JP2009003165A - Micro scanner and optical scanning apparatus with the same - Google Patents

Micro scanner and optical scanning apparatus with the same Download PDF

Info

Publication number
JP2009003165A
JP2009003165A JP2007163715A JP2007163715A JP2009003165A JP 2009003165 A JP2009003165 A JP 2009003165A JP 2007163715 A JP2007163715 A JP 2007163715A JP 2007163715 A JP2007163715 A JP 2007163715A JP 2009003165 A JP2009003165 A JP 2009003165A
Authority
JP
Japan
Prior art keywords
movable frame
pieces
driving
main shaft
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007163715A
Other languages
Japanese (ja)
Other versions
JP4910902B2 (en
Inventor
Naoki Kubo
直樹 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2007163715A priority Critical patent/JP4910902B2/en
Publication of JP2009003165A publication Critical patent/JP2009003165A/en
Application granted granted Critical
Publication of JP4910902B2 publication Critical patent/JP4910902B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical scanner in which the deflection angle of a variable part is made large and the break of a supporting part due to reaction force is prevented by suppressing the reduction in the displacement amount of a movable frame due to the reaction force applied on the supporting part of the movable frame when driving the variable part, and to provide an optical scanning apparatus with the optical scanner. <P>SOLUTION: The optical scanner 1 has: a fixed frame 2, a mirror part 3; main axis parts 4a and 4b; and the movable frame 5. The movable frame 5 has a substantially rectangular annular structure, two parallel sides in the longitudinal direction are a pair of driving pieces 51a and 51b which can be bent in front and back direction (Z direction), and unimorph driving parts 6a and 6b are laminated, respectively. The substantially central parts of the driving pieces 51a and 51b are connected to supporting parts 2a and 2b projected from the inner edge of the fixed frame 2, respectively. The two other sides of the movable frame 5 are connecting pieces 52a and 52b connecting both ends of the driving pieces 51a and 51b, the main axis parts 4a and 4b passes through a rotation axis (X axis) to support the mirror part 3, and the ends of the respective main axis parts 4a and 4b are connected to the substantially central parts of the connecting pieces 52a and 52b, respectively. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、プロジェクタやレーザビームプリンタ等に用いられる光源からの光を走査するマイクロスキャナに関し、より詳細には、一次元の光走査を高速に行うことが可能な小型マイクロスキャナに関する。また本発明は、そのようなマイクロスキャナを備えることにより、一次元方向に光を高速に走査可能な光走査装置に関する。   The present invention relates to a microscanner that scans light from a light source used in a projector, a laser beam printer, or the like, and more particularly to a small microscanner that can perform one-dimensional light scanning at high speed. The present invention also relates to an optical scanning device that can scan light in a one-dimensional direction at high speed by including such a microscanner.

従来から、MEMS(Micro Electro Mechanical Systems)技術を用いた小型の光スキャナ(マイクロスキャナ)は種々開発されている。例えば、図11に示すような特許文献1の光スキャナ101は、スキャン用のミラー部103、ミラー部103を支えるトーションバーTB、及びミラー部103に繋がる駆動片105を含んでおり、駆動片105上には圧電素子が配置され、ミラー部103を偏向させるためのユニモルフ駆動部106を形成している。   Conventionally, various compact optical scanners (micro scanners) using MEMS (Micro Electro Mechanical Systems) technology have been developed. For example, an optical scanner 101 of Patent Document 1 as shown in FIG. 11 includes a scanning mirror unit 103, a torsion bar TB that supports the mirror unit 103, and a driving piece 105 connected to the mirror unit 103. A piezo-electric element is disposed on the top, and a unimorph drive unit 106 for deflecting the mirror unit 103 is formed.

そして、この光スキャナ101は、ミラー部103を極力大きく偏向させるために、駆動片105上に配置されるユニモルフ駆動部106の駆動周波数と、トーションバーTBを含むミラー部103の機械的共振周波数とを一致させている。このようにすれば、ユニモルフ駆動部106が低電圧駆動であっても、ミラー部103が共振して比較的大きく偏向するためである。   The optical scanner 101 includes a driving frequency of the unimorph driving unit 106 disposed on the driving piece 105 and a mechanical resonance frequency of the mirror unit 103 including the torsion bar TB in order to deflect the mirror unit 103 as much as possible. Are matched. This is because, even if the unimorph drive unit 106 is driven at a low voltage, the mirror unit 103 resonates and deflects relatively large.

しかしながら、ミラー部103に繋がる駆動片105の先端部110はねじれにくくなっている。そのため、駆動片105に生じる力が回転トルクとしてミラー部103に作用しにくい。したがって、ミラー部103が十分に偏向しているとはいいがたい。   However, the tip portion 110 of the drive piece 105 connected to the mirror portion 103 is difficult to twist. Therefore, the force generated in the drive piece 105 is unlikely to act on the mirror unit 103 as rotational torque. Therefore, it cannot be said that the mirror unit 103 is sufficiently deflected.

ここで、先端部110とミラー部103とが連結しないような光スキャナ101も考えられる。例えば、図12に示すような光スキャナ101である。この光スキャナ101は、固定枠102、ミラー部103、ユニモルフ駆動部106a〜106dによって変形する駆動片105、及びミラー部103と駆動片105とをつなぐ主軸部104を含んでいる。   Here, an optical scanner 101 in which the distal end portion 110 and the mirror portion 103 are not connected is also conceivable. For example, an optical scanner 101 as shown in FIG. The optical scanner 101 includes a fixed frame 102, a mirror part 103, a driving piece 105 deformed by unimorph driving parts 106a to 106d, and a main shaft part 104 connecting the mirror part 103 and the driving piece 105.

そして、この光スキャナ101は、駆動片105の撓み変形に応じて、ミラー部103をX方向を基準に正逆回転させる(P方向へ回転またはR方向へ回転させる)。このようなミラー部103の偏向動作で撓み変形する駆動片105を示した図が、図13A及び図13Bになる。これらの図は図12のA−A’線矢視断面図であり、図13Aが正回転(P方向への回転)の場合を示し、図13Bが逆回転(R方向への回転)の場合を示す。   Then, the optical scanner 101 rotates the mirror unit 103 forward and backward based on the X direction (rotating in the P direction or rotating in the R direction) according to the bending deformation of the driving piece 105. FIGS. 13A and 13B show the driving piece 105 that is bent and deformed by the deflection operation of the mirror unit 103. These figures are cross-sectional views taken along the line AA ′ of FIG. 12, and FIG. 13A shows a case of forward rotation (rotation in the P direction), and FIG. 13B shows a case of reverse rotation (rotation in the R direction). Indicates.

なお、説明上、主軸部104の軸方向をX方向(X軸と称してもよい)、このX方向に対して直交する駆動片105の延び方向をY方向、X方向及びY方向に対する直交方向をZ方向とする。また、図12での紙面上側をY方向のプラス{Y(+)}、この+方向に対する逆方向をY方向のマイナス{Y(−)}とするとともに、図12での紙面表側をZ方向のプラス{Z(+)}、この+方向に対する逆方向をZ方向のマイナス{Z(−)}とする。   For the sake of explanation, the axial direction of the main shaft portion 104 is the X direction (may be referred to as the X axis), and the extending direction of the drive piece 105 orthogonal to the X direction is the Y direction, the X direction, and the orthogonal direction to the Y direction. Is the Z direction. Also, the upper side of the paper surface in FIG. 12 is the Y direction plus {Y (+)}, the opposite direction to the + direction is the Y direction minus {Y (−)}, and the front side of the paper surface in FIG. Plus {Z (+)}, and the opposite direction to the + direction is the minus Z in the Z direction {Z (-)}.

また、以降では、2つの駆動片105(駆動片105a、105b)のうち駆動片105aのみについて説明するが、この駆動片105aがミラー部103を正回転または逆回転させようとしている場合、残りの駆動片105bも同じようにミラー部103を正回転または逆回転させている。   Hereinafter, only the driving piece 105a of the two driving pieces 105 (driving pieces 105a and 105b) will be described. However, when the driving piece 105a attempts to rotate the mirror unit 103 forward or backward, Similarly, the driving piece 105b rotates the mirror 103 forward or backward.

ミラー部103が正回転する場合、図13Aに示すように、Y(+)側のユニモルフ駆動部106aの圧電素子108が伸びることで、Y(+)側の駆動片105aにおける主軸部104側はZ(−)に垂れ下がる。一方、Y(−)側のユニモルフ駆動部106bの圧電素子108が縮むことで、Y(−)側の駆動片105aにおける主軸部104側はZ(+)に跳ね上がる。すると、波打つように駆動片105aが撓み、その撓みに追従して主軸部104も正回転して傾く。   When the mirror unit 103 rotates in the forward direction, as shown in FIG. 13A, the piezoelectric element 108 of the Y (+) side unimorph driving unit 106a extends, so that the main shaft unit 104 side of the Y (+) side driving piece 105a is It hangs down to Z (-). On the other hand, when the piezoelectric element 108 of the Y (−) side unimorph drive unit 106b contracts, the main shaft 104 side of the Y (−) side drive piece 105a jumps up to Z (+). Then, the drive piece 105a bends like a wave, and the main shaft portion 104 also rotates forward and tilts following the bend.

