐体状のアナターゼ型酸化チタン粒子が接触した構造をとる。粒子同士が接触すると、溶媒への単分散や塗膜後の高度な結晶配向性は期待できない。
また、こうしたアナターゼ型酸化チタン粒子を薄膜化し、基材上に設けた積層体がこれまでに知られていない。
As anatase-type titanium oxide having an exposed (101) surface, Non-Patent Document 4 discloses a pyramid-shaped anatase-type titanium oxide particle. In this method, the heat treatment for obtaining a pyramidal anatase-type titanium oxide particle reaches 300 ° C., the crystal growth of the particle is promoted, and a highly polar lauric acid is added as a reaction additive. Therefore, it has a structure in which both pyramid-shaped anatase-type titanium oxide particles are in contact with each other. When the particles come into contact with each other, monodispersion in a solvent and high crystal orientation after coating cannot be expected.
Further, a laminate in which such anatase-type titanium oxide particles are thinned and provided on a base material has not been known so far.
本発明は、光触媒活性の高いアナターゼ型酸化チタンの(101)面が高度に配向した被膜を基材上に設けた、建築部材、自動車部材、又は空気・水浄化用部材として極めて有用な新規な積層体およびその製造方法を提供することを目的とする。 INDUSTRIAL APPLICABILITY The present invention is a novel and extremely useful as an architectural member, an automobile member, or an air / water purification member provided with a coating film on which a (101) plane of anatase type titanium oxide having a high photocatalytic activity is highly oriented. It aims at providing a laminated body and its manufacturing method.
この出願によれば、以下の発明が提供される。
〈1〉基材上に両角錐体状のアナターゼ型酸化チタン微粒子を含む被膜を設けた積層体であって、前記被膜の結晶方向が厚み方向に対して(101)方向に配向していることを特徴とする積層体。
〈2〉前記両角錐体状のアナターゼ型酸化チタン微粒子の面がアナターゼ型酸化チタンの(101)面であることを特徴とする〈1〉に記載の積層体。
〈3〉前記両角錐体状のアナターゼ型酸化チタン微粒子が単結晶であることを特徴とする〈1〉又は〈2〉に記載の積層体。
〈4〉前記両角錐体状のアナターゼ型酸化チタン微粒子に、窒素、硫黄、炭素、リン、ホウ素及びフッ素からなる群より選択される少なくとも一つのアニオンがドープされていることを特徴とする〈1〉〜〈3〉のいずれかに記載の積層体。
〈5〉前記両角錐体状のアナターゼ型酸化チタン微粒子の大きさが10nm〜200nmであることを特徴とする〈1〉〜〈4〉のいずかに記載の積層体。
〈6〉前記被膜の厚さが10nm〜10μmであることを特徴とする〈1〉〜〈5〉のいずれかに記載の積層体。
〈7〉前記両角錐体状のアナターゼ型酸化チタン微粒子を含む被膜と基材の間に中間層が存在することを特徴とする〈1〉〜〈6〉のいずれかに記載の積層体。
〈8〉前記中間層の厚みが5nm〜5μmであることを特徴とする〈7〉に記載の積層体。
〈9〉前記被膜及び/又は中間層に、バンドギャップが3.0eV以下であって、伝導帯および荷電子帯のポテンシャルが酸化チタンよりも貴である、酸化チタン以外の無機化合物が存在することを特徴とする〈1〉〜〈8〉のいずれかに記載の積層体。
〈10〉前記無機化合物が酸化タングステンであることを特徴とする〈9〉に記載の積層体。
〈11〉前記被膜表面の水との接触角が、紫外線強度50μW/cm2の白色蛍光灯の照射に応じて30分以内に5度以下まで低下することを特徴とする〈1〉〜〈10〉のいずれかに記載の積層体。
〈12〉前記被膜表面の水との接触角が、波長400〜500nmで強度0.2mW/cm2の可視光の照射に応じて5度以下まで低下することを特徴とする〈9〉〜〈11〉のいずれかに記載の積層体。
〈13〉前記両角錐体状のアナターゼ型酸化チタン及び/又は酸化チタン以外の無機化合物を光励起するための光源が白色蛍光灯、白熱灯及びLEDから選ばれた少なくとも一種であることを特徴とする〈1〉〜〈12〉のいずれかに記載の積層体。
〈14〉〈1〉〜〈13〉のいずれかに記載の積層体からなる、建築部材、自動車部材、又は空気・水浄化用部材。
〈15〉〈1〉〜〈14〉のいずれかに記載の積層体の製造方法であって、pHが4以下又は8以上に調整された両角錐体状のアナターゼ型酸化チタン微粒子の分散液を基材に塗布する工程を含むことを特徴とする〈1〉〜〈14〉のいずれかに記載の積層体の製造方法。
〈16〉前記分散液中の両角錐体状のアナターゼ型酸化チタン微粒子の濃度が10%以下であることを特徴とする〈15〉に記載の積層体の製造方法。
〈17〉前記両角錐体状のアナターゼ型酸化チタン微粒子をチタン酸のナノチューブを水系媒体中で水熱処理することにより得ることを特徴とする〈15〉又は〈16〉に記載の積層体の製造方法。
〈18〉水系媒体に尿素及び/又はチオ尿素が含まれることを特徴とする〈17〉に記載の積層体の製造方法。
〈19〉前記水系媒体のpHが2以上であることを特徴とする〈17〉又は〈18〉に記載の積層体の製造方法。
〈20〉前記水熱処理の温度が150℃以上であることを特徴とする〈17〉〜〈19〉に記載の積層体の製造方法。
〈21〉pHが4以下又は8以上に調整された両角錐体状のアナターゼ型酸化チタン微粒子の分散液。
〈22〉前記分散液中の両角錐体状のアナターゼ型酸化チタン微粒子の濃度が10%以下であることを特徴とする〈21〉に記載の分散液。
〈23〉前記両角錐体状のアナターゼ型酸化チタン微粒子がチタン酸のナノチューブを水系媒体中で水熱処理することにより得られたものであることを特徴とする〈21〉又は〈22〉に記載の分散液。
〈24〉水系媒体に尿素及び/又はチオ尿素が含まれることを特徴とする〈23〉に記載の分散液。
According to this application, the following invention is provided.
<1> A laminate in which a coating containing bipyramidal anatase-type titanium oxide fine particles is provided on a substrate, and the crystal direction of the coating is oriented in the (101) direction with respect to the thickness direction. A laminate characterized by the following.
<2> The laminate according to <1>, wherein the face of the bipyramidal anatase-type titanium oxide fine particles is the (101) face of anatase-type titanium oxide.
<3> The laminate according to <1> or <2>, wherein the bipyramidal anatase-type titanium oxide fine particles are single crystals.
<4> The bipyramidal anatase-type titanium oxide fine particles are doped with at least one anion selected from the group consisting of nitrogen, sulfur, carbon, phosphorus, boron and fluorine <1 > To <3>.
<5> The laminate according to any one of <1> to <4>, wherein the size of the bipyramidal anatase-type titanium oxide fine particles is 10 nm to 200 nm.
<6> The laminate according to any one of <1> to <5>, wherein the thickness of the coating is 10 nm to 10 μm.
<7> The laminate according to any one of <1> to <6>, wherein an intermediate layer is present between the coating containing the bipyramidal anatase-type titanium oxide fine particles and the substrate.
<8> The laminate according to <7>, wherein the intermediate layer has a thickness of 5 nm to 5 μm.
<9> The coating film and / or the intermediate layer includes an inorganic compound other than titanium oxide having a band gap of 3.0 eV or less and having a conduction band and valence band potential noble than titanium oxide. The laminate according to any one of <1> to <8>, which is characterized.
<10> The laminate according to <9>, wherein the inorganic compound is tungsten oxide.
<11> The contact angle with water on the surface of the coating decreases to 5 degrees or less within 30 minutes in accordance with irradiation of a white fluorescent lamp having an ultraviolet intensity of 50 μW / cm 2 <1> to <10 > The laminate according to any one of the above.
<12> the contact angle with water of the film surface, characterized in that it falls below 5 degrees according to the irradiation of the visible light intensity 0.2 mW / cm 2 at a wavelength of 400-500 nm <9> ~ <11 > The laminate according to any one of the above.
<13> The light source for photoexciting the bipyramidal anatase-type titanium oxide and / or an inorganic compound other than titanium oxide is at least one selected from a white fluorescent lamp, an incandescent lamp, and an LED. <1> -The laminated body in any one of <12>.
<14> A building member, an automobile member, or an air / water purification member comprising the laminate according to any one of <1> to <13>.
<15> The method for producing a laminate according to any one of <1> to <14>, wherein a dispersion of anatase-type titanium oxide fine particles having a bipyramidal shape adjusted to a pH of 4 or less or 8 or more is provided. The manufacturing method of the laminated body in any one of <1>-<14> characterized by including the process apply | coated to a base material.
<16> The method for producing a laminate according to <15>, wherein the concentration of the bipyramidal anatase-type titanium oxide fine particles in the dispersion is 10% or less.
<17> The method for producing a laminate according to <15> or <16>, wherein the double-pyramidal anatase-type titanium oxide fine particles are obtained by hydrothermally treating titanic acid nanotubes in an aqueous medium. .
<18> The method for producing a laminate according to <17>, wherein the aqueous medium contains urea and / or thiourea.
<19> The method for producing a laminate according to <17> or <18>, wherein the pH of the aqueous medium is 2 or more.
<20> The method for producing a laminate according to <17> to <19>, wherein the temperature of the hydrothermal treatment is 150 ° C. or higher.
<21> A dispersion of bipyramidal anatase-type titanium oxide fine particles whose pH is adjusted to 4 or less or 8 or more.
<22> The dispersion according to <21>, wherein the concentration of the bipyramidal anatase-type titanium oxide fine particles in the dispersion is 10% or less.
<23> The <21> or <22>, wherein the anatase-type titanium oxide fine particles having a pyramidal shape are obtained by hydrothermally treating a titanic acid nanotube in an aqueous medium. Dispersion.
<24> The dispersion according to <23>, wherein the aqueous medium contains urea and / or thiourea.
本発明に係る積層体は、基材上に、安定で電子のトラップサイトが多数存在するアナターゼ型酸化チタンの(101)面を被膜の厚み方向に配向していることから、高度な光触媒活性を発現する。
特に、本発明の積層体においては、酸化チタン微粒子を含む被膜表面の水との接触角が紫外線強度50μW/cm2の白色蛍光灯の照射に応じて30分以内に5度以下までに低下(親水化)することから、通常の多結晶型酸化チタン薄膜とは異なり、紫外線強度が低い白色光を用いても、その親水化反応は進行し、高度の親水化活性を発現する。
したがって、本発明の積層体は高度な光触媒活性を有し、例えば、建築部材、自動車部材、空気・水浄化用フィルター部材等へ応用することができる
たとえば、鏡、レンズ、板ガラス等の基材の表面に本発明に係る酸化チタン微粒子を含む被膜を形成させることで表面を高度に親水化することができ、曇りや水滴形成を防止する防曇効果を発揮することができる。
更に、本発明の積層体は、表面に付着した有機物を分解する効果により、表面が汚れるのを防止し、または表面を自己浄化(セルフクリーニング)し、若しくは容易に清掃する技術にも適用できる。本発明の積層体のセルフクリーニング効果により、メンテナンスコストを低減させたり、商品寿命を長期化することができる。
The laminate according to the present invention has a high photocatalytic activity because the (101) plane of anatase-type titanium oxide, on which a stable and many electron trap sites exist, is oriented in the thickness direction of the coating. To express.
In particular, in the laminate of the present invention, the contact angle of the coating surface containing titanium oxide fine particles with water decreases to 5 degrees or less within 30 minutes according to the irradiation of a white fluorescent lamp having an ultraviolet intensity of 50 μW / cm 2 ( Therefore, even if white light with low ultraviolet intensity is used, the hydrophilization reaction proceeds and expresses a high degree of hydrophilization activity, unlike ordinary polycrystalline titanium oxide thin films.
Therefore, the laminate of the present invention has a high photocatalytic activity, and can be applied to, for example, building members, automobile members, air / water purification filter members, etc. For example, substrates such as mirrors, lenses, plate glass, etc. By forming a film containing the titanium oxide fine particles according to the present invention on the surface, the surface can be made highly hydrophilic, and an anti-fogging effect for preventing fogging and water droplet formation can be exhibited.