また、ミラー部103が逆回転する場合、図13Bに示すように、Y(+)側のユニモルフ駆動部106aの圧電素子108が縮むことで、Y(+)側の駆動片105aにおける主軸部104側はZ(+)に跳ね上がる。一方、Y(−)側のユニモルフ駆動部106bの圧電素子108が伸びることで、Y(−)側の駆動片105aにおける主軸部104側はZ(−)に垂れ下がる。すると、駆動片105aは、図13Aとは逆向きに波打って撓み、その撓みに追従して主軸部104も逆回転して傾く。
特開2005−128147号公報
When the mirror unit 103 rotates in the reverse direction, as shown in FIG. 13B, the piezoelectric element 108 of the Y (+) side unimorph drive unit 106a contracts, so that the main shaft unit 104 in the Y (+) side drive piece 105a. The side jumps up to Z (+). On the other hand, when the piezoelectric element 108 of the Y (−) side unimorph drive unit 106b extends, the main shaft 104 side of the Y (−) side drive piece 105a hangs down to Z (−). Then, the driving piece 105a undulates and bends in the direction opposite to that shown in FIG. 13A, and the main shaft portion 104 also rotates backward and tilts following the bending.
JP 2005-128147 A

図11や図12に示したような光スキャナ101をプロジェクタ等の走査型投影装置に用いる場合、ミラー部103の偏向角が投影可能な画面サイズを決定する大きな要因となる。そのため、ミラー部103を偏向させる際にユニモルフ駆動部106a〜106dの僅かな変位でより大きな偏向角が得られることが望ましい。しかし、図12のような構造の場合、各駆動片105a、105bの固定端(図12に破線円で表示)は、駆動片105a、105bの湾曲により固定枠2から反力を受けるため、固定端が変形してしまう。その結果、主軸部104a、104bが連結された駆動片105a、105bの駆動部分の変位量が低下してミラー部103の偏向角が小さくなるという問題点があった。   When the optical scanner 101 as shown in FIGS. 11 and 12 is used in a scanning projection apparatus such as a projector, the deflection angle of the mirror unit 103 is a major factor in determining the screen size that can be projected. Therefore, it is desirable to obtain a larger deflection angle with a slight displacement of the unimorph drive units 106a to 106d when deflecting the mirror unit 103. However, in the case of the structure as shown in FIG. 12, the fixed ends of the drive pieces 105a and 105b (indicated by broken line circles in FIG. 12) receive reaction force from the fixed frame 2 due to the curvature of the drive pieces 105a and 105b. The edge is deformed. As a result, there is a problem in that the amount of displacement of the drive portions of the drive pieces 105a and 105b to which the main shaft portions 104a and 104b are coupled is reduced and the deflection angle of the mirror portion 103 is reduced.

この変形を防止するために、従来は駆動片105a、105bを固定枠102に強固に固定するとともに固定枠102の剛性を高めていた。しかし、変形を完全に防止することは困難であり、ミラー偏向角がある程度低減する現象は避けられなかった。また、シリコン基板を用いて固定枠102や駆動片105a、105b等を一体形成する場合、固定枠102の剛性を高めるために基板の厚みや幅を増大させると、光スキャナ101が大型化してしまう上、高価な材料であるシリコンの使用量が増加する。さらに、駆動部となる駆動片105a、105bやミラー部103は薄く形成する必要があるためエッチング量が多くなり、加工時間や加工コストも増加することとなる。   In order to prevent this deformation, conventionally, the driving pieces 105a and 105b are firmly fixed to the fixed frame 102 and the rigidity of the fixed frame 102 is increased. However, it is difficult to completely prevent deformation, and the phenomenon that the mirror deflection angle is reduced to some extent is inevitable. Further, in the case where the fixed frame 102 and the driving pieces 105a and 105b are integrally formed using a silicon substrate, if the thickness and width of the substrate are increased in order to increase the rigidity of the fixed frame 102, the optical scanner 101 is increased in size. In addition, the amount of silicon that is an expensive material increases. Furthermore, since the drive pieces 105a and 105b and the mirror part 103 which are drive parts need to be formed thin, the etching amount increases, and the processing time and processing cost also increase.

本発明はこのような状況に鑑みてなされたものであって、変動部を駆動させる際に可動枠の支持部へ作用する反力に起因する可動枠の変位量の低下を抑制することにより、変動部の偏向角を大きくすることが可能なマイクロスキャナ及びそれを備えた光走査装置を提供することを目的とする。   The present invention has been made in view of such a situation, and by suppressing a decrease in the displacement amount of the movable frame due to a reaction force acting on the support portion of the movable frame when driving the variable portion, It is an object of the present invention to provide a micro scanner capable of increasing the deflection angle of a variable portion and an optical scanning device including the micro scanner.

上記目的を達成するために、本発明のマイクロスキャナは、変動部と、該変動部を揺動可能に支持する主軸部と、該主軸部を保持する変形可能な可動枠と、該可動枠を湾曲させて変動部を傾斜させる駆動手段と、可動枠を湾曲可能に支持する固定枠と、を含むマイクロスキャナであり、可動枠は、駆動手段により湾曲する略平行な一対の駆動片と、該駆動片の両端部同士を連結する一対の結合片とで構成される略矩形の環状構造をなしており、各結合片の長手方向の略中央部に主軸部が連結され、駆動片の長手方向の略中央部が固定枠に固定されている。   In order to achieve the above object, a microscanner of the present invention includes a variable portion, a main shaft portion that supports the variable portion so as to be swingable, a deformable movable frame that holds the main shaft portion, and the movable frame. A microscanner including a driving means for bending and inclining the variable portion; and a fixed frame that supports the movable frame in a bendable manner. The movable frame includes a pair of substantially parallel driving pieces that are curved by the driving means; It has a substantially rectangular annular structure composed of a pair of coupling pieces that connect both ends of the driving piece, and the main shaft portion is coupled to the substantially central portion of the longitudinal direction of each coupling piece, and the longitudinal direction of the driving piece Is substantially fixed to the fixed frame.

この構成によれば、駆動片が湾曲したとき、最も変位量が大きい両端部が自由に撓むこととなり、支持部は最も変位量が小さい略中央部の位置変化を保持するのみである。従って、固定枠に駆動片の一端が固定されていた従来の構成に比べて、駆動片が湾曲したとき固定枠から受ける反力が小さくなり、固定枠の変形による駆動片の変位量のロスが抑制される。   According to this configuration, when the driving piece is curved, both end portions having the largest displacement amount are flexed freely, and the support portion only holds the change in the position of the substantially central portion having the smallest displacement amount. Therefore, compared to the conventional configuration in which one end of the drive piece is fixed to the fixed frame, the reaction force received from the fixed frame when the drive piece is curved is reduced, and the displacement of the drive piece due to the deformation of the fixed frame is lost. It is suppressed.

また、結合片の主軸部が連結される部分の両側に、他の部分に比べて曲げ剛性が小さい屈曲部を設けておくことが好ましい。これにより、結合部は屈曲部において比較的弱い力で変形するため、主軸部の回転量も大きくなる。そして、この増加した回転量に起因して、変動部は比較的大きく揺動する。その結果、マイクロスキャナは、変動部の偏向角を容易に増大させられる。   Moreover, it is preferable to provide the bending part with small bending rigidity compared with another part on both sides of the part to which the main shaft part of the coupling piece is connected. As a result, the coupling portion is deformed by a relatively weak force at the bent portion, and the amount of rotation of the main shaft portion is also increased. And the fluctuation | variation part rock | fluctuates comparatively largely due to this increased rotation amount. As a result, the microscanner can easily increase the deflection angle of the variable portion.

なお、マイクロスキャナを構成する各部材は、例えば1つの基板の表裏面をエッチング加工することによって設けられており、マイクロスキャナ自身は一基板に形成されている。また、変動部が、金属膜を含むことで光を反射させるミラー部である場合、マイクロスキャナは光スキャナとも称せる。   Each member constituting the micro scanner is provided by, for example, etching the front and back surfaces of one substrate, and the micro scanner itself is formed on one substrate. In addition, when the variable part is a mirror part that reflects light by including a metal film, the microscanner can also be referred to as an optical scanner.

また、駆動手段としては、圧電素子とそれを挟む電極と、これらを基板に貼り付けた構造から成るユニモルフ駆動部が好適に用いられる。従来はミラー部を回転駆動させるためのユニモルフ駆動部が最低4個必要であったのに対し、本発明の光スキャナでは2個のユニモルフ駆動部で構成可能となる。これにより、圧電素子の特性のバラツキに起因するユニモルフ駆動部の駆動性能の信頼性を高めることができ、ユニモルフ駆動部を構成する電極へ電圧を印加するための配線も簡略化できる。   Further, as the driving means, a unimorph driving unit including a piezoelectric element, electrodes sandwiching the piezoelectric element, and a structure in which these are attached to a substrate is preferably used. Conventionally, at least four unimorph drive units are required for rotationally driving the mirror unit, whereas the optical scanner of the present invention can be configured with two unimorph drive units. As a result, the reliability of the driving performance of the unimorph driving unit due to variations in the characteristics of the piezoelectric elements can be increased, and the wiring for applying a voltage to the electrodes constituting the unimorph driving unit can be simplified.

また、以上のマイクロスキャナを搭載する光走査装置も本発明といえる。   Further, an optical scanning device equipped with the above micro scanner can also be said to be the present invention.

本発明によれば、マイクロスキャナの変動部の偏向角を容易に増大可能となり、且つ反力による支持部の変形や破損を防止可能となる。また、高い加工精度や組立精度、及び圧電素子の特性の均一性を必要とすることなく、偏向時の回転軸のずれや傾きを最小限に抑えることができ、マイクロスキャナの製造コストも低減可能となる。   According to the present invention, it is possible to easily increase the deflection angle of the variable portion of the micro scanner, and it is possible to prevent the support portion from being deformed or damaged by a reaction force. Also, without requiring high processing accuracy, assembly accuracy, and uniformity of piezoelectric element characteristics, it is possible to minimize the displacement and inclination of the rotating shaft during deflection, and to reduce the manufacturing cost of the micro scanner. It becomes.

以下、本発明の実施形態について図面を参照しながら説明する。なお、理解を容易にすべく、平面図であってもハッチングを付している。また、説明の便宜上、部材符号、ハッチングを省略する場合もあるが、かかる場合、他の図面を参照するものとする。また、図面上での黒丸は紙面に対し垂直方向を意味する。以下の実施形態では、マイクロスキャナの変動する部材(変動部)としてミラー部を例に挙げるとともに、このミラー部を変動させることで光を反射させスキャン動作を行う光スキャナを例に挙げる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In order to facilitate understanding, even plan views are hatched. In addition, for convenience of explanation, member symbols and hatching may be omitted, but in such a case, other drawings are referred to. Moreover, the black circle on the drawing means a direction perpendicular to the paper surface. In the following embodiments, a mirror part is taken as an example of a member (fluctuating part) that fluctuates in a micro scanner, and an optical scanner that performs a scanning operation by reflecting light by changing the mirror part is taken as an example.

図1は、本発明のマイクロスキャナ及び光走査装置を備える画像投影装置の一例を示すブロック図である。図1において、画像投影装置100は、例えばパソコンやテレビ等から出力される画像信号を入力し、その処理を行う光制御部20と、光制御部20から出力される信号を受けて光の走査を行い、例えばスクリーン30に画像光を投影する光走査装置40を含む構成である。   FIG. 1 is a block diagram illustrating an example of an image projection apparatus including a micro scanner and an optical scanning device according to the present invention. In FIG. 1, an image projection apparatus 100 receives an image signal output from, for example, a personal computer or a television, and scans light by receiving a light control unit 20 that performs processing and a signal output from the light control unit 20. For example, the optical scanning device 40 that projects image light onto the screen 30 is included.

光走査装置40は、図1に示すように、それぞれが赤色、緑色、青色(以下RGBと省略する)に対応する3つの光源21〜23と、色合成プリズム24と、コリメータレンズ25と、光スキャナ(マイクロスキャナ)1と、投影光学系26と、ミラー位置検知用光源27と、ミラー位置検出手段28と、光走査制御部29とから構成される。   As shown in FIG. 1, the optical scanning device 40 includes three light sources 21 to 23 corresponding to red, green, and blue (hereinafter abbreviated as RGB), a color synthesis prism 24, a collimator lens 25, and light. The scanner (microscanner) 1, a projection optical system 26, a mirror position detection light source 27, a mirror position detection means 28, and an optical scanning control unit 29 are configured.

そして、RGBに対応する3つの光源21〜23から出射された光は、色合成プリズム24、コリメータレンズ25の順に通過し、光スキャナ1で光走査された後、投影光学系27を透過して、例えばスクリーン30に結像する。   Then, light emitted from the three light sources 21 to 23 corresponding to RGB passes through the color synthesis prism 24 and the collimator lens 25 in this order, and after optical scanning with the optical scanner 1, passes through the projection optical system 27. For example, the image is formed on the screen 30.

次に光走査装置40の詳細について説明する。3つの光源21〜23は、例えば光源21が赤色の半導体レーザダイオード、光源22が緑色の半導体レーザダイオード、光源23が青色の半導体レーザダイオードに対応する。そして、それぞれの半導体レーザダイオードの波長は、例えば、赤色が660nm、緑色が532nm、青色が450nmに設定されている。   Next, details of the optical scanning device 40 will be described. For example, the light source 21 corresponds to a red semiconductor laser diode, the light source 22 corresponds to a green semiconductor laser diode, and the light source 23 corresponds to a blue semiconductor laser diode. The wavelengths of the respective semiconductor laser diodes are set to, for example, 660 nm for red, 532 nm for green, and 450 nm for blue.

なお、本実施形態では光源に半導体レーザダイオードを用いているが、これに限定される趣旨ではなく、本発明の目的を逸脱しない範囲で変更可能である。特に、緑色の半導体レーザダイオードは入手困難であることから、緑色のみ半導体レーザで結晶を励起する方式のDPSS(Diode Pomping Solid State)レーザを外部変調器で変調するものを用いて構わない。また、赤色、緑色、青色の全ての色について、半導体レーザダイオードに代えて、発光ダイオード(LED)や固体レーザ等を光源に用いても構わない。ただし、光源のサイズは小さい方が好ましく、その点で半導体レーザダイオードが好ましい。   In this embodiment, the semiconductor laser diode is used as the light source. However, the present invention is not limited to this, and can be changed without departing from the object of the present invention. In particular, since a green semiconductor laser diode is difficult to obtain, a DPSS (Diode Pomping Solid State) laser that excites a crystal with a semiconductor laser only in green may be modulated with an external modulator. Further, for all colors of red, green, and blue, a light emitting diode (LED), a solid state laser, or the like may be used as a light source instead of the semiconductor laser diode. However, the size of the light source is preferably small, and a semiconductor laser diode is preferable in that respect.

色合成プリズム24は、光源21〜23から出射されたレーザ光を合成する役割を果たし、光源21〜23から出射されたレーザ光はここで合成され、合成された色をスクリーン30に表示する。なお、本実施形態では色合成プリズムを用いているが、これに限定される趣旨ではない。例えば、図2に示すように2枚のダイクロイックミラー31a、31bを用いて、赤色光を反射し緑色光を透過するダイクロイックミラー31aで赤色と緑色の光源21、22から出射されたレーザ光を合成し、その後、青色光を反射し赤色光と緑色光は透過するダイクロイックミラー31bを用いて、先に合成されたレーザ光に青色の光源23から出射されたレーザ光を合成するような形態としても構わない。ただし、装置の部品点数を少なくすることと、装置全体のサイズを小さくできる点で色合成プリズム24を用いるのが好ましい。   The color synthesizing prism 24 plays a role of synthesizing the laser beams emitted from the light sources 21 to 23, and the laser beams emitted from the light sources 21 to 23 are synthesized here, and the synthesized color is displayed on the screen 30. In the present embodiment, a color synthesis prism is used, but the present invention is not limited to this. For example, as shown in FIG. 2, two dichroic mirrors 31a and 31b are used to synthesize laser beams emitted from red and green light sources 21 and 22 with a dichroic mirror 31a that reflects red light and transmits green light. Then, using the dichroic mirror 31b that reflects blue light and transmits red light and green light, the laser light emitted from the blue light source 23 is combined with the previously synthesized laser light. I do not care. However, it is preferable to use the color synthesizing prism 24 in terms of reducing the number of parts of the apparatus and reducing the size of the entire apparatus.

コリメータレンズ25は、光源21〜23から出射され、色合成プリズム24を通過してきた発散光を平行光へ変換するレンズである。また、コリメータレンズ25は、投影光学系27で発生する色収差を補正するようにピント位置が調整されている。光スキャナ1は、コリメータレンズ25を透過してきたレーザ光を走査することができ、本実施形態においては、スクリーン30に対して水平方向(図1の左右方向)と垂直方向(図1の紙面方向)にレーザ光を走査する。   The collimator lens 25 is a lens that converts divergent light emitted from the light sources 21 to 23 and passing through the color synthesis prism 24 into parallel light. The collimator lens 25 is adjusted in focus so as to correct chromatic aberration generated in the projection optical system 27. The optical scanner 1 can scan the laser light transmitted through the collimator lens 25, and in this embodiment, the horizontal direction (left-right direction in FIG. 1) and the vertical direction (paper surface direction in FIG. 1) with respect to the screen 30. ) Is scanned with a laser beam.