Furthermore, the laminate of the present invention can be applied to a technique for preventing the surface from becoming dirty due to the effect of decomposing the organic matter adhering to the surface, or self-cleaning the surface (self-cleaning) or easily cleaning the surface. The self-cleaning effect of the laminate of the present invention can reduce maintenance costs and prolong the product life.
本発明の積層体は基材上に両角錐体状のアナターゼ型酸化チタン微粒子を含む被膜が設けられ、該被膜の結晶方向が厚み方向に対して(101)方向に配向していることを特徴とする。
ここで、両角錐体とは、ピラミッド状の角面体が2個、底面で接触した構造で、実質的に8つの面を有するものをいう。
本発明においては、前記8つの面は全て(101)面である。すなわち、アナターゼ型結晶は正方晶のため、(101)(−101)(011)(0−11)(10−1)(−10−1)(01−1)(0−1−1)の8つの面は全て等価である。
なお、本発明の両角錐体はピラミッド状の角面体が2個、底面で接触した構造を有していればよく、その頂点は先鋭であっても、面を形成していても構わない。例えば、両角錐体の(001)方向の頂点が面を形成している場合、この面は(001)面となり、粒子は10面体となるが、このような粒子も本発明に包含される。
The laminate of the present invention is characterized in that a coating containing a pyramid-shaped anatase-type titanium oxide fine particle is provided on a substrate, and the crystal direction of the coating is oriented in the (101) direction with respect to the thickness direction. And
Here, the double pyramid means a structure in which two pyramid-shaped prisms are in contact with each other at the bottom and has substantially eight surfaces.
In the present invention, the eight surfaces are all (101) surfaces. That is, since the anatase type crystal is a tetragonal crystal, (101) (−101) (011) (0-11) (10-1) (−10-1) (01-1) (0-1-1) All eight faces are equivalent.
The double pyramid of the present invention may have a structure in which two pyramidal prisms are in contact with each other on the bottom surface, and the apex may be sharp or may form a surface. For example, when the apexes in the (001) direction of both pyramids form a plane, this plane becomes the (001) plane and the particles become decahedron, and such particles are also included in the present invention.
本発明においては、前記両角錐体状のアナターゼ型酸化チタン微粒子からなる被膜は厚み方向に対して(101)方向に配向している。すなわち、基板に垂直な方向にアナターゼ型酸化チタンの(101)方向が配向している。前記両角錐体状のアナターゼ型酸化チタン微粒子の面は全て(101)面であり、前記粒子を高度に分散したコーティング液を用いて基板に塗布した場合、前記微粒子の面が基板に接触し、被膜の結晶方向が高度に配向する。
本発明における「(101)方向に配向している」とは、(101)方向が基板と必ずしも垂直でなくても構わない。結晶方向がランダムな多結晶と比較して、一定の方向性を有していれば良い。
In the present invention, the coating composed of the anatase-type titanium oxide fine particles in the shape of both pyramids is oriented in the (101) direction with respect to the thickness direction. That is, the (101) direction of anatase-type titanium oxide is oriented in a direction perpendicular to the substrate. The surfaces of the bipyramidal anatase-type titanium oxide fine particles are all (101) surfaces, and when the particles are applied to the substrate using a highly dispersed coating solution, the surfaces of the fine particles contact the substrate, The crystal orientation of the coating is highly oriented.
In the present invention, “oriented in the (101) direction” does not necessarily mean that the (101) direction is not perpendicular to the substrate. What is necessary is just to have fixed directionality compared with the polycrystal with a random crystal direction.
本発明の好ましい態様として、基板に対する配向の度合いは±10°以内である。基板に対する配向の度合いを±10°以内に納めるため、塗布工程で使用する分散液の好ましい固形分濃度は10%以下であり、より好ましくは1%以下である。
薄膜の配向性はX線回折のOut-of-PlaneないしIn-Plane測定によって測定することができる。Out-of-Plane測定で観察される回折ピークは基板に垂直な結晶軸であり、In-Plane測定で観察される回折ピークは基板に平行な結晶軸となる。
基板に対する配向の度合いは2θ/θの角度を(101)面に固定し、基板角度の傾きをスキャンすることによって測定することができる。また、本発明の積層体の被膜は、その結晶方向が面内方向にも配向していても構わない。
In a preferred embodiment of the present invention, the degree of orientation relative to the substrate is within ± 10 °. In order to keep the degree of orientation with respect to the substrate within ± 10 °, the preferred solid content concentration of the dispersion used in the coating step is 10% or less, more preferably 1% or less.
The orientation of the thin film can be measured by X-ray diffraction out-of-plane or in-plane measurement. The diffraction peak observed by Out-of-Plane measurement is a crystal axis perpendicular to the substrate, and the diffraction peak observed by In-Plane measurement is a crystal axis parallel to the substrate.
The degree of orientation relative to the substrate can be measured by fixing the 2θ / θ angle to the (101) plane and scanning the inclination of the substrate angle. Moreover, as for the film of the laminated body of this invention, the crystal direction may be oriented also in the in-plane direction.
前記両角錐体状のアナターゼ型酸化チタン微粒子に粒界が存在していても構わないが、好ましくは単結晶である。すなわち、粒界は光触媒反応に関わる電子正孔対の移動を阻害するため、高度の光触媒活性を発現させるためには、本発明に係る微粒子は単結晶であることが好ましい。 A grain boundary may exist in the bipyramidal anatase-type titanium oxide fine particles, but it is preferably a single crystal. That is, since the grain boundaries inhibit the movement of electron-hole pairs involved in the photocatalytic reaction, the fine particles according to the present invention are preferably single crystals in order to develop a high degree of photocatalytic activity.
本発明の積層体に可視光での光触媒反応活性を持たせるため、前記両角錐体状のアナターゼ型酸化チタン微粒子に窒素、リン、硫黄、炭素、ホウ素、フッ素からなる群より選択される少なくとも一つのアニオンをドープしても構わない。また、可視光を吸収することのできる白金錯体や硫化カドミウム、色素を複合しても構わない。
特に好ましい態様においては、本発明に係る酸化チタン微粒子に窒素ないし硫黄のいずれか一項、または両方をドープする。窒素ないし硫黄等のアニオンを導入することによる可視化は、たとえば、非特許文献(R. Asahi et al. Science, 293, 269 (2001))に開示され、その可視光応答性の発現機構は定かではないが、次のように予想される。
酸素よりも共有結合性の高い窒素や硫黄等のアニオンを導入した場合、価電子帯を形成する酸素の2p軌道よりも卑なポテンシャルに窒素ないし硫黄等のアニオンで形成される準位が出現する。この準位は酸化チタンの禁制帯(バンドギャップ)の中にあっても良いし、酸化チタンの酸素の2p軌道と混成しても構わない。このように窒素ないし硫黄、または両方を導入することによって新たに出現する準位により、可視光の吸収が可能となる。
In order to give the laminate of the present invention photocatalytic reaction activity with visible light, the bipyramidal anatase-type titanium oxide fine particles are at least one selected from the group consisting of nitrogen, phosphorus, sulfur, carbon, boron, and fluorine. One anion may be doped. Further, a platinum complex that can absorb visible light, cadmium sulfide, and a dye may be combined.
In a particularly preferred embodiment, the titanium oxide fine particles according to the present invention are doped with one or both of nitrogen and sulfur. Visualization by introducing anions such as nitrogen or sulfur is disclosed in, for example, non-patent literature (R. Asahi et al. Science, 293, 269 (2001)), and the expression mechanism of the visible light response is not clear. Not expected.
When an anion such as nitrogen or sulfur having a higher covalent bond than oxygen is introduced, a level formed by an anion such as nitrogen or sulfur appears at a lower potential than the 2p orbit of oxygen forming the valence band. . This level may be in the forbidden band (band gap) of titanium oxide, or may be mixed with the oxygen 2p orbital of titanium oxide. In this way, by introducing nitrogen or sulfur, or both, a level that newly appears makes it possible to absorb visible light.
ただし、前記理論はあくまで推定の区域を出るものではなく、本発明はこの理論に限定されるものではない。窒素ないし硫黄を導入するサイトは、酸化チタン結晶の酸素位置に置換、格子間に割り込み、粒界部のうちいずれか一項で構わない。窒素、ないし硫黄以外のアニオンである炭素、ホウ素、フッ素、リンについても酸化チタンにドープすることで同様の効果が期待できる。
アニオンのドープ量やその状態はX線光電子分光法(XPS)によって測定することができる。本発明の酸化チタン微粒子への窒素ないし硫黄のドープ量は、好ましくはX線光電子分光法で測定した値で10%以下である。より好ましくは、前記ドープ量は1%以下である。ドープ量が多いと結晶が歪み、格子欠陥が生成して光触媒反応を阻害する。
However, the theory does not leave the estimation area, and the present invention is not limited to this theory. The site for introducing nitrogen or sulfur may be any one of substitution at the oxygen position of the titanium oxide crystal, interruption between lattices, and grain boundary. Similar effects can be expected by doping titanium oxide with carbon, boron, fluorine, and phosphorus, which are anions other than nitrogen or sulfur.
The amount of anion doped and its state can be measured by X-ray photoelectron spectroscopy (XPS). The amount of nitrogen or sulfur doped into the titanium oxide fine particles of the present invention is preferably 10% or less as measured by X-ray photoelectron spectroscopy. More preferably, the dope amount is 1% or less. If the amount of doping is large, the crystal is distorted and lattice defects are generated, thereby inhibiting the photocatalytic reaction.
一方、本発明に係る両角錐体状のアナターゼ型酸化チタン微粒子に窒素ないし硫黄等のアニオンをドープすると着色するので、粉末体であれば拡散反射法を用いた分光光度計で反射率を測定することができる。薄膜体であれば、分光光度計により透過率や反射率を測定することで可視光での光吸収を調べることができる。 On the other hand, since the bipyramidal anatase-type titanium oxide fine particles according to the present invention are colored when doped with anions such as nitrogen or sulfur, the reflectance is measured with a spectrophotometer using a diffuse reflection method if it is a powder. be able to. If it is a thin film body, the light absorption in visible light can be investigated by measuring the transmittance | permeability and reflectance with a spectrophotometer.
本発明に係る両角錐体状のアナターゼ型酸化チタン微粒子の大きさは10nm〜200nmである。これよりもサイズが大きいと表面積が小さくなり、光触媒などに応用した際の反応活性点が少なくなり、これよりもサイズが小さいと結晶性が悪くなる。
本発明に係る酸化チタン微粒子の更に好ましい態様においては、前記両角錐体状のアナターゼ型酸化チタン微粒子の大きさは、10nm〜60nmである。この範囲にすると高度な結晶性や溶媒への分散性が発現する。本発明に係る酸化チタン微粒子の形状測定は走査型電子顕微鏡(SEM)や原子間力顕微鏡(AFM)を用いて測定することができる。また、結晶方向の測定は透過型電子顕微鏡の格子像や電子線回折像より測定することができる。
The size of the bipyramidal anatase-type titanium oxide fine particles according to the present invention is 10 nm to 200 nm. If the size is larger than this, the surface area becomes smaller, the reaction active points when applied to a photocatalyst and the like are reduced, and if the size is smaller than this, the crystallinity becomes worse.
In a further preferred embodiment of the titanium oxide fine particles according to the present invention, the size of the bipyramidal anatase-type titanium oxide fine particles is 10 nm to 60 nm. Within this range, a high degree of crystallinity and dispersibility in a solvent are manifested. The shape of the titanium oxide fine particles according to the present invention can be measured using a scanning electron microscope (SEM) or an atomic force microscope (AFM). The crystal direction can be measured from a lattice image or an electron diffraction image of a transmission electron microscope.