図3は、本発明の第1実施形態の光スキャナを示す平面図であり、図4は、図3のB−B’線矢視断面図である。本実施形態の光スキャナ1は、X軸周り(図3の縦回り)の走査のみを行う一次元走査型の光スキャナであり、固定枠2、ミラー部3、主軸部4a、4b、可動枠5、ユニモルフ駆動部6a、6bを含んでいる。なお、これらの部材は、変形可能なシリコン基板等をエッチングすることにより一体形成されている。   3 is a plan view showing the optical scanner according to the first embodiment of the present invention, and FIG. 4 is a cross-sectional view taken along line B-B ′ of FIG. 3. The optical scanner 1 of this embodiment is a one-dimensional scanning type optical scanner that performs only scanning around the X axis (vertical rotation in FIG. 3), and includes a fixed frame 2, a mirror unit 3, main shaft units 4a and 4b, and a movable frame. 5, unimorph drive parts 6a and 6b are included. Note that these members are integrally formed by etching a deformable silicon substrate or the like.

ミラー部3は、光源等からの光を反射させる部材である。かかるミラー部3は、平面視で矩形状の基板に、開孔H(第1開孔H1、第2開孔H2)を並べて設けることで、図1に示すような固定枠2及びその内側に生じる島状部分(第1開孔H1と第2開孔H2との間に位置する残部)を形成し、島状部分に金やアルミニウム等の反射膜を貼り付けることで形成される。   The mirror unit 3 is a member that reflects light from a light source or the like. Such a mirror unit 3 is formed by arranging openings H (first opening H1 and second opening H2) side by side on a rectangular substrate in plan view so that the fixed frame 2 as shown in FIG. The resulting island-shaped portion (the remaining portion located between the first opening H1 and the second opening H2) is formed, and a reflective film such as gold or aluminum is attached to the island-shaped portion.

なお、第1開孔H1と第2開孔H2とが並ぶ方向をY方向と称し、第1開孔H1側のY方向をY方向のプラス{Y(+)}、この+方向に対する逆方向をY方向のマイナス{Y(−)}とする。さらに、ミラー部3の中心からY方向に伸びる方向をY軸と称する。   The direction in which the first opening H1 and the second opening H2 are arranged is referred to as the Y direction, the Y direction on the first opening H1 side is the Y direction plus {Y (+)}, and the direction opposite to the + direction. Is negative {Y (−)} in the Y direction. Further, a direction extending in the Y direction from the center of the mirror unit 3 is referred to as a Y axis.

主軸部4a、4bは、ミラー部3の外縁において対向する一端と他端とから外側に延びることで、そのミラー部3を挟持して支える部材である。かかる主軸部4a、4bは、ミラー部3に接する第1開孔H1、第2開孔H2を近接させることにより、基板の一部分を棒状にさせることで形成される。   The main shaft portions 4 a and 4 b are members that support the mirror portion 3 by sandwiching the mirror portion 3 by extending outward from one end and the other end facing each other at the outer edge of the mirror portion 3. The main shaft portions 4a and 4b are formed by bringing the first opening H1 and the second opening H2 in contact with the mirror portion 3 close to each other so that a part of the substrate is formed into a rod shape.

なお、主軸部4a、4bは、Y方向に対して交差する方向(例えば直交方向)に延びている。そこで、この方向をX方向と称し、主軸部4a側のX方向をX方向のプラス{X(+)}、この+方向に対する逆方向をX方向のマイナス{X(−)}とする。さらに、主軸部4a、4bに重畳してX方向に伸びる方向をX軸(主軸方向/X軸方向)と称する。   The main shaft portions 4a and 4b extend in a direction intersecting the Y direction (for example, an orthogonal direction). Therefore, this direction is referred to as the X direction, the X direction on the main shaft portion 4a side is defined as a positive X direction {X (+)}, and the opposite direction to the + direction is defined as a negative X direction {X (-)}. Furthermore, a direction extending in the X direction so as to overlap the main shaft portions 4a and 4b is referred to as an X axis (main axis direction / X axis direction).

可動枠5は、主軸部4a、4bを保持すること(主軸部4a、4bに繋がること)によってミラー部3を保持する部材である。かかる可動枠5は、Y軸を対称軸とするコ字状の開孔H(第3開孔H3、第4開孔H4)と第1開孔H1、第2開孔H2との間に額縁状に残存する基板の残部で形成される。   The movable frame 5 is a member that holds the mirror portion 3 by holding the main shaft portions 4a and 4b (connected to the main shaft portions 4a and 4b). The movable frame 5 has a frame between the U-shaped opening H (the third opening H3 and the fourth opening H4) with the Y axis as the axis of symmetry and the first opening H1 and the second opening H2. The remaining portion of the substrate remaining in the shape is formed.

可動枠5の長手方向の平行な二辺は表裏方向(図4のZ軸方向)に湾曲可能な一対の駆動片51a、51bであり、それぞれ圧電素子が積層されユニモルフ駆動部6a、6bが形成されている。駆動片51a、51bの略中央部は固定枠2の内縁から突出する支持部2a、2bに繋がっている。   The two parallel sides in the longitudinal direction of the movable frame 5 are a pair of drive pieces 51a and 51b that can be bent in the front and back direction (Z-axis direction in FIG. 4), and piezoelectric elements are laminated to form unimorph drive units 6a and 6b. Has been. The substantially central portions of the drive pieces 51 a and 51 b are connected to the support portions 2 a and 2 b that protrude from the inner edge of the fixed frame 2.

可動枠5の他の二辺は駆動片51a、51bの両端部を連結する一対の結合片52a、52bであり、主軸部4a、4bは回転軸(X軸)を通るようにミラー部3を支持するとともに、各主軸部4a、4bの端部がそれぞれ結合片52a、52bの略中央部に繋がっている。即ち、可動枠5は駆動片51a、51b及び結合片52a、52bから成る略矩形の環状構造をなしている。   The other two sides of the movable frame 5 are a pair of coupling pieces 52a and 52b that connect both ends of the drive pieces 51a and 51b, and the main shaft portions 4a and 4b pass the mirror portion 3 so as to pass through the rotation axis (X axis). While supporting, the edge part of each main-shaft part 4a, 4b is connected with the approximate center part of coupling piece 52a, 52b, respectively. That is, the movable frame 5 has a substantially rectangular annular structure composed of the drive pieces 51a and 51b and the coupling pieces 52a and 52b.

ユニモルフ駆動部6a、6bは、電圧を力に変換するアクチュエータとして機能するものであり、図4に示すように、例えば分極処理されたPZT、ZnO、BST等の圧電素子61と、この圧電素子61を挟持する電極62が駆動片51a、51bの表面に貼り付けられることで構成されている。そして、この二枚の電極62間に、分極反転を起こさせない範囲で±の電圧(交流電圧)が所定の周波数で印加されることで圧電素子61がその周波数で伸縮し、その伸縮に応じてユニモルフ駆動部6a、6bが撓む。   The unimorph drive units 6a and 6b function as actuators that convert voltage into force. As shown in FIG. 4, for example, a piezoelectric element 61 such as PZT, ZnO, or BST that has been subjected to a polarization process, and the piezoelectric element 61 The electrode 62 is sandwiched between the driving pieces 51a and 51b. Then, a ± voltage (alternating voltage) is applied between the two electrodes 62 within a range that does not cause polarization inversion at a predetermined frequency, so that the piezoelectric element 61 expands and contracts at that frequency, and the expansion and contraction occurs according to the expansion and contraction. Unimorph drive part 6a, 6b bends.

そして、ユニモルフ駆動部6a、6bの伸縮変形に応じて駆動片51a、51bも変形(撓み変形/曲げ変形)し、駆動片51a、51bの両端に繋がる結合片52a、52bが傾斜する。本発明の光スキャナ1では、この可動枠5の変形を利用して、ミラー部3が主軸部4a、4b(主軸方向)を基準に正逆回転方向に傾く(揺動可能となる)。なお、詳細については後述する。   The drive pieces 51a and 51b are also deformed (flexible deformation / bending deformation) in accordance with the expansion and contraction of the unimorph drive units 6a and 6b, and the coupling pieces 52a and 52b connected to both ends of the drive pieces 51a and 51b are inclined. In the optical scanner 1 of the present invention, by utilizing the deformation of the movable frame 5, the mirror portion 3 is tilted (can be swung) in the forward and reverse rotation directions with respect to the main shaft portions 4 a and 4 b (main shaft direction). Details will be described later.

次に、光スキャナ1の製造方法の一例を説明する。光スキャナ1は、例えば厚さ100μm程度のシリコン基板を用いて作製される。まず、シリコン基板をフォトレジストとエッチングにより加工して開口H1〜H4を形成することにより、図3に示した固定枠2、ミラー部3、主軸部4a、4b、可動枠5を一体形成する。次に、シリコン基板の表面側に電極62、圧電素子61、電極62を順に貼り付けてユニモルフ駆動部6a、6bを形成する。そして、ミラー部3に反射膜となる金属膜を貼り付けて光スキャナ1を製造する。   Next, an example of a method for manufacturing the optical scanner 1 will be described. The optical scanner 1 is manufactured using, for example, a silicon substrate having a thickness of about 100 μm. First, the silicon substrate is processed by photoresist and etching to form openings H1 to H4, thereby integrally forming the fixed frame 2, the mirror portion 3, the main shaft portions 4a and 4b, and the movable frame 5 shown in FIG. Next, the electrode 62, the piezoelectric element 61, and the electrode 62 are attached in this order on the surface side of the silicon substrate to form the unimorph drive units 6a and 6b. Then, the optical scanner 1 is manufactured by attaching a metal film serving as a reflective film to the mirror unit 3.

なお、圧電素子61、電極62、及びミラー部3の金属膜は、シリコン基板上に直接薄膜形成することもできる。薄膜形成法としては、スパッタリング法、化学蒸着法(CVD法)、ゾルゲル法、エアロゾルデポジション法(AD法)などが挙げられるが、エアロゾルデポジション法が好ましい。これによれば、スパッタリング法、CVD法、ゾルゲル法に比べてエッチング工程等が省略でき、成膜速度の向上、工程短縮が可能となる。なお、エアロゾルデポジション法とは、あらかじめ他の手法で準備された微粒子、超微粒子原料をガスと混合してエアロゾル化し、減圧雰囲気下でノズルを通して基板に噴射して被膜を形成する技術のことを示している。   Note that the piezoelectric element 61, the electrode 62, and the metal film of the mirror unit 3 can be directly formed on the silicon substrate as a thin film. Examples of the thin film forming method include a sputtering method, a chemical vapor deposition method (CVD method), a sol-gel method, and an aerosol deposition method (AD method). The aerosol deposition method is preferable. According to this, compared with sputtering method, CVD method, sol-gel method, an etching process etc. can be omitted, and the film-forming speed can be improved and the process can be shortened. The aerosol deposition method is a technology that forms fine particles and ultrafine particles prepared in advance by other methods in advance by mixing them with gas to form an aerosol, which is then sprayed onto a substrate through a nozzle under a reduced pressure atmosphere to form a film. Show.

次に、本実施形態の光スキャナ1におけるミラー部3の偏向動作について、図5〜図7を用いながら説明する。図5Aは第1実施形態の光スキャナの斜視図、図5Bはミラー部が正方向に偏向した状態を示す光スキャナの斜視図、図6Aは図3におけるB−B’線矢視断面図、図6Bは図3におけるC−C’線矢視断面図、図7Aは図3におけるD−D’線矢視断面図、図7Bは図3におけるE−E’線矢視断面図である。   Next, the deflection operation of the mirror unit 3 in the optical scanner 1 of the present embodiment will be described with reference to FIGS. 5A is a perspective view of the optical scanner according to the first embodiment, FIG. 5B is a perspective view of the optical scanner showing a state in which the mirror portion is deflected in the forward direction, and FIG. 6A is a cross-sectional view taken along line BB ′ in FIG. 6B is a sectional view taken along line CC ′ in FIG. 3, FIG. 7A is a sectional view taken along line DD ′ in FIG. 3, and FIG. 7B is a sectional view taken along line EE ′ in FIG.

図3の光スキャナ1は、主軸部4a、4b(主軸方向)を基準にミラー部3を回動させる。そこで、主軸方向周りの一方向(X(+)からX(−)に向いて時計回りの回転)を正回転、正回転に対して逆方向の回転(反時計回りの回転)を逆回転とする(正回転方向をP、逆回転方向をRで図示)。   The optical scanner 1 in FIG. 3 rotates the mirror unit 3 with respect to the main shaft portions 4a and 4b (main shaft direction). Therefore, one direction around the main axis direction (clockwise rotation from X (+) to X (−)) is normal rotation, and rotation in the opposite direction to the normal rotation (counterclockwise rotation) is reverse rotation. (The forward rotation direction is indicated by P, and the reverse rotation direction is indicated by R).

また、X方向及びY方向に対して垂直な方向をZ方向(撓み方向)として図示し、便宜上、ミラー部3の光を受光する側をZ方向のプラス{Z(+)}、この+方向に対する逆方向をZ方向のマイナス{Z(−)}とする。さらに、X軸とY軸との交点からZ方向に伸びる方向をZ軸と称する。   In addition, the direction perpendicular to the X direction and the Y direction is illustrated as the Z direction (deflection direction), and for convenience, the light receiving side of the mirror unit 3 is the Z direction plus {Z (+)}, this + direction. The opposite direction to the negative is Z direction minus {Z (−)}. Furthermore, the direction extending in the Z direction from the intersection of the X axis and the Y axis is referred to as the Z axis.

図5Aの状態からミラー部3が正回転する場合、ユニモルフ駆動部6aには圧電素子61を縮ませる電圧が印加される。このような電圧が印加されると、図6Aに示すように、ユニモルフ駆動部6aが貼り付けられた駆動片51aがZ(−)側を凸に撓む。その結果、駆動片51aの両端部はZ(+)に跳ね上がる。   When the mirror unit 3 rotates forward from the state of FIG. 5A, a voltage for contracting the piezoelectric element 61 is applied to the unimorph drive unit 6a. When such a voltage is applied, as shown in FIG. 6A, the driving piece 51a to which the unimorph driving unit 6a is attached bends in the Z (−) side so as to protrude. As a result, both end portions of the drive piece 51a jump up to Z (+).

一方、ユニモルフ駆動部6bには圧電素子61を伸ばす電圧(ユニモルフ駆動部6a側に印加される電圧とは逆位相の電圧)が印加される。このような電圧が印加されると、図6Bに示すように、ユニモルフ駆動部6bが貼り付けられた駆動片51bが、Z(+)側を凸に撓む。その結果、駆動片51bの両端部はZ(−)に垂れ下がる。   On the other hand, a voltage for extending the piezoelectric element 61 (a voltage having a phase opposite to the voltage applied to the unimorph driving unit 6a) is applied to the unimorph driving unit 6b. When such a voltage is applied, as shown in FIG. 6B, the drive piece 51b to which the unimorph drive unit 6b is attached bends in a convex manner on the Z (+) side. As a result, both end portions of the drive piece 51b hang down to Z (−).

これにより、可動枠5は支持部2a、2bを支点として図5Bのように変形し、図7A及び図7Bに示すように、結合片52a、52bはユニモルフ駆動部6a側{Y(−)側}がZ(+)に押し上げられ、ユニモルフ駆動部6b側{Y(+)側}がZ(−)に押し下げられる。そして、図5Bに示すように、結合片52a、52bに繋がる主軸部4a、4b及びミラー部3が正回転する。   Accordingly, the movable frame 5 is deformed as shown in FIG. 5B with the support portions 2a and 2b as fulcrums, and as shown in FIGS. 7A and 7B, the coupling pieces 52a and 52b are located on the unimorph drive portion 6a side {Y (−) side. } Is pushed up to Z (+), and the unimorph drive unit 6b side {Y (+) side} is pushed down to Z (-). Then, as shown in FIG. 5B, the main shaft portions 4a and 4b and the mirror portion 3 connected to the coupling pieces 52a and 52b rotate forward.

逆に、図5Aの状態からミラー部3が逆回転する場合は、ユニモルフ駆動部6aの圧電素子61を伸ばす電圧が印加されるとともに、ユニモルフ駆動部6bの圧電素子61を縮ませる電圧が印加される。このような電圧が印加されると、駆動片51a、51bは図6A及び図6Bと逆方向に撓む。   Conversely, when the mirror unit 3 rotates in the reverse direction from the state of FIG. 5A, a voltage for extending the piezoelectric element 61 of the unimorph driving unit 6a is applied, and a voltage for contracting the piezoelectric element 61 of the unimorph driving unit 6b is applied. The When such a voltage is applied, the driving pieces 51a and 51b bend in the direction opposite to that shown in FIGS. 6A and 6B.

そして、駆動片51a、51bの撓みに伴い、結合片52a、52bのY(+)側が押し上げられるとともにY(−)側が押し下げられる。即ち、結合片52a、52bが図7A及び図7Bと逆方向に傾斜することで、主軸部4a、4b及びミラー部3も図5Bと逆方向に回転する。上述した動作を交互に繰り返すような交流電圧を一定の周波数で印加することにより、ミラー部3を回転軸(X軸)を中心に所定の周波数で偏向させることが可能となる。   As the drive pieces 51a and 51b are bent, the Y (+) side of the coupling pieces 52a and 52b is pushed up and the Y (−) side is pushed down. That is, when the coupling pieces 52a and 52b are inclined in the opposite direction to FIGS. 7A and 7B, the main shaft portions 4a and 4b and the mirror portion 3 are also rotated in the opposite direction to FIG. 5B. By applying an AC voltage that alternately repeats the above-described operation at a constant frequency, the mirror unit 3 can be deflected at a predetermined frequency around the rotation axis (X axis).