本発明の積層体において、前記両角錐体状のアナターゼ型酸化チタン微粒子を含む被膜と基材の間に中間層を設けても構わない。中間層を設けることで、基板との密着強度を向上させたり、有機物の基材の光触媒作用による劣化を防ぐことができる。また、ガラス基材等のアルカリ成分は高温の焼成工程によって前記両角錐体状のアナターゼ型酸化チタン微粒子に拡散する恐れがあり、アルカリ成分の拡散を防ぐため、アモルファスシリカ、アルミナ、ジルコニア等の不活性体を中間層として用いることができる。本発明の積層体に透明性を持たせる場合、前記中間層の厚みとして5nm〜5μmの範囲が好適である。 In the laminate of the present invention, an intermediate layer may be provided between the base material and the base material containing the anatase-type titanium oxide fine particles in the shape of both pyramids. By providing the intermediate layer, it is possible to improve the adhesion strength with the substrate or to prevent the organic base material from being deteriorated by the photocatalytic action. In addition, alkali components such as glass base materials may diffuse into the anatase-type titanium oxide fine particles having a pyramidal shape due to a high-temperature baking process, and in order to prevent the diffusion of alkali components, non-crystalline silica, alumina, zirconia, etc. The activator can be used as an intermediate layer. In the case where transparency is imparted to the laminate of the present invention, the thickness of the intermediate layer is preferably in the range of 5 nm to 5 μm.
本発明に係る被膜の機械的強度を高めるため、前記被膜にバインダー成分が含まれていても構わない。バインダー成分として、アモルファスシリカ、アルミナ、ジルコニア、アルカリシリケート等の無機物やフッ素樹脂、アクリル樹脂、シリコーン樹脂等の有機物の少なくともいずれか一項を含んでいても構わない。 In order to increase the mechanical strength of the coating according to the present invention, the coating may contain a binder component. The binder component may contain at least one of inorganic substances such as amorphous silica, alumina, zirconia, and alkali silicate, and organic substances such as fluorine resin, acrylic resin, and silicone resin.
本発明の積層体の光触媒特性を高めるため、好適な態様において、前記被膜及び中間層の少なくともいずれか一方に酸化チタン以外の無機化合物が含ませてもよい。この無機化合物はバンドギャップが3.0eV以下であって、その伝導帯、荷電子帯のポテンシャルが酸化チタンよりも貴(低い)であることが望ましい。バンドギャップが3.0eV以下であることによって、可視光を吸収することができる。また、荷電子帯のポテンシャルが酸化チタンよりも貴の場合、光励起によって無機化合物に生成した正孔が酸化チタン側へ供給され、酸化チタン表面での酸化分解活性や親水化能力が向上する。このような無機化合物として、酸化タングステン、酸化亜鉛、酸化ニオブ、酸化バナジウム等が好適に使用できる。 In order to enhance the photocatalytic properties of the laminate of the present invention, in a preferred embodiment, at least one of the coating film and the intermediate layer may contain an inorganic compound other than titanium oxide. It is desirable that this inorganic compound has a band gap of 3.0 eV or less and its conduction band and valence band potential is noble (lower) than titanium oxide. Visible light can be absorbed when the band gap is 3.0 eV or less. Further, when the potential of the valence band is nobler than that of titanium oxide, holes generated in the inorganic compound by photoexcitation are supplied to the titanium oxide side, and the oxidative decomposition activity and the hydrophilization ability on the titanium oxide surface are improved. As such an inorganic compound, tungsten oxide, zinc oxide, niobium oxide, vanadium oxide, or the like can be preferably used.
本発明の好ましい態様において、前記無機化合物として酸化タングステンを用いる。酸化タングステンはバンドギャップが2.8eVと酸化チタンより狭く可視光を吸収することができる。また、酸化タングステンの荷電子帯は深く、酸化チタンと接合した場合、光励起によって酸化タングステンに生成した正孔は酸化チタンに移動することが可能となる。このため、酸化チタンと酸化タングステンを接合した場合、それぞれを単独で用いるよりもより高度な光触媒活性を得ることができる。 In a preferred embodiment of the present invention, tungsten oxide is used as the inorganic compound. Tungsten oxide has a band gap of 2.8 eV, which is narrower than titanium oxide and can absorb visible light. In addition, the valence band of tungsten oxide is deep, and when bonded to titanium oxide, holes generated in tungsten oxide by photoexcitation can move to titanium oxide. For this reason, when titanium oxide and tungsten oxide are joined, higher photocatalytic activity can be obtained than when each is used alone.
本発明に係る酸化チタン微粒子を光触媒等の電荷移動媒体として使用する場合、電荷分離を促進させるため、前記酸化チタン微粒子にPt, Pd, Ag, Cu, Au, Ni, Ru, Pbからなる郡から選択される少なくとも一つの金属を担持してもよい。前記金属を担持することによって光励起した電子正孔対が効率的に分離し、光電流が増大する。また、特にAgやCuを担持した場合、抗菌性や防藻性も発揮する。 When using the titanium oxide fine particles according to the present invention as a charge transfer medium such as a photocatalyst, in order to promote charge separation, the titanium oxide fine particles are from a group consisting of Pt, Pd, Ag, Cu, Au, Ni, Ru, and Pb. At least one selected metal may be supported. By supporting the metal, photoexcited electron-hole pairs are efficiently separated, and the photocurrent increases. In particular, when Ag or Cu is supported, antibacterial and antialgal properties are also exhibited.
アナターゼ型酸化チタンの結晶面のうち(101)面は安定で電子のトラップサイトが多数存在するため、本発明の積層体は高度な光触媒活性を発現する。光触媒活性の指標として、例えば、被膜表面の水との接触角変化の測定を好適に使用することが出来る。
本発明の酸化チタン微粒子を含む被膜からなる積層体においては、被膜表面の水との接触角が紫外線強度50μW/cm2の白色蛍光灯の照射に応じて30分以内に5度以下まで低下(親水化)することができる。
白色蛍光灯の光に含まれる紫外線は強度が低いため、通常の多結晶型酸化チタン薄膜では白色蛍光灯を照射してもその親水化反応は進行しにくいが、本発明の積層体の被膜表面は高度の親水化活性を発現する。
前記紫外線強度は、例えば、トプコン社製の紫外線強度計(UVR−2)等を用いて測定することができる。また、水との接触角の測定は、例えば、協和界面科学社製の接触角測定機(CA−X150)等の装置を好適に使用することが出来る。
Of the crystal planes of anatase-type titanium oxide, the (101) plane is stable and has a large number of electron trap sites, so that the laminate of the present invention exhibits a high degree of photocatalytic activity. As an index of photocatalytic activity, for example, measurement of change in contact angle with water on the surface of the coating can be suitably used.
In the laminate composed of the coating containing titanium oxide fine particles of the present invention, the contact angle with water on the coating surface decreases to 5 degrees or less within 30 minutes according to the irradiation of a white fluorescent lamp having an ultraviolet intensity of 50 μW / cm 2 ( Can be hydrophilized).
Since the ultraviolet light contained in the light of the white fluorescent lamp is low in intensity, the conventional polycrystalline titanium oxide thin film hardly progresses in the hydrophilization reaction even when irradiated with the white fluorescent lamp, but the coating surface of the laminate of the present invention Expresses high hydrophilization activity.
The ultraviolet intensity can be measured using, for example, an ultraviolet intensity meter (UVR-2) manufactured by Topcon Corporation. Moreover, for the measurement of the contact angle with water, for example, a device such as a contact angle measuring machine (CA-X150) manufactured by Kyowa Interface Science Co., Ltd. can be suitably used.
本発明の積層体に酸化タングステンが含まれる場合、酸化タングステンの可視光増感作用により、更に高度な親水化活性を発現する。酸化タングステンを含む中間層を設けた積層体においては、被膜表面の水との接触角を、波長400〜500nmで強度0.2mW/cm2の可視光の照射に応じて5度以下まで低下させることが可能である。前記可視光照度は、例えば、ウシオ電機社製のスペクトルラディオメーター(USR-40D)等を用いて測定することができる。また、水との接触角の測定は、例えば、協和界面科学社製の接触角測定機(CA−X150)等の装置を好適に使用することが出来る。可視光の照射は、例えば、キセノンランプ(林時計工業、LA-250Xe)を用い、各種色ガラスフィルター(例えば、旭テクノグラス社製、B-47、L-42、C-40C等)を介して照射することができる。 When tungsten oxide is contained in the laminate of the present invention, a higher level of hydrophilization activity is expressed by the visible light sensitizing action of tungsten oxide. In a laminate provided with an intermediate layer containing tungsten oxide, the contact angle with water on the coating surface should be reduced to 5 degrees or less in response to irradiation with visible light having a wavelength of 400 to 500 nm and an intensity of 0.2 mW / cm 2. Is possible. The visible light illuminance can be measured using, for example, a spectrum radiometer (USR-40D) manufactured by USHIO INC. Moreover, for the measurement of the contact angle with water, for example, a device such as a contact angle measuring machine (CA-X150) manufactured by Kyowa Interface Science Co., Ltd. can be suitably used. Irradiation with visible light uses, for example, a xenon lamp (Hayashi Watch Industry, LA-250Xe) and passes through various color glass filters (for example, B-47, L-42, C-40C, etc., manufactured by Asahi Techno Glass). Can be irradiated.
本発明の積層体の被膜に含まれる両角錐体状のアナターゼ型酸化チタン微粒子は、粒子の面が基材に密着するため、球状の粒子と比較して基材への接触面積が大きく付着力が強い。すなわち、両角錐体状の粒子が基材に対して配向し、付着力が強くなるため、耐久性の良好な被膜を提供することが出来る。 The double-pyramidal anatase-type titanium oxide fine particles contained in the coating film of the laminate of the present invention have a large contact area to the substrate compared to the spherical particles because the surface of the particles is in close contact with the substrate. Is strong. That is, since the both pyramid-shaped particles are oriented with respect to the substrate and the adhesion is increased, it is possible to provide a highly durable coating.
前記基材として、例えば、ガラス、セラミックス等の無機多結晶体や単結晶基板、金属などの導電性基板、プラスチック、フィルムやそれらの組み合わせ、ないし、それらの積層体などが利用できる。また、色素増感型太陽電池として使用する場合、インジウム−スズ酸化物(ITO)やフッ素ドープした酸化スズ(FTO)等をコートしたガラス基材を好適に使用する。 As the substrate, for example, an inorganic polycrystal such as glass or ceramics, a single crystal substrate, a conductive substrate such as metal, a plastic, a film, a combination thereof, or a laminate thereof can be used. When used as a dye-sensitized solar cell, a glass substrate coated with indium-tin oxide (ITO), fluorine-doped tin oxide (FTO), or the like is preferably used.
本発明の積層体における被膜の厚さは10nm〜10μmであることが好ましい。特に透明性を必要とする用途の場合、前記皮膜の厚さを10nm〜500nmにすると高い透明性を発現し、外装や内装建材に応用した際、意匠性を損ねることが無い。 The thickness of the coating in the laminate of the present invention is preferably 10 nm to 10 μm. In particular, in the case of applications requiring transparency, when the thickness of the film is 10 nm to 500 nm, high transparency is exhibited, and when applied to an exterior or interior building material, design properties are not impaired.
本発明に係る上記積層体は、好ましくは、pHが4以下又は8以上に調整された両角錐体状のアナターゼ型酸化チタン微粒子の分散液を基材に塗布する工程を含む方法により簡便に製造することができる。 The laminate according to the present invention is preferably produced simply by a method comprising a step of applying a dispersion of bipyramidal anatase-type titanium oxide fine particles having a pH adjusted to 4 or less or 8 or more to a substrate. can do.
この両角錐体状のアナターゼ型酸化チタン微粒子の分散液は、前記両角錐体状のアナターゼ型酸化チタン微粒子を水や有機溶媒へ分散させることにより得ることができる。
分散液をコーティング施工する際の人体への悪影響を低減するため、前記分散液の溶媒は水であることが好ましい。
また、酸化チタンの表面の等電点でのpHは6程度であるので、分散性を高めるため、前記分散液の溶媒のpHは4以下ないし8以上であることが好ましい。
The dispersion of the bipyramidal anatase-type titanium oxide fine particles can be obtained by dispersing the bipyramidal-shaped anatase-type titanium oxide fine particles in water or an organic solvent.
In order to reduce the adverse effect on the human body when coating the dispersion, it is preferable that the solvent of the dispersion is water.
Moreover, since the pH at the isoelectric point of the surface of titanium oxide is about 6, the pH of the solvent of the dispersion is preferably 4 or less to 8 or more in order to improve dispersibility.