本実施形態では、駆動片51a、51bの両端が結合片52a、52bにより連結されており、可動枠5が環状構造をなしている。そして、駆動片51a、51bは略中央部において固定枠2の支持部2a、2dに繋がっている。その結果、ユニモルフ駆動部6a、6bの伸縮により駆動片51a、51bが湾曲したとき、最も変位量が大きい両端部が自由に撓むこととなる。また、支持部2a、2dは最も変位量が小さい略中央部の位置変化を保持するのみである。   In this embodiment, both ends of the drive pieces 51a and 51b are connected by the coupling pieces 52a and 52b, and the movable frame 5 has an annular structure. The drive pieces 51a and 51b are connected to the support portions 2a and 2d of the fixed frame 2 at substantially the center. As a result, when the driving pieces 51a and 51b are bent by the expansion and contraction of the unimorph driving portions 6a and 6b, both end portions having the largest displacement amount are freely bent. Further, the support portions 2a and 2d only hold a change in the position of the substantially central portion with the smallest displacement.

従って、固定枠2に可動枠の端部が固定されていた従来の構成(図12参照)に比べて、駆動片51a、51bが湾曲したとき固定枠2から受ける反力が小さくなり、固定枠2の変形による駆動片51a、51bの変位量のロスが抑制されるため、ユニモルフ駆動部6a、6bの僅かな変位で駆動片51a、51bを大きく変位させてミラー部3の偏向角をより大きくすることができる。   Therefore, compared to the conventional configuration in which the end of the movable frame is fixed to the fixed frame 2 (see FIG. 12), the reaction force received from the fixed frame 2 when the drive pieces 51a and 51b are curved is reduced. Since the loss of the displacement amount of the drive pieces 51a and 51b due to the deformation of 2 is suppressed, the drive pieces 51a and 51b are greatly displaced by a slight displacement of the unimorph drive parts 6a and 6b, and the deflection angle of the mirror part 3 is increased. can do.

また、従来の構成では、ミラー部3を回転駆動させるためのユニモルフ駆動部が最低4個必要であったのに対し、本発明の光スキャナ1では2個のユニモルフ駆動部6a、6bで構成可能となる。これにより、圧電素子の特性のバラツキに起因するユニモルフ駆動部の駆動性能の信頼性を高めることができ、ユニモルフ駆動部を構成する電極62へ電圧を印加するための配線も簡略化できる。   Further, in the conventional configuration, at least four unimorph drive units for driving the mirror unit 3 to rotate are required, whereas the optical scanner 1 of the present invention can be configured with two unimorph drive units 6a and 6b. It becomes. Thereby, the reliability of the drive performance of the unimorph drive unit due to the variation in the characteristics of the piezoelectric elements can be increased, and the wiring for applying a voltage to the electrode 62 constituting the unimorph drive unit can be simplified.

さらに、高い加工精度や組立精度、及び圧電素子の特性の均一性を必要とすることなく、ミラー偏向時の回転軸(主軸部4a、4b)のずれや傾きを最小限に抑えることができ、光スキャナ1の製造コストも低減可能となる。   Furthermore, without requiring high processing accuracy and assembly accuracy, and uniformity of the characteristics of the piezoelectric element, it is possible to minimize the displacement and inclination of the rotating shaft (main shaft portions 4a, 4b) during mirror deflection, The manufacturing cost of the optical scanner 1 can also be reduced.

図8は、本発明の第2実施形態に係る光スキャナの平面図である。本実施形態では、結合片52a、52bの主軸部4a、4bが連結されている部分を挟んで両側に、ミラー偏向時の回転軸(主軸部4a、4b)に平行な切り込み9(屈曲部)が形成されている。切り込み9は、可動枠5、主軸部4a、4b、及びミラー部8を一体形成する際に例えばエッチング加工により形成される。   FIG. 8 is a plan view of an optical scanner according to the second embodiment of the present invention. In the present embodiment, a notch 9 (bent portion) parallel to the rotation axis (main shaft portions 4a, 4b) at the time of mirror deflection is provided on both sides of the portion where the main shaft portions 4a, 4b of the coupling pieces 52a, 52b are connected. Is formed. The notch 9 is formed by, for example, etching processing when the movable frame 5, the main shaft portions 4a and 4b, and the mirror portion 8 are integrally formed.

図9Aは図8におけるD−D’線矢視断面図、図9Bは図8におけるE−E’線矢視断面図である。図9A及び図9Bでは、図7と同様にミラー部3を正回転させた状態を示している。なお、ミラー部3の偏向動作については図5乃至図7に示した第1実施形態の光スキャナ1と同様であるため説明は省略する。   9A is a cross-sectional view taken along line D-D 'in FIG. 8, and FIG. 9B is a cross-sectional view taken along line E-E' in FIG. 9A and 9B show a state in which the mirror unit 3 is rotated forward as in FIG. The deflection operation of the mirror unit 3 is the same as that of the optical scanner 1 of the first embodiment shown in FIGS.

本実施形態の光スキャナ1では、駆動片51a、51bを湾曲させて結合片52a、52bを傾斜させる場合、結合片52a、52bは切り込み9で他の部分に比べて柔軟な構造となるため屈曲可能となり、ユニモルフ駆動部6a、6bのZ軸方向の変位量が僅かであっても主軸部4a、4b及びそれに繋がるミラー部3を回転軸(X軸)周りに大きく回転させることができる。このとき、切り込み9を主軸部4aにできるだけ近接して設けておけば、ユニモルフ駆動部6a、6bの変位量に対する主軸部4a、4bの回転角(偏向角)θをより大きくすることができる。   In the optical scanner 1 of the present embodiment, when the drive pieces 51a and 51b are bent to incline the coupling pieces 52a and 52b, the coupling pieces 52a and 52b are bent at the notch 9 because the structure is more flexible than the other parts. Thus, even if the amount of displacement of the unimorph drive units 6a and 6b in the Z-axis direction is small, the main shaft units 4a and 4b and the mirror unit 3 connected to the main shaft units 4a and 4b can be greatly rotated around the rotation axis (X axis). At this time, if the notch 9 is provided as close as possible to the main shaft portion 4a, the rotation angle (deflection angle) θ of the main shaft portions 4a and 4b with respect to the displacement amount of the unimorph drive portions 6a and 6b can be further increased.

なお、回転角θとは、ユニモルフ駆動部6a、6bの影響を受けることなく不動状態にあるミラー部3と、変動するミラー部3との間に生じる角度のことである。   Note that the rotation angle θ is an angle generated between the mirror unit 3 that is stationary without being affected by the unimorph drive units 6a and 6b and the mirror unit 3 that fluctuates.

なお、切り込み9の長さや幅、及び配置については、光スキャナ1の材料となるシリコン基板の厚みや結合片52a、52bに要求される湾曲性に応じて適宜設定することができる。また、切り込み9に代えて、結合片52a、52bに主軸部4a、4bと平行な溝やスリットを設けても良い。   The length, width, and arrangement of the notches 9 can be set as appropriate according to the thickness of the silicon substrate that is the material of the optical scanner 1 and the curvature required for the coupling pieces 52a and 52b. Further, instead of the notch 9, the coupling pieces 52a and 52b may be provided with grooves and slits parallel to the main shaft portions 4a and 4b.

以上、第1及び第2実施形態の光スキャナ1について説明したが、光スキャナの構成は本実施形態の構成に限る趣旨ではなく、本発明の目的を逸脱しない範囲で種々の変更が可能である。例えば、ユニモルフ駆動部6a、6bの形状やサイズ(面積)は特に限定されない。例えば、図3及び図8に示すように、矩形状のユニモルフ駆動部6a、6bであってもよいし、台形状等の他の形状であってもよい。   The optical scanner 1 of the first and second embodiments has been described above, but the configuration of the optical scanner is not limited to the configuration of the present embodiment, and various modifications can be made without departing from the object of the present invention. . For example, the shape and size (area) of the unimorph drive units 6a and 6b are not particularly limited. For example, as shown in FIGS. 3 and 8, rectangular unimorph drive units 6a and 6b may be used, or other shapes such as a trapezoidal shape may be used.

また、ユニモルフ駆動部6a、6bのサイズは、駆動片51a、51bの一面内に包含される程度の面積であってもよいし(駆動片51a、51bの面積よりも小さい面積;図3及び図8参照)、駆動片51a、51bの一面よりも大きな面積であってもよい。ただし、ユニモルフ駆動部6a、6bのサイズが大きいほど、駆動片51a、51bを撓ませる力は大きくなるので望ましいといえる。   Further, the size of the unimorph drive units 6a and 6b may be an area that is included in one surface of the drive pieces 51a and 51b (an area smaller than the area of the drive pieces 51a and 51b; FIG. 3 and FIG. 3) 8), the area may be larger than one surface of the drive pieces 51a and 51b. However, it can be said that the larger the size of the unimorph drive units 6a and 6b, the greater the force to bend the drive pieces 51a and 51b.

また、上記実施形態では、駆動片51a、51bを駆動する駆動手段として圧電ユニモルフ構造を有するユニモルフ駆動部を例に挙げて説明したが、駆動片51a、51bを変形させる部材(駆動部)は、駆動片51a、51bの両面に圧電素子61及び電極62を積層したバイモルフ構造の駆動部を用いても良い。また、ミラー部の駆動方式は圧電素子を用いた圧電駆動方式に限らず、電磁方式や静電方式等の他の駆動方式を用いることもできる。   Moreover, in the said embodiment, although the unimorph drive part which has a piezoelectric unimorph structure was mentioned as an example as a drive means which drives the drive pieces 51a and 51b, the member (drive part) which deform | transforms the drive pieces 51a and 51b is as follows. You may use the drive part of the bimorph structure which laminated | stacked the piezoelectric element 61 and the electrode 62 on both surfaces of the drive pieces 51a and 51b. Further, the driving method of the mirror unit is not limited to the piezoelectric driving method using the piezoelectric element, and other driving methods such as an electromagnetic method and an electrostatic method can be used.

例えば、図10に示すように、ユニモルフ駆動部6a、6bに代えて、電磁コイル10と永久磁石11とから成る電磁ユニット13を駆動手段としてもよい。このような電磁ユニット13は、可動枠5(駆動片51a、51b)上に電磁コイル10を形成し、永久磁石11を駆動片51a、51bの上又は下、若しくは上下に設け、電磁コイル10と永久磁石11の間に電磁力を発生させて駆動片51a、51bを撓ませ、ミラー部3を回転させる。なお、ここでは可動枠5の一部(駆動片51aの一端)のみを図示しているが、駆動片51aの他端及び駆動片51bについても同様の構成である。   For example, as shown in FIG. 10, instead of the unimorph drive units 6a and 6b, an electromagnetic unit 13 composed of an electromagnetic coil 10 and a permanent magnet 11 may be used as the drive means. Such an electromagnetic unit 13 includes the electromagnetic coil 10 formed on the movable frame 5 (drive pieces 51a and 51b), and the permanent magnet 11 is provided on or below or above and below the drive pieces 51a and 51b. Electromagnetic force is generated between the permanent magnets 11 to bend the drive pieces 51 a and 51 b and rotate the mirror unit 3. Here, only a part of the movable frame 5 (one end of the drive piece 51a) is illustrated, but the other end of the drive piece 51a and the drive piece 51b have the same configuration.

また、2個の電極から成る静電ユニットが駆動部であってもよい。このような静電ユニットでは、駆動片51a、51bの一面に一方の電極を配置するとともに、駆動片51a、51bから所定の間隔を隔てて他方の電極を配置し、両電極によって生じる静電力で駆動片51a、51bを撓ませる。   The electrostatic unit composed of two electrodes may be the drive unit. In such an electrostatic unit, one electrode is arranged on one surface of the driving pieces 51a and 51b, and the other electrode is arranged at a predetermined interval from the driving pieces 51a and 51b, and electrostatic force generated by both electrodes is used. The driving pieces 51a and 51b are bent.

また、上記各実施形態では一枚のシリコン基板からマスキング及びエッチングにより光スキャナ1の各部材を一体形成することとしたが、光スキャナ1の製法は上述した方法に限定されず、固定枠2、ミラー部3、可動枠5等の各部材を別個に作成した後、接合することも可能である。   In each of the above embodiments, the members of the optical scanner 1 are integrally formed by masking and etching from a single silicon substrate. However, the manufacturing method of the optical scanner 1 is not limited to the above-described method, and the fixed frame 2, Each member such as the mirror unit 3 and the movable frame 5 may be separately formed and then joined.

なお、説明してきた光スキャナ1を搭載する光学機器は、種々想定される。例えば、図1に示したプロジェクタ(画像投影装置)の他、コピー機やプリンタ等の画像形成装置が一例として挙げられる。また、光スキャナ以外のマイクロスキャナとしては、ミラー部3に代えてレンズ(屈曲光学系)が搭載されたものや、光源(発光素子)が搭載されたものが挙げられる。   Note that various types of optical devices equipped with the optical scanner 1 described above are assumed. For example, in addition to the projector (image projection apparatus) shown in FIG. 1, an image forming apparatus such as a copier or a printer can be cited as an example. Further, examples of micro scanners other than the optical scanner include those equipped with a lens (bending optical system) instead of the mirror unit 3 and those equipped with a light source (light emitting element).

以上説明したように本発明のマイクロスキャナによれば、可動枠が平行な一対の駆動片と駆動片の両端を連結する一対の結合片から成る環状構造となっており、駆動片の略中央部が固定枠に支持されている。このため、構成が簡単で駆動性能の信頼性も高く、高速且つ広角度に変動部を回転できるマイクロスキャナを提供することができる。更に、そのような条件で使用しても十分な耐久性を有するため、光走査装置に搭載することにより、高速に光走査を行う必要があるプロジェクタ等の画像表示装置や高速LBPへの適用が可能となる。また、光走査装置及びそれが搭載される画像表示装置の小型化、低コスト化にも寄与する。   As described above, according to the microscanner of the present invention, the movable frame has an annular structure composed of a pair of parallel driving pieces and a pair of connecting pieces that connect both ends of the driving pieces, and the substantially central portion of the driving pieces. Is supported by a fixed frame. For this reason, it is possible to provide a micro scanner that has a simple configuration, has high reliability in driving performance, and can rotate the variable portion at high speed and wide angle. Further, since it has sufficient durability even when used under such conditions, it can be applied to an image display device such as a projector and a high-speed LBP that need to perform high-speed optical scanning by being mounted on the optical scanning device. It becomes possible. It also contributes to the downsizing and cost reduction of the optical scanning device and the image display device on which it is mounted.

は、本発明の画像表示装置の概略構成を示すブロック図である。These are block diagrams which show schematic structure of the image display apparatus of this invention. は、色合成プリズムを用いない画像表示装置の構成例を示す説明図である。These are explanatory drawings which show the structural example of the image display apparatus which does not use a color synthetic | combination prism. は、本発明の第1実施形態に係る光スキャナの構成を示す平面図である。These are top views which show the structure of the optical scanner which concerns on 1st Embodiment of this invention. は、図3のB−B’線矢視断面図である。FIG. 4 is a cross-sectional view taken along line B-B ′ of FIG. 3. は、Is は、図3のB−B’線矢視断面図(図6(A))、及びC−C’線矢視断面図(図6(B))を示しており、ミラー部が正回転する際の各駆動片の動作を示す。FIG. 6 shows a cross-sectional view taken along the line BB ′ in FIG. 3 (FIG. 6A) and a cross-sectional view taken along the line CC ′ in FIG. 6 (FIG. 6B). The operation of each driving piece is shown. は、図3のD−D’線矢視断面図(図7(A))、及びE−E’線矢視断面図(図7(B))を示しており、ミラー部が正回転する際の各結合片の動作を示す。FIG. 3 shows a cross-sectional view taken along the line DD ′ in FIG. 3 (FIG. 7A) and a cross-sectional view taken along the line EE ′ (FIG. 7B), and the mirror portion rotates forward. The operation of each connecting piece is shown. は、本発明の第2実施形態に係る光スキャナの平面図である。These are the top views of the optical scanner which concerns on 2nd Embodiment of this invention. は、図8のD−D’線矢視断面図(図9(A))、及びE−E’線矢視断面図(図9(B))を示しており、ミラー部が正回転する際の各結合片の動作を示す。FIG. 8 shows a cross-sectional view taken along the line DD ′ in FIG. 8 (FIG. 9A) and a cross-sectional view taken along the line EE ′ (FIG. 9B), and the mirror portion rotates forward. The operation of each connecting piece is shown. は、駆動手段として電磁方式を採用した光スキャナの部分平面図である。These are the partial top views of the optical scanner which employ | adopted the electromagnetic system as a drive means. は、従来の光スキャナの斜視図である。FIG. 3 is a perspective view of a conventional optical scanner. は、図11とは異なる従来の光スキャナの平面図である。These are the top views of the conventional optical scanner different from FIG. は、図12のA−A’線矢視断面図である。FIG. 13 is a cross-sectional view taken along line A-A ′ of FIG. 12.