分散液中には水酸化ナトリウム、水酸化カリウム、アンモニア、アミン類などのアルカリ成分や、硝酸、塩酸、硫酸、過塩素酸、フッ酸、臭素酸、沃素酸、亜硝酸、酢酸、蓚酸、リンゴ酸、硝酸、塩酸、硫酸などの酸成分が含まれていても構わない。高度な分散性を得るためのより具体的な態様として、溶媒として硝酸、塩酸が用いられ、酸濃度は0.01M以上、より好ましくは0.1M以上である。 The dispersion contains alkaline components such as sodium hydroxide, potassium hydroxide, ammonia, amines, nitric acid, hydrochloric acid, sulfuric acid, perchloric acid, hydrofluoric acid, bromic acid, iodic acid, nitrous acid, acetic acid, oxalic acid, apple An acid component such as acid, nitric acid, hydrochloric acid, or sulfuric acid may be contained. As a more specific embodiment for obtaining high dispersibility, nitric acid and hydrochloric acid are used as a solvent, and the acid concentration is 0.01M or more, more preferably 0.1M or more.
前記分散液の好ましい固形分濃度の範囲は10%以下である。この範囲であれば、分散性が高く、沈殿を生じることなく、室温で長期間安定である。また、固形分濃度の範囲を10%以下とすることで、基板に塗膜した際、粒子同士の凝集が抑制され、被膜の高度な結晶配向が得られる。 A preferable solid content concentration range of the dispersion is 10% or less. Within this range, the dispersibility is high and stable at room temperature for a long time without causing precipitation. In addition, by setting the solid content concentration range to 10% or less, aggregation of particles is suppressed when a film is coated on a substrate, and a high crystal orientation of the film is obtained.
前記分散液の分散性を高めるために、前記両角錐体状のアナターゼ型酸化チタン微粒子の表面に、更に、アルミニウム、ケイ素、チタニウム、ジルコニウム、スズ、アンチモン、亜鉛からなる群より選択される少なくとも一種の水酸化物、ないし、酸化物が被覆されていても良い。また、カルボン酸、アミン、ポリオール、シロキサン、シランカップリング剤等の有機物の少なくとも一種が修飾されていても構わない。更に、リンゴ酸ジイソステアリル、イソノナン酸イソトリデシル、ステアリン酸、トリイソステアリン酸トリメチロールプロパン等の有機物で表面処理しても構わない。表面修飾物は物理的に接触していても化学的に結合していても構わない。また、鉄などの遷移金属をドーピングしても構わない。 In order to enhance the dispersibility of the dispersion, at least one selected from the group consisting of aluminum, silicon, titanium, zirconium, tin, antimony, and zinc is further provided on the surface of the bipyramidal anatase-type titanium oxide fine particles. These hydroxides or oxides may be coated. Moreover, at least 1 type of organic substances, such as carboxylic acid, an amine, a polyol, siloxane, a silane coupling agent, may be modified. Furthermore, the surface treatment may be performed with an organic substance such as diisostearyl malate, isotridecyl isononanoate, stearic acid, trimethylolpropane triisostearate. The surface modification product may be in physical contact or chemically bonded. Further, a transition metal such as iron may be doped.
本発明の分散液には更にバインダー成分が含まれていてもよい。バインダー成分を加えることで、塗膜の強度や基材との密着性を向上させることができる。バインダーとして、例えば、シロキサン結合を有する物質を好適に使用することができる。 The dispersion of the present invention may further contain a binder component. By adding a binder component, the strength of the coating film and the adhesion to the substrate can be improved. As the binder, for example, a substance having a siloxane bond can be suitably used.
シロキサン結合は化学的な安定性や耐候性も高い。前記シロキサン結合を有する物質としては水ガラス等のアルカリシリケート、コロイダルシリカ、アルミノシリケート化合物を使用することもできる。 Siloxane bonds have high chemical stability and weather resistance. As the substance having a siloxane bond, an alkali silicate such as water glass, colloidal silica, or an aluminosilicate compound may be used.
アルミノシリケート化合物はシリケート化合物のSiの一部をAlで置換した化合物であって、更に電荷を補償するためにH+やLi+、Na+、K+、Rb+、Cs+、Fr+などのアルカリ金属イオンやBe2+、Mg2+、Ca2+、Sr2+、Ba2+、Ra2+などのアルカリ土類金属イオンが含有されていてもよい。前記シリケート結合を有する化合物のSiの一部をAlで置換した物や、ゼオライトなどを使用することができる。 The aluminosilicate compound is a compound in which a part of Si of the silicate compound is substituted with Al, and in order to further compensate the charge, such as H + , Li + , Na + , K + , Rb + , Cs + , Fr +, etc. Alkali metal ions and alkaline earth metal ions such as Be 2+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , and Ra 2+ may be contained. A substance obtained by substituting a part of Si of the compound having a silicate bond with Al, zeolite, or the like can be used.
また、前記シロキサン結合を有する物質として、更に好ましい態様において、シリコーンエマルジョンを用いることができる。シリコーンエマルジョンとしては、メチルトリクロルシラン、メチルトリブロムシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、メチルトリt−ブトキシシラン;エチルトリクロルシラン、エチルトリブロムシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリイソプロポキシシラン、エチルトリt−ブトキシシラン;n−プロピルトリクロルシラン、n−プロピルトリブロムシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−プロピルトリイソプロポキシシラン、n−プロピルトリt−ブトキシシラン;n−ヘキシルトリクロルシラン、n−ヘキシルトリブロムシラン、n−ヘキシルトリメトキシシラン、n−ヘキシルトリエトキシシラン、n−ヘキシルトリイソプロポキシシラン、n−ヘキシルトリt−ブトキシシラン;n−デシルトリクロルシラン、n−デシルトリブロムシラン、n−デシルトリメトキシシラン、n−デシルトリエトキシシラン、n−デシルトリイソプロポキシシラン、n−デシルトリt−ブトキシシラン;n−オクタデシルトリクロルシラン、n−オクタデシルトリブロムシラン、n−オクタデシルトリメトキシシラン、n−オクタデシルトリエトキシシラン、n−オクタデシルトリイソプロポキシシラン、n−オクタデシルトリt−ブトキシシラン;フェニルトリクロルシラン、フェニルトリブロムシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリイソプロポキシシラン、フェニルトリt−ブトキシシラン;テトラクロルシラン、テトラブロムシラン、テトラメトキシシラン、テトラエトキシシラン、テトラブトキシシラン、ジメトキシジエトキシシラン;ジメチルジクロルシラン、ジメチルジブロムシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン;ジフェニルジクロルシラン、ジフェニルジブロムシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン;フェニルメチルジクロルシラン、フェニルメチルジブロムシラン、フェニルメチルジメトキシシラン、フェニルメチルジエトキシシラン;トリクロルヒドロシラン、トリブロムヒドロシラン、トリメトキシヒドロシラン、トリエトキシヒドロシラン、トリイソプロポキシヒドロシラン、トリt−ブトキシヒドロシラン;ビニルトリクロルシラン、ビニルトリブロムシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリイソプロポキシシラン、ビニルトリt−ブトキシシラン;トリフルオロプロピルトリクロルシラン、トリフルオロプロピルトリブロムシラン、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、トリフルオロプロピルトリイソプロポキシシラン、トリフルオロプロピルトリt−ブトキシシラン;γ−グリシドキシプロピルメチルジメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリイソプロポキシシラン、γ−グリシドキシプロピルトリt−ブトキシシラン;γ−メタアクリロキシプロピルメチルジメトキシシラン、γ−メタアクリロキシプロピルメチルジエトキシシラン、γ−メタアクリロキシプロピルトリメトキシシラン、γ−メタアクリロキシプロピルトリエトキシシラン、γ−メタアクリロキシプロピルトリイソプロポキシシラン、γ−メタアクリロキシプロピルトリt−ブトキシシラン;γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリイソプロポキシシラン、γ−アミノプロピルトリt−ブトキシシラン;γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、γ−メルカプトプロピルトリイソプロポキシシラン、γ−メルカプトプロピルトリt−ブトキシシラン;β−(3、4−エポキシシクロヘキシル)エチルトリメトキシシラン、β−(3、4−エポキシシクロヘキシル)エチルトリエトキシシランの部分加水分解物、脱水宿重合物を好適に使用することができる。 In a more preferred embodiment, a silicone emulsion can be used as the substance having a siloxane bond. Examples of silicone emulsions include methyltrichlorosilane, methyltribromosilane, methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, methyltrit-butoxysilane; ethyltrichlorosilane, ethyltribromosilane, ethyltrimethoxysilane, Ethyltriethoxysilane, ethyltriisopropoxysilane, ethyltri-t-butoxysilane; n-propyltrichlorosilane, n-propyltribromosilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, n-propyltriisopropoxy Silane, n-propyltri-t-butoxysilane; n-hexyltrichlorosilane, n-hexyltribromosilane, n-hexyltrimethoxysilane, n-hexyltrieto Sisilane, n-hexyltriisopropoxysilane, n-hexyltri-t-butoxysilane; n-decyltrichlorosilane, n-decyltribromosilane, n-decyltrimethoxysilane, n-decyltriethoxysilane, n-decyltriisoiso Propoxysilane, n-decyltri-t-butoxysilane; n-octadecyltrichlorosilane, n-octadecyltribromosilane, n-octadecyltrimethoxysilane, n-octadecyltriethoxysilane, n-octadecyltriisopropoxysilane, n-octadecyltri t-butoxysilane; phenyltrichlorosilane, phenyltribromosilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriisopropoxysilane, phenyltrit-butoxysilane Tetrachlorosilane, tetrabromosilane, tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, dimethoxydiethoxysilane; dimethyldichlorosilane, dimethyldibromosilane, dimethyldimethoxysilane, dimethyldiethoxysilane; diphenyldichlorosilane, diphenyl Dibromosilane, diphenyldimethoxysilane, diphenyldiethoxysilane; phenylmethyldichlorosilane, phenylmethyldibromosilane, phenylmethyldimethoxysilane, phenylmethyldiethoxysilane; trichlorohydrosilane, tribromohydrosilane, trimethoxyhydrosilane, triethoxyhydrosilane , Triisopropoxyhydrosilane, tri-t-butoxyhydrosilane; vinyltrichlorosilane, vinyltribro Silane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriisopropoxysilane, vinyltrit-butoxysilane; trifluoropropyltrichlorosilane, trifluoropropyltribromosilane, trifluoropropyltrimethoxysilane, trifluoropropyltriethoxysilane , Trifluoropropyltriisopropoxysilane, trifluoropropyltri-t-butoxysilane; γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ -Glycidoxypropyltriethoxysilane, γ-glycidoxypropyltriisopropoxysilane, γ-glycidoxypropyltri-t-butoxysilane; γ-methacryloxy Propylmethyldimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-methacryloxypropyltriisopropoxysilane, γ-meta Acryloxypropyltri-t-butoxysilane; γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldiethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyltriisopropoxysilane Γ-aminopropyltri-t-butoxysilane; γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropylmethyldiethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-merca P-propyltriethoxysilane, γ-mercaptopropyltriisopropoxysilane, γ-mercaptopropyltri-t-butoxysilane; β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) A partial hydrolyzate or dehydration polymer of ethyltriethoxysilane can be preferably used.
前記分散液のバインダー成分として、フッ素樹脂エマルジョンを使用することもできる。フッ素樹脂を含む塗膜は化学的安定性が高く、また、耐候性も高く、柔軟性にも優れている。 A fluororesin emulsion can also be used as a binder component of the dispersion. A coating film containing a fluororesin has high chemical stability, high weather resistance, and excellent flexibility.
フッ素樹脂エマルジョンとしては、例えばポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル、ポリクロロトリフルオロエチレン、テトラフルオロエチレン−ヘキサフルオロプロピレンコポリマー、エチレン−テトラフルオロエチレンコポリマー、エチレン−クロロトリフルオロエチレンコポリマー、テトラフルオロエチレン−パーフルオロアルキルビニルエーテルコポリマー、パーフルオロシクロポリマー、ビニルエーテル−フルオロオレフィンコポリマー、ビニルエステル−フルオロオレフィンコポリマー、テトラフルオロエチレン−ビニルエーテルコポリマー、クロロトリフルオロエチレン−ビニルエーテルコポリマー、テトラフルオロエチレンウレタン架橋体、テトラフルオロエチレンエポキシ架橋体、テトラフルオロエチレンアクリル架橋体、テトラフルオロエチレンメラミン架橋体等フルオロ基を含有するポリマーのエマルジョン等から選択される少なくとも一つが好適に利用できる。 Examples of the fluororesin emulsion include polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, polychlorotrifluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, ethylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, Tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, perfluorocyclopolymer, vinyl ether-fluoroolefin copolymer, vinyl ester-fluoroolefin copolymer, tetrafluoroethylene-vinyl ether copolymer, chlorotrifluoroethylene-vinyl ether copolymer, cross-linked tetrafluoroethylene urethane, Tetrafluoroethylene epoxy crosslinked product, tetra Le Oro ethylene acrylic crosslinked, at least one selected from the emulsion such as polymers containing tetrafluoroethylene melamine crosslinked body and the like fluoro group can be suitably used.
本発明に係る両角錐体状のアナターゼ型酸化チタン微粒子を製造する方法として、出発原料としてチタン酸のナノチューブを用い、尿素ないしチオ尿素の少なくとも一種を含む水溶液中で水熱反応させることによって好適に製造することができる。前記出発原料は、例えば、酸化チタン粒子を水酸化ナトリウム水溶液中において、水熱処理することによって得られる。前記出発原料はチタン酸のシートがスクロールした構造のナノチューブからなり、シートの層間にプロトンやナトリウムイオンが含まれていても構わない。 As a method for producing a bipyramidal anatase-type titanium oxide fine particle according to the present invention, it is preferable to use a titanic acid nanotube as a starting material and perform a hydrothermal reaction in an aqueous solution containing at least one of urea or thiourea. Can be manufactured. The starting material can be obtained, for example, by hydrothermally treating titanium oxide particles in an aqueous sodium hydroxide solution. The starting material is made of nanotubes having a structure in which a titanic acid sheet is scrolled, and protons and sodium ions may be contained between the sheets.
本発明に係る両角錐体状のアナターゼ型酸化チタン微粒子を製造するためのより好ましい方法として、前記チオ尿素を含んだ水溶液のpHを2以上、水熱処理温度を150℃以上とする。
pHが2以上であると、球状の微粒子の析出が抑制され、両角錐体状体を効率良く得ることができ、水熱処理温度が150℃以上であると、高度に結晶化した微粒子を得ることができる。
As a more preferable method for producing the bipyramidal anatase-type titanium oxide fine particles according to the present invention, the pH of the aqueous solution containing thiourea is 2 or more and the hydrothermal treatment temperature is 150 ° C. or more.
When the pH is 2 or more, precipitation of spherical fine particles is suppressed, and a double pyramid can be efficiently obtained. When the hydrothermal treatment temperature is 150 ° C. or higher, highly crystallized fine particles are obtained. Can do.
前記水熱反応溶液にはチオ尿素が含まれるため、得られた両角錐体状のアナターゼ型酸化チタン微粒子には窒素ないし硫黄がドープされている。また、ドープ量を高めるため、前記両角錐体状のアナターゼ型酸化チタン微粒子に、更に、アンモニア、炭化水素、硫化水素等の還元性ガス中で熱処理しても良い。 Since the hydrothermal reaction solution contains thiourea, the obtained pyramid-shaped anatase-type titanium oxide fine particles are doped with nitrogen or sulfur. In order to increase the doping amount, the anatase-type titanium oxide fine particles having a pyramidal shape may be further heat-treated in a reducing gas such as ammonia, hydrocarbon, hydrogen sulfide or the like.
本発明に係る分散液を製造する方法としては、例えば、前記両角錐体状のアナターゼ型酸化チタン微粒子を酸性水溶液に分散させる方法、もしくは、前記酸化チタン微粒子をアルカリ性の水溶液に分散させる方法が挙げられる。
前述したように、酸化チタンの表面の等電点でのpHは6程度であるので、分散性を高めるため、前記分散液の溶媒のpHは4以下又は8以上であることが好ましい。更に分散性を高めるため、分散液を攪拌、ないし、超音波処理をしてもかまわない。
Examples of the method for producing the dispersion according to the present invention include a method of dispersing the bipyramidal anatase-type titanium oxide fine particles in an acidic aqueous solution, or a method of dispersing the titanium oxide fine particles in an alkaline aqueous solution. It is done.
As described above, since the pH at the isoelectric point on the surface of titanium oxide is about 6, the pH of the solvent of the dispersion is preferably 4 or less or 8 or more in order to improve dispersibility. In order to further improve dispersibility, the dispersion may be stirred or sonicated.
上記分散液の基材への塗布方法としては、スピンコート法、ローラ法、ディップ法、スプレー法、エアーナイフ法、ブレード法等を用いることができる。また、前記分散液と、カチオン性ポリマーを含む溶液に対し、基材を交互に浸漬することによって製造する方法も用いることができる。本発明の積層体において、前記両角錐体状のアナターゼ型酸化チタン微粒子を含む被膜と基材の間に中間層を設ける場合、中間層をコーティングした後に、前記分散液を塗布することで好適に製造することができる。 As a method for applying the dispersion to the substrate, a spin coating method, a roller method, a dipping method, a spray method, an air knife method, a blade method, or the like can be used. Moreover, the method of manufacturing by immersing a base material alternately with respect to the said dispersion liquid and the solution containing a cationic polymer can also be used. In the laminate of the present invention, in the case where an intermediate layer is provided between the coating containing the bipyramidal anatase-type titanium oxide fine particles and the substrate, it is preferable to apply the dispersion after coating the intermediate layer. Can be manufactured.
また、本発明の積層体の被膜において、その結晶方向を面内方向にも配向させるためには、LB法を好適に用いることができる。また、その結晶方向を面内方向にも配向させるため、あらかじめ基板に液晶分子などのポリマーを塗布する方法も好適に用いることができる。 Moreover, in order to orient the crystal direction in the in-plane direction in the coating film of the laminate of the present invention, the LB method can be suitably used. Moreover, in order to orient the crystal direction in the in-plane direction, a method of applying a polymer such as liquid crystal molecules to the substrate in advance can be suitably used.
更に、本発明の積層体に含まれる酸化チタン微粒子の結晶性を高めたり、緻密性を上げるため、被膜を形成させた後に熱処理をしても構わない。熱処理温度としては、50℃〜600℃が好適である。 Furthermore, in order to increase the crystallinity of the titanium oxide fine particles contained in the laminate of the present invention or to increase the denseness, heat treatment may be performed after the coating is formed. The heat treatment temperature is preferably 50 ° C to 600 ° C.
本発明の積層体は高度な光触媒活性を有し、例えば、建築部材、自動車部材、空気・水浄化用フィルター部材等へ応用することができる。
鏡、レンズ、板ガラス等の基材の表面に本発明に係る酸化チタン微粒子を含む被膜を形成させることで表面を高度に親水化することができ、曇りや水滴形成を防止する防曇効果を発揮することができる。
The laminate of the present invention has a high photocatalytic activity and can be applied to, for example, building members, automobile members, air / water purification filter members, and the like.
By forming a coating film containing titanium oxide fine particles according to the present invention on the surface of a substrate such as a mirror, lens, or plate glass, the surface can be made highly hydrophilic and exhibits an anti-fogging effect that prevents fogging and water droplet formation. can do.
本発明の積層体は、表面に付着した有機物を分解する効果により、表面が汚れるのを防止し、または表面を自己浄化(セルフクリーニング)し、若しくは容易に清掃する技術にも適用できる。
このようなセルフクリーニング効果により、メンテナンスコストを低減させたり、商品寿命を長期化することができる。
The laminate of the present invention can be applied to a technique for preventing the surface from becoming dirty due to the effect of decomposing organic substances attached to the surface, or for self-cleaning (self-cleaning) or easily cleaning the surface.
Such a self-cleaning effect can reduce maintenance costs and extend the product life.
本発明の積層体に含まれる酸化チタン微粒子を励起するための光源として、例えば、ブラックライト、殺菌ランプ、低圧水銀ランプ、高圧水銀ランプ、キセノンランプ、水銀−キセノンランプ、ハロゲンランプ、メタルハライドランプ、LED(白色、青、緑、赤)、レーザー光、太陽光等が好適に使用できる。
本発明の積層体は、特に、白色蛍光灯、白熱灯、LED等の室内照明の照射でも高度に親水化するため、トイレ、バス、キッチンといった屋内への用途展開が可能である。
本発明の積層体が適用できる具体的な物品としては、自動車、鉄道車両、航空機、船舶、潜水艇、雪上車、ロープウェイのゴンドラ、遊園地のゴンドラ、宇宙船、のような乗り物の窓に用いられるガラス;眼鏡レンズ、光学レンズ、写真機レンズ、内視鏡レンズ、照明用レンズ、半導体製造用レンズのようなレンズ;浴室または洗面所用鏡、車両用バックミラー、歯科用歯鏡、道路鏡のような鏡;防護用またはスポーツ用ゴーグルまたはマスク、潜水用マスク、ヘルメットのシールド;冷凍食品陳列ケースのガラス;計測機器のカバーガラス、およびそれらの物品に貼付可能なフィルムなどが好適に利用できる。また、板ガラス、壁材、壁紙、タイル、屋根材等の建築材料を適用した場合、部材の自己浄化機能を発現することができる。
As a light source for exciting the titanium oxide fine particles contained in the laminate of the present invention, for example, black light, sterilization lamp, low-pressure mercury lamp, high-pressure mercury lamp, xenon lamp, mercury-xenon lamp, halogen lamp, metal halide lamp, LED (White, blue, green, red), laser light, sunlight, and the like can be suitably used.
In particular, the laminate of the present invention is highly hydrophilic even when irradiated with indoor lighting such as a white fluorescent lamp, an incandescent lamp, and an LED, so that it can be used for indoor applications such as toilets, baths, and kitchens.
Specific articles to which the laminate of the present invention can be applied are used for windows of vehicles such as automobiles, railway vehicles, aircrafts, ships, submersibles, snow vehicles, ropeway gondola, amusement park gondola, and spacecraft. Glass such as eyeglass lenses, optical lenses, camera lenses, endoscope lenses, illumination lenses, semiconductor manufacturing lenses; bathroom or toilet mirrors, vehicle rearview mirrors, dental tooth mirrors, road mirrors Such mirrors; protective or sports goggles or masks, diving masks, helmet shields; glass for frozen food display cases; cover glasses for measuring instruments; and films that can be applied to these articles can be suitably used. Moreover, when building materials, such as plate glass, a wall material, wallpaper, a tile, and a roofing material, are applied, the self-purification function of a member can be expressed.
また、本発明の積層体や分散液は大気浄化や水質浄化に使用することができる。例えば、水質浄化として応用する場合、本発明の分散液を水中に投入したり、本発明の積層体を水中に投入して水中の汚染物質を吸着、分解することができる。
基材としては、ガラス、セラミックス、金属等の基材や、多孔質の発泡体、ハニカム、ガラスやセラミックスの不織布、ガラス繊維、ガラスやシリカゲルなどのビーズ状物質等が好適に使用できる。
水中に存在する積層体に対し、酸化チタン微粒子の光励起をともなう光照射をおこなって水を浄化する。
Moreover, the laminate and the dispersion of the present invention can be used for air purification and water purification. For example, when applied as water purification, the dispersion of the present invention can be poured into water, or the laminate of the present invention can be poured into water to adsorb and decompose contaminants in the water.
As the substrate, substrates such as glass, ceramics, and metals, porous foams, honeycombs, nonwoven fabrics of glass and ceramics, glass fibers, bead-like substances such as glass and silica gel, and the like can be suitably used.
The laminated body existing in water is irradiated with light accompanied by photoexcitation of titanium oxide fine particles to purify the water.
本発明の積層体に含まれる酸化チタン微粒子ないし無機化合物の少なくとも一方を光励起するための光源として、例えば、蛍光灯、ブラックライト、殺菌ランプ、白熱電球、低圧水銀ランプ、高圧水銀ランプ、キセノンランプ、水銀−キセノンランプ、ハロゲンランプ、メタルハライドランプ、LED(白色、青、緑、赤)、レーザー光、太陽光等が好適に使用できる。 As a light source for photoexciting at least one of titanium oxide fine particles or inorganic compounds contained in the laminate of the present invention, for example, a fluorescent lamp, a black light, a sterilizing lamp, an incandescent lamp, a low pressure mercury lamp, a high pressure mercury lamp, a xenon lamp, Mercury-xenon lamps, halogen lamps, metal halide lamps, LEDs (white, blue, green, red), laser light, sunlight, and the like can be suitably used.
本発明の分散液に含まれる酸化チタン微粒子を懸濁させて使用する場合、水質を浄化した後に、遠心分離やろ過によって酸化チタン微粒子を回収しても構わない。また、磁石で回収するために本発明に係る酸化チタン微粒子に磁性材料を固定化しても構わない。 When the titanium oxide fine particles contained in the dispersion of the present invention are suspended and used, the titanium oxide fine particles may be recovered by centrifugal separation or filtration after purifying the water quality. Moreover, you may fix | immobilize a magnetic material in the titanium oxide microparticles | fine-particles which concern on this invention in order to collect | recover with a magnet.
また、他の水質浄化の具体的方法として、多孔質やハニカム等のフィルター状の基材に両角錐体状の酸化チタン微粒子を固定化し、被処理水をこのフィルターに流通させて処理しても構わない。この積層体に対し光照射をおこないながら被処理水を流通させても構わないし、被処理水を流通させた後に積層体に対して光照射をしても構わない。 In addition, as another specific method for water purification, a double-pyramidal titanium oxide fine particle is fixed to a filter-like base material such as a porous or honeycomb, and the water to be treated is circulated through this filter for treatment. I do not care. The treated water may be circulated while irradiating the laminate with light, or the laminated body may be radiated with light after the treated water is circulated.
また、本発明の積層体は高効率な色素増感太陽電池、透明導電材料、誘電体、液晶、メモリ素子、光学薄膜、バイオセンサ電極、防錆材料、紫外線遮蔽材料、化粧料等、広範な用途へ応用することが可能である。 In addition, the laminate of the present invention has a wide range of high-efficiency dye-sensitized solar cells, transparent conductive materials, dielectrics, liquid crystals, memory elements, optical thin films, biosensor electrodes, rust preventive materials, ultraviolet shielding materials, cosmetics, etc. It can be applied to applications.
次に、本発明を実施例により具体的に説明するが、これらの実施例になんら制限されるものではない。これに先だって、本発明の積層体を図により説明する。
図1(a)〜(d)に本発明の積層体の一例を示す。基材の上に被膜が形成されており、被膜には両角錐体状の酸化チタン微粒子を含んでなる。
図1(a)に示すように両角錐体状の酸化チタン微粒子が1層分の厚みであっても良いし、(b)に示すように2層分の厚みであっても良いし、それ以上の厚みであっても構わない。
両角錐体状の酸化チタン微粒子の(101)面が基材に密着するため、被膜は(101)面に配向する。また、(c)に示すように、被膜の中にバインダー成分が含まれていても良い。被膜と基材の密着性を高めたり、光触媒活性を更に高めるため、(d)に示すように、被膜と基材の間に中間層を設けても構わない。基材の形状は板ガラス等のような平面なものでも、フィルター等の複雑形状を有する基材も好適に使用することができる。以下に本発明の積層体の具体的な製造方法を記載するが、本発明はこれらの実施例になんら制限されるものではない。
また、図1(e)〜(g)にバンド構造を示す。(e)は従来の酸化チタン、(f)は本発明に係る窒素ないし硫黄がドープされた酸化チタン、(g)は本発明に係る窒素ないし硫黄がドープされた酸化チタンに更にバンドギャップが3.0eV以下、伝導帯、荷電子帯のポテンシャルが酸化チタンよりも貴である無機化合物が含まれる場合のバンド構造を示す。これらの材料を光触媒として機能させるためにはバンドギャップよりも高いエネルギーを持つ光照射が必要である。従来の酸化チタンの場合、バンドギャップは3.2eVで、光励起するためには380nm以下の波長を持つ紫外線の照射が必要となる。本発明に係る酸化チタンには窒素、硫黄、炭素、リン、ホウ素及びフッ素からなる群より選択される少なくとも一つのアニオンがドープされているため、波長が450nm程度の可視光を吸収することが可能となる。また、本発明に係る酸化チタンに更に酸化タングステンの様なバンドギャップが3.0eV以下、伝導帯、荷電子帯のポテンシャルが酸化チタンよりも低い無機化合物が含まれる場合、光励起によって無機化合物に生成した正孔が酸化チタン側へ供給され、酸化チタン表面での酸化分解活性や親水化能力が更に向上する。
EXAMPLES Next, although an Example demonstrates this invention concretely, it is not restrict | limited to these Examples at all. Prior to this, the laminate of the present invention will be described with reference to the drawings.
An example of the laminated body of this invention is shown to Fig.1 (a)-(d). A film is formed on the base material, and the film contains both pyramid-shaped titanium oxide fine particles.
As shown in FIG. 1 (a), the double-pyramidal titanium oxide fine particles may have a thickness of one layer, or may have a thickness of two layers as shown in (b). You may be the above thickness.
Since the (101) plane of both pyramidal titanium oxide fine particles is in close contact with the substrate, the coating is oriented in the (101) plane. Further, as shown in (c), a binder component may be contained in the coating. In order to improve the adhesion between the coating and the substrate or to further increase the photocatalytic activity, an intermediate layer may be provided between the coating and the substrate as shown in (d). Even if the shape of a base material is a flat thing like plate glass etc., the base material which has complicated shapes, such as a filter, can also be used conveniently. Although the specific manufacturing method of the laminated body of this invention is described below, this invention is not restrict | limited at all to these Examples.
In addition, band structures are shown in FIGS. (E) is a conventional titanium oxide, (f) is a titanium oxide doped with nitrogen or sulfur according to the present invention, (g) is a titanium oxide doped with nitrogen or sulfur according to the present invention, and further has a band gap of 3.0. The band structure is shown in the case where an inorganic compound having a potential of eV or less, conduction band, and valence band is more noble than titanium oxide is included. In order for these materials to function as a photocatalyst, light irradiation having an energy higher than the band gap is required. In the case of conventional titanium oxide, the band gap is 3.2 eV, and irradiation with ultraviolet rays having a wavelength of 380 nm or less is necessary for photoexcitation. Since the titanium oxide according to the present invention is doped with at least one anion selected from the group consisting of nitrogen, sulfur, carbon, phosphorus, boron, and fluorine, it can absorb visible light having a wavelength of about 450 nm. It becomes. In addition, when the titanium oxide according to the present invention further includes an inorganic compound having a band gap of 3.0 eV or less, such as tungsten oxide, and the potential of the conduction band and the valence band is lower than that of titanium oxide, the titanium oxide is generated in the inorganic compound by photoexcitation. Holes are supplied to the titanium oxide side, and the oxidative decomposition activity and hydrophilization ability on the titanium oxide surface are further improved.
1.出発原料となるチタン酸のナノチューブの作製
酸化チタン粉末(Degussa社、P-25)1.0gを10M水酸化ナトリウム水溶液108gに投入し、10分間攪拌することにより白色懸濁液を得た。この白色懸濁液を容量100mlのフッ素樹脂製の耐圧反応容器に入れて密閉し、120℃で40時間保持した。反応終了後、室温まで自然放冷させ、白色沈殿物を含む溶液を回収した。洗浄工程として、この白色沈殿物を含む溶液から、上澄み液をまずスポイトにて除去した。残った白色沈殿物に0.1Mの硝酸水溶液を少量ずつ添加し、攪拌後、遠心分離によって上澄み液を除去した。前記硝酸水溶液の添加と遠心分離の工程を上澄み液のpHが7になるまで繰り返した。これらの中和操作の後、残った白色沈殿物を蒸留水で2回洗浄した。この沈殿物を乾燥して得られる白色粉末を走査型透過電子顕微鏡(日立製作所(株)、S-4800)で観察したところ、中空ファイバ(ナノチューブ)の集合体であり、各ファイバの中心部は直径3.5nmの中空構造になっていることを確認した。また、X線回折(XRD:リガク社製、Rint Ultima-X)で結晶構造を解析したところ、いずれもチタン酸構造であることがわかった。
1. Preparation of titanic acid nanotube as starting material 1.0 g of titanium oxide powder (Degussa, P-25) was added to 108 g of 10M aqueous sodium hydroxide solution and stirred for 10 minutes to obtain a white suspension. This white suspension was sealed in a pressure-resistant reaction vessel made of fluororesin having a capacity of 100 ml, and kept at 120 ° C. for 40 hours. After completion of the reaction, the solution was naturally cooled to room temperature, and a solution containing a white precipitate was collected. As a washing step, the supernatant was first removed from the solution containing the white precipitate with a dropper. To the remaining white precipitate, a 0.1 M aqueous nitric acid solution was added little by little, and after stirring, the supernatant was removed by centrifugation. The steps of adding the nitric acid aqueous solution and centrifuging were repeated until the pH of the supernatant became 7. After these neutralization operations, the remaining white precipitate was washed twice with distilled water. When the white powder obtained by drying this precipitate was observed with a scanning transmission electron microscope (Hitachi, Ltd., S-4800), it was an assembly of hollow fibers (nanotubes). A hollow structure with a diameter of 3.5 nm was confirmed. Moreover, when the crystal structure was analyzed by X-ray diffraction (XRD: manufactured by Rigaku Corporation, Rint Ultima-X), it was found that all had a titanic acid structure.
2.両角錐体状のアナターゼ型酸化チタン微粒子の分散液および積層体の作製
上記で得られたチタン酸構造のナノチューブの沈殿物を用い、表1に示すような配合比で溶媒と混合、攪拌し、容量100mlのフッ素樹脂製の耐圧反応容器にて180℃で40時間保持した。反応終了後、室温まで自然放冷後、淡黄色の沈殿物を含む溶液に対し、遠心分離機をおこなうことにより、溶媒と沈殿物を分離し、溶媒を除去した。#1については、淡黄色沈殿物0.3gに0.1Mの硝酸水溶液を30mL加えて超音波処理をおこない、1wt%の分散液を得た。この分散液のpHをpH試験紙で計測したところ1.8以下であった。
この分散液をスピンコート法によって基板にコーティングした。スピンコート法は回転速度2500rpmで20秒おこなった。基板は石英ガラス基板を用いた。薄膜、粉末とも大気中で400℃×1時間の加熱処理をおこなったものも作製した。
2. Preparation of dispersion and laminate of anatase-type titanium oxide fine particles in the shape of both pyramids Using the precipitate of nanotubes of titanate structure obtained above, mixing with a solvent at a blending ratio as shown in Table 1, stirring, It was kept at 180 ° C. for 40 hours in a pressure resistant reactor made of fluororesin having a capacity of 100 ml. After completion of the reaction, the mixture was naturally allowed to cool to room temperature, and the solution containing the pale yellow precipitate was centrifuged to separate the solvent and the precipitate, and the solvent was removed. For # 1, 30 mL of a 0.1 M nitric acid aqueous solution was added to 0.3 g of a pale yellow precipitate and subjected to sonication to obtain a 1 wt% dispersion. The pH of this dispersion was measured with a pH test paper and found to be 1.8 or less.
This dispersion was coated on the substrate by spin coating. The spin coating method was performed at a rotational speed of 2500 rpm for 20 seconds. A quartz glass substrate was used as the substrate. Both thin films and powders were also heat-treated in air at 400 ° C. for 1 hour.
3.比較例となるアナターゼ型多結晶薄膜を含む積層体の作製
石原産業社製のアナターゼ型酸化チタン粒子のコロイド溶液(STS-01)を純水で濃度1wt%まで希釈し、石英ガラス基材にスピンコート法でコーティングした。スピンコート法は回転速度2500rpmで20秒おこなった。前記石原産業社製のコロイド溶液に含まれるアナターゼ型酸化チタン粒子は球状の粒子で、1次粒径が7nm、2次粒径が20〜30nmである。
3. Preparation of a laminate containing anatase-type polycrystalline thin film as a comparative example A colloidal solution of anatase-type titanium oxide particles (STS-01) manufactured by Ishihara Sangyo Co., Ltd. was diluted with pure water to a concentration of 1 wt%, and spinned onto a quartz glass substrate Coating was performed by a coating method. The spin coating method was performed at a rotational speed of 2500 rpm for 20 seconds. The anatase-type titanium oxide particles contained in the colloidal solution manufactured by Ishihara Sangyo Co., Ltd. are spherical particles having a primary particle size of 7 nm and a secondary particle size of 20 to 30 nm.
4.両角錐体状のアナターゼ型酸化チタン微粒子、前記微粒子を含む被膜を設けた積層体の構造観察
#1〜#3試料を乾燥させた粉末を走査型電子顕微鏡(SEM:日立製作所(株)、S-4800)で観察した結果を図2に示す。この結果、各サンプルとも、両角錐体状の微粒子が複数観察できた。#1試料の分散液をマイクログリッドに滴下したものを透過型電子顕微鏡(TEM:日立製作所(株)、H-9000NAR)で観察した結果を図2に示す。図3(a)が制限視野像、(b)が制限視野像の拡大図、(c)が電子線回折像である。制限視野像の拡大図の結果から格子縞が確認され、単結晶粒子であることがわかった。また、電子線回折像から、電子線はアナターゼ型酸化チタンの(100)方向と平行で、両角錐体状粒子の面が(101)面、長軸方向がアナターゼ型酸化チタンの(001)方向に対応していることがわかった。両角錐体状粒子の大きさは、30nm×50nmであった。
#1試料をガラス基材に塗布した薄膜状サンプルを走査型電子顕微鏡(SEM:日立製作所(株)、S-4800)で観察した結果を図4に示す。この結果、両角錐体状の微粒子が複数観察でき、基板に対して均一にコーティングされていることがわかった。また、基板上に粒子は1層ないし2層コーティングされていることから、被膜の膜厚は30nm〜120nmであることが予想される。
粉末状、並びに、薄膜状の#1試料に対し、Out-of-Plane法によるX線回折(XRD:リガク社製、Rint Ultima-X)をおこなった結果を図5に示す。Out-of-Plane法では、基板に垂直方向の結晶軸のみ回折される。この結果、粉末状のサンプルでは、アナターゼ型の酸化チタンの相のみが観察され、薄膜のOut-of-Plane測定では2θ角が25.5°の(101)面のみが観測された。これらの結果から、薄膜状のサンプルは基板に対してアナターゼ型酸化チタンの(101)面に強く配向していることがわかった。被膜に含まれる両角錐体状のアナターゼ型酸化チタン微粒子は各面が(101)面で構成されているため、この結晶面が基板に付着し、被膜として高度の配向性を示したものと予想される。なお、薄膜サンプルに見られる20°〜30°のブロードなピークはガラス基材のハローによるものである。また、薄膜状の試料を大気中で400℃×1時間の熱処理したサンプルについても、熱処理前後で大きな構造変化は認められず、熱処理前のサンプルと同様に高度な(101)面の配向が観察された。
4). Structure observation of double-pyramidal anatase-type titanium oxide fine particles and a laminate provided with a coating containing the fine particles. # 1 to # 3 The powder obtained by drying the sample was scanned with an electron microscope (SEM: Hitachi, Ltd., S -4800) is shown in FIG. As a result, a plurality of both pyramid-shaped fine particles could be observed in each sample. FIG. 2 shows the result of observing with a transmission electron microscope (TEM: Hitachi, Ltd., H-9000NAR) what the dispersion of # 1 sample was dropped on the microgrid. 3A is a limited field image, FIG. 3B is an enlarged view of the limited field image, and FIG. 3C is an electron diffraction image. From the result of the enlarged view of the limited field image, lattice fringes were confirmed, and it was found to be a single crystal particle. Further, from the electron diffraction pattern, the electron beam is parallel to the (100) direction of the anatase-type titanium oxide, the surface of the bipyramidal particles is the (101) plane, and the major axis direction is the (001) direction of the anatase-type titanium oxide. It turned out that it corresponds to. The size of both pyramidal particles was 30 nm × 50 nm.
FIG. 4 shows the results of observation of a thin film sample obtained by applying # 1 sample on a glass substrate with a scanning electron microscope (SEM: Hitachi, Ltd., S-4800). As a result, it was found that a plurality of fine particles having both pyramid shapes could be observed, and the substrate was uniformly coated. Further, since the particles are coated on the substrate in one or two layers, the film thickness is expected to be 30 nm to 120 nm.
FIG. 5 shows the results of X-ray diffraction (XRD: Rint Ultima-X, manufactured by Rigaku Corporation) by the out-of-plane method on the powdery and thin film # 1 samples. In the out-of-plane method, only the crystal axis perpendicular to the substrate is diffracted. As a result, in the powder sample, only the anatase-type titanium oxide phase was observed, and in the Out-of-Plane measurement of the thin film, only the (101) plane with a 2θ angle of 25.5 ° was observed. From these results, it was found that the thin film sample was strongly oriented in the (101) plane of anatase type titanium oxide with respect to the substrate. The double-pyramidal anatase-type titanium oxide fine particles contained in the film are composed of (101) faces on each side, so it is expected that this crystal face adheres to the substrate and shows a high degree of orientation as a film. Is done. The broad peak of 20 ° to 30 ° seen in the thin film sample is due to the halo of the glass substrate. In addition, a sample obtained by heat-treating a thin film sample in the atmosphere at 400 ° C. for 1 hour does not show a large structural change before and after the heat treatment, and a high degree of orientation of the (101) plane is observed as in the sample before the heat treatment. It was done.
5.積層体の被膜の光吸収特性、窒素ないし硫黄の組成分析
#1試料の薄膜化サンプルの透過率を分光光度計(島津製作所、UV-2100)で測定し、結果を図6に示す。比較例では可視光の吸収にともなう透過率の低下は見られない一方、#1試料の実施例において、可視光域の光吸収による透過率の低下が観測された。
次に、#1試料における窒素ないし硫黄のドープ量を調べるため、X線光電子分光装置(Physical Electronics社、Quantum 2000)を用いて窒素1s軌道、ないし、硫黄1s軌道を測定した。また、この結果を図7に示したが、#1試料には窒素と硫黄がドープされていることが明らかになった。特に、硫黄1sのピークは2種類存在し、少なくとも2種類の状態でドープされていることが明らかになった。また、それぞれの試料の構成元素を、チタン、酸素、炭素、窒素、硫黄としたときの窒素ないし硫黄の元素割合を図の中に示す。この結果、#1試料には窒素が0.62%、硫黄が0.36%ドープされていることがあきらかとなった。
5). Light Absorption Characteristics of Laminate Film, Composition Analysis of Nitrogen or Sulfur # 1 The transmittance of the thinned sample was measured with a spectrophotometer (Shimadzu Corporation, UV-2100), and the results are shown in FIG. In the comparative example, a decrease in transmittance due to absorption of visible light was not observed, but in the example of the # 1 sample, a decrease in transmittance due to light absorption in the visible light region was observed.
Next, in order to investigate the doping amount of nitrogen or sulfur in the # 1 sample, a nitrogen 1s orbit or sulfur 1s orbit was measured using an X-ray photoelectron spectrometer (Physical Electronics, Quantum 2000). Further, this result is shown in FIG. 7, and it was revealed that the # 1 sample was doped with nitrogen and sulfur. In particular, it was revealed that there are two types of sulfur 1s peaks, which are doped in at least two states. Moreover, the element ratio of nitrogen or sulfur when the constituent elements of each sample are titanium, oxygen, carbon, nitrogen, and sulfur is shown in the figure. As a result, it became clear that the # 1 sample was doped with 0.62% nitrogen and 0.36% sulfur.
6.被膜表面の水接触角の測定
#1試料と比較例となるアナターゼ型酸化チタン粒子をガラス基材にコーティングした被膜と、それぞれの被膜を大気中で400℃×1時間の熱処理したサンプルに対し、10Wの白色蛍光灯(東芝製)を用いて光照射した際の水との接触角を評価した。紫外線照度は紫外線照度計(トプコン製、UVR-2)による計測値で、50μW/cm2となるように設定した。水との接触角は、接触角測定器(協和界面科学社製、CA-X150)で測定し、結果を図8に示す。この結果、本発明の被膜の方が比較例よりも高度に親水化し、白色蛍光灯の照射30分以内に、水との接触角が5°以下に高度に親水化した。
また、#1試料と比較例試料に対し、紫外線照度5μW/cm2の白色蛍光灯を照射した場合の水との接触角を図9に示した。この結果、比較例は全く親水化しないのに対し、本発明の被膜は紫外線照度5μW/cm2の白色蛍光灯の照射で5°以下まで高度に親水化した。
6). Measurement of water contact angle on the coating surface # 1 sample and a coating with a glass substrate coated with anatase-type titanium oxide particles as a comparative example, and a sample in which each coating was heat-treated in the atmosphere at 400 ° C. for 1 hour, The contact angle with water when irradiated with light using a 10 W white fluorescent lamp (manufactured by Toshiba) was evaluated. The ultraviolet illuminance was measured with an ultraviolet illuminometer (Topcon, UVR-2), and was set to 50 μW / cm 2 . The contact angle with water was measured with a contact angle measuring device (Kyowa Interface Science Co., Ltd., CA-X150), and the results are shown in FIG. As a result, the coating film of the present invention became more hydrophilic than the comparative example, and the contact angle with water was highly hydrophilized to 5 ° or less within 30 minutes of irradiation with the white fluorescent lamp.
Further, FIG. 9 shows contact angles with water when the # 1 sample and the comparative example sample were irradiated with a white fluorescent lamp having an ultraviolet illuminance of 5 μW / cm 2 . As a result, the comparative example was not hydrophilized at all, whereas the coating of the present invention was highly hydrophilized to 5 ° or less when irradiated with a white fluorescent lamp having an ultraviolet illuminance of 5 μW / cm 2 .
7.出発原料を尿素とした場合の両角錐体状のアナターゼ型酸化チタン微粒子の合成
実施例1で得られたチタン酸構造のナノチューブの沈殿物0.33gを尿素5g、水50gと混合、攪拌し、容量100mlのフッ素樹脂製の耐圧反応容器にて180℃で40時間保持した。反応終了後、室温まで自然放冷後、沈殿物を含む溶液に対し、遠心分離機をおこなうことにより、溶媒と沈殿物を分離し、溶媒を除去した。得られた沈殿物を60℃で乾燥し、粉末を走査型電子顕微鏡(SEM:日立製作所(株)、S-4800)で観察した結果を図10に示す。この結果、両角錐体状の微粒子が複数観察できた。
7). Synthesis of Bipyramidal Anatase Type Titanium Oxide Fine Particles When Starting Material is Urea 0.33 g of titanate-structured nanotube precipitate obtained in Example 1 is mixed with 5 g of urea and 50 g of water, stirred, and volume It was kept at 180 ° C. for 40 hours in a 100 ml fluororesin pressure-resistant reaction vessel. After completion of the reaction, the mixture was allowed to cool to room temperature, and the solution containing the precipitate was centrifuged to separate the solvent and the precipitate, and the solvent was removed. The obtained precipitate was dried at 60 ° C., and the result of observing the powder with a scanning electron microscope (SEM: Hitachi, Ltd., S-4800) is shown in FIG. As a result, a plurality of fine particles having a pyramidal shape could be observed.
8.酸化タングステンからなる中間層を含む積層体の製造と、可視光での光誘起親水化特性
タングステン酸の粉末1.5gをアンモニア水28.5gに溶解し、タングステン酸アンモニウムの水溶液を合成した。この水溶液を石英ガラス基材に10秒間スピンコートした。スピンコートの回転数は1500rpmとした。スピンコート後、大気中で500℃、30分の加熱処理をおこない、酸化タングステン薄膜を得た。この酸化タングステン薄膜の上に、実施例2と同様に#1試料の両角錐体状のアナターゼ型酸化チタン微粒子を含むコーティング液をスピンコートした。ここで得られた積層体を#4試料とする。
#4試料の表面、断面を走査型電子顕微鏡(SEM:日立製作所(株)、S-4800)で観察した結果を図11に示す。この結果、基材の上に酸化タングステン、更にその上に両角錐体状のアナターゼ型酸化チタンがコーティングされている様子が観察できた。
#4試料に対し、波長400〜500nmの可視光を照射した際の水との接触角を評価した。可視光の照射はキセノンランプ(林時計工業、LA-250Xe)を用い、3枚の色ガラスフィルター(旭テクノグラス、B-47、L-42、C-40C)を介して照射した。可視光の照度はスペクトルラディオメーター(ウシオ電機、USR-40D)を用いて測定し、積算照度で0.2mW/cm2となるように設定した。#4試料と実施例2で得た#1試料、更に、実施例3で作製した比較例となるサンプルの水との接触角変化を図12に示す。比較例は全く親水化しなかったが、#1試料は若干ではあるが接触角が減少した。一方、酸化タングステンからなる中間層を含む積層体においては可視光の照射によっても高度に親水化することがわかった。
8). Production of laminate including intermediate layer made of tungsten oxide and photo-induced hydrophilization characteristics with visible light 1.5 g of tungstic acid powder was dissolved in 28.5 g of aqueous ammonia to synthesize an aqueous solution of ammonium tungstate. This aqueous solution was spin coated on a quartz glass substrate for 10 seconds. The rotation speed of the spin coat was 1500 rpm. After spin coating, heat treatment was performed in the atmosphere at 500 ° C. for 30 minutes to obtain a tungsten oxide thin film. On the tungsten oxide thin film, a coating solution containing anatase-type titanium oxide fine particles of # 1 sample as in Example 2 was spin-coated in the same manner as in Example 2. Let the laminated body obtained here be a # 4 sample.
FIG. 11 shows the results of observing the surface and cross section of # 4 sample with a scanning electron microscope (SEM: Hitachi, Ltd., S-4800). As a result, it was observed that tungsten oxide was coated on the base material and further anatase-type titanium oxide having a bipyramidal shape was coated thereon.
The contact angle with water when the # 4 sample was irradiated with visible light having a wavelength of 400 to 500 nm was evaluated. Visible light was irradiated using a xenon lamp (Hayashi Clock Industry, LA-250Xe) through three colored glass filters (Asahi Techno Glass, B-47, L-42, C-40C). The illuminance of visible light was measured using a spectrum radiometer (USH-40D, USR-40D), and the integrated illuminance was set to 0.2 mW / cm 2 . FIG. 12 shows changes in the contact angle between the # 4 sample and the # 1 sample obtained in Example 2, and the comparative sample produced in Example 3 with water. The comparative example did not hydrophilize at all, but the contact angle decreased slightly for the # 1 sample. On the other hand, it was found that a laminate including an intermediate layer made of tungsten oxide is highly hydrophilic even when irradiated with visible light.
本発明によれば、結晶方向が(101)面に高度に配向したアナターゼ酸化チタン被膜からなる積層体を提供することができる。前記被膜に含まれる両角錐体状のアナターゼ型酸化チタン微粒子は高度の結晶性をもち、可視光での光触媒反応を発現するため、優れた光触媒材料、高効率な色素増感型太陽電池、透明導電材料、誘電体、液晶、メモリ素子、光学薄膜、バイオセンサ電極、防錆材料、紫外線遮蔽材料、化粧料等、広範な用途へ応用することが可能である。 ADVANTAGE OF THE INVENTION According to this invention, the laminated body which consists of an anatase titanium oxide film with the crystal orientation highly oriented to the (101) plane can be provided. The bipyramidal anatase-type titanium oxide fine particles contained in the coating have a high degree of crystallinity and develop a photocatalytic reaction with visible light. Therefore, they are excellent photocatalytic materials, highly efficient dye-sensitized solar cells, transparent It can be applied to a wide range of applications such as conductive materials, dielectrics, liquid crystals, memory elements, optical thin films, biosensor electrodes, rust preventive materials, ultraviolet shielding materials, and cosmetics.
Claims (24)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007239653A JP2009012444A (en) | 2007-06-07 | 2007-09-14 | Layered product and its manufacturing method |
PCT/JP2008/058395 WO2008149630A1 (en) | 2007-06-07 | 2008-05-02 | Layered product and process for producing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007151751 | 2007-06-07 | ||
JP2007239653A JP2009012444A (en) | 2007-06-07 | 2007-09-14 | Layered product and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009012444A true JP2009012444A (en) | 2009-01-22 |
Family
ID=40353918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007239653A Pending JP2009012444A (en) | 2007-06-07 | 2007-09-14 | Layered product and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009012444A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011020061A (en) * | 2009-07-16 | 2011-02-03 | Toto Ltd | Photocatalyst-coated body and photocatalyst coating liquid |
JP2012120967A (en) * | 2010-12-07 | 2012-06-28 | Nissan Motor Co Ltd | Visible light-responsive photocatalyst, hydrophilic member including the same, and method for producing the same |
WO2017154743A1 (en) * | 2016-03-08 | 2017-09-14 | 国立研究開発法人科学技術振興機構 | Catalyst and use of same |
CN107999050A (en) * | 2017-11-28 | 2018-05-08 | 阜阳师范学院 | A kind of B-TiO2The preparation and its application of photochemical catalyst |
US20220042671A1 (en) * | 2020-08-07 | 2022-02-10 | Pure-Light Technologies, Inc. | Photocatalyst formulations and coatings |
US11819824B2 (en) | 2020-08-07 | 2023-11-21 | Pure-Light Technologies, Inc. | Surface coatings for self-decontamination |
US11964739B2 (en) | 2020-08-07 | 2024-04-23 | Roger K. Young | Coatings that reduce or prevent barnacle attachment to a marine structure |
EP4241879A4 (en) * | 2020-11-04 | 2024-06-12 | Panasonic Intellectual Property Management Co., Ltd. | Catalyst for food processing use, food processing apparatus, food processing method, and method for producing catalyst for food processing use |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10152396A (en) * | 1996-09-24 | 1998-06-09 | Kosei Kk | Material having crystalline oriented membrane of titanium dioxide and its production |
JP2000140636A (en) * | 1998-11-10 | 2000-05-23 | Sharp Corp | Formation of photo-catalyst body |
JP2003221230A (en) * | 2002-01-31 | 2003-08-05 | Sumitomo Chem Co Ltd | Ceramic dispersion and its production method |
JP2004197064A (en) * | 2002-05-27 | 2004-07-15 | Sumitomo Chem Co Ltd | Method for producing ceramic dispersion |
WO2005087372A1 (en) * | 2004-03-12 | 2005-09-22 | Toho Titanium Co., Ltd. | Titanium oxide photocatalyst and method for preparation thereof |
JP2007083454A (en) * | 2005-09-20 | 2007-04-05 | Toshiba Lighting & Technology Corp | Acrylic resin cover |
JP2007176753A (en) * | 2005-12-28 | 2007-07-12 | Sumitomo Osaka Cement Co Ltd | High-crystallinity anatase-type titanium oxide ultra-fine particle controlled in particle shape and production method thereof |
-
2007
- 2007-09-14 JP JP2007239653A patent/JP2009012444A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10152396A (en) * | 1996-09-24 | 1998-06-09 | Kosei Kk | Material having crystalline oriented membrane of titanium dioxide and its production |
JP2000140636A (en) * | 1998-11-10 | 2000-05-23 | Sharp Corp | Formation of photo-catalyst body |
JP2003221230A (en) * | 2002-01-31 | 2003-08-05 | Sumitomo Chem Co Ltd | Ceramic dispersion and its production method |
JP2004197064A (en) * | 2002-05-27 | 2004-07-15 | Sumitomo Chem Co Ltd | Method for producing ceramic dispersion |
WO2005087372A1 (en) * | 2004-03-12 | 2005-09-22 | Toho Titanium Co., Ltd. | Titanium oxide photocatalyst and method for preparation thereof |
JP2007083454A (en) * | 2005-09-20 | 2007-04-05 | Toshiba Lighting & Technology Corp | Acrylic resin cover |
JP2007176753A (en) * | 2005-12-28 | 2007-07-12 | Sumitomo Osaka Cement Co Ltd | High-crystallinity anatase-type titanium oxide ultra-fine particle controlled in particle shape and production method thereof |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011020061A (en) * | 2009-07-16 | 2011-02-03 | Toto Ltd | Photocatalyst-coated body and photocatalyst coating liquid |
JP2012120967A (en) * | 2010-12-07 | 2012-06-28 | Nissan Motor Co Ltd | Visible light-responsive photocatalyst, hydrophilic member including the same, and method for producing the same |
WO2017154743A1 (en) * | 2016-03-08 | 2017-09-14 | 国立研究開発法人科学技術振興機構 | Catalyst and use of same |
US11045791B2 (en) | 2016-03-08 | 2021-06-29 | Japan Science And Technology Agency | Catalyst and use of same |
CN107999050A (en) * | 2017-11-28 | 2018-05-08 | 阜阳师范学院 | A kind of B-TiO2The preparation and its application of photochemical catalyst |
US20220042671A1 (en) * | 2020-08-07 | 2022-02-10 | Pure-Light Technologies, Inc. | Photocatalyst formulations and coatings |
US11819824B2 (en) | 2020-08-07 | 2023-11-21 | Pure-Light Technologies, Inc. | Surface coatings for self-decontamination |
US11906157B2 (en) * | 2020-08-07 | 2024-02-20 | Pure-Light Te chnologies, Inc. | Photocatalyst formulations and coatings |
US11964739B2 (en) | 2020-08-07 | 2024-04-23 | Roger K. Young | Coatings that reduce or prevent barnacle attachment to a marine structure |
EP4241879A4 (en) * | 2020-11-04 | 2024-06-12 | Panasonic Intellectual Property Management Co., Ltd. | Catalyst for food processing use, food processing apparatus, food processing method, and method for producing catalyst for food processing use |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI651269B (en) | Titanium dioxide particles and preparation method thereof | |
Ismail et al. | Ease synthesis of mesoporous WO3–TiO2 nanocomposites with enhanced photocatalytic performance for photodegradation of herbicide imazapyr under visible light and UV illumination | |
JP2009012444A (en) | Layered product and its manufacturing method | |
Patrocinio et al. | Layer-by-layer TiO2/WO3 thin films as efficient photocatalytic self-cleaning surfaces | |
Liu et al. | Synthesis and characterization of titania prepared by using a photoassisted sol− gel method | |
Xi et al. | TiO2 thin films prepared via adsorptive self-assembly for self-cleaning applications | |
Zhang et al. | Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst | |
Zhang et al. | Ta3N5 nanoparticles with enhanced photocatalytic efficiency under visible light irradiation | |
Motola et al. | Enhanced photocatalytic activity of hydrogenated and vanadium doped TiO2 nanotube arrays grown by anodization of sputtered Ti layers | |
JP2008201655A (en) | Titanium dioxide fine particles, dispersion, structure, and process for production of them | |
JP4698981B2 (en) | Fibrous titanium oxide particles, method for producing the same, and uses of the particles | |
Janitabar-Darzi et al. | Investigation of structural, optical and photocatalytic properties of mesoporous TiO2 thin film synthesized by sol–gel templating technique | |
Ishchenko et al. | TiO2-and ZnO-based materials for photocatalysis: material properties, device architecture and emerging concepts | |
JP4997569B2 (en) | Nanocrystal integrated TiO2 and manufacturing method thereof | |
TW201526987A (en) | Method of producing titania sol with nano silver particle, photo-catalyst coating solution, photo-catalyst component and the use | |
WO2009051271A1 (en) | Photocatalytic film, method for production of photocatalytic film, article, and hydrophilization method | |
Xie et al. | Role of sodium ion on TiO2 photocatalyst: influencing crystallographic properties or serving as the recombination center of charge carriers? | |
JP2006224084A (en) | Photocatalytic material and photocatalytic member | |
JP2014188417A (en) | Method for manufacturing a photocatalyst composition and method for manufacturing a photocatalyst body | |
JP2009233575A (en) | Tubular body of tungsten oxide and photocatalyst using the same | |
WO2010071127A1 (en) | Photocatalyst and process for producing same | |
Yoon et al. | Effects of hydrothermal treatment of cellulose nanocrystal templated TiO2 films on their photodegradation activity of methylene blue, methyl orange, and rhodamine B | |
EP2246304B1 (en) | Titanium oxide and method of producing the same | |
Farahmandjou | Self-cleaning measurement of nano-sized photoactive TiO2 | |
JP5035590B2 (en) | Method for producing functional materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090715 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090715 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110920 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120131 |