符号の説明Explanation of symbols

1 光スキャナ(マイクロスキャナ)
2 固定枠
2a、2b 支持部
3 ミラー部(変動部)
4a、4b 主軸部
5 可動枠
6a、6b ユニモルフ駆動部(駆動手段)
9 切り込み(屈曲部)
10 電磁コイル
11 永久磁石
13 電磁ユニット(駆動手段)
21〜23 光源
24 色合成プリズム
40 光走査装置
51a、51b 駆動片
52a、52b 結合片
61 圧電素子
62 電極
100 プロジェクタ
1 Optical scanner (micro scanner)
2 fixed frame 2a, 2b support part 3 mirror part (fluctuation part)
4a, 4b Main shaft part 5 Movable frame 6a, 6b Unimorph drive part (drive means)
9 Cut (bent part)
10 Electromagnetic coil 11 Permanent magnet 13 Electromagnetic unit (drive means)
21-23 Light source 24 Color synthesis prism 40 Optical scanning device 51a, 51b Drive piece 52a, 52b Coupling piece 61 Piezoelectric element 62 Electrode 100 Projector

Claims (6)

変動部と、
該変動部を揺動可能に支持する主軸部と、
該主軸部を保持する変形可能な可動枠と、
該可動枠を湾曲させて前記変動部を傾斜させる駆動手段と、
前記可動枠を湾曲可能に支持する固定枠と、
を含むマイクロスキャナにあって、
前記可動枠は、前記駆動手段により湾曲する略平行な一対の駆動片と、該駆動片の両端部同士を連結する一対の結合片とで構成される略矩形の環状構造をなしており、前記各結合片の長手方向の略中央部に前記主軸部が連結され、前記駆動片の長手方向の略中央部が前記固定枠に固定されることを特徴とするマイクロスキャナ。
Variable part,
A main shaft portion that swingably supports the variable portion;
A deformable movable frame for holding the main shaft portion;
Driving means for curving the movable frame to incline the varying portion;
A fixed frame that supports the movable frame in a bendable manner;
Including a micro scanner,
The movable frame has a substantially rectangular annular structure composed of a pair of substantially parallel driving pieces that are curved by the driving means and a pair of coupling pieces that connect both ends of the driving pieces. The micro scanner, wherein the main shaft portion is connected to a substantially central portion in the longitudinal direction of each coupling piece, and a substantially central portion in the longitudinal direction of the drive piece is fixed to the fixed frame.
前記結合片の前記主軸部が連結される部分の両側に、他の部分に比べて曲げ剛性が小さい屈曲部を設けたことを特徴とする請求項1に記載のマイクロスキャナ。   The micro scanner according to claim 1, wherein bent portions having lower bending rigidity than other portions are provided on both sides of a portion where the main shaft portion of the coupling piece is connected. 上記変動部は、金属膜を含むことで光を反射させるミラー部であることを特徴とする請求項1又は請求項2に記載のマイクロスキャナ。   The micro scanner according to claim 1, wherein the variable portion is a mirror portion that reflects light by including a metal film. 前記変動部、前記主軸部、前記可動枠及び前記固定枠は、シリコン基板を用いて一体形成されることを特徴とする請求項1乃至請求項3のいずれか1項に記載のマイクロスキャナ。   4. The micro scanner according to claim 1, wherein the variable portion, the main shaft portion, the movable frame, and the fixed frame are integrally formed using a silicon substrate. 5. 前記駆動手段は、圧電素子と、該圧電素子を挟む電極とが前記可動枠上に積層されたユニモルフ駆動部であることを特徴とする請求項1乃至請求項4のいずれか1項に記載のマイクロスキャナ。   5. The drive unit according to claim 1, wherein the drive unit is a unimorph drive unit in which a piezoelectric element and an electrode sandwiching the piezoelectric element are stacked on the movable frame. 6. Micro scanner. 請求項1乃至請求項5のいずれか1項に記載のマイクロスキャナが搭載された光走査装置。   An optical scanning device on which the micro scanner according to any one of claims 1 to 5 is mounted.
JP2007163715A 2007-06-21 2007-06-21 A micro scanner and an optical scanning device including the same. Expired - Fee Related JP4910902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007163715A JP4910902B2 (en) 2007-06-21 2007-06-21 A micro scanner and an optical scanning device including the same.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007163715A JP4910902B2 (en) 2007-06-21 2007-06-21 A micro scanner and an optical scanning device including the same.

Publications (2)

Publication Number Publication Date
JP2009003165A true JP2009003165A (en) 2009-01-08
JP4910902B2 JP4910902B2 (en) 2012-04-04

Family

ID=40319619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007163715A Expired - Fee Related JP4910902B2 (en) 2007-06-21 2007-06-21 A micro scanner and an optical scanning device including the same.

Country Status (1)

Country Link
JP (1) JP4910902B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050495A1 (en) * 2008-10-28 2010-05-06 シナノケンシ株式会社 Optical scanning apparatus
JP2010134208A (en) * 2008-12-05 2010-06-17 Funai Electric Co Ltd Vibrating mirror element
JP2010203864A (en) * 2009-03-02 2010-09-16 Stanley Electric Co Ltd Object detection device
WO2015040956A1 (en) * 2013-09-17 2015-03-26 株式会社村田製作所 Optical deflector
WO2017104510A1 (en) * 2015-12-14 2017-06-22 浜松ホトニクス株式会社 Light beam irradiation device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003209981A (en) * 2002-01-16 2003-07-25 Seiko Instruments Inc Piezoelectric actuator and electronic apparatus comprising it
JP2005128147A (en) * 2003-10-22 2005-05-19 Stanley Electric Co Ltd Optical deflector and optical apparatus using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003209981A (en) * 2002-01-16 2003-07-25 Seiko Instruments Inc Piezoelectric actuator and electronic apparatus comprising it
JP2005128147A (en) * 2003-10-22 2005-05-19 Stanley Electric Co Ltd Optical deflector and optical apparatus using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050495A1 (en) * 2008-10-28 2010-05-06 シナノケンシ株式会社 Optical scanning apparatus
JP2010134208A (en) * 2008-12-05 2010-06-17 Funai Electric Co Ltd Vibrating mirror element
US8416484B2 (en) 2008-12-05 2013-04-09 Funai Electric Co., Ltd. Vibrating mirror element
KR101623211B1 (en) 2008-12-05 2016-05-20 푸나이덴끼 가부시끼가이샤 Vibrating mirror element
JP2010203864A (en) * 2009-03-02 2010-09-16 Stanley Electric Co Ltd Object detection device
WO2015040956A1 (en) * 2013-09-17 2015-03-26 株式会社村田製作所 Optical deflector
WO2017104510A1 (en) * 2015-12-14 2017-06-22 浜松ホトニクス株式会社 Light beam irradiation device
JP2017111181A (en) * 2015-12-14 2017-06-22 浜松ホトニクス株式会社 Light beam irradiation device
CN108369335A (en) * 2015-12-14 2018-08-03 浜松光子学株式会社 Beam irradiation device
US11016286B2 (en) 2015-12-14 2021-05-25 Hamamatsu Photonics K.K. Light beam irradiation device

Also Published As

Publication number Publication date
JP4910902B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
JP5151065B2 (en) Optical scanner and scanning projector
JP4972781B2 (en) A micro scanner and an optical scanning device including the same.
JP5167634B2 (en) Laser projection device
JP4161971B2 (en) Optical scanning device and image display device
JP5728823B2 (en) Optical deflector, optical scanning device, image forming apparatus, and image projecting apparatus
JP5614167B2 (en) Optical deflector, optical scanning device, image forming apparatus, and image projecting apparatus
US11106031B2 (en) Light deflector, optical scanning device, image projection device, and mobile object
US9766450B2 (en) Light deflector, two-dimensional image display apparatus, optical scanner, and image forming apparatus
US11750779B2 (en) Light deflector, optical scanning system, image projection device, image forming apparatus, and lidar device
JP5418498B2 (en) Laser projection device
JP2003057586A (en) Optical scanner, vibrating body used for optical scanner and image forming apparatus equipped with optical scanner
JP2005128147A (en) Optical deflector and optical apparatus using the same
US11644664B2 (en) Light deflector, optical scanning system, image projection device, image forming apparatus, and lidar device
JP4910902B2 (en) A micro scanner and an optical scanning device including the same.
JP2007010823A (en) Driven mirror, light scanning optical apparatus and picture display apparatus
JP2017116842A (en) Light deflector and image projection device
US8681408B2 (en) Optical scanning device, image forming apparatus, and image projection device
JP4720717B2 (en) Optical device, optical scanner, and image forming apparatus
JP2011069954A (en) Optical scanner
JP6648443B2 (en) Optical deflector, two-dimensional image display device, optical scanning device, and image forming device
JP5557113B2 (en) Image display device
JP2007292919A (en) Optical scanner
WO2012043041A1 (en) Microscanner and optical instrument provided with same
JP6003529B2 (en) Piezoelectric light deflector, optical scanning device, image forming device, and image projection device
JP2010281853A (en) Optical deflection apparatus, image forming apparatus and image display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120102

R150 Certificate of patent or registration of utility model

Ref document number: 4910902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